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SUMMARY

In this paper, we propose a method about task scheduling and data assignment on heterogeneous hybrid
memory multiprocessor systems for real-time applications. In a heterogeneous hybrid memory multiproces-
sor system, an important problem is how to schedule real-time application tasks to processors and assign
data to hybrid memories. The hybrid memory consists of dynamic random access memory and solid state
drives when considering the performance of solid state drives into the scheduling policy. To solve this prob-
lem, we propose two heuristic algorithms called improvement greedy algorithm and the data assignment
according to the task scheduling algorithm, which generate a near-optimal solution for real-time applica-
tions in polynomial time. We evaluate the performance of our algorithms by comparing them with a greedy
algorithm, which is commonly used to solve heterogeneous task scheduling problem. Based on our exten-
sive simulation study, we observe that our algorithms exhibit excellent performance and demonstrate that
considering data allocation in task scheduling is significant for saving energy. We conduct experiments on
two heterogeneous multiprocessor systems. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation

Heterogeneous multiprocessor systems normally consist of heterogeneous processors, heteroge-
neous memories, and heterogeneous communication interconnections. With the advent of the era
of big data, heterogeneous multiprocessor systems, especially heterogeneous memories, are widely
used in industry. This is because a huge number of memory access operations cause a performance
bottleneck. When resolving task scheduling and data assignment problem, traditionally, the main
memory is dynamic random access memory (DRAM), and the secondary memory is hard disk drive
(HDD). The completion time always depends on the memory access latency because of the per-
formance bottleneck of DRAM and HDD. The structural change in the storage and access pattern
is becoming a tendency in heterogeneous multiprocessors systems. To bridge the hardware per-
formance bottlenecks and to satisfy the ever-growing performance demands of high-performance
computing, a variety of hybrid memory architectures have been put forward such as PCM with
NAND Flash [1], uCache [2], and main memory with NOR Flash [3]. In this paper, we adopt
hybrid main memory, which consists of a DRAM and a solid state drive (SSD) in heterogeneous
multiprocessor systems.
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Solid state drive is widely adopted as a second level memory to assist a main memory like DRAM.
There are two major advantages. First, compared with DRAM, SSD has much lower cost-per-byte
and larger capacity. Second, SSD outperforms rotation-based HDD in both read and write latency
with two orders of magnitude improvement and in energy consumption. Hence, SSD is able to serve
as a memory to complement the capacity deficiency of DRAM. On heterogeneous multiprocessor
systems, SSD can be accessed by both local processor and remote processors. All real-time appli-
cations executed on heterogeneous multiprocessor systems must satisfy certain deadlines. Together
with the increasing demand on high-performance computing, the energy consumption problem on
heterogeneous multiprocessor systems has also become more and more important and received
extensive attention as green computing becomes a new trend. Thus, we consider to minimize
the energy consumption with certain constraints on heterogeneous hybrid memory multiprocessor
systems for the task scheduling and data assignment problem.

As we all know, scheduling on multiprocessor systems is NP-hard [4, 5] in general. In order to
achieve a near-optimal result of this problem, we propose a polynomial-time near-optimal heuristic
algorithm, which consists of four phases. In the first phase, we adopt the Heterogeneous Earliest
Finish Time (HEFT) [6] algorithm to schedule tasks. In the HEFT algorithm, each task is scheduled
to a processor with the shortest execution time. In the second phase, the share data are distinguished
from the single data, and the share data matrix and the single data matrix are generated correspond-
ingly. And then, we assign each data according to the share data matrix and the single data matrix to
minimize the total memory access cost. Finally, we optimize the task and data allocation based on
the time constraint while decreasing the energy consumption. To the best of our knowledge, this is
the first study in task scheduling and data assignment, which considers time constraint and energy
consumption on heterogeneous hybrid memory multiprocessor systems.

1.2. Our contributions

The main contributions of this paper include the following aspects.

� We consider heterogeneous processors, heterogeneous memories, precedence constrained
tasks, input/output data of each task, processor execution times, data access times, time con-
straints, and energy consumption to solve the task scheduling and data assignment problem to
minimize the total energy consumption.
� We design an improvement greedy algorithm for the problem of task scheduling and data

assignment on heterogeneous hybrid DRAM C SSD memory multiprocessor system.
� We propose a polynomial-time algorithm called DAA_TS algorithm. After determining the

task scheduling scheme, to minimize the total memory access cost, we first consider share data
assignment, and then consider single data assignment.

