
Journal of Systems Architecture 122 (2022) 102329

A

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

HEA-PAS: A hybrid energy allocation strategy for parallel applications
scheduling on heterogeneous computing systems
Jiwu Peng a,b, Kenli Li a,b,∗, Jianguo Chen a,b, Keqin Li a,c

a College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
b National Supercomputing Center in Changsha, Hunan 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O

Keywords:
Dynamical pre-allocate energy
Energy allocation
Heterogeneous computing systems
Precedence-constrained tasks
Static pre-allocate energy

A B S T R A C T

Heterogeneous Computing Systems (HCS) have received widespread attention due to their powerful computing
power, low cost, and high scalability. In HCS ranging from small-embedded devices to large data centers,
energy consumption is one of the crucial design constraints. Meanwhile, the schedule length (response
time) of parallel applications directly affects their Quality of Service (QoS) experience. In this study, we
address the problem of minimizing the schedule length of energy-constrained parallel applications (MSLEC)
on heterogeneous computing systems. Firstly, we define the concept of task energy demand rate and energy
allocation factor to reasonably allocate the allocatable energy. Secondly, We propose a two-stage hybrid
energy allocation (HEA) strategy and divide the allocatable energy into two parts according to the energy
allocation factor, namely static pre-allocate energy (SAE) and dynamic pre-allocate energy (DAE). In the
first stage, we pre-allocate SAE for each task based on the minimum energy demand and energy demand
rate before task scheduling. In the second stage, we dynamically allocate DAE to each task during the
operation of the scheduling algorithm. Thirdly, We conduct a rigorous mathematical proof of the feasibility
of the proposed strategy. Finally, according to the proposed strategy, we design a novel HEA-based parallel
application scheduling (HEA-PAS) algorithm, which aims to solve the MSLEC problem. Experiments on real-
world and randomly generated parallel applications show that the proposed HEA-PAS algorithm outperforms
the state-of-the-art methods in terms of effectiveness.
1. Introduction

1.1. Background

Heterogeneous Computing Systems (HCS) are widely used in sci-
entific computing, industrial control, and mobile computing, etc. due
to their strong computing power, low cost, and high scalability [1].
In HCS energy consumption is a core design indicator constraints [2–
5]. To save energy and protect the environment, various management
technologies have been established to maximize energy efficiency.
Dynamic Voltage and Frequency Scaling (DVFS) is a well-known and
effective energy optimization technique and a common technique in
heterogeneous computing systems [6,7]. The current mainstream com-
mercial processor series, such as Intel Atom, AMD Fusion, and ARM
Cortex A9 are all support DVFS technology [8]. The basic idea is to
dynamically adjust the operating voltage or frequency of the system
components without affecting the operating efficiency of the system to
optimize energy consumption. However, the performance and energy
consumption of a computer system are always inseparable. Once the

∗ Corresponding author at: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.
E-mail addresses: jiwu_peng@hnu.edu.cn (J. Peng), lkl@hnu.edu.cn (K. Li), jianguochen@hnu.edu.cn (J. Chen), lik@newpaltz.edu (K. Li).

performance is improved, the corresponding energy consumption will
increase to a certain extent. In practical applications, how to reach
a balance between energy consumption and performance to meet re-
quirement of green computing is a hot in the industrial and academic
fields [9,10].

In a heterogeneous computing system, energy consumption and
application schedule length (also termed as response time, complete
time, makespan) are two mutually dependent optimization goals [11,
12]. Energy consumption optimization mainly includes two branches:
one is to minimize energy consumption under a given application
schedule length constraint, and the other is to minimize the application
schedule length under a given energy consumption constraint. In this
study, we adopt the second research model to design an algorithm
for minimizing the schedule length under limited energy constraints.
Meanwhile, parallel task scheduling is critical to the performance of
computing systems and more complicated in heterogeneous comput-
ing environments. According to the relationship between tasks, task
vailable online 13 November 2021

https://doi.org/10.1016/j.sysarc.2021.102329
Received 16 June 2021; Received in revised form 8 October 2021; Accepted 30 Oc
tober 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:jiwu_peng@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:jianguochen@hnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2021.102329
https://doi.org/10.1016/j.sysarc.2021.102329
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102329&domain=pdf

