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Abstract— With the unprecedented scalability issues rising in
vehicular edge computing (VEC), we argue in this paper that
the scalability, along with the remarkable growth of demands
for offloading, should be integrated into the modelling for
effective offloading decision-making strategies requested by a
large number of vehicles. A two-stage game-theory model can
depict offloading decision-making strategies by considering both
the revenue of network operators and the cost of VEC users.
However, heuristic processes of solving such models show sig-
nificant limitations in terms of high computational complexity
and energy consumption due to the changing VEC environ-
ment. Therefore, our objective in this study is to solve the
game-theory model efficiently and achieve scalable offloading for
the changing VEC environment. We first develop a two-stage
game-theory model for the offloading decision-making strategy
for VEC, by which an operator’s revenue, energy consumption
and latency are considered. Then a neural network (NN) model
is designed to learn the predicted behaviours of the established
game-theory model for offloading decisions in a more efficient
manner. After that, a feature-based transfer learning algorithm
is proposed for scalable offloading optimization under unseen
VEC environments. Experimental results show that the proposed
NN can significantly improve the efficiency of solving the game
theory model, and the developed transfer learning approach can
effectively achieve the scalability of offloading decisions in a
changing VEC environment. The results demonstrate that the
accuracy of the proposed transfer learning approach is 37%
higher than that of several state-of-the-art algorithms, and the
runtime halves.

Index Terms— Game theory, mobile edge computing, neural
networks, offloading, scalable optimization.
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I. INTRODUCTION

WITH the rapid development of autonomous vehicles
(AVs), vehicular networks and mobile edge computing

(MEC), vehicular edge computing (VEC) has attracted sig-
nificant attention for its service provisions in driving safety,
convenience, and efficiency. Offloading in VEC plays an
important role because of the significant influence on the
energy consumption of AVs [1], the performance of VEC
applications, the revenue of network operators, and the cost
of AVs [2], etc. Many offloading problems in VEC have been
studied, but challenges on scalability still exist due to the
considerable increase in the number of AVs and time-varying
changes in VEC environments [3].

Game theory has been widely adopted to tackle the opti-
mization problems of offloading in VEC. Solving game theory
models usually requires a large number of iterations, resulting
in high computational complexity and energy consumption.
Many studies that resorted to heuristic knowledge to reduce
the computational complexity in the solving process of game
theory models have been successful in given VEC scenar-
ios [4]. However, if the scenario changes, game theory models
will need to be solved again. For example, the time-varying
number of AVs leads to changes in VEC environments, and
thus the latency, energy consumption, and cost of VEC systems
may not meet the requirements of supporting AV services
such as object tracking through the already-solved game theory
models. Existing solutions are therefore not scalable for the
complex and changing VEC environments, calling for scalable
solutions for game theoretical offloading models in VEC. The
neural network (NN) is a potential candidate to overcome
the high computational complexity and energy consumption
deficiencies of traditional methods of solving game theoretical
models because of the nature of approximating any functions
with a black box [5]. By using NN, the solving process of
a game theory model can be captured and the probability
distribution of the process datasets for offloading decisions
can be fitted and further inferred [6].

To further enhance the scalability of NN-based solutions for
game theoretical offloading models in new and unseen VEC
environments, the well-known transfer learning paradigm can
be explored for scalable offloading optimization in VEC [7].
The limitation of data acquisition of AVs in the changing VEC
environment makes it difficult to obtain sufficient data for the
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development of learning-based methods, leading to a dilemma
of the deep learning methods for scalable optimization of
offloading [8]. Realizing the transfer learning in VEC with
NN-based solutions for scalable offloading optimization is
therefore challenging. Existing studies only focus on the
learning of abstract feature representations by deep NNs [9].
The effective transfer learning method should be integrally
developed with the features that have contributed to the
offloading strategies inherited from the proposed NN-based
model.

In this paper, we propose a transfer learning approach for the
scalable optimization of game theoretical offloading decisions
in VEC. The main contributions can be summarized as:
• A two-stage game theory model of offloading decisions

in VEC is proposed based on the Stackelberg game
framework. The revenue maximization for network oper-
ators, as the objective of the Leader in the model, leads
the actions of the Follower in the model aiming at the
cost minimization of the AV in the offloading strategy
optimization.

• An NN-based model is developed with the consideration
of characteristics of the two-stage game model to improve
the efficiency and effectiveness of the game-playing pro-
cess. Specifically, an advanced learning algorithm based
on the probabilistic moderation/Bayesian approach for
opponent strategies, instead of simply using the empirical
average, is developed to solve the game process more
efficiently.

• The transfer learning is applied for scalable optimization
of game theoretical offloading in VEC. The transferable
representations are thoroughly explored with the objective
of scalable optimization for offloading in VEC. Feature
selection and transfer matching are proposed jointly for
dimensionality reduction in the proposed transfer learning
algorithm. Parallelism for batches of data is utilized, and
the synchronization at the end of each training iteration
to update the NN parameters is ensured.

• Extensive simulation experimental results show that the
proposed NN can efficiently improve the game-solving
process, and the accuracy through the devised transfer
learning algorithm can be increased up to 37% by com-
paring with the related algorithms. Besides, the runtime is
half of the time required by these algorithms, which sat-
isfies the scalability requirement for offloading in VEC.

The remainder of this paper is organized as follows. Related
work and overview of scalable optimization of VEC are
presented in Section II. The proposed two-stage game model
is elaborated in Section III, followed by the NN-based solution
in Section IV. Section V elaborates on the transfer learning
for the scalable optimization of game theoretical offloading
in VEC. Section VI presents the experimental results and
analysis. Finally, Section VIII concludes the paper.

II. RELATED WORK

A. Game Theory

In communication networks, game theory has been broadly
applied to develop efficient and effective solutions for resource

allocation and routing problems [10]. Three critical elements
including Player, Strategy, and Utility are normally involved in
a game model. The playing process can be described that play-
ers playing with each other based on the opponent’s strategy
with the objective of maximizing the payoff of players and the
playing system. Once the objective is reached, the trade-off of
the game model should be at a point named Nash equilibrium
where no players have potential motivations to deviate from
their strategies by considering the opponent’s choice. As one
of the optimization methods, game theory shows a great
advantage in improving decision-making strategies through
competition between players and is able to integrate with
learning methods in decision-making processes [11].

