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Abstract
Deep convolutional networks have been widely used for various medical image processing tasks. However, the performance
of existing learning-based networks is still limited due to the lack of large training datasets. When a general deep model
is directly deployed to a new dataset with heterogeneous features, the effect of domain shifts is usually ignored, and
performance degradation problems occur. In this work, by designing the semantic consistency generative adversarial network
(SCGAN), we propose a new multimodal domain adaptation method for medical image diagnosis. SCGAN performs
cross-domain collaborative alignment of ultrasound images and domain knowledge. Specifically, we utilize a self-attention
mechanism for adversarial learning between dual domains to overcome visual differences across modal data and preserve
the domain invariance of the extracted semantic features. In particular, we embed nested metric learning in the semantic
information space, thus enhancing the semantic consistency of cross-modal features. Furthermore, the adversarial learning
of our network is guided by a discrepancy loss for encouraging the learning of semantic-level content and a regularization
term for enhancing network generalization. We evaluate our method on a thyroid ultrasound image dataset for benign
and malignant diagnosis of nodules. The experimental results of a comprehensive study show that the accuracy of the
SCGAN method for the classification of thyroid nodules reaches 94.30%, and the AUC reaches 97.02%. These results are
significantly better than the state-of-the-art methods.

Keywords Cross-modality domain adaptation · Semantic consistency · Domain knowledge · Self-attention mechanism ·
Thyroid nodule classification

1 Introduction

Thyroid nodules, described as abnormal growths of
glandular tissue, are the most common thyroid disorder
[2]. Over the past 30 years, thyroid cancer has been one
of the most prevalent and fastest-growing cancers of all
types [15]. Therefore, early diagnosis of the benignity or
malignancy of nodules is essential to reduce the morbidity
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and mortality of thyroid cancer [8]. Ultrasonography has
become the most preferred choice for diagnosing benign
and malignant thyroid nodules. However, there are still
some challenges in analyzing thyroid ultrasound images.
First, ultrasound images are susceptible to speckle noise
and echo fluctuations, making the texture distribution in
ultrasound images blurred and non-uniform [37]. Second,
the diagnosis of thyroid ultrasound images is subjective and
highly dependent on the physicians’ extensive experience
and cognitive ability [14]. Conversely, the use of computer-
aided diagnosis systems (CADs) can significantly reduce
physicians’ workload and misdiagnosis rate. Thyroid image
classification has become a research hotspot for computer-
aided thyroid disease diagnosis [5].

Traditional methods of thyroid nodule classification
Acharya et al. [1] used Gabor transform to extract the fea-
tures of thyroid benign and malignant images and compared
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the classification performance of SVM, MLP, KNN, and
C4.5 classifiers. Raghavendra et al. [26] extracted high-
order spectral (HOS) entropy features from particle swarm
optimization (PSO) and support vector machine (SVM)
models and distinguished benign and malignant lesions.
Prochazka et al. [23] used dual-threshold binary decompo-
sition to extract direction-independent features for random
forest (RF) and SVM classifiers. The traditional training
method is computationally inexpensive and does not require
a large number of training images. However, there are still
apparent limitations: 1) rely on many manually extracted
image features and classifier selection, 2) is a tedious and
unstable process, and 3) may lead to poor generalization
ability.

Thyroid nodules classification method based on deep
learning Compared with traditional methods, deep learning
methods can extract global and local features more
accurately. In 2017, Ma et al. [16] applied the convolutional
neural network for the first time to identify benign and
malignant thyroid nodules. Wang et al. [36] designed
an effective EM algorithm to train a CNN-based nodule
classification model. Zhou et al. [50] proposed an online
transfer learning (OTL) method to improve the diagnostic
effect of ultrasound examination of thyroid nodules. Wang
et al. [37] extracted multiple image features with different
angles in one inspection for an attention-based feature
aggregation network.

All the above methods are based on single modality
data for training and evaluation. In contrast, the actual
medical imaging process expects to fuse data from
different domains. Still, the following problems exist in
the construction of models: 1) The scale of medical
datasets remains a significant bottleneck for deep learning
models. Data collection and manual annotation for each
new modality or new domain are both time-consuming
and expensive. Especially for thyroid imaging, there are
fewer extant large-scale thyroid image datasets due to
the specificity of thyroid location. 2) The distribution
differences between different types of data, known as
dataset deviations or domain shifts phenomenon, where
deep networks trained on a large labeled dataset cannot be
well generalized to new datasets and new tasks, resulting
in significant degradation of the generalization performance
the model.

We adopt a domain adaptation (DA) algorithm [38] to
address the above challenges. The DA algorithm aims to
learn models from the source domain data distribution but
works well for target domains with different but related data
distribution. The principle behind DA is that the source and
target domains can learn collaboratively and transfer their
learned knowledge to each other during the entire training
process, making the model robust to noise in the data.

Currently, there is no work on effectively using cross-modal
data to construct a DA framework for nodule diagnosis in
thyroid ultrasound images.

In general, the working pattern of the ultrasound physi-
cian is to combine information from both ultrasonography
reports and ultrasound images and then to come up with
a diagnosis. This model stimulated our interest in explor-
ing the content of the reports. We find that the performance
of image generation and image classification tasks can be
improved by transferring the semantic-intensive feature rep-
resentation associated with the images in the reports. In
contrast, existing models lack the reasoning ability to imi-
tate a physicians’ interpretation of semantic information and
ignore important domain and expert knowledge [41] related
to the specific task of thyroid diagnosis. Therefore, in our
approach, we will incorporate disease keywords extracted
from ultrasonography reports as textual information in mul-
timodal data, as shown in Fig. 1.