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.
scheduling can be divided into independent and non-independent task
scheduling. Dependent tasks are a set of tasks with priority constraints,
usually are modeled by Directed Acyclic Graph (DAG), and have been
widely used in the current industry, such as Apache Spark [13] and
Tensor Flow [14]. The task scheduling problem that satisfies the task
priority constraint relationship is essentially a combinatorial optimiza-
tion problem. The optimal solution of this type of problem is an
NP-hard problem, that is, no optimal scheduling scheme can be found
in polynomial time [15]. Therefore, heuristic algorithms and meta-
heuristic algorithms are usually used to solve task scheduling problems
in practical applications.

1.2. Motivation

Energy consumption and schedule length are one of the core indi-
cators of parallel application scheduling in heterogeneous computing
systems. In recent years, minimizing the schedule length in the energy-
constrained parallel applications scheduling optimization has become
a hot issue of research. The core of energy-constrained DAG-based
parallel application scheduling lies in pre-allocating energy for each
task. Based on the way that allocable energy is allocated to each
task, we summarize the existing work into fully dynamic pre-allocation
and fully static pre-allocation. In [16], a fully dynamic method is
proposed, that is, the allocatable energy is pre-allocated to each task
during the operation of the scheduling algorithm. However, this fully
dynamic method result in a large amount of allocable energy being
divided by high-priority tasks, while low-priority tasks pre-allocated
too little energy and require more execution time to complete, so
the application schedule length is not be optimistic. In [17], a static
method of pre-allocating allocatable energy equally for each task was
proposed. In [18], a static method of pre-allocating energy to each
task according to energy level is proposed. However, the fully static
approach does not take into account the fact that high-priority and
critical tasks require more energy. Therefore, how to balance the energy
consumption requirements of high-priority tasks and low-priority tasks
has become a key issue. In this article, we propose a hybrid energy
pre-allocation method that takes into account the energy requirements
of high-priority and low-priority tasks, so as to minimize the schedule
length of energy-constrained parallel applications.

1.3. Main contributions

In this study, we focus on the problem of minimizing the schedule
length of parallel applications under energy constraints in HCS. We
firstly introduce the concepts of energy allocation factor and energy de-
mand rate, then we propose a novel two-stage hybrid energy allocation
strategy task scheduling algorithm for energy-constrained parallel ap-
plications (HEA-PAS), which balances the different energy consumption
requirements of high-priority tasks and low-priority tasks. The main
contributions of this article can be summarized as follows:

• We define the concept of task energy demand rate and energy
allocation factor to allocation the allocatable energy reasonably.

• We propose an efficient two-stage energy allocation strategy to
balance the different energy consumption requirements of high-
priority tasks and low-priority tasks, and prove the feasibility of
the allocation strategy.

• We design a novel task scheduling algorithm (HEA-PAS) to sched-
ule parallel applications, which aim to minimize schedule length
while satisfying energy consumption constraints.

• We use real-world and randomly generated parallel applications
to verify the effectiveness and scalability of the proposed al-
gorithm. The results show that HEA-PAS can obtain minimum
schedule length under different conditions compared with state-
of-the-art algorithms.
2

The rest of this article is organized as follows: Section 2 reviews
related work. Section 3 introduces the models of parallel applications
and energy consumption. Section 4 introduces the main idea of the HEA
strategy and HEA-PAS algorithm. Section 5 conducts the comparison
experiments. Section 6 summarizes this work.