1) Game Theoretical Models for Offloading: A multiuser
noncooperative offloading game model was proposed to adjust
the offloading probability of vehicles [12]. To overcome the
challenges of security and insufficient information in coopera-
tive offloading between vehicles, an offloading decision game
model was proposed in the scenario where blockchain was
employed to facilitate data sharing between vehicles [13]. The
further cooperative computation offloading and secure han-
dover in VEC were introduced in [14]. The balance of energy
efficiency and reputation gain in UAV scheduling in MEC was
studied through the game theoretical approach [15]. Energy-
efficient offloading problems in UAV-assisted computing were
solved by the PDDQNLP algorithm [16], and system dynamics
and complexity issues in space/aerial-assisted offloading were
addressed in [17]. Besides, dynamic task offloading decisions
in vehicles were also solved by the proposed end-edge-
cloud architecture and the asynchronous advantage actor-critic
(A3C) based offloading algorithm [18]. However, the limita-
tion caused by the slow convergence rate in solving traditional
game models should be overcome.

2) Neural Networks for Solving Game Theoretical Models:
As a good candidate, NNs have been studied for addressing
the limitations of slow convergence issues of game theo-
retical models. Rezek et al. [19] introduced the similarities
of inference in game theory and machine learning through
the analogies between best responses in fictitious play and
Bayesian inference approaches. Shiri et al. [20] proposed a
method of an NN-based mean-field game theory to address the
control problem of massive autonomous UAVs’ path planning.
Even though initial attempts of NN for solving game theoreti-
cal models have been used on scenarios as aforementioned,
the combination of the two fields, i.e., game theory and
machine learning, is still not well explored and needs to be
comprehensively studied for the development of solutions in
extensive applications.

B. Scalability

Scalability refers to the ability of a system, a network,
or a process in terms of dealing with the growing amount of
work, which is achievable through computational offloading in
mobile edge computing [21]. Although the scalability problem
has been explored in various scenarios due to limitations of
the labeled data in the new data sets, most of the studies
are exclusive to applications and not well explored in edge
computing scenarios.
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1) Scalable Optimization: The expectation of conserving
energy and computational resource motivates the scalability
requirements of traffic systems when the number of AVs
changes in VEC. A modified transfer learning technique was
utilized to learn people’s behaviour and predict human-vehicle
interactions so that citywide traffic flow can be effectively
improved [22]. Wang et al. [23] proposed vehicular platoon
control strategies for connected vehicle platoons under abnor-
mal communications and solved the scalability problem by
increasing road capacity. In [24], a novel transfer evolutionary
optimization framework was devised for the joint evolution of
the scalability problem. A multilane spatiotemporal trajectory
optimization method was presented to ease urban conges-
tion and increase road capacity, where the full potentials
of connected vehicles with the consideration of vehicular
safety, traffic capacity, and fuel efficiency were explored [25].
However, there still lacks an effective method considering
computation elements simultaneously, such as energy con-
sumption, latency, and the revenue of network operators in
VEC to improve the scalability performance in offloading
strategies. New optimization methods should be explored to
expand the scalability solutions.

2) Scalable Optimization for Offloading Decisions: To
achieve the scalability of a MEC system in offloading deci-
sions, a task offloading and service replication scheme was
proposed to minimize the response time of users while
satisfying the latency requirements of user groups by deploy-
ing the scheme locally and on remote MEC servers [26].
Baresi et al. [27] presented a serverless edge computing archi-
tecture and declared that the scalability of the proposed
architecture could be extended by the offloading strategy as
proposed in [28]. A survey [29] stated that the computation
offloading modelling with game theory should be scalable for
Nash equilibrium searching in dynamic applications, which
is in line with the inherent distributed characteristic of game
theory methods.

Most of the prior works on scalable optimizations for VEC
and MEC are mainly concentrated on architecture design, edge
computing deployment, and admission control for tasks. How-
ever, the scalability problems of offloading decision-making
strategies by solving with machine learning techniques have
not been addressed comprehensively. Therefore, we propose a
transfer learning approach to explore the solution of scalable
optimization based on game theoretical offloading in VEC.

III. THE SYSTEM MODEL

The system framework is depicted in Fig. 1, which consists
of a set of AVs in the source domain Ds , a series of AVs in
the target domain DT and a shared base station. The AVs in
Ds and DT are in the same network coverage area. We denote
vehicles in the Ds as Vs1 , Vs2 , Vs3 , and Vs4 , etc. Accordingly,
the vehicles in the DT are represented by VT1 , VT2 , VT3 , and
VT4 , etc. Any vehicle in the source domain Ds and target
domain DT can be treated as Vs , and VT , respectively. In the
practical driving environment, an AV in the Ds may run on
the ramp or meet the roadblocks, which requires the AV to
react in real-time for driving safety and reliability. Therefore,
the study on offloading strategies can deliver greater safety

Fig. 1. The framework of scalability requirement in offloading decisions
of AVs. The AVs in the source domain Ds and target domain DT share
a base station and they are involved in the same network converge area.
The AVs in the Ds first achieve offloading strategies, and then features that
affect offloading strategies such as consumed energy, latency, and cost, etc.
are transferred to AVs in DT for the scalable optimization of offloading in
VEC.

benefits of the AV such as overtaking and stopping in real-
time driving. Besides, the offloading mechanism also has a
meaningful effect on the revenue of the corresponding network
operator. Meanwhile, the offloading decision strategies of Vs
can be referred by the AVs in DT for scalability improvement
in offloading in VEC.

A. The Two-Stage Game Theoretical Model for VEC
Offloading

The vehicle Vs in Ds generally obeys the binary offloading
decisions, which can be expressed as

fVs =

{
1, offloading
0, not offloading

(1)

where fVs = 1 means that the Vs performs the data offloading,
fVs = 0 means that data are not offloaded to an edge server.

It is assumed that Vs needs to process a task denoted
by {x, cVs , Tmax }, where x ∈ [0, x̄] is the data size to be
determined whether to offload to VEC. x̄ is the upper bound
of the data size. cVs denotes the computing requirements to
process the task x , e.g., the required number of CPU cycles.
Tmax denotes the upper bound of latency requirements.