In this paper, we propose a new multi-task cascaded
deep learning framework for diagnosing thyroid ultrasound
images. First, we propose a self-attention-based semantic
consistency generative adversarial network as a domain
adaptation backbone to improve the quality of generated
images. Second, to jointly analyze multimodal data
features, the critical domain knowledge extracted from
ultrasonography reports is fed into the generator structure
through text modeling to promote the semantic consistency
of generated images. Finally, the network integrates a
modified classification model, ResNet-50, which uses
combined features to classify benign or malignant thyroid
nodules in ultrasound images.

The main contributions of this paper are summarized as
follows:

• We propose an effective model: semantic consistency
generative adversarial network (SCGAN). To the best
of our knowledge, this work is the first to apply
cross-modal domain adaptation based on generative
adversarial networks to the classification task of benign
and malignant thyroid nodules.

• We propose a new cross-modal alignment self-attention
module (CASAM) to facilitate domain adaption for
achieving higher generative performance. The semantic
alignment layer is used in CASAM to efficiently
guide the semantic alignment process of image and
knowledge features.

• We introduce two advanced techniques: the visual
discrepancy loss to dynamically balance the need
for the generator to learn domain invariant features,
and the cross-domain fusion zero-centered gradient
penalty (CD-GP) is incorporated into the discriminator
to synthesize more realistic and knowledge semantic
consistent images.
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Fig. 1 From left to right, the original ultrasound images of the four
benign/malignant nodules randomly sampled in the dataset, the corre-
sponding “Ultrasound Findings” in the ultrasonography report, and the

domain knowledge are shown. Among them, the red text description
is based on the relevant disease keywords selected by TI-RADS as the
standard

• Extensive experiments show that our proposed SCGAN
achieves good results in thyroid nodules’ ultrasound
image generation task and is well validated in the image
classification results.

The rest of the paper is organized as follows. We present
related work on domain adaption, generative adversarial
networks, and attention mechanisms for medical images in
Section 2. The details of our approach are presented in
Section 3. Section 4 describes our thyroid ultrasound image
dataset and experimental evaluation results to validate the
effectiveness of our approach. Finally, the conclusion and
future work are drawn in Section 5.

2 Related work

Domain Adaptation In the context of medical image
analysis, most prospective studies on domain adaptation
have focused on adjusting data distribution from various
clinical centers, scanning protocols, and scanning sites.
Dou et al. [6] pioneered a plug-and-play adversarial
domain adaptation network (PnP-AdaNet), which combines
multiple adversarial learning domain adaptation layers to

spatially align the potential features of the target domain and
the source domain. They tested on cardiac MRI/CT images.
Zhang et al. [49] introduced a collaborative unsupervised
domain adaptation (CoUDA) algorithm for medical image
diagnosis. This algorithm via the collective intelligence of
two peer subnets to conduct transferability-aware domain
adaptation on whole-slide images (WSI) and microscopy
images (MSI) of colon datasets. However, it is often
difficult to seek a source domain with the same feature
and categorical space as the target domain. Therefore, this
paper focuses on more realistic and challenging scenarios
to address the correlation problems of cross-domain data
observed in different feature spaces, namely heterogeneous
domain adaptation (HDA) [44].

Generative adversarial network The domain-invariant rep-
resentation of classification tasks from the source dataset to
the target dataset has been extensively studied [38] by gener-
ating adversarial networks [45]. Chen et al. [7] investigated
the domain adaptation framework, SIFA, which applies a
deep supervision mechanism of synergistic image and fea-
ture alignment to deal with the transfer of domains due
to adversarial learning, and extensive experiments on bidi-
rectional cross-modality adaptation on multiple tasks. Ren
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et al. [27] considered the joint feature distribution between
the source and target domain images and classified his-
tological images obtained in different staining procedures
via adversarial learning. Gu et al. [11] explored a two-
step progressive transfer learning technique to improve the
recognition performance of cross-domain skin diseases, and
at the same time, adopted cycle-consistent adversarial learn-
ing to expand the model to cross-modal learning tasks such
as melanoma detection.

Attention Mechanism Although existing adversarial
domain adaptation methods are effective in different tasks,
the semantic correlation between domains has not been elu-
cidated yet. Nowadays, attention mechanism has become
a necessary element to capture inter-domain dependencies
of the model. Wang et al. [40] added transferable attention
for the domain adaptation (TADA) model and focused its
application on core regions to enhance the transferability
of images. Wang et al. [34] argued that complementing
the attention branch in the Thorax-Net enhances the cor-
relation between class labels and pathological abnormal
locations. Furthermore, the three attention modules [35]
can be merged into a unified framework for joint learning
of channels, elements, and scales. In the thyroid ultra-
sound nodule diagnosis, we will demonstrate an improved
version of a well-established self-attention mechanism to
improve further diagnostic performance, which helps local-
ize important regions of ultrasound images and enhancing
cross-domain features’ correlatability.

3Methods

This section illustrates the proposed semantic consistency
generative adversarial network (SCGAN) for ultrasound
image nodule classification. First, we introduce the selec-
tion criteria of domain knowledge and the processing of
its integration into deep networks. Second, we present the
overall structure of SCGAN, including the composition of
the generator and discriminator, and focus on the contribu-
tion of the cross-modal alignment self-attention module to
semantic consistency. Then, we explain the proposed visual
discrepancy loss and regularization method. Finally, we give
details of the modifications of the classifier.

3.1 Domain knowledge

Ultrasonography report preprocessing The ultrasonogra-
phy report [13] summarizes all clinical findings and physi-
cian impressions identified during the ultrasound study
examination. Ultrasonography reports usually contain com-
prehensive patient information, but they may also contain
inconclusive descriptions or irrelevant to the disease. For

example, in the “Ultrasound Findings” of the ultrasonogra-
phy report, as shown in Fig. 1, normal/abnormal conditions
are recorded for each site of the thyroid examination, such as
location, size, and severity of the nodules. Besides, patients’
personal information, medical history, and suspicious find-
ings may lead to additional or follow-up studies. Therefore,
parsing the content of ultrasonography reports is a complex
and challenging task.