Experimental result shows that our algorithms have better performance compared with the greedy
algorithm [7], which does not consider data assignment, which proves that data assignment is very
important in the high-performance problem. On an average, compared with the greedy algorithm, the
energy consumption in the IG and DAA_TS algorithms is reduced by 23.36% and 33.26% on the
first system and 24.89% and 33.26% on the second system.DAA_TS algorithm can always generate
a near-optimal solution, which consumes less energy than IG algorithm for all the benchmarks.

The rest of the paper is organized as follows. Related works are discussed in Section 2. In
Section 3, we present our heterogeneous multiprocessor systems model and the task model. In
Section 4, we use an example to illustrate the motivation and method of this paper. In Section 5, we
propose two heuristic algorithms to solve the Heterogeneous Data Allocation and Task Scheduling
(HDATS) [8] problem. In Section 6, we evaluate and analyze our techniques to compare with the
greedy algorithm. In Section 7, we conclude this paper.

2. RELATED WORK

Recently, there are abundant researches about memory architectures. Besides benefiting data stor-
age, they also improve the effectiveness of handling the tasks. Chen et al. [9] utilized the hybrid
memory to propose data split for big data in hybrid memory with a DRAM and an SSD. Jiang et al.
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[2] proposed a utility-aware multilevel SSD cache policy uCache. uCache is a combination of DRAM
and SSD, which needs a suitable policy to promote effectiveness in data storage. Liu et al. [1]
adopted a write-activity aware NAND flash memory management scheme to effectively manage
NAND flash memory and enhance the endurance of PCM-based embedded systems. Our model
depends on [1], [2] and [9]. Hence, the model adopted in this paper is reasonable and correct.

There have so many efforts on task scheduling and data assignment under heterogeneous multi-
processor systems, which are to improve the performance of time constraint and energy consumption
[8, 10, 11]. Wang [8] proposed an effective algorithm, which aims to reduce the energy consump-
tion for share memory on heterogeneous multiprocessor systems under the time constraint. Alvarez
[10] considered to manage the runtime in many-core architectures with hybrid memories composed
of scratchpads and caches. Odagiri, J. [11] presents an Synchronous Dynamic Random Access
Memory (SDRAM) data assignment technique for dynamic multi-threaded multimedia applications.

On heterogeneous multiprocessor systems, there are a large number of embedded processor
with different execution speed and energy consumption characteristics. So many mechanisms have
been studied in [12–14]. Scholars have studied a kind of mechanisms, which incorporate execution
speed, communication overhead, and energy consumption. Casas et al. [12] researched an approach
towards a Runtime-Aware Architecture for a parallel architecture. Wu et al. [13] proposed an effi-
cient model, which can offer a unifying and extendable method to realize energy-efficient real-time
scheduling with low scheduling overhead. Marchal et al. [14] presented a unifying energy-efficient
real-time scheduling theory for multiprocessor systems.

We know that task scheduling and data assignment have already achieved a lot of achievements,
but they all did not consider heterogeneous hybrid memory with DRAM and SSD multiprocessor
systems. This paper proposes a new scheduling algorithm based on the systems to solve the problem
of task scheduling incorporated with data assignment and energy consumption.

3. THE MODELS

In this section, we first introduce our target hardware architecture model. Then, we describe the
directed acyclic graph (DAG) model for our algorithms. Finally, the formal definition of the problem
is presented.

3.1. Hardware architecture model

In this paper, the hardware architecture model, which is heterogeneous hybrid memory multipro-
cessor systems is shown in Figure 1. The architecture model is a set of heterogeneous processors
denoted by P D ¹P1; P2; : : : ; Pnº, where n is the number of heterogeneous processors. The set
of heterogeneous processors are linked together through network. Each main memory is equipped
with a DRAM and an SSD. Hence, we refer this memory structure as a hybrid memory. Each
processor can access its local hybrid memory and all the other hybrid memory, which belongs
to other processors. We call a processor who accesses to its own a DRAM or an SSD as a local