2. Related work

In recent years, task scheduling in heterogeneous computing sys-
tems has received extensive attention from researchers. In [19], Chen
et al. studied the scheduling of data-dependent periodic tasks on het-
erogeneous multi-processor platforms. In [20,21] the schedulability
of independent periodic tasks is analyzed. Energy consumption and
schedule length are one of the core indicators of parallel application
scheduling in heterogeneous computing systems. Heuristic methods are
often used to solve this type of problem. For example, the work of [16–
18] and others are based on heuristic algorithms. The meta-heuristic
method is also one of the key methods to solve this kind of problems.
In [22], Liu et al. studied the problem of maximizing reliability and
minimizing scheduling length using the tabu search method. In [23],
Kumar et al. used the discrete particle swarm method to minimize
the power consumption and scheduling length of sequential tasks and
parallel tasks. In [24], Yu et al. studied the optimization of makespan
using the discrete intrusion weed algorithm on heterogeneous clusters,
however, they did not consider energy consumption.

Various studies on energy consumption for distributed and parallel
applications have been proposed in [25–27]. In [25], Zong et al.
studied the energy aware scheduling problem in isomorphic systems
by considering task replication and proposed energy-aware replication
and performance-energy balanced replication algorithms to achieve
the comprehensive consideration of system performance and energy.
In [26], Huang et al. investigated energy consumption optimization
under the constraint of application scheduling length in HCS, and
proposed a energy-efficient scheduling algorithm. In [27], Xie et al.
presented a global energy-saving scheduling algorithm, which supports
DVFS by moving tasks to the processors with minimum dynamic energy
consumption in HCS. Although above studies have taken into account
the issue of energy saving, but it is not the same as our solution.
Schedule Length optimization is another core issue that has been widely
studied in the field of distributed and parallel applications on HCS [28–
30]. In [28], Topcuoglu et al. proposed the well-known heterogeneous
earliest completion time (HEFT) algorithm, which is used to schedule
applications with task priority requirements on heterogeneous pro-
cessors to achieve high performance goals. Cao et al. studied static
heat-aware task allocation and scheduling methods to minimize sched-
ule length in heterogeneous real-time MPSoC [29]. In [30], Zhou et al.
presented an improved HEFT algorithm based on fuzzy dominance
sorting to minimize the cost and schedule length of workflow in a cloud
computing environment. In addition to the above work, most other
studies only focus on reducing application energy consumption and do
not care about the schedule length, or reducing application schedule
length without caring about energy consumption.

Recently, solving the MSLEC problem on HCS has received a lot of
attention [16–18]. In [16], Xiao et al. proposed an algorithm (MSLECC),
which is based on DVFS technology to solve the problem of MSLEC
parallel applications in HCS. This method regards the allocatable en-
ergy consumption as a whole, and then gradually shifts it to each task,
giving priority to high-priority tasks, which is unfair to tasks with lower
priority. We call this work as full dynamic pre-allocate method. In [17],
Song et al. adopted a scheduling strategy that allocates available energy
to each task evenly in advance is adopted, which we called full static
pre-allocate method. This method balances the shortcomings of full
dynamic allocation to a certain extent, but it cannot effectively solve
the problem. In latest work [18], Quan et al. defined the concept
of energy consumption level and pre-allocated available energy to
each task according to the energy consumption level strategy. They
considered the different energy requirements of each task to a certain
extent. However, they did not consider the energy requirements of
different priority tasks and critical tasks.

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.
Fig. 1. Standard example of a DAG-based parallel application [18,28,31,32].

Table 1
The main parameters in this article.

Symbol Meaning

𝑃 The processor set of heterogeneous computing systems.
𝐺 The DAG-based application model.
𝑇 The task set of the application.
|𝑇 | The number of task in the application.
𝑀 The set of communication edges in application 𝐺.
𝑘,ind The frequency-independent power in processor 𝑝𝑘.
𝐶𝑘,𝑒𝑓 The effective switched capacitance in processor 𝑝𝑘.
𝑚𝑘 The dynamic power exponent in processor 𝑝𝑘.
𝛼 The energy allocation factor of the application 𝐺.