The Thyroid Imaging Reporting and Data System (TI-
RADS) [32] provides standardized terminology to describe
thyroid nodule features in ultrasound images. Using TI-
RADS as a guide, we screen the disease keywords in
ultrasonography reports as domain knowledge, such as
boundary, calcification, and echo pattern. By learning
text embedding, this domain knowledge can facilitate the
acquisition of semantic information in ultrasonography
reports and improve the diagnostic performance of the
leading classification tasks.

LSTM for Text Modeling We use a pre-trained text encoder
φ to learn the semantic information described by domain
knowledge. Each textual description ti is encoded as one-
hot vectors that are then mapped to embeddings and added
with contextual information. The text embedding φ(ti) is
fed into the LSTM proposed by [10]. At each time step,
the obtained text embedding sequence {φ1, ..., φn} takes
the current text as input and iteratively applies the transfer
function to generate the hidden state ht :

ht = LST M(φt , ht−1) (1)

which allows the extraction of high-dimensional semantic
vectors from domain knowledge. Domain knowledge
contains meaningful disease features, and the key is to
maintain diversity and independence among them. To this
end, we extract the hidden state corresponding to each
disease keyword and obtain a text representation sequence
T enc

s = [h1, ..., hn] ∈ RE . The advantage of this strategy
is that it enables the network to select relevant semantic
features adaptively, ensuring that they are helpful for disease
labeling (as shown in the experimental results).

3.2 Semantic consistency generation adversarial
network

3.2.1 A. Model overview

Our network architecture is shown in Fig. 2. It consists of a
pre-trained text encoder, a domain adaptation generator, and
a discriminator. The generator is trained to generate images
from the text describing the content, and the discriminator
is trained to determine the authenticity of the images
conditional on the semantics defined by the given text.
We use the following notations: the domain adaptation
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Fig. 2 Overview of our proposed SCGAN, consisting of a text encoder
(top left), a domain adaptation generator Gs→t (bottom left), a dis-
criminator Dt (top right), and a classifier (bottom right). Gs→t has
two inputs, Z and T enc

s generated by the text encoder, both of which
are implemented in upblocks (gray boxes) for cross-domain fusion.
The SACAM contained in upblocks promotes semantic alignment dur-
ing the fusion process. Similarly, Dt distinguishes the authenticity

of an image by a series of downblocks (gray boxes, Is→t represents
the synthesized image, It represents the real image). The classifier is
the modified classification model ResNet-50. In particular, the adver-
sarial loss refers to the hinge version of the adversarial loss, Lvd is
the visual discrepancy loss, and LCD−GP is the cross-domain fusion
zero-centered gradient penalty function

generator is denoted as Gs→t : RZ × RE → RD, the
discriminator is denoted as Dt : RD ×RE → {0,1}, where E
is the dimension of the embedded text representation, D is
the dimension of the image, and Z is the dimension of the
noise input in Gs→t .

The generator Gs→t has two inputs, the text sequence
T enc

s of the source domain, and the other is the noise vector
Z ∈ RZ ∼ N (0, 1) sampled from the Gaussian distribution
to guarantee the diversity of the generated images. First, Z

is fed into the fully connected layer and then sent to a series
of upblocks and T enc

s to upsample the images, which are
used to integrate semantic information and image features
during the image generation process. Gs→t uses upblocks
as its network backbone, including convolutional layers, a
self-attention layer, residual blocks, and an upsample layer.
The self-attention layer brings more non-linearity to Gs→t ,
which is conducive to generating semantically consistent
images from different textual descriptions. Therefore,
Gs→t synthesizes realistic pseudo-target domain images
by Is→t = Gs→t (Z, T enc

s ). Then Is→t is regularized
using visual discrepancy loss to be consistent with the
corresponding region in the original image.

The discriminator Dt attempts to compete with Gs→t by
distinguishing between the synthetic pseudo target domain
image Is→t and the real target domain image It . Dt converts
Is→t into a feature map and downsamples it through a
series of downblocks. Here, the intermediate layers of Dt

have a smaller receptive field that forces Gs→t to pay more
attention to finer details. The last few layers generally derive
information from the larger image region and guide Gs→t to

produce an image with better global consistency. Then T enc
s

is replicated and spliced onto the image features. Formally,
Dt has to distinguish three input pairs composed of text: real
images Imatch

t with matching text, real images Imis
t with

mismatched text, and synthetic images Is→t .

3.2.2 B. Cross-modal alignment self-attention module

For the data heterogeneity between source-domain text
representation and target-domain images, we propose the
cross-modal alignment self-attention module (CASAM).
The self-attention module efficiently computes long-range
dependencies between features, allowing the generator to
model the relationship between widely separated spatial
regions effectively. CASAM leverages semantic association
to effectively guide the alignment process while generating
attention to important image features and text representation
to provide more prominent and meaningful embedding for
image generation tasks.

As shown in Fig. 3, the module accepts two inputs:
image feature map Fi and text representation sequence
T enc

s . First, according to the attention mechanism adopted
in AttnGAN [42], the three-dimensional image features
(width× height×channel) of Fi ∈ Rw×h×c are flattened
into a two-dimensional sequence (wh×channel, where
wh=width×height), and transformed into the query feature
map Qs→t to facilitate the calculation of attention. The
formula is as follows:

Qs→t = Wi · Fi (2)
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Fig. 3 Details of the cross-modal alignment self-attention module (CASAM). The semantic alignment layer can focus on the source domain
features corresponding to the target domain pixels.

⊗
denotes dot product operation

Two convolution layers with 1 × 1 filters are applied on
T enc

s to generate feature maps Ks and Vs , respectively:

Ks = Wk · T enc
s (3)

Vs = Wv · T enc
s (4)

Intuitively, the key Ks focuses on matching with Qs→t ,
while the other projection value Vs can be better optimized
to refine Qs→t to obtain better Fi .