Figure 1. An architecture model. (a) An architecture with three heterogeneous processors, each is embedded
with dynamic random access memory (DRAM) and solid state drives (SSD). (b) Access times and energy

consumption for transmitting one unit of data between processors and hybrid memories.
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DRAM access or a local SSD access, respectively. And a processor access to a DRAM or an SSD,
which belongs to the other processor, we call it as a remote DRAM access or a remote SSD
access. However, the local DRAM memory or the local SSD memory has shorter time latency
than the same type of remote memory. And the remote DRAM memory has shorter latency than
the local SSD memory. For example, consider the processor P1, whose local hybrid memory con-
sists of DRAM1 C SSD1, taking DRAM2 C SSD2 and DRAM3 C SSD3 as the accessible
remote hybrid memories. And the processor P2, DRAM2 C SSD2 is the local memory, while
DRAM1CSSD1 andDRAM3CSSD3 are the remote memories. As we all know, every processor
has the ability to access the full memory address space in the distribute memory system. Because
of the heterogeneous memories and a scalable interconnection network, the structure of memory
access in our architecture model is non-uniform. We assume that local access can overlap with
remote access.

Totally, different processors accessing to a data in the same memory show different access
times and energy consumption. In our model, the local memories are heterogeneous and differ-
ent from each other in terms of capacity, access concurrency, access time, energy consumption,
and other characteristics. We define the access time .AT / as follow: the operation of a proces-
sor accessing a memory denotes as P ! M , M contains DRAM and SSD, where AT .Pi ;Mj /

is the time for processor Pi to access a unit data from memory Mj . We describe access energy
as a function AE: a processor accessing a memory denoted as P ! M , M contains DRAM and
SSD, where AE.Pi ;Mj / is the energy consumption of processor Pi to access a unit data from
memory Mj .

3.2. Directed acyclic graph model

In this section, we define DAG based on [6, 8], and [15]. We describe the memory-access data flow
graph (MDFG) model, which is used to model an application executed on heterogeneous hybrid
DRAM C SSD memory multiprocessor systems. Before we formally describe the MDFG model
for the heterogeneous task scheduling and data assignment problem, we introduce a DAG model as
shown in Figure 2.

Definition 2.1
A DAG is denoted by G = { V , E, D, input, output, ET , EE }, which is a node-weighted directed
graph, where V = { v1, v2, ....., vn } represents a set of tasks, and E = V ! V is a set of edge.
Each edge e.vi , vj / 2 E represents precedence relation between nodes vi and vj . D is made up

Figure 2. An input directed acyclic graph (DAG).(a) precedence constraints among tasks. (b) the input data
and output data of each task.
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Table I. The execution time and energy consump-
tion of tasks in the input graph.

P1 P2 P3

Task ET1 EE1 ET2 EE2 ET3 EE3

v1 4 8 5 6 3 10
v2 8 19 6 20 10 18
v3 6 12 4 14 8 13
v4 10 22 8 20 12 24
v5 7 21 10 18 13 16

of two parts data, respectively, input .vi / is a set of input data of task vi , and output .vi / is a set of
output data of task vi . ET .vi / is used to describe the execution times of task vi 2 V on different
processors, namely, ET .vi / = { et1.i/, et2.i/, ...., etn.i/ }, where etj .i/ denotes the execution
time of vi on processor Pj . EE.vi / is used to represent the energy consumption of task vi 2 V
on different processors, i.e., EE.vi / = { ee1.i/, ee2.i/, ..., een.i/ }, where eej .i/ is the energy
consumption of vi on processor Pj . Figure 2 shows a DAG application. In this example, there are
five tasks, that is, V = { v1, v2, v3, v4, v5 }.

Figure 2(a) shows the precedence constraints among the tasks. In the DAG, the set of D = { A,
B , C , D, E, F , G, H , I }, and Figure 2(b) depicts the input and output information of tasks. For
example, task v1 reads input data A and B before it starts and writes output data D after it finished.

Table I shows the execution time and energy consumption of each task in the DAG of Figure 2.
For example, the value in the cell of column ET1 and row v2 indicates that the execution time of
task v2 is eight time units when it is executed on processor P1, and the value in the cell of column
EE1 and row v2 indicates that the energy consumption of task v2 is 18 energy units when it is
executed on processor P1.

Considering each task accessing data from memory, we can treat a memory access operation as a
node. Hence, a DAG is redefined to obtain a MDFG.