3. Models and preliminaries

The main parameters of this article are listed in Table 1. The main
notations and their definitions of this article are given in Table 2.

3.1. Application model

Same as previous studies [18,28,31,32], the DAG application model
is defined as 𝐺 = (𝑇 ,𝐸, 𝐶,𝑊), where 𝑇 represents the node set in
application, 𝐸 is the communication edge set, 𝐶 is the communication
time set, and 𝑊 is computing matrix. 𝑃 = {𝑝1, 𝑝2,… , 𝑝

|𝑃 |} represents
the processor set, where |𝑃 | is the number of processors. Each node 𝑡𝑖 ∈
𝑇 represents a task, 𝑐𝑖,𝑗 ∈ 𝐶 is the communication time between tasks
𝑡𝑖 and 𝑡𝑗 , and 𝑤𝑖,𝑘 is the execution time with maximum frequency of
task 𝑡𝑖 running on processor 𝑝𝑘. 𝑝𝑟𝑒𝑑(𝑡𝑖) and 𝑠𝑢𝑐𝑐(𝑡𝑖) represent the direct
predecessor and successor set of task 𝑡𝑖, respectively. 𝑡entry represents
the entry task of the application and 𝑡exit represents the exit task of the
application.

3.2. Energy model

In this study, the power model we use following articles [18,27,33].
Specifically, when the frequency is 𝑓 , the system power consumption
is defined as:

(𝑓) =  + ℎ
(

 + 
)

=  + ℎ
(

 + 𝐶 𝑓𝑚) , (1)
3

s ind 𝑑 s ind ef
Table 2
Important notations in this article.

Symbol Meaning

𝐸𝑆𝑇 (𝑡𝑖 , 𝑝𝑘) The earliest start time of task 𝑡𝑖 execute on processor 𝑝𝑘.
𝐸𝐹𝑇 (𝑡𝑖 , 𝑝𝑘) The earliest finish time of task 𝑡𝑖 execute on processor 𝑝𝑘.
𝐴𝑆𝑇 (𝑡𝑖) The actual execute time of task 𝑡𝑖.
𝐴𝐹𝑇 (𝑡𝑖) The actual finish time of task 𝑡𝑖.
𝑆𝐿(𝐺) The final schedule length of application 𝐺.
𝐸
(

𝑡𝑖 , 𝑝𝑘 , 𝑓𝑘,ℎ
)

The energy consumption of task 𝑡𝑖 at frequency 𝑓𝑘,ℎ.
𝐸(𝐺) The total energy consumption of the application 𝐺.
𝐸ae(𝐺) The allocable energy of the application 𝐺.
𝐸𝐷𝑅(𝑡𝑖) The energy demand rate of each task in the application.
𝐸tae(𝑡𝑖) The task allocation energy of each task in the application.
𝐸pre(𝑡𝑖) The pre-allocate energy consumption for task 𝑡𝑖
𝐸cons(𝑡𝑖) The energy consumption constraint of task 𝑡𝑖.
𝐸cons(𝐺) The energy consumption constraint of application 𝐺.

where 𝑠 represents static power (same to [18], in this article we also
do not consider it, because it is unmanageable), 𝑖𝑛𝑑 is frequency-
independent power and 𝑑 is frequency-dependent dynamic power, ℎ
represents the system state, 𝐶ef is the effective capacitance, and 𝑚 is
the dynamic power exponent. The actual frequency 𝑓 should be in the
interval [𝑓low, 𝑓max], where 𝑓low is defined as 𝑓low = max

(

𝑓min, 𝑓ee
)

. The
energy-efficient frequency denoted by 𝑓𝑒𝑒, is computed as:

𝑓𝑒𝑒 =
𝑚

√

ind
(𝑚 − 1)𝐶ef

. (2)

In a heterogeneous distributed system, we use |𝑃 | to represent
the number of processors, and the processors are heterogeneous, each
processor has its own parameters. For a heterogeneous system, we can
define the following sets:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ind =
{

ind,1,ind,2,… ,ind,|𝑃 |
}

𝑑 =
{

𝑑,1,𝑑,2,… ,𝑑,|𝑃 |
}

𝐶ef =
{

𝐶ef ,1, 𝐶ef ,2,… , 𝐶ef ,|𝑃 |
}

𝑚 =
{

𝑚1, 𝑚2,… , 𝑚
|𝑃 |

}

.