We add a semantic alignment layer (SAL) to the module
to strengthen the semantic relevance between Qs→t and Ks

by metric learning [22]. Here, we use:

S = arg max cos(Qs→t , Ks) (5)

as the geometric similarity to measure the relationship
between the potential feature space of Qs→t and Ks .
In consideration of building a reasonable distance metric
[4, 19, 22], the cosine similarity [9, 18, 33] is chosen in this
paper as:

cos(Qs→t , Ks) =
∑

i,j (Qs→t (i, j),Ks(i, j))
√∑n

i=1
∑m

j=1 Qs→t (i, j)2
√∑n

i=1
∑m

j=1 Ks(i, j)2

(6)

The cosine similarity focuses on the similarity description
of semantic classes. For the feature vector of each image
subregion of Qs→t , the better the alignment, the shorter the
distance.

The attention maps weight to the feature maps Qs→t

and Ks are generated to achieve more discriminative feature
representation, and the attention map A is obtained as:

A = exp(WA · Sk)
∑N

K=1 exp(WA · Sk)
(7)

The aggregation operation is defined as follows:

F ′
i = γ (sof tmax(A · Vs)) + Fi (8)

where the more refined features are captured by the dot
product between A and Vs for feature adaptation. The
obtained attention weights are normalized using the softmax
function to convert the values into relative probabilities. The
features are updated by collecting the attention weights of
each acquired feature and the original feature mapping to
obtain contextual information.

3.2.3 C. Visual discrepancy loss

We propose a new visual discrepancy loss for the generator.
Visual discrepancy loss is encouraged to capture disparity
features. If there is no discrepancy loss, then the requirement
for Gs→t to learn the invariant domain information will
be weaker. Thus, co-training visual discrepancy loss is an
implicit facilitator for improving network adaptation and
plays a crucial role in improving the quality and consistency
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of the final generated images. The L2 norm of the feature
mapping between the real image It and the generated image
Is→t is defined as:

Lvd =
J∑

j=1

{EIs→t∼Pg,It∼Pr
[‖ φj (Is→t ) − φj (It ) ‖2]} (9)

where φj (·) represents the process of extracting image
feature maps.

3.2.4 D. Cross-domain fusion zero-centered gradient
penalty

Recently, Mescheder et al. [17] introduced a zero-
centered gradient penalty, adding regular terms to make
the discriminator apply zero-centered gradient penalty to
the input. Extending it to our domain adaptation task.
We propose a cross-domain fusion zero-centered gradient
penalty (CD-GP) function to improve the discriminator’s
generalization capability. We choose to impose penalty
terms on the real and generated data, respectively:
LCD−GP = αEIt ∼Pr

[‖ ∇I Dt (It , T
enc
s ) ‖2 + ‖ ∇T Dt (It , T

enc
s ) ‖2]

+βEIs→t ∼Pg
[‖ ∇I Dt (Is→t , T

enc
s ) ‖2 + ‖ ∇T Dt (Is→t , T

enc
s ) ‖2] (10)

where α and β are hyperparameters that balance the effec-
tiveness of the gradient penalty and cannot both be zero.

Compared with adding discriminators to ensure the seman-
tic consistency of the generated images, our CD-GP does
not introduce additional networks to compute the semantic
similarity and therefore does not increase the complexity of
the domain adaptation process or the training parameters.

3.2.5 E. Objective function

To stabilize and converge the training process of SCGAN,
inspired by the SAGAN architecture [47], we evaluate the
authenticity of the generated images and their consistency
with the input semantics by minimizing the hinge version
of the adversarial loss [3]. Formally, we represent the two
outputs of Dt as: Du

t (·), the unconditional image score, and
Dc

t (·), the conditional image score. Correspondingly, the
objective functions LD for Dt are formulated as LD

uncond and
LD

cond , respectively:

LD
uncond = −EIt ∼Pr

[log (Du
t (It ))] − EIs→t ∼Pg

[log (1 − Du
t (Is→t ))] (11)

LD
cond = −EIt∼Pr

[min(0, −1 + Dc
t (I

match
t , T enc

s ))]
−EIt∼Pmis

[min(0, −1 − Dc
t (I

mis
t , T enc

s ))]
−EIs→t∼Pg

[min (0, −1 − Dc
t (Is→t , T

enc
s ))]

(12)

Pr is the real data distribution, Pg is the generated data
distribution, and Pmis is the mismatching data distribution.

On the other side, Gs→t is trained to generate images
that could trick Dt into giving high scores on visually
realistic images and match the text. Similarly, the objective

functions LG to be minimized by Gs→t are LG
uncond and

LG
cond , respectively:

LG
uncond = −EIs→t∼Pg

[log (Du
t (Is→t ))] (13)

LG
cond = −EIs→t∼Pg

[Dc
t (Is→t , T

enc
s )] (14)

Taking into account the adversarial loss, visual discrep-
ancy loss, and cross-domain fusion zero-centered gradient
penalty, our total loss is defined as the weighted sum of
these losses, as follows:

LT otal = LG + λ1Lvd + LD + λ2LCD−GP (15)

λ1 and λ2 are regularization parameters to balance the
trade-off between Lvd , LCD−GP , and other terms.

3.3 Modified classificationmodel ResNet-50

Each residual block of the ResNet-50 [12] network uses
a bottleneck structure, which helps overcome the problem
of gradient disappearance in large models. To adapt the
ResNet-50 network to our problem of classifying benign
and malignant nodules, the base layer of the model is
frozen, and then custom layers are added to form the final
framework. Therefore, we remove its last fully connected
layer and add three fully connected layers of 2048, 1024,
and 2 neurons, respectively. The weights of the final fully
connected layer are fine-tuned by using a back-propagation
technique which uses a gradient descent optimization
algorithm to minimize the cost function. The final output of
the model is obtained using the sigmoid activation function.