1) Local Computing: The latency of local computing of Vs
can be represented as

t L
Vs
=

cVs

ψ L
Vs

(2)

where ψ L
Vs

is the computing power (CPU frequency) of the Vs .
The energy consumption of local computing can be denoted
as

E L
Vs
= κL(ψ L

Vs
)2cVs (3)

where κL is the effective switched capacitance on the chip
structure of Vs [30]. The cost of executing the task locally is

C L
Vs
= αE L

Vs
+ (1− α)t L

Vs
, α ∈ [0, 1] (4)

where α is the weight that measures the level of sensitivity of
latency and energy consumption to the cost. If α < 0.5, more
attention is paid to latency, and vice versa. α = 0.5 means that
the Vs weights the latency the same as the energy consumption.
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2) Vehicular Edge Computing: We denote an edge server
located at a base station as m, to which the task is offloaded
from Vs . The latency spent on the results transmission through
downlink to Vs can be ignored due to a small size. The channel
transmission rate of uplink can be expressed as

R(Vs ,m) = λw log2

(
1+

p(Vs ,m)h(Vs ,m)

ρ2 + I(Vs ,m)

)
(5)

where w = B/K denotes the assigned bandwidth by sepa-
rating bandwidth B into K parts. K is the number of AVs
connected to an edge server. p(Vs ,m) and h(Vs ,m) denote the
power of transmission and the channel gain between the
edge AV Vs and the edge server m. ρ2 denotes the noise
power, and I(Vs ,Vn) is the interference of Vs suffering from
the communication of other vehicles, which can be denoted
as

I(Vs ,Vn) =

N∑
n=1,n ̸=s

p(Vn)h(Vs ,Vn) (6)

where h(Vs ,Vn) is the channel gain of the vehicle Vs to the
vehicle Vn on the channel [31]. λ ∈ {0, 1}, that is, if λ = 1, the
channel is assigned to vehicle Vs for task offloading, otherwise,
λ = 0. Accordingly, Vs has interference from other vehicles
or the interference of I(Vs ,Vn) is 0.

The latency of transmission and computation of task x at
VEC m can be expressed as

t EC
Vs
=

(
x

R(Vs ,m)
+

cVs

ψ EC
Vs

)
(7)

The energy consumption on transmission and the computa-
tion of x at the VEC server can be formulated as

E EC
Vs
= p(Vs ,m)

x
R(Vs ,m)

+ κEC (ψ EC
Vs
)2cVs (8)

where κEC is the energy coefficient.
Therefore, the total cost of the transmission and computation

on VEC considering latency and energy consumption is

C EC
Vs
= βE EC

Vs
+ (1− β)t EC

Vs
, β ∈ [0, 1] (9)

where the meaning of β is similar to that of α in Eq. (4).
The total cost spent on the task x can be concluded as

Ctc = fVs C EC
Vs
+ (1− fVs )C

L
Vs

(10)

3) The Two-Stage Game Theoretical Model: The problem
of the offloading can be modelled with a two-stage game
theoretical model, as described in Fig. 2. The Leader in
Stage 1 aims to achieve the optimal price that maximizes the
network operator’s revenue. The Follower in Stage 2 intends
to determine the offloading data size with the minimum cost of
the edge AV. These two games interact by backward induction
with each other and solve the optimal results to reach a balance
that any changes in the outcome of one game will break the
optimal outcome of the other game. The vehicle is the one
that first requests the edge service from a network operator in
the practical scenario and may cancel the computing service
request if the price provided by a network operator exceeds
the expectation of the vehicle. Therefore, there is an occasion

Fig. 2. The game theoretical offloading decision-making process solved by
neural Networks.

when the price of the computing service provided by a network
operator significantly exceeds the expectation of the vehicle.
It is possible for the vehicle to cancel the computing service
request, thereby the VEC service is highly unlikely to occur.
Based on this situation, the optimization of Stage 2 is first
introduced in the following analysis and the two-stage game
theoretical model is depicted in the upper part of Fig. 2.

a) Cost minimization and offloading strategy: The
energy consumption and latency constraints in data processing
locally or by VEC can be expressed as

E = (1− fVs )E
L
Vs
+ fVs E EC

Vs
≤ Emax (11)

T = (1− fVs )t
L
Vs
+ fVs t EC

Vs
≤ Tmax (12)

where E and T represent the total energy consumption and
latency, respectively. Emax and Tmax denote the maximum
tolerances of energy consumption and latency, respectively.

b) Stage 2 sub-game (Follower): The total cost, shown
by Eq. (10), is expected to be reduced as much as possible.
Thus, the cost-minimization problem can be formulated as

min Ctc = fVs C EC
Vs
+ (1− fVs )C

L
Vs

s.t. C1 : (1− fVs )E
L
Vs
+ fVs E EC

Vs
≤ Emax

C2 : (1− fVs )tVS + fVs t EC
Vs
≤ Tmax

C3 : 0 ≤
K∑

k=1

λk p(Vs ,m) ≤ Pmax

C4 : { fVs , λ} ∈ {0, 1}, {α, β} ∈ [0, 1] (13)

We suppose that the price charged for unit energy spent
on communication and computation is pe, which is consistent
among network operators [2]. Therefore, the total payment for
the transmission and commutation can be expressed as

C EC
pe
= pe ·

(
fVs E EC

Vs
+ (1− fVs )E

L
Vs

)
(14)

c) Pricing and revenue maximization: The price is uni-
cast by a network operator as a response for the offloading
request of the Vs in the Ds . After receiving the quoted price,
the Vs will respond with its acceptable price π to the VEC
operator. Then the operator will update its quoted price in the
next round of offers. By continuous iterations, an optimal price
that promotes the maximization of an operator’s revenue is
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expected to be reached while satisfying the cost minimization
of the Vs .

d) Stage 1 sub-game (Leader): The revenue maximiza-
tion of an operator through VEC service provision can be
achieved by minimizing the energy cost and maximizing the
price as

max 8 = πx − C EC
pe
= πx − pe E EC

Vs
(15)

where π is the quoted price, x is the size of data for offloading.

B. Equilibrium Analysis

We suppose that there exists a Nash equilibrium of the
optimal price π∗ satisfying the revenue maximization of a
network operator with the optimal data size x∗, i.e.,

π∗, x∗ = arg max 8(π, x,Ctc) (16)

where the optimal data size x∗ contributes the minimum cost
of the vehicle Vs for offloading

x∗ = argmin Ctc(x, E, T ) (17)

1) Leader’s Game – Stage 1: In this stage, we formulate
the pricing strategy, energy cost and latency into the revenue
of network operators, which will be considered as the input
information of the Follower in the next stage of the game.