Definition 2.2
A DAG adds a series of task access memory operation to form a MDFG, which is represented
by G0 D ¹V;U;E;D; var; P;M;AT;AE;ET;EEº, where V D ¹v1; v2; : : : ; vN1º is a set of
N1 task nodes, and U D ¹u1; u2; : : : ; uN2º is a set of N2 memory access operation nodes.
E 2 W � W.W D V � U/ is a set of edges. Assume that a task access operation � has to be
executed before a task access operation !, the dependency between node � and node ! is repre-
sented by an edge .�; !/ 2 E. D is a set of data. And var W V � U � D !{ true, false } is
a binary function, where var.vi ; ul ; h/ denotes whether the memory access operation ul 2 U is
transmitting datum h 2 D for task vi 2 V . P D ¹P1; P2; : : : ; Pnº is a set of processors, and
M D ¹DRAM1; SSD1;DRAM2; SSD2; : : : ;DRAMn; SSDnº is a set of local memories. AT
and AE are access time and access energy functions. ET .vi ; Pj / D etj .i/ denotes the execution
time of the task vi on processor Pj , and EE.vi ; Pj / D eej .i/ is the energy consumption of task vi
when it is executed on processor Pj .

A MDFG of the DAG in Figure 2 is shown in Figure 3, where we have N1 = 5 task nodes and
N2 = 15 memory access operation nodes.

3.3. Completion time and energy consumption

In this section, according to the policy of task scheduling and data assignment, we formulate two
main formulas about the completion time and the energy consumption. Before describing the com-
pletion time formula and the total energy consumption formula, we provide some notations in
Table II.
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Figure 3. A MDFG obtained from the example input graph.

Table II. Notations used in the formulation.

Notation Definition

i Task number
j Processor number
Nt Number of task nodes
Na Number of memory access operation nodes
n Number of processors
l Memory access operation
m Memory number

The completion time T can be denoted as:

T D

NtX

iD1

nX

jD1

E_T .i; j /C
NaX

lD1

2nX

mD1

A_T .l;m/: (1)

The total energy consumption EC is denoted as:

EC D

NtX

iD1

nX

jD1

E_E.i; j /C
N2X

lD1

2nX

mD1

A_E.l;m/: (2)

3.4. Problem statement

Given a heterogeneous hybrid memory multiprocessor system that consists of n heterogeneous pro-
cessors P1; P2; : : : ; Pn, and each processor Pi contains a hybrid memory, which is equipped with
DRAMi and SSDi . The access time and access energy of each processor in accessing a unit data
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from a local hybrid memory are known in advance. The heterogeneous task scheduling and data
assignment problem, is defined as follows. Given a DAG G D ¹V;E;D; input; output; ET;EEº,
time constraint S and a MDFG G0 D ¹V;U;E;D; var; P;M;AT;AE;ET;EEº as input data. The
goal of this paper is to find an appropriate assignment policy for both tasks and data on a set of
processors and hybrid memories, and satisfied the time constrained, finally, decrease the energy
consumed. To achieve the solution, our proposed methods need to solve the following problems:

� a task scheduling SC W V ! P , where SC.vi / is the processor to execute task vi 2 V ;
� a data assignment Mem W D !M , where Mem.h/ 2M is the memory to store h 2 D;
� a schedule, that is, the starting time of each task in V and each memory access operation in U ,

such that the completion time of the MDFG G’ satisfies the constraint T < S and achieves the
minimal total energy consumption EC in this time constraint.

4. A MOTIVATIONAL EXAMPLE

In this section, we use an example to illustrate the effectiveness of our algorithm. The example in
Figure 2 is executed on the heterogeneous hybrid DRAM C SSD memory multi-processor system
shows in Figure 1. The results are shown in Figure 4(a) and (b).

The example of the MDFG of input data is shown in Figure 3. And the result of a greedy algo-
rithm is shown in Figure 4(a). This schedule approach aims at getting the shortest time to complete
each task without considering the energy consumption of tasks and data allocation. Hence, in this
schedule, task v1 and task v5 are scheduled on P3 and P1, respectively. Tasks v2, v3, and v4 are
scheduled on P2. The data B , C , and D are allocated to DRAM1. The data A, E, F; and H are
allocated to DRAM2, and data D is allocated to DRAM3. The size of DRAM [1–3] is not enough
to save data G and I . Hence, considering the access time, data I and G are allocated to SSD1 and
SSD3, respectively. The completion time of this schedule is 608. In Figure 4(a), each point-in-time
only shows the logic relationship. The total energy consumption of this schedule is 1679.