4 Result

4.1 Datasets

Our research works use images from a dataset provided
by the local hospital to acquire ultrasound examination
images and ultrasonography reports of 1083 patients, and
the hospital institutional review board approves the entire
collection process Due to the variable size of nodules, we
exclude nodules with tumor size < 0.60 cm or > 3.00 cm
and finally include 1937 nodules from ultrasound exami-
nations in the final analysis. Their available ultrasonogra-
phy reports correlate with the ultrasound findings of 867
patients. Ultrasound images are screened by experienced
thyroid ultrasound physicians (physicians with more than
eight years of experience in thyroid ultrasound imaging)
based on suspicious features in TI-RADS, solid compo-
nents, hypoechoic, or markedly hypoechoic, microgranular
or irregular margins, microcalcifications, and ultra-wide
shapes. “Ultrasound Findings” are classified into two cate-
gories: benign or malignant. There are 1032 benign nodules
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Table 1 Distribution of data in our dataset

Benign Malignant Total

Training Set 865 754 1619

Validation Set 97 84 181

Test Set 70 67 137

Total 1032 905 1937

and 905 malignant nodules. We use a nested 10-fold cross-
validation independent evaluation model. The dataset is
divided into the training set, validation set, and test set. The
training and test datasets are divided by patients, and there
is no overlap between the two datasets. The training set and
the validation set consist of 1800 images, and the training set
isolates approximately 10% of the data as the validation set.
The test set consists of 137 images. The data set distribution
is shown in Table 1.

Ultrasound Image Preprocessing As shown in Fig. 4 to
extract regions of interest (ROIs) containing nodules, the
metadata text (e.g., information about the scanner, location,
patient.) placed on the images are discarded to obtain the
actual ultrasound image regions. We count the horizontal
and vertical diameters of all nodules so that the nodule with
the cross marker symbols is in the center of the patch image.
It is finally decided to fill the patch size with zero to a square
of 64 × 64 pixels size to maintain the image aspect ratio,
and the pixels in the image are normalized to zero mean and
unit variance.

4.2 Evaluationmetrics

Classification results are quantitatively evaluated by the
mean and standard deviation of the obtained accuracy,
sensitivity/recall, specificity, and area under the receiver
operating curve (AUC). In this paper, the inception score
(IS) [31] is chosen to measure the quality of the images
generated by SCGAN. IS is the classical metric for evalu-
ating GAN. Since IS does not reflect whether the generated
images depend well on the given text representation, we
combine it with physician evaluation. The semantic con-
sistency of SCGAN is evaluated by experienced ultrasound
physicians comparing the generated images with the corre-
sponding domain knowledge description. We consider that
physicians need to perform two tasks: one is to discrimi-
nate the authenticity of the image and determine whether
the image matches the corresponding semantic information;
the other is to diagnose the benignity or malignancy of the
nodule.

4.3 Implementation details

The entire network is implemented using the TensorFlow
framework based on Python 3.6 and trained on a workstation
with Ubuntu 18.04 LTS, 2.90 GHz Intel(R) Xeon(R) W-
2102 CPU, and two NVIDIA GTX Titan XP GPUs. For the
text encoder, the dimension E is set to 128, and the length of
words is set to 30. In order to compare with previous work,
the parameters of our text encoder are fixed during training.
In the generator, the dimension of Z is set to 512. In the
experiments, the network is trained using Adam optimizer
with β1 = 0.9, β2 = 0.999. On our dataset, training is set
up with 300 epochs and a minibatch size of 16. We choose

Fig. 4 The overall process of image preprocessing. Where the blue dashed line indicates the vertical diameter of the nodule and the green dashed
line indicates the horizontal diameter
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a learning rate of 1e−3 for the classifier and 2e−4 for the
rest of the architecture. The decay factor is 0.5 per 100
epochs. The target domain image enters the classifier for
classification in the testing phase without involving GAN
and other algorithm designs.

4.4 Experimental setup and analysis

For our proposed method, we set up three variants:

1. Remove the CASAM of SCGAN, additional loss func-
tions Lvd and LCD−GP , that is, directly concatenat-
ing text representation with image features in Gs→t

(DAGAN).
2. Use CASAM to fuse text representation and image

features in Gs→t to test the contribution of CASAM
in improving domain adaptation (SCGAN−Lvd −
LCD−GP ).

3. Only remove the visual discrepancy loss Lvd of
SCGAN (SCGAN−Lvd ).

The effectiveness of our proposed method is demon-
strated by designing several experimental sessions as fol-
lows.

In our research, the SCGAN model is based on an intel-
ligent combination of knowledge and images. To evaluate
the advantages of this cross-modal domain adaptation
approach for feature extraction, first, we construct GANs
model for nodule feature extraction using only images as
input. The experimental results obtained by different clas-
sification methods are shown in Table 2 and Fig. 5. Here,
the SCGAN model is simplified to DCGAN [25] when
no domain knowledge is added, and only unimodal data is
used for feature extraction. The accuracy, sensitivity, speci-
ficity, and AUC obtained using the DCGAN+modified
ResNet-50 model are 85.26 ± 1.62, 87.46 ± 3.14, 83.14 ±
1.69, 84.80 ± 2.51, respectively. By adding class labels to
DCGAN as auxiliary information to form ACGAN [20],
the ACGAN+modified ResNet-50 model shows a slight
improvement in all metrics. However, the classification per-
formance of the above methods is far inferior to that of
the GAN model using a multimodal combination of domain