Given the data size x in Stage 2, an operator (OP) playing
with the communicated AV to maximize the revenue is a non-
cooperative game. The pricing process is performed as Pricing
Game (PG) � = {K , {xsk }k∈K , {8sk }k∈K }, where k ∈ K =
{k = {1, . . . , K }, O P}, and K is the set of players. {xsk }k∈K
represents the strategy set of task offloading. The {8sk }k∈K is
the revenue of the OP when the strategy is xsk . Therefore, the
revenue maximization can be described as {8sk }k∈K . Once the
offloading data size x and price π are determined, the energy
consumption and latency are resolved in Stage 2, then the
revenue {8sk }k∈K in Stage 1 can be maximized.

Theorem 1: Suppose that the Nash equilibrium exists in the
offloading decisions with optimal x∗ and π∗ which stand for
the optimal data size and the optimal price that is offered
by an operator, respectively. The (x∗, π∗) should be at the
equilibrium point of this game if the following conditions hold

8(π∗, x∗,C∗tc) ≥ 8(π, x∗,C∗tc), ∀π ≥ 0, (18)
8(π∗, x∗,C∗tc) ≥ 8(π

∗, x,C∗tc), ∀x ≥ 0 (19)

Definition 2: The E∗, T ∗ and x∗ are the optimal energy
cost, latency and offloading data size of the game G, if play-
ers in this stage meet C(E∗, T ∗, x∗) ≤ C(E, T, x), where
C(E∗, T ∗, x∗) is the optimal and minimum cost in the convex
function and satisfies the agreed offloading data size, energy
cost and latency.

Theorem 3: A Nash equilibrium exists in the game G =
{{VS, operator}, { fVS },8}.

Proof: The strategy space of G is fVS , which is not
empty and determines the offloading decision-making and the
cost of the offloading. For the π is the function of x , to learn
about the second derivative of Eq. (15), with Eq. (8), we have

∂8

∂π
= x + π

dx
dπ
− pe p(Vs ,m)

1
R(Vs ,m)

dx
dπ

−Peκ
EC (ψ EC

Vs
)2
∂cVs

∂π
(20)

∂28

∂π2 =

(
π − pe p(Vs ,m)

1
R(Vs ,m)

)
d2x
dπ2 + 2

dx
dπ

−Peκ
EC (ψ EC

Vs
)2
∂2cVs

∂π2 (21)

Let ∂28
∂π2 = 0, then(

π − pe p(Vs ,m)
1

R(Vs ,m)

)
d2x
dπ2 + 2

dx
dπ
= Peκ

EC (ψ EC
Vs
)2
∂2cVs

∂π2

(22)

The curves of the quadratic equation shown in Eq. (21) should
be studied.

The right term of the Eq. (22) is the quadratic equation with
one variable, whose roots should be equal to the roots of the
left term. There, we have one root 0, and another root

−2R(Vs ,m)

πR(Vs ,m) − Pe P(Vs ,m) − PeκEC (ψ EC
Vs
)2 R(Vs ,m)

.

As the non-zero root should be less than 0 on (−∞, 0], when

π ∈

(
Pe P(Vs ,m)

R(Vs ,m)
+ Peκ

EC (ψ EC
Vs
)2,+∞

)
(23)

the ∂28
∂π2 < 0. The 8 is concave, which means that the optimal

price exists for revenue maximization. Therefore, the existence
of the Nash equilibrium of the game can be reached.

Theorem 4: The uniqueness of the Nash equilibrium in the
game G is reached.

Proof: Under the proof of Theorem 3, a Nash equi-
librium is proved to exist in the game. Then we suppose
that π∗ is the Nash equilibrium of the game, which is the
best response agreed by the network operator and the Vs
for the offloading strategy, where π∗ ∈ {π1, π2, . . . , πn}.
Let the first derivative of Eq. (20) be 0 for the response
of the game playing. The right function of Eq. (22) is
monotony on (−∞, 0], and the corresponding result of the
function is positive with the non-zero root. Only when dx

dπ ∈(
−2(Vs ,m)

πR(Vs ,m)−Pe P(Vs ,m)−PeκEC (ψEC
Vs )

2 R(Vs ,m)
, 0
)

, then the left func-

tion of Eq. (22) has an extremum satisfying ∂28
∂π2 < 0. The

price is

π =
Pe P(Vs ,m)

R(Vs ,m)
+ Peκ

EC (ψ EC
Vs
)2 (24)

Therefore, the uniqueness of the Nash equilibrium in the
game can be reached by showing the response of the network
operator and Vs , and Theorem 4 is concluded.

2) Follower’s Game – Stage 2: In this stage, the offloading
data size will be agreed upon by the game-playing process and
the revenue maximization of the network operator is expected
to be achieved. The cost of the Follower is described as

C∗ =min pe · E EC
VS

s.t. E∗ = min{E EC
VS
}, p∗e = min{pe} (25)

where C∗ is the minimum cost for communication and com-
putation services. E∗ and p∗e stand for the optimal energy
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consumption and the agreed price, respectively. The offloading
data size is implied in the function.

Definition 5: The agreed price π∗ is optimal while satisfy-
ing the utility 8(π∗, E∗, t∗) ≥ 8(π, E∗, t∗).

Theorem 6: The network operator can obtain revenue opti-
mization through cost minimization measuring in Stage 2.

Proof: The offloading data size x∗ ∈ {x∗1 , x∗2 , . . . , x∗n }
is the Nash equilibrium of the cooperative game for C∗

if the network operator plays with an AV with satisfying
8(π∗, x∗,C∗tc) ≥ 8(π

∗, x,Ctc), ∀x ≥ 0. According to Eq.
(14), we have

C EC
pe
= pe

(
p(Vs ,m)

x
R(Vs ,m)

+ κEC (ψ EC
Vs
)2cVs

)
(26)

∂C EC
pe

∂x
= pe

(
p(Vs ,m)

1
R(Vs ,m)

+ κEC (ψ EC
Vs
)2

dcVs

dx

)
(27)

∂2C EC
pe

∂x2 = peκ
EC (ψ EC

Vs
)2

d2cVs

dx2 (28)

where cVs is linear with x , dcVs
dx is a constant greater than 0.