𝑓low = {𝑓1,low, 𝑓2,low,… , 𝑓
|𝑃 |,low}

. (3)

The actual effective frequency set is defined as:

𝑓ae =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{

𝑓low,1, 𝑓𝑘,1,… , 𝑓max 1,
}

{

𝑓low,2, 𝑓𝑘,2,… , 𝑓max,2
}

⋯ ,
{

𝑓low,|𝑃 |, 𝑓𝑘,|𝑃 |,… , 𝑓max,|𝑃 |
}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (4)

Hence, we can calculate the energy consumption of task 𝑡𝑖 executed on
the processor 𝑝𝑘 with frequency 𝑓𝑘,ℎ in Eq. (5):

𝐸
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ
)

=
(

ind + 𝐶k,ef ×
(

𝑓𝑘,ℎ
)𝑚𝑘) ×𝑤𝑖,𝑘 ×

𝑓𝑘,max

𝑓𝑘,ℎ
. (5)

Therefore, the energy consumption of application is calculated in
Eq. (6):

𝐸(𝐺) =
|𝑇 |
∑

𝑖=1
𝐸
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ
)

. (6)

The minimum and maximum energy consumption of task 𝑡𝑖 are calcu-
lated by:

⎧

⎪

⎨

⎪

𝐸min
(

𝑡𝑖
)

= min
𝑝𝑘∈𝑈

𝐸
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,low
)

𝐸max
(

𝑡𝑖
)

= max 𝐸
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,max
)

.
(7)
⎩

𝑝𝑘∈𝑈

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.

a

c

a
a

S

3

s
g
m

3

l
f

D
e
a

𝛥

The minimum and maximum energy consumption of the application 𝐺
re calculated by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸min(𝐺) =
|𝑇 |
∑

𝑖=1
𝐸min

(

𝑡𝑖
)

𝐸max(𝐺) =
|𝑇 |
∑

𝑖=1
𝐸max

(

𝑡𝑖
)

.

(8)

As in [16–18], in this article we assume that the energy constraint
𝐸𝑐𝑜𝑛𝑠(𝐺) is 𝐸𝑚𝑖𝑛(𝐺) ≤ 𝐸𝑐𝑜𝑛𝑠(𝐺) ≤ 𝐸𝑚𝑎𝑥(𝐺).

3.3. Execution model

The important concepts involved in the task execution model in this
study are as follows:

(1) Task Prioritizing (TP): We use the ranking value of the HEFT
algorithm [28] as the task priority criterion. The specific value rank𝑢(𝑡𝑖)
is given by

rank𝑢(𝑡𝑖) = 𝑤𝑖 + max
𝑡𝑗∈succ(𝑡𝑖)

{

𝑐𝑖,𝑗 + rank𝑢(𝑡𝑖)
}

, (9)

where, the 𝑤𝑖 is 𝑤𝑖 =
(

∑

|𝑃 |
𝑘=1 𝑤𝑖,𝑘

)

∕|𝑃 |.
(2) Earliest Start Time (EST): The EST of task 𝑡𝑖 executed on pro-

essor 𝑝𝑘 with frequency 𝑓𝑘,ℎ is denoted as 𝐸𝑆𝑇 (𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ), which is
computed by
⎧

⎪

⎨

⎪

⎩

EST
(

𝑡entry , 𝑝𝑘, 𝑓𝑘,ℎ
)

= 0

EST
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ
)

= max
𝑡𝑗∈pred(𝑡𝑖)

{

avail[𝑘],max
{

AFT
(

𝑡𝑗
)

+ 𝑐′𝑗,𝑖
}} . (10)