Fig. 5 ROC analysis of different image generation models with our
SCGAN and its variants for thyroid nodule classification

knowledge and images. Among them, the DAGAN model,
the most basic variant of SCGAN, has metrics of 89.93 ±
0.88, 91.34 ± 1.93, 88.57 ± 0.90, 92.98 ± 1.78, respec-
tively. Compared with DAGAN, the metrics of SCGAN are
improved by another 4.37%, 2.09%, 6.59%, and 4.04%,
respectively. It suggests that integrating the domain knowl-
edge from ultrasonography reports into the deep learning
model can effectively improve the classification perfor-
mance of nodules. It can also be concluded that the stan-
dard deviation of the classification results is smaller when
domain knowledge is used, which means that the inclusion
of domain knowledge can effectively improve the stability
of nodule classification. In addition, to verify the classifica-
tion stability of SCGAN applied to unbalanced samples, we
randomly reduce the number of malignant nodules by half,
but the parameters of the fixed pre-training model remain
unchanged, denoted as SCGAN�. In the case of unbalanced
data sets, the fluctuation of each metric value is slight, and
the classification performance of SCGAN is excellent.

Ablation Study To evaluate whether the self-attention
mechanism can help the domain adaptation process to
generate higher quality and semantically consistent images.

Table 2 Comparison of the classification performance of different image generation models with our SCGAN

Methods Results(%)

Accuracy Sensitivity Specificity AUC

DCGAN [25] 85.26 ± 1.62 87.46 ± 3.14 83.14 ± 1.69 84.80 ± 2.51

ACGAN [20] 87.45 ± 1.33 90.45 ± 2.76 84.57 ± 1.39 90.39 ± 2.09

DAGAN 89.93 ± 0.88 91.34 ± 1.93 88.57 ± 0.90 92.98 ± 1.78

SCGAN� 94.26 ± 0.63 94.37 ± 0.20 94.89 ± 0.53 96.79 ± 0.53

SCGAN 94.30 ± 0.48 93.43 ± 0.35 95.14 ± 0.42 97.02 ± 0.57
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We use both direct concatenation (i.e., DAGAN) and
CASAM alignment (i.e., variant SCGAN−Lvd −LCD−GP )
for the cross-domain fusion of text representation and
images in Gs→t , respectively. Compared with DAGAN,
SCGAN−Lvd −LCD−GP further improves the quantization
performance, as shown in Tables 3 and 5, indicating that
achieving alignment between domains in a brute force
manner does not resolve the strong heterogeneity that
exists between domains. DAGAN is essentially a pixel-
level superposition of data from two different modalities.
The mixing of data from different imaging principles
affects the feature extractor’s judgment on target data’s
feature distribution. Conversely, CASAM does not affect
the independence of the feature distribution for each
domain data. In particular, the semantic alignment layer can
calculate the similarity between the generated image and the
textual description before generating new image features. It
can discover the semantic relationship between each pixel
and words, mapping the image features to the corresponding
fine-grained text representation.

Also, we quantitatively and qualitatively investigate
the effects of Lvd and LCD−GP . Compared with
SCGAN−Lvd − LCD−GP , SCGAN−Lvd adds a gradient
penalty LCD−GP to the discriminator to ensure the quality
of the generated images. That is because LCD−GP reduces
the gradient of Imatch

t to the lowest point of the loss function
curve while ensuring the smoothness of its adjacent regions,
while other input images, such as Is→t , are placed on the
high point of the curve. As shown in Fig. 8, the IS is signifi-
cantly improved, indicating that LCD−GP gives the genera-
tor a more explicit convergence target, guiding the generator
to generate more realistic images and semantically con-
sistent with ultrasonography reports. Further, our proposed
SCGAN adds Lvd to learn discrepancy features. In prin-
ciple, in our cross-modal domain adaptation task, the data
of these two modalities are different in the visual layer but
converge in the semantic layer. If the generator only learns
the low-level visual layer features in the source domain, the
prediction results mapped in the target domain will deviate
from our expectations and penalize by the adversarial loss.
However, the results of our SCGAN converge significantly,

Fig. 6 The loss curve of generator and discriminator in SCGAN

indicating that Gs→t learns high-level semantic layer fea-
tures. Thus, Lvd can reverse encourage Gs→t to deceive Dt

in case of domain shifts, requiring Gs→t to capture high-
level semantic domain invariant features across the source
and target domains. As shown in Table 3, the accuracy and
specificity are significantly improved, in Table 5, the IS is
also boosted. The loss curves of the generator and discrim-
inator in SCGAN are shown in Fig. 6. The experimental
results prove the scientific validity of our techniques.

Specifically, we tune the parameters λ1 and λ2 in the
loss function Equation (15), and the results are shown in
Table 4 and Fig. 7. The IS significantly increases from 4.14
to 4.23 when λ2 is changed from 0 to 2. Meanwhile, the IS
increases to 4.26 when λ1 is changed from 0 to 0.2, verifying
the effectiveness of combining these two techniques. The IS
score significantly decreased when λ2 changed from 2 to 4
or λ1 changed from 0.2 to 0.5. It may be that the penalty
is too large, leading to the loss of some more important
features. Therefore, in SCGAN, we set λ1 and λ2 to 0.2 and
2, respectively.