We have
∂C EC

pe
∂x > 0 and

∂2C EC
pe

∂x2 = 0. The C EC
pe

is a
monotonically increasing function subject to x . Thus, there

Algorithm 1 Game Theoretical Offloading Strategy
(GTOS)
Input: Quoted price for offloading π ;
Offloading data size x ;
Price charged for unit energy spent on communication
and computation pe;
Output: The total cost spent on the offloading task

Ctc;
The agreed price for offloading π∗;
The agreed offloading data size x∗;
The optimal revenue of the network operator 8∗

1 Initialize π0, x0, α, β;
2 while C pe > 8(π∗, x∗,C∗tc) and

C(π∗, E∗, T ∗, x∗) < C(π∗, E, T, x) do
3 if C EC

Vs
< C L

Vs
then

4 fVS ← 1, λ← 1;
5 Ctc ← (π∗, x∗, E EC

Vs
, t EC

Vs
) ; // Eq. (13)

6 if C pe (E
EC
Vs
, pe, x) < 8(π∗, E∗, T ∗, x),

8(π∗, x∗,C∗tc) > 8(π, x∗,C∗tc),
8(π∗, x∗,C∗tc) > 8(π∗, x,C∗tc) then

7 x∗← argmin C ;
8 8∗← π∗, x∗;
9 Break;

10 else
11 Not to converge (no Nash equilibrium

point)
12 end
13 else
14 fVS ← 0, not to offload, λ← 0
15 end
16 end

exists a minimum cost to maximize the revenue of the
operator.

IV. THE PROPOSED NEURAL NETWORK FOR EFFICIENTLY
SOLVING THE GAME THEORETICAL MODEL

Solving game models is an iterative game-playing process,
which is time-consuming and may cause a high cost of com-
puting resources to some extent. Yet, VEC networks change
dynamically for the varying number of vehicles connected with
a base station (further connecting to a MEC server if offloading
occurs) according to road conditions. These situations bring
about the changing inputs of game models and the solving
processes need to be recalled to resolve the models each time
a change occurs. To deal with these problems, we propose
a new solution which adopts NN to efficiently solve the
changing game-playing process with better adaptability due to
the variation of game theoretic models caused by the changing
situations of AVs.

The mean field variational (MFV) method can be used to
infer the probability distribution with latent variables based on
the observed datasets [32], by which the intractable require-
ment can be asymptotically satisfied in the learning process.
Through the generated data D and the defined latent variables,
the variable generated in the game playing process Si =

{(Ctc)i , πi , xi ,8i } can be extended to S, where i means the
number of iterations. The distribution of the extended Si is
expected to be estimated. Let s represent an element of the
latent variable, s ∈ S, we postulate the marginal distribution
pi ∈ 1(Si ) with respect to variable i in the set of all
marginal distributions 1(Si ) over Si , θ is the parameter to
the distribution p. Then

ℓ(S|D, θ) = log(p(S|D, θ)) (29)

Let q(s) represent a variational approximation to the posterior
distribution p(S|D), the criterion can be expressed [19]

F =
∫
· · ·

∫
q(s)ℓ(s|D, θ)ds + τH(q) (30)

where Shannon entropy H(s) = −
∫
· · ·
∫

q(s) log q(s)ds
implies the uncertainty inherent in the outcomes of variables.

The Kullback-Leibler(KL) divergence can be depicted as

DK L(p∥q) = −F =
∫
· · ·

∫
q(s) log

(
p(s|D, θ)

q(s)τ

)
ds (31)

The distribution of observed data D is not confirmed in the
above analysis. Therefore, we assume the existence of means
and variances of the distribution according to the central-
limit theorem [33] and then depict the distribution p with the
Gaussian distribution pi (Si |D, θ) ∼ N (Si |µ, ρ

2), which is
parameterized with θ = (µ, ρ2). Then

p(S|D) =
I∏

i=i

ℓ(Si |µ, ρ) (32)

where the ∇S(Cct , π, x,8) is taken to optimize the mean and
variance of the distribution.
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In order to construct a NN to learn the distribution, for the
sets of parameters {(µ1, ρ1), . . . , (µi , ρi ), . . . }, the complete
likelihood can be formulated as

p(Si , µ, ρ|s) ∝ exp
{ ∫
· · ·

∫
ℓ(Si |µ, ρ

2)ds
}

(33)

where s is each sample of the strategy.
To maximize the likelihood function

µ̂, ρ̂2
= arg max

µ,ρ2
log p(S1, . . . , SI |µ, ρ

2) (34)

Let

∂ log p
∂µ

= 0,
∂ log p
∂ρ

= 0,

µ̂ =

I∑
i=1

Si/I, ρ̂2
=

I∑
i=1

(Si − µ̂)
2/I (35)

Then, the update of the q is

q(s)←−
p(D|s)p(s)∫

s p(D|s)p(s)ds
(36)

Based on the analysis of the posterior distribution p in
Eq. (33) and the above updated q in Eq. (36), the expected
log-likelihood can be concluded as

L =
∫
· · ·

∫
q(s) log(p(s|D, θ))ds (37)

which is the expected reward from the perspective of game
theory [19]. The result of the solving process of the game
theory model will be collected, based on which the output
datasets Si (Ct x , π, x,8) are used to train the constructed
neural network model. The parameter of the neural network
q is updated according to the performance of each training
iteration. The game theoretic offloading-mean field variational
(GTO-MFV) process is described as Algorithm 2.

V. TRANSFER LEARNING FOR SCALABLE GAME
THEORETICAL OFFLOADING IN VEHICULAR

EDGE COMPUTING

Each AV on the road has exclusive features of its own
and common features with others. However, collecting all of
the AVs’ data is impossible for making intelligent offloading
decision-making strategies. Upon the request of the scalable
offloading decision in VEC, transfer learning can make up
for the above deficiencies for an effective solution. Because
observed features are homogeneous in this scenario, and
the distributions are independent and identically. Through
hypothesising the training data independently and identically
distributed (i.i.d.) with the test data, it can effectively achieve
the knowledge transfer from the source domain to the target
domain, so that the difficulties in insufficient training data can
be overcome. The offloading decisions of a large-scale AV
with the transfer learning approach are described in Fig. 3,
where the upper part is the display of the transfer mechanism,
and vehicles communicate with each other by a peer-to-peer
mesh network.

Algorithm 2 Game Theoretic Offloading-Mean Field
Variational (GTO-MFV) Process

Input: Datasets Si (Ct x , π, x,8)
Output: The mean of Gaussian distribution µ̂;
The standard deviation of Gaussian distribution ρ̂;
The expected log-likelihood L

1 Initialize Si (Ct x , π, x,8), µ0, ρ0, i ∈ I ;
2 if the DK L has not converged then
3 pi (Si |D, θ) ∼ N (Si |µ, ρ

2);
4 if µ, ρ have not converged then
5 µ̂, ρ̂ ← arg maxµ,ρ2 log p(S1, . . . , SI |µ, ρ

2);
// Eq. (34)

6 ℓ(S|D, θ)← log p(S|D, θ); // Eq. (29)
7 p(s|D, θ)← ℓ(S|D, θ); // Eq. (32)
8 q(s)← p(s|D, θ); // Eq. (36)
9 else

10 Return µ̂, ρ̂;
11 Update q;
12 end
13 else
14 L← q(s);
15 Return L
16 end

Fig. 3. The offloading decisions of a large-scale AV with the transfer learning
approach.