However, this approach may not produce a good result in terms of energy consumption, because
the approach only considers completion time. Therefore, we propose a new algorithm, which
considers energy consumption to obtain a better schedule strategy.

Figure 4(b) shows an improved scheduling algorithm, which considers energy consumption
together with a time constraint S = 610. In this schedule, task v2 and v4 are scheduled on P1,

Figure 4. The example of data assignment and task scheduling.(a) a greedy scheduling algorithm. (b) An
improve scheduling algorithm.
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tasks v1 and v3 are scheduled on P2, and tasks v5 is scheduled on P3. The data G is allocated
on DRAM1, data B , C , D, E, and F are allocated on DRAM2, data A is allocated on DRAM3.
Because the size of DRAM [1–3] is not enough to save data H and I , considering access time and
energy consumption, the dataH and I are allocated to SSD1. The completion time of this improved
schedule is 392.

In Figure 4(b), each point-in-time only shows the logic relationship and can not exactly express
the true length of time. As shown in Figure 4, the total energy consumption of the schedule strategy is
1159. The schedule has less completion time, and energy consumption is also lower than the greedy
schedule. The energy consumption of the schedule is reduced by (1679�1159)/1679 = 30.97%
compared with the greedy schedule, while the time constraint S D 610 is satisfied.

From the aforementioned example, we can conclude that a heterogeneous architecture has more
choices and challenges than a homogeneous architecture in selecting a appropriate processor for a
task without violating the time constraint. Therefore, it is important to study the task scheduling and
data assignment problem on heterogeneous multiprocessor systems.

5. HEURISTIC ALGORITHMS

In this section, we propose two heuristic algorithms called IG algorithm and DAA_TS algorithm.
Both of the algorithms adopt the greedy algorithm, which allocates a task to the machine with mini-
mum completion time, in the initial scheduling phase. The greedy algorithm is HEFT [7] algorithm,
which is used to solve the heterogeneous task scheduling problem for real-time bounded number
processor applications. It has two main steps, which are as follows.

5.1. Improvement greedy algorithm

The IG algorithm is shown in Algorithm 1, which mainly considers the task scheduling and data
assignment. IG algorithm is a straightforward heuristic algorithm and consists of two parts. In the
first phase (Step 4), adopting HEFT to schedule tasks, and according to the greedy principle, we
assign data d to the memory, which can be accessed by shorter time. In the second phase, we only
consider one target, that is, the finish time T . Because of the time constraint S , if the finish time T
in the first phase is less than the time constraint S , we obtain the result. However, if T greater than
S , we should adjust task and data allocation until T less than S .

We need to state some symbols: M consists of with DARM and SSD; D is a set of data; a task
v has a data d denotes v:d ; v:p means a task v executed on the processor P ; the operation of data
d is assigned to memory m, which can be denoted d:m.

In the second phase (Steps 5–15), we should find an allocation for each data according to the
greedy principle, which is a suitable access operation for tasks accessing the input data. So according
to the priority order of tasks, we are sorting data and pushing them into a queue R. Because the data
can be needed by different tasks, more than one memory access operation may be associated with
the data. Following a priority principle, each data stores in a fixed memory space. Different d has
different M , because the allocation of d depends merely on the first task that needs it.

After solving the task scheduling and data assignment problem, we need to detect whether the
total completion time T meets the time constraint S . If the total completion time T satisfies the time
constraint S , we will obtain a solution; otherwise, we should reallocate some tasks and data (Steps
16–34). To reduce the access time, we reallocate some tasks and data.

However, the IG algorithm may not be able to obtain a suitable solution. Because a data allocation
is only considered the precedence relationship with tasks and not considered the other complex
relationship, like some data accessed more than once, with tasks. Data are divided into share data
and single data. Because share data assignment needs to take the data related to tasks into account, it
will be accessed for many times. On the other hand, the single data assignment only has relationship
with the speedup of the processor to access the memory. Each time the single data is allocated in the
memory, which has shortest time accessed by the processor. To solve this problem, we present the
DAA_TS algorithm, which considers the types of data, as mentioned before.
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To find a better data allocation, it takes at least O.2NtNdNm/ time and at most O.NtNd .Np C

Nm// time to obtain satisfying results T and EC , where Nm is the number of local memo-
ries. Thus, the second phase takes at most O.NtNd .Np C Nm// to obtain a better data allo-
cation. If Np and Nm are treated as a constant, the time complexity of the IG algorithm is
O.Nt .Nd CNt //.