Architecture Analysis Table 5 reports the IS scores of
SCGAN and other compared methods. We can observe that

Table 3 Classification performance comparison of our SCGAN and its variants

Methods Results(%)

Accuracy Sensitivity Specificity AUC

DAGAN 89.93 ± 0.88 91.34 ± 1.93 88.57 ± 0.90 92.98 ± 1.78

SCGAN−Lvd − LCD−GP 91.97 ± 0.72 92.23 ± 0.83 93.42 ± 0.64 95.35 ± 0.74

SCGAN−Lvd 93.72 ± 0.43 93.13 ± 0.52 94.57 ± 0.57 96.54 ± 0.52

SCGAN 94.30 ± 0.48 93.43 ± 0.35 95.14 ± 0.42 97.02 ± 0.57
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Table 4 Ablation study of loss function parameter adjustment results

Results(%) SCGAN(λ1, λ2)

0, 0 0, 2 0, 4 0.2, 2 0.5, 2

Inception Score 4.14 ± 0.23 4.23 ± 0.15 3.97 ± 0.30 4.26±0.18 4.21 ± 0.37

our model obtains the best score, significantly improving the
IS from 2.58 to 4.26. Compared with DCGAN and ACGAN,
we believe that the inclusion of domain information can
guide the direction of the generator to generate images,
which gives the generator has less freedom to generate
images using random noise and reduces the uncertainty
of the image generation process. In contrast, the multi-
generator and multi-discriminator structures in StackGAN
[48] and AttnGAN [42] make the quality of the generated
images in the initial layer affect the final refinement, so
the effect is poor. In conclusion, SCGAN can generate
visually more realistic images with higher quality and better
diversity than existing methods (Fig. 8).

In Table 6, we compare Lvd with the losses used in
different methods. For example, SD-GAN [46] proposed a
contrastive loss to improve the consistency between images
generated by the same text description. Oord et al. [21]
measured the dependence of two mutual information by
learning the InfoNCE loss function and obtained a useful
representation between the information. Wang et al. [39]
used triplet loss to make video patches from the same
trajectory closer in the embedding space than random
patches. However, in contrastive loss and InfoNCE loss, all
positive and negative matching pairs of each sample need to
be sampled separately, and our Lvd does not need to dig the
negative of information, which can reduce the complexity

Fig. 7 Inception score (IS) analysis for different parameters of the loss
function

of training. Adding triplet loss to the baseline reduces the
quality score of the generated image. This result shows
that the better disentanglement of triplet loss may separate
the connections between features too much and reduce the
smoothness of interpolation.

Table 7 gives the performance metrics of the classifi-
cation models of SCGAN when pre-trained with VGGNet
[29], GoogLeNet [30], ResNet-50, ResNet-101 and ResNet-
152, respectively. The results show that the highest accuracy
values are achieved using ResNet-50. Moreover, the trade-
off between classification results and network optimization
is crucial. Considering the dimensionality and parame-
ter complexity of deep networks such as ResNet-101 and
ResNet-152, and the relatively stable performance obtained
with the ResNet series, we choose to use ResNet-50. There-
fore, we use the modified ResNet-50 model to train our
dataset and use it as a baseline classification method.

Figure 9 visualizes 24 images generated using DAGAN,
SCGAN−Lvd − LCD−GP and SCGAN. Through human
perception, we can find that compared with benign nodules,
malignant nodules contain calcification (abnormal white
spots) and irregular edge contours. From the perspective
of the image quality generated, DAGAN without domain
adaptation synthesizes nodules with irregular shapes, rough
texture distribution, and lack of rich details. In contrast,
the details of the nodules generated by CASAM gradually
become clearer. However, the marginal area of some
nodules changes greatly, which may be related to less
marginal semantic information. The images generated by
our SCGAN model are visually convincing. Among them,
the internal grayscale difference of the nodules is obvious,
and the tissue texture is clear. Benign nodules have smooth
borders, and clustered calcifications accompany malignant
nodules. It shows that the effective combination of CASAM
and the two losses can potentially ensure the quality

Table 5 The inception score (IS) of our proposed SCGAN and its
variants compared with different image generation methods

Results(%) Inception Score Results(%) Inception Score

DCGAN [25] 2.58 ± 0.21 DAGAN 3.48 ± 0.37

ACGAN [20] 3.01 ± 0.22 SCGAN−Lvd −
LCD−GP

4.14 ± 0.23

StackGAN [48] 3.38 ± 0.34 SCGAN−Lvd 4.23 ± 0.15

AttnGAN [42] 3.47 ± 0.24 SCGAN 4.26±0.18
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Fig. 8 Box and whisker plot analysis of the inception score (IS) for
different image generation methods

of the generated image, including the shape and texture
distribution of the nodules.

Physician Evaluation We collaborate with three senior
physicians who treat thyroid diseases. The whole process
is divided into two parts. First, the three physicians
independently determine the authenticity of the images, the
semantic consistency, and the benignity or malignancy of
the nodules and give their respective diagnoses. Then, in
the second part, the three physicians could discuss and
give the final results of the consultation. The accuracy
of each physician and their mean values are shown in
Table 8. Overall, our proposed model performs better
than ultrasound physicians. The experiment results indicate
that the highest individual score of the three physicians
is 75.67%, and the consultation score is higher than the
average value of the three physicians in determining the
authenticity of the ultrasound images. For the diagnosis
of benign and malignant nodules, the consultation score
is higher than the three-person independent score, and
its overall accuracy is higher than that of authenticity
discrimination. We discuss further with the physicians
and analyze the experimental results in detail. Physicians
have a more accurate judgment of nodules with apparent

Table 6 Compare the inception score (IS) of Lvd and other different
losses

Results(%) Inception Score

Triplet Losses [39] 3.92 ± 0.18

Contrastive Loss [46] 4.09 ± 0.24

InfoNCE Loss [21] 4.22 ± 0.30

SCGAN−Lvd 4.23 ± 0.15

SCGAN 4.26±0.18

Table 7 Performance of our classification models of SCGAN when
using pre-trained VGGNet, GoogLeNet, ResNet-50, ResNet-101, and
ResNet-152, respectively

CNNs Results(%)

Accuracy Sensitivity Specificity AUC

VGGNet [29] 78.83 79.10 78.57 81.81

GoogLeNet [30] 81.75 83.58 80.00 84.95

ResNet-50 84.67 88.06 81.43 88.28

ResNet-101 83.21 86.57 80.00 86.93

ResNet-152 82.48 85.70 80.00 86.14

benign or malignant features, such as thos with a regular
shape, clear borders, or obvious calcification. In contrast,
physicians need to observe cases over time in conjunction
with review results, such as nodules with an irregular
shape, blurred or uneven borders, and hypoechogenicity.
The rate of misdiagnosis by physicians is higher when there
are similar symptoms to thyroiditis or multiple endocrine
adenomas. Therefore, physician consultation can provide
more diagnostic experience for definitive classification
results compared to individual judgment. The physicians
also indicate that discriminating the authenticity of an
image is more challenging than discriminating the benignity
or malignancy of a nodule, which demonstrated the
effectiveness of SCGAN’s image generation capabilities.
While discriminating the authenticity of the images, the
physicians also evaluate the semantic consistency of the
images. The results show that the image features match
their associated knowledge descriptions, demonstrating the
strength of our model in acquiring high-level semantic
features.