A. Features Selection for Target Domain

1) Notations: The data Si (Ct x , π, x,8) is denoted as
the matrix S = [S1, S2, . . . , Si ] ∈ Rh×n , where Si =

[C i
t x , πi , xi ,8i ]

T . The projection matrix W ∈ Rh×m project-
ing the input S into the common m-dimensional space for
performing feature selection on different feature spaces. The
dth row and j th column of the matrix W are represented with
wd and w j , respectively. The Frobenius norm of the matrix S

is defined as ∥W∥F =

√∑h
d=1 ∥wd∥

2
2, and the L2,1-norm of

W is expressed as ∥W∥2,1 =
∑h

d=1 ∥wd∥2.
2) Problem Formulation and Solution: The offloading deci-

sions of a large-scale AV with the transfer learning process in
Fig. 3 can be described in steps:
• Step ①: The output from the game theoretical model of

an AV is treated as source data and sent to the transfer
mechanism for processing.
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• Step ②: The processed result from the mechanism is
transferred to the nearby AVs for offloading references.

• Step ③: The received result and the features of the new
nearby AVs are sent to the transfer mechanism for the
evaluation of features and offloading references.

• Step ④: The offloading strategies of these new AVs with
specific features are transferred to other AVs.

• Step ⑤: The strategies with new features of these
AVs are sent to the transfer mechanism for features
comparison with new AVs and updated for offloading
decisions.

In the transfer mechanism, the data similarity between S
and W is expected to be learned and predicted. Let Y be the
similar semantics of a joint subspace between S and W . The
optimal W can be formulated as a linear dimensional reduction
problem and the feature of Vs with the space learning can be
formulated as a convex optimization problem as

min
W
∥W∥2,1 + µtr(W T SL ST W )

s.t. W T SV ST W = I (38)

where I is the identity matrix. The graph Laplacian is
expressed as L = D − V , Di i =

∑
j Vi j . V =

(V1, V2, . . . , Vc) ∈ RN×c is represented as the labeled data.
µ is a regularization parameter. We take an example with kth
class to demonstrate different V as

Vi, j =

{
1/nk, if Si and S j belong to the kth class
0, otherwise

(39)

We suppose that there exists a matrix W whose each
column is an eigenvector of SY ST

= λSV ST , λ is the
eigenvalue, such that ST W = Y . Therefore, we need to solve
the problems: 1) work out Y according to V Y = 3DY ,
where 3 is a diagonal matrix; 2) find W which satisfies
ST W = Y . The optimization problem with non-convex and
complex constraints can be converted to

min ∥W∥2,1

s.t.
∥∥∥ST W − Y

∥∥∥2

F
(40)

Meanwhile, Eq. (38) has solutions, which means that the
Laplacian function has solutions. Thus, we have

L p(W ) = ∥W∥2,1 − µtr
∥∥∥ST W − Y

∥∥∥2

F
(41)

which is convex. In order to solve this expression, we have

∂L p(W )

∂W
= GW + 2µ(SST W − SY ) = 0 (42)

W = 2µ(G + 2µSST )−1SY (43)

where G is a diagonal matrix described as

Gi i =

 0, if wi
= 0

1∥∥wi
∥∥

2

, otherwise (44)

which is dependent on the projection matrix W . The W can
be reached by referring to [34]

W = 2µG−1SY − 2µG−1S

(
I −

(
W T G−1S +

1
2µ

I
)−1

)
Y

= G−1S
(

ST G−1S +
1

2µ
I
)−1

Y (45)

A transfer learning method that consists of feature selection,
comparison and update processes is described in Algorithm 3.

Algorithm 3 Transfer Learning-Features Selection,
Comparison and Update (TL-FSCU)

Input: The matrix with labeled and unlabeled S;
The low dimensional representation V ;
The existing features F ;
Output: The projection matrices W ;
The Laplacian matrix L p;
The matrix Fi ;

1 Initialize W as identity matrix; t ← 0, µ;
2 repeat
3 Wt+1 ← G−1

t S(ST G−1
t S + 1

2µ I )−1Y ;
4 G t+1 ← Wt+1 ;
5 t ← t + 1
6 until Converges;
/* compare and update feature

clusters, in the following
algorithm, G t+1 is treated as G to
compare with Fi ∈ F */

7 while G, Fi do
8 Compute similarity S;
9 if S(G, Fi ) > ϵ then

10 i ← i + 1 to initialize the new feature cluster
K;

11 Update the final feature cluster M ;
12 Repeat the line 7;
13 else
14 Add G to existing features Fi and update the

feature cluster of new AVs;
15 Make a decision with the G;
16 end
17 end

B. Features Comparison and Update

There are two methods in terms of similarity comparison of
features and we conclude them to our scenario:

1) Suppose that F is the features that G needs to compare
with, and can be obtained by applying the basic Gaussian
membership function e−(

G−F
δ
)2 . The similarity of the

features can be expressed as

S(G, F) =
e
−

(
G−F
δ

)2

+ η

1+ η
≤ ϵ (46)
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where δ = ϵ√
ln
(

1
abs(1−(1+η)∗ϵ)

) , ϵ is the threshold.

η = 0.3679 [35].
2) The similarity of the ϵ can be referred as

S = DK L(G∥F) = P(G) log
(

P(G)
P(F)

)
≤ ϵ (47)

The selected features are compared against the stored
features in the target domain: a) if the selected features
do not exist, the features will be added to the target
domain for feature mapping; b) if the similarity score is
greater than a specific threshold ϵ, the features will not
be updated. Then the offloading strategy of the AV will
be inherited.

In the lower part of the Algorithm 3, the feature cluster
K is inherited from existing feature Fi due to the greater
similarity of G to Fi . M indicates the updated feature cluster
of nearby AVs which wait for offloading decision-making
strategies. M can be the same as K.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experiments on the proposed
a two-stage game theoretical model for offloading decisions
in VEC. Then the feasibility of efficiently solving the game
theory model with the constructed NN is verified through KL
divergence. Afterwards, the superiority of transfer learning on
the scalable optimisation of offloading decisions is evaluated
by comparing it with several related algorithms in terms of
accuracy, features update ratio, runtime, etc.