5.2. Data assignment according to the task scheduling algorithm

The DAA_TS algorithm is shown in Algorithm 2, which consists of four phases: task scheduling
phase, data-aware phase, data scheduling phase, and optimization phase. The algorithm is a straight-
forward heuristic algorithm. The first phase aims to find a better processor, which takes minimal
time to execute task for each task node (Step 2). The second phase based on the relationship between
tasks and data, to find share data and single data (Step 3). The third phase aims to find a better mem-
ory for each data, which can be accessed with minimal time (Steps 4–7). With the purpose of the
four phase is reallocated tasks and data to obtain the much less energy consumption and spend the
time less than the constraint S (Steps 8–18).
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In DAA_TS algorithm, we first use the HEFT algorithm to initialize the schedule. And then,
we propose Data-Aware Algorithm, which is denoted in Algorithm 3 to find the share data and the
single data. The share data and the single data are denoted as share_d and single_d , respectively.
We can save much more cost to first assign share_d , because the memory store share_d will be
accessed more than once.

After identifying the type of data, we propose Data Assignment Algorithm described in Algorithm
4. In Algorithm 4, we build two queues, one is a memory queue denoted as M and other one is a
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data queue of each task denoted as T _D. The memory queue M is sorted by the access memory
speed of v:p. The queue T _D presents the importance of processing sequence of the input data of
a task. The share data is needed by different tasks, more than one memory access operation may be
associated with the data. However, the single data is needed by a task, only if one memory access
operation is associated with the data.

So we assign the share data to a memory with the minimum total access time
N2P
lD1

at.l; d;m/ by

the processors. Therefore, the access memory m and the operation l , which is related with data d
can be denoted as :

at.l; d;m/ D

NtX

iD1

SX

kD1

yl;m;kvar.i; l; d /AT .P.i/;M.j //d.d/:

For each single data, the data is always placed onto the processor to access the fastest and spatial
memory. The data assignment rule is reflected on Algorithm 4.

According to the aforementioned description, we can obtain a strategy of tasks scheduling and
data assignment. However, this result is not the most ideal. In order to satisfy the constraints of the
time and energy consumption, the DAA_TS algorithm is also contained in the following optimiza-
tion algorithm. The optimization algorithm consists of Less Algorithm and Greater Algorithm.
Less Algorithm is Algorithm 5 and Greater Algorithm is Algorithm 6 aiming at reducing the
energy consumption EC and the completion time T without violating the time constraint S .

In the optimization phase, according to the time of a task execute on each processor, we build a
queue PQ for each task. PQ is according to the sorting of the speed of the processors to perform
tasks. When a task needs to change processor, processor P dequeues from PQ, and reallocates data.
Before changing allocation of each data, we should ensure each task scheduling is completed. And
then, we build a queue of memory access speed denoted as M , which is sorted by the processor of
task access speed.
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Then, each single data is always placed in the processor to access the fastest and spatial memory.
As a result, we draw the tasks and data schedule scheme. However, this result was not the most
ideal. In order to satisfy the time constraint and the minimal energy consumption with the resource
constraint, the DAA_TS algorithm is also contained in the following optimization algorithm to
reduce the energy consumption EC and the completion time T .

At first, we change tasks and data position to achieve the energy consumption of minimalmin_E.
And then, the task scheduling and data assignment problem is solved, if the total completion time T
satisfies the time constraint S . Otherwise, for reaching the time constraint S requirement, tasks and
data should be reallocated. After T < S , we will adopt tasks migration. While reallocating a set of
dataD, until the energy consumption cannot be reduced any more. Otherwise, we should reallocate
some tasks and some data to guarantee the finish time T < the constraint time S , and then, to reduce
the energy consumption.

The DAA_TS algorithm iteratively tries each free processor for task assignment and each
local memory with enough space for data allocation to find a schedule with the minimum energy
consumption, while the time constraint is satisfied.
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The time complexity ofDAA_TS algorithm is O.N 2
t NpCNd .NmNdNt CNmCNt //. If Np and

Nm are treated as constants, the DAA_TS algorithm takes O.Nt .N 2
d
CNd CNt // time.