Comparison with State-of-the-Arts Table 9 shows the
performance comparison between the proposed SCGAN
and nine state-of-the-art classification methods for thyroid
nodules. The results show that the proposed model achieves
a better classification performance. Since most of the
datasets used for training models in the paper are derived
from private datasets and the code is not open source, it
is impossible to directly compare SCGAN with others’
methods on the same datasets. Therefore, Table 9 lists
the performance of these methods as recorded in the
original published literature. Refs. [1, 23, 26] records
the classification results of traditional methods. Refs. [36,
37, 50] records the classification results of deep learning
methods under a single modality.The remaining three
methods are similar to our proposed SCGAN in that
they all choose to extract features from multimodal data.
Among them, Yang et al. [43] and Qin et al. [24] both
chose to extract features from images by fusing features
from conventional ultrasound images with elasticity images.
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Fig. 9 Visualization results of
24 images generated using
DAGAN, CASAM (i.e., variant
SCGAN−Lvd − LCD−GP ), and
SCGAN

Table 8 Evaluation results of three physicians on the authenticity of the images and the benignity and malignancy of the nodules

Physician Real/Generate Image Benign/Malignant Nodule

Accuracy Accuracy Sensitivity Specificity

Physician 1 68.00 89.67 90.00 89.33

Physician 2 75.67 91.33 90.67 92.00

Physician 3 70.33 90.67 84.67 96.67

Average of physicians 71.33 90.56 88.45 92.67

Consultation score 73.67 93.67 93.33 94.00

Table 9 Performance comparison of the SCGAN model with nine other existing methods for thyroid nodule classification

Methods Modality Sample Results(%)

Accuracy Sensitivity Specificity AUC

Acharya et al. [1] US(Texture features+C4.5) 48 malignant, 223 benign 94.30 Not Given Not Given Not Given

Raghavendra et al. [26] US(HOS + PSO +SVM) 56 malignant, 288 benign 97.71 Not Given Not Given Not Given

Prochazka et al. [23] US(histogram features +RF) 20 malignant, 40 benign 95.00 95.00 95.00 97.12

Wang et al. [37] US 341 malignant, 705 benign 87.32 ± 0.0007 84.22 ± 0.0023 Not Given 90.06 ± 0.0007

Wang et al. [36]] US 524 malignant, 470 benign 88.25 90.00 86.50 92.86

Zhou et al. [50] US 1311 malignant, 4291 benign Not Given 98.70 98.80 98.00

DScGANS [43] US+USE 1489 malignant, 1601 benign 90.5 ± 0.06 88.1 ± 0.08 92.6 ± 0.07 91.4 ± 0.04

Qin et al. [24] US+USE 617 malignant, 539 benign 94.7 ± 0.53 92.77 ± 1.04 97.96 ± 1.13 98.77 ± 1.05

KACGAN [28] US+Text 905 malignant, 1032 benign 91.46 ± 0.46 90.63 ± 0.38 92.65 ± 0.16 95.32

Proposed SCGAN US+Text 905 malignant, 1032 benign 94.30 ± 0.48 93.43 ± 0.35 95.14 ± 0.42 97.02 ± 0.57

aValues are expressed as mean ± standard deviation
bStd is not provided in some sources
cUS means ultrasound image, USE means ultrasound elasticity image
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The former used information from different modalities
to train DScGANS models to facilitate the diagnosis of
benign and malignant thyroid nodules. The latter focused
on comparing the effects of different fusion strategies and
different classification network structures on classification
performance. Compared to Qin, our method has higher
sensitivity and similar accuracy, specificity, and AUC.
However, all the above methods are constrained by the
limited availability of annotated data. Differently, Shi et al.
[28] instead used standardized terminology to assist in the
extraction of ultrasound image features in KACGAN to
facilitate thyroid nodule image enhancement. This method
is similar to our idea, but our method does better in cross-
modal alignment and obtains higher metric values. As
mentioned above, cross-domain fusion using multimodal
data to improve the classification performance of thyroid
nodules has become a trend in thyroid nodule diagnosis.

5 Conclusion

In this paper, we propose a new deeply fused semantic con-
sistency generative adversarial network (SCGAN) to diag-
nose benign and malignant nodules in thyroid ultrasound
images. The method organically combines image features
with textual information. The domain adaptation process of
these two cross-modal data is accomplished jointly through
the self-attention mechanism and metric learning, using
their semantic consistency to reduce domain shifts in the
training process. The addition of two new techniques to
guide the hinge loss based on adversarial learning promotes
the convergence of the network and improves the quality of
image generation. The experimental results demonstrate the
effectiveness of our SCGAN in improving the performance
of target domain classification networks and have potential
clinical applications.

We will work on a training model that can be applied to
more types of ultrasound images and domain knowledge in
future work. For example, the inclusion of richer knowledge
information such as blood flow signals or ultrasound
elasticity images improves diagnostic accuracy. Besides, the
embedding process of our domain knowledge relies on pre-
trained text encoders, which, unlike natural datasets, require
parameter tuning for medical datasets. In the next step,
we will add an attention mechanism to the text encoder to
achieve the most advanced performance.
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