A. Experiment Settings

The proposed algorithms, GTOS and GTO-MFV, are imple-
mented via Matlab, and TL-FSCU is implemented via Python
3.7 on a GPU-based server. The server has a GPU of NVIDIA-
SMI 470.57.02 with TITAN RTX and CUDA version 11.4.
The CPU is Intel(R) Core(TM) i9-9960X CPU @ 3.10GHz.
In the experiments, we consider a typical VEC scenario,
where in a network coverage area, a base station provides the
network services for AVs in Ds and DT , which means that
the Vs in Ds has the same network environment with the VT
in DT .

We set the number of AVs in DT as 2 initially to verify
the feasibility of the algorithms, and then we increase it to
10 and 100, respectively, to compare the runtime performance
of the proposed method with the other selected algorithms.
The assigned bandwidth w will be calculated accordingly. The
other parameters are presented in Table I.

B. Performance and Analysis

We firstly conduct the evaluation of GTOS (Algorithm 1)
that achieves the optimal solution for the offloading strategy,
and then we evaluate the GTO-MFV (Algorithm 2) to ensure
that the solving process is more effective and efficient. After
that, the TL-FSCU (Algorithm 3) is evaluated to show the
improvement of scalability of the offloading optimization
problems in VEC. The ablation study has been conducted

TABLE I
EXPERIMENT PARAMETERS

Fig. 4. Revenue performance through the game theoretical model.

by comparing the performances of our proposed method
with baseline methods including iCaRL [36], LwF [37], and
JFSSL [38], respectively, to verify the effectiveness of the
proposed method.

1) The Revenue of the Network Operator: Fig. 4 shows
the performance of the obtained revenue of network opera-
tors through the game theoretical playing between a vehicle
and a network operator, where 70 feature groups containing
{C, π, x,8, }, captured from the playing process of GTOS,
are taken to demonstrate the trend of the revenue change.
It is worth noting that the revenue grows up to 2100p,
along with the iteration to the 42nd group. After that, the
revenue of the network operator is sharply decreased, which
means that the more offloading data size or the increased
service price would not improve the revenue of the network
operator. This experiment shows that there exists a point sat-
isfying the balancing strategy of the network operator and the
edge AV.

2) The Performance of Offloading Latency and Energy
Consumption: Fig. 5 presents the offloading latency energy

Authorized licensed use limited to: Northumbria University Library. Downloaded on July 04,2024 at 06:19:30 UTC from IEEE Xplore.  Restrictions apply. 



7440 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 7, JULY 2024

Fig. 5. The performance of the offloading latency and energy consumption.

and consumption in addition to the revenue of the network
operator, displayed in Fig. 4, where we collect 5 group
results to show latency and energy consumption to demonstrate
the performance of offloading. Along with the increase in
offloading data size, the energy consumption shows an upward
trend, which is displayed in the blue line to the left y-axis in
the figure. Latencies, the lines marked with the red colour,
also demonstrate an upward trend overall, but they go up
with a slow scope as the increase in the offloading data size.
The performance can be seen with reference to the right
y-axis.

3) Verification of Constructed NN to the Game Theoretical
Model: Fig. 6 reveals the KL divergence of the game theo-
retical model and the proposed GTO-MFV, where the data set
Si (Ct x , π, x,8) of the GTOS process is used to fit the distribu-
tion. q represents the variational approximation to the posterior
distribution of p. We can see that the two lines converge at
the number of 105 iterations, which indicates the equivalence
of the constructed GTO-MFV to the GTOS. Therefore, the
difference between the two formulated distributions can be
ignored. In other words, the GTO-MFV can be seen as the
substitution solution to the process of GTOS, so that the
limitations of the traditional way of solving game theoretical
offloading models such as high computational complexity and
energy consumption can be overcome.

4) Cost Comparison of GTOS With GTO-MFV: Fig. 7
demonstrates the comparison of costs of solving game the-
ory models with the GTOS and the GTO-MFV. We take
the costs of 70 feature groups from the process of solving
the game model through these two methods. It is obvious
that the costs spent on the model solving with GTOS and
GTO-MFV keep increasing. However, the cost with the GTOS
increases sharply, but GTO-MFV shows its slow growth in
cost. The reason for this difference is that continuous iterations
of heuristic search in the traditional method consume more
energy than the learning process since the GTO-MFV is con-
structed by approximation and inference. The cost generated
by GTO-MFV in solving the game model is, therefore, reduced
compared with the GTOS.

Fig. 6. The KL divergence for distributions p in game theoretical model
and q for the proposed GTO-MFV.

Fig. 7. The cost of GTOS vs. GTO-MFV.

Fig. 8. The comparison of latency between GTO-MFV and OPG [2] with
different tasks.

5) Comparison of GTO-MFV With OPG in Latency: We
compare the proposed GTO-MFV with OPG in latency with
different task sizes

[
106, 3× 106, 5× 106, 7× 106, 9× 106],

as shown in Fig. 8. When the offloading data size is 106, the
GTO-MFV shares almost the same time latency with OPG
when processing the data. Along with the increase in task size,
the latencies caused by the proposed GTO-MFV and OPG
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increase accordingly. However, it can be seen from the figure
that the latencies cost by the proposed GTO-MFV are much
less compared to the latencies by using OPG, which shows
the superiority of the machine learning used in game theoretic
offloading.

6) The Accuracy of the Proposed TL-FSCU: To display
the superiority of the proposed TL-FSCU, the comparisons of
TL-FSCU with existing algorithms are conducted. We consider
the following baseline methods:
• iCaRL was proposed for the incremental classifier

and representation learning in the area of computer
vision [36]. This method solves the problem of training
data with a small number of classes, which is of a
similar scenario to our case that has limited features to
be represented for offloading decisions in a large number
of AVs.

• LwF uses only new task data to train the network
while preserving the original capabilities [37]. However,
our proposed TL-FSCU method can strategically update
existing features with new features for offloading deci-
sions. It is worth expecting to observe the differences in
the results by comparing “only new data training” and
the “strategic update” in this scalable optimization VEC
scenario.

• JFSSL maps multimodal data into a common subspace for
feature selection and learning in [38]. For the cross-modal
retrieval requirement, this method also takes the simi-
larity between different modalities into account for data
measurement. Therefore, it is necessary to compare this
method with our proposed approach.