6. PERFORMANCE EVALUATION

This section includes two parts. Firstly, we describe the experimental apparatus. And then, we show
the results of evaluating the effectiveness of the proposed algorithm on different systems.

6.1. Experimental apparatus

In our experiments, there are four benchmarks including 2IIR, 2-rls-lat, 2-volt, and 3-8lattic-iir to
be used. These benchmarks are from DSPstone [16], and frequently used on multi-core systems
[8]. These benchmarks can be compiled with gcc to extract the task graphs and the read/write data
sets from gcc. There are three steps to generate the benchmark. First, we need to compile the source
codes with profileing(-fprofile-generate). And then, we execute the compile binary with a data set
corresponding to the use case. Finally, we compile the source code again with both profile-guided
optimization and ABSINTH enabled (-fprofile-use-fabsinth). The number of tasks, data, and the
average of data are shown in Table III.

We develop a custom simulator to conduct the experiments. The simulator is similar to the sim-
plescalar [17], which is developed to simulate the process of tasks, and to obtain the data distribution,
task execution time, and energy costs. All the experiments for DAGs are executed on two different
architecture simulate models, which are proposed in Section 2.1. The model 1 is composed of three
heterogeneous processors shown in Figure 1. Each DRAM is equipped with an SSD. Figure 5 shows
the model 2, which consists of five heterogeneous processors and each DRAM is equipped with an
SSD. The parameters of the two are collected from ARM7 and MSP430 by using the CACTI tools
[18] provided by HP. The set of parameters are displayed in Table IV. The row ‘T ime Latency’
and ‘Energy Consumption’ show the wake-up time and wake-up energy of each processor,
respectively. The access time per unit data is T ime Latency +"FS � d . The access energy per
unit data is Eele C "FS � d4, where Eele is the wake-up energy, and "FS is the transmit amplifier
parameter, whose value is set of randomly.

Table III. Sizes of DSPstone benchmarks.

Benchmark Tasks Data DDFG

2IIR 18 19 25.26
2�rls�lat 40 46 22.10
2�volt 54 65 20.01
3�ilattir 128 141 24.13

Figure 5. The second architecture model. (a) An architecture with five heterogeneous processors, each is
embedded with a local memory. (b) Access times and energy consumption for transmitting one unit of data

between processors and memories.
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Table IV. System specification for Models 1 and 2.

Model 1 Model 2

Parameter Core 1 Core 2 Core 3 Core 1 Core 2 Core 3 Core 4 Core 5

Frequency 30MHz 64MHz 64Mhz 6MHz 30MHz 7.5MHz 64MHz 64MHz
DRAM size 64KB 128KB 128KB 32KB 64KB 32KB 128KB 64KB
SSD size 512KB 512KB 1024KB 256KB 512KB 256KB 1024KB 512KB
Time latency 1.400ms 1.400ms 1.225ms 1.225ms 2.787ms 2.781ms 3.781ms 0.876ms
Energy consumption 1.47mJ 0.1mJ 0.1mJ 0.593mJ 1.359mJ 1.849mJ 2.187mJ 0.252mJ

DRAM, dynamic random access memory; SSD, solid state drives.

Table V. The results of the four algorithms on the first system with three heterogeneous processors.

Greedy IG DAA_TS

Benchmark Time Constraint energy energy %(greedy) energy %(greedy) %(IG)

2000 14533.0 9915.0 31.78 9575.0 34.16 3.43
2100 13769.0 9966.0 27.62 8911.0 35.28 10.59

2IIR 2200 12909.0 9725.0 24.66 8843.0 31.50 9.07
(18) 2300 10076.0 8870.0 9.34 8530.0 15.34 3.83

2400 9901.0 8392.0 15.24 7875.0 20.46 6.16

8000 43230.0 36018.5 16.68 — — —
8500 37534.9 24218.8 35.48 22786.1 39.29 5.90

2-rls-lat 9000 36209.0 23871.6 34.07 21706.9 40.05 9.07
(40) 9500 34420.9 24530.0 28.74 20797.8 39.58 15.21

10000 33060.1 21682.9 34.41 19414.5 41.28 10.46

6300 41360.6 38370.4 7.23 31478.1 23.89 17.96
6600 40046.4 35798.4 10.61 31156.4 22.20 12.97

2-volt 6900 39311.4 34422.1 12.44 30524.6 22.35 11.32
(54) 7200 37816.3 32033.2 15.29 30087.7 20.43 6.07