We compare the selected algorithms with the proposed
TL-FSCU to our application scenario. Fig. 9 demonstrates
the superiority of the constructed TL-FSCU in accuracy. The
performance of iCaRL, LwF and JFSSL show their sensitivity
for the slight fluctuations along with the increase in the number
of features, while the constructed TL-FSCU maintains its
accuracy performance with a positive correlation to the number
of feature groups. It can be seen that the TL-FSCU is more
stable compared with the other three algorithms in the number
of 60 feature groups, with accuracy in the range of 68% to
80%. The remarkable difference in this experiment lies in
iCaRL and TL-FSCU with the number of 60 feature groups,
showing that the TL-FSCU is 37% more accurate than the
iCaRL. This is caused by adding all of the features in DT
to the iCaRL for the training data. The proposed TL-FSCU
only needs to compare the similarity of features, all of the
training data are filtered through GTO-MFV. Therefore, the
comparison results show the advantage of the TL-FSCU in
accuracy.

7) Features Update Ratio of the Proposed
TL-FSCU: Fig. 10 compares the feature update ratios in the
four algorithms. With the number of 70 feature groups in this
experiment, we verify the effectiveness of the TL-FSCU in
scalable optimization through the transfer learning method.
In the results, the features update ratio of the four algorithms
shows their growth along with the increase in the number of
feature groups. However, all update ratios of the algorithms
keep flat after the point of 20 feature groups. The TL-FSCU

Fig. 9. Comparisons of TL-FSCU with different algorithms in accuracy.

Fig. 10. Comparisons of TL-FSCU with different algorithms in features
update.

displays the smallest ratio with 0.21 in the features update
ratio, which means that the smallest number of features
need to be updated to the transferred destination, and more
resources will be conserved in the scalable optimization with
this method. The other three algorithms show higher feature
update ratios to different extents compared with the TL-FSCU.
This is because the features need to be updated in these
methods. Although the TL-FSCU considers the similarity of
the selected features with the compared features before the
complete update, once the similarity is confirmed, the features
will not be updated and the offloading strategy of the target
AVs will be determined based on the features of Vs , described
by Algorithm 3. The update ratio of TL-FSCU, thus, is lower
than the other methods.

8) Runtime Performance of the Proposed TL-FSCU:
Table II shows the runtime performance of the three selected
algorithms and the proposed TL-FSCU. We set the number of
target transferred vehicles to be 2, 10 and 100, respectively.
From the results, we can see that the TL-FSCU has the lowest
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TABLE II
RUNTIME PERFORMANCE OF TL-FSCU WITH COMPARED ALGORITHMS

time cost in the process. This is because the extra time has
been saved through the proposed TL-FSCU by the efficient
feature-based transfer learning method.

For the same feature group of the offloading decision
strategy, the TL-FSCU can recognize whether to keep the
same offloading strategy or fast update features. The time cost
of TL-FSCU is almost half of the time required by iCaRL
and JFSSL. With the determined features from GTO-MFV, the
proposed TL-FSCU can help reach the scalable optimization
of game theoretical offloading in VEC rapidly.

VII. DISTRIBUTED DEPLOYMENT PROPOSAL OF THE
PROPOSED METHOD IN REALITY

The framework shown in Fig. 3 may not be scalable in
actual scenarios due to the complexity of systems. In reality,
the existing framework of federated learning can effectively
help to deploy our algorithm in a distributed manner. The
process can be described in Fig. 11, and steps are introduced
as follows:

1) The roadside units (RSU) are stable and have high
communication, computing, and cache capabilities.
Therefore, they are normally used to collect traffic mes-
sages via AV-to-infrastructure communication, analyze
the information locally, and then forward the analyzed
result to the corresponding road users such as other
AVs [39]. Such that, the NN training on solving the
constructed game theoretical model is based on the local
data.

2) After finishing the NN training (solving the game theo-
retical model with an NN) locally, the updated model is
sent to the central server where no real vehicle data is
involved, as step ①.

3) The transfer learning of the framework will happen in
the central server where models from AVs are averaged
and aggregated, as step ②.

4) The updated model is sent back to the AV and other AVs
by step ③ for offloading decision-making strategies.

An AV may not just communicate with one base station
when it drives on the road. In this case, if the model update is
finished in (A), then the updated model will be sent back to
an AV and other AVs through step ③. After that, the updated
model will be distributed to new base stations/edge servers
(B), (C) or (D) due to the moving of AVs. The next round
of model aggregation and update will also happen in new
edge servers such as (B), (C) or (D). Afterwards, the new
updated model will be sent to around AVs. Therefore, the
FL-FSCU, integrated with the federated learning framework,
can be deployed in distributed to achieve the objective of

Fig. 11. The description of distributed deployment of the proposed algorithm
(TL-FSCU) using a federated learning framework.

scalability in real scenarios. The distributed deployment of
the proposed algorithm (TL-FSCU) using a federated learning
framework is depicted in Fig. 11.

VIII. CONCLUSION

In this paper, we proposed a new neural network-based
transfer learning approach towards scalable offloading in VEC.
The offloading strategy was reached by the game theory
model (GTOS). In order to reduce the computational complex-
ity and energy consumption caused by continuous iterations
in game playing and improve the scalability of offloading
for the changing VEC environment, the game theoretical
offloading-mean field variational process (GTO-MFV) was
proposed for efficiently solving GTOS. The transfer learning
framework with features selection, comparison and update
(TL-FSCU) was designed to further enhance the scalability
of offloading optimization in the face of new and unseen
VEC environments. Experimental results demonstrated that
TL-FSCU can achieve better performance in the update ratio
and accuracy than existing frameworks and algorithms such
as iCaRL, LwF and JFSSL.

This work can guide the market to satisfy the scalable
offloading requirements through an efficient and effective
approach in VEC. At the same time, the cost can be sig-
nificantly reduced, and the decision features of offloading
can be transferred rapidly in the scalability optimization. The
efficiency of game theoretical offloading in VEC, therefore,
can be improved and boosted.

In our future work, we will investigate the causes of
affecting scalable optimization in offloading processes. The
effective methods are expected to be further explored to deal
with the challenges of scalability in offloading decisions in
VEC.

Besides, we plan to employ the existing federated learning
framework to implement our algorithm to achieve scalability
in reality, by which the TL-FSCU can be deployed in a
distributed manner effectively.
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