7500 37043.7 31380.9 15.29 29912.8 19.25 4.68

8200 119829.3 92137.2 23.11 77451.9 35.36 15.94
8300 112137.9 87782.01 21.72 75068.8 33.06 14.48

3-8lattic-iir 8400 98240.2 81823.8 16.71 74100.4 24.57 9.44
(128) 8500 87081.9 77240.2 1130 73498.8 15.60 4.84

8600 83433.8 74038.2 11.26 72137.9 13.54 2.57

Average 20.15 27.74 9.16

IG, improvement greedy; DAA_TS, data assignment according to the task scheduling.

6.2. Experimental results and analysis

We employ two different architecture models shown in Figures 1 and 5 to demonstrate the effec-
tiveness of the IG algorithm and the DAA_TS algorithm. We measure the schedule effectiveness
by the completion time and the energy consumption. In the two sets of experiments, our algorithms
are compared with the greedy algorithm [7]. The greedy algorithm through iterative way to improve
the effectiveness. However, the greedy algorithm only considers task scheduling, which a processor
has the fastest completion time to execute the task rather than considering the near-optimal of the
data allocation.
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This is a traditional task scheduling algorithm. In Table V, the experimental results on three
processors architecture model are shown. The ‘TC ’ column represents the time constraint. The
‘%(greedy)’ column shows the schedule energy consumption improvement of IG and DAA_TS
over the greedy algorithm. Each ‘�’ represents that the algorithm cannot obtain a solution under the
time constraint. Table V shows that our algorithms IG andDAA_TS can achieve better performance
than greedy, and DAA_TS has better performance than IG. The reduction rates of our heuris-
tic algorithm compared with the greedy algorithm are .Eg � E/=E, where Eg denotes the energy
consumption of the greedy algorithm and E represents the energy consumption of our heuristic
algorithm. From the row ‘Average’, the IG and DAA_TS algorithms reduce the total energy con-
sumption by 20.15% and 27.74% on the average compared with the greedy algorithm, respectively.
The reduction rates of IG compared withDAA_TS are (EIG-EDAA)/EIG , whereEIG is the energy
consumption of the IG algorithm and EDAA indicates the energy consumption of the DAA_TS
algorithm. From the ‘Average’, the average reduction rates of the total energy consumption of the
DAA_TS is 9.16%.

Figure 6 shows the second group of the experimental results, which are obtained by running a
set of simulation on all benchmarks based on the architectural model shown on Figure 5. From the
Figure 6, we can see, with the extension of the time constraint, the energy consumption of all the
three algorithms decrease. We know that the energy consumption of the IG and DAA_TS algo-
rithms are less than that of the greedy algorithm. The IG and DAA_TS algorithms reduce the total
energy consumption by 9.8% and 18.53% on the average compared with the greedy algorithm,
respectively. Therefore, the IG and DAA_TS algorithms are superior to the greedy algorithm. Fur-
thermore, form the figure, we are able to compare IG algorithm and DAA_TA algorithm. We can
see that the energy consumption of DAA_TS algorithm is less than that of the IG algorithm.

From the two groups of experimental results, we know that the DAA_TS algorithm is supe-
rior to the IG algorithm in the time constraint. However, if the time is enough, the gap of energy

Figure 6. The results of the three algorithms on the second system with five heterogeneous processors.
(a)2-IIR. (b)2-rls-lat. (c)2-volt. (d)3–8lattir.
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consumption will be so small. For example, looking at the energy consumption of Figure 6(a) and
Figure 6(b), the energy consumption all have the trend to be minimized.

7. CONCLUSION

In this paper, we study the problem of task scheduling and data assignment on heterogeneous
multiprocessor systems with hybrid memory DRAM and SSD. We propose two efficient heuristic
algorithms, which are Improvements Greedy algorithm and Data Assignment According to the Task
Scheduling to generate near-optimal results in polynomial time. In the experiments conducted on
two systems, the results show that the heuristic algorithms are more effective than the greedy algo-
rithm without considering the data allocation and demonstrate that considering the data allocation
in the process of scheduling can greatly reduce the energy consumption. Moreover, the DAA_TS
algorithm is superior to the IG algorithm. Further research can be directed towards finding more
effective and efficient algorithms with reduced time complexity and improved energy efficiency.
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