(3) Earliest Finish Time (EFT): The EFT of task 𝑡𝑖 executed on
processor 𝑝𝑘 with frequency 𝑓𝑘,ℎ is denoted as EFT(𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ), which
is computed by

EFT
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ
)

= EST
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ
)

+𝑤𝑖,𝑘 ×
𝑓𝑘,max

𝑓𝑘,ℎ
. (11)

(4) Schedule Length (SL): The 𝑆𝐿(𝐺) is the entire execution time of
application from the entry task to the exit task using a scheduling

lgorithm, and its computed by

L(𝐺) = max
𝑡𝑖∈exit task

AFT(𝑡𝑖). (12)

.4. Problem description

In this work, we aim to solve the problem of minimizing the
chedule length of energy-constrained parallel applications on hetero-
eneous computing systems. This optimization problem is described
athematically as the following:

Minimize : SL(𝐺) = max
𝑡𝑖∈exit task

AFT(𝑡𝑖)

Subject to : 𝐸(𝐺) =
|𝑇 |
∑

𝑖=1
𝐸
(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ
)

≤ 𝐸cons(𝐺)

𝐸min(𝐺) ≤ 𝐸cons(𝐺) ≤ 𝐸max(𝐺).

(13)

.5. The state-of-the-art algorithms

In recent work [18], Quan et al. the concept of energy consumption
evel is defined, and the assignable energy consumption is pre-allocate
or each task according to the energy consumption level strategy.

efinition 1. Allocatable Energy (AE). Allocatable energy is the en-
rgy remaining after subtracting the minimum energy required by the
pplication for a given energy, as defined in Eq. (14):

𝐸 (𝐺) = 𝐸 (𝐺) − 𝐸 (𝐺). (14)
4

ae cons min
The energy consumption level of tasks and applications are calcu-
lated by:
{

𝐸ave
(

𝑡𝑖
)

= 𝐸max(𝑡𝑖)+𝐸min(𝑡𝑖)
2

𝐸ave (𝐺) = 𝐸max(𝐺)+𝐸min(𝐺)
2

. (15)

The weight given by the author is calculated by:

el
(

𝑡𝑖
)

=
𝐸ave

(

𝑡𝑖
)

𝐸ave(𝐺)
. (16)

The pre-allocate energy consumption for each task is calculated by:

𝐸pre
(

𝑡𝑖
)

= 𝐸ae(𝐺) × el
(

𝑡𝑖
)

+ 𝐸min
(

𝑡𝑖
)

. (17)

In [16], each task is pre-allocate the minimum energy consumption,
which results in high-priority tasks that can share most of the to-
tal allocatable energy. Conversely, due to the allocatable energy is
small, low-priority tasks must find low-energy processors, which re-
duces the chance of obtaining optimistic schedule length. In other
words, the pre-allocation strategy in MSLECC is extreme. Although the
latest work [17] and [18] have balanced the deficiencies of the [16]
article strategy to a certain extent, so that each task has a relatively
fair energy. However, they do not take into account the different energy
consumption requirements of high-priority tasks and low-priority tasks.

4. Our solution

The main idea of our algorithm is according to the energy allocation
factor to divide the allocatable energy into static pre-allocate energy
based on the energy demand rate (to meet the energy demand of low-
priority tasks) and dynamic pre-allocate energy which transferred with
the scheduling algorithm (to meet the energy demand of high-priority
tasks). By meeting the different energy requirements of high-priority
and low-priority tasks, we aim to minimize the schedule length of
the parallel application. Fig. 2 provides a general flow of the pro-
posed HEA-PAS. The specific process steps are described as follows:
(1) Submit and build parallel applications based on the DAG-model,
and prioritize them. (2) Calculate the maximum and minimum energy
of each task and application according to the processor information.
(3) Calculate the energy that can be allocated by the application and
calculate the energy demand rate of each task. (4) Set the initial energy
distribution factor and do the initial static pre-allocation. (5) Adjust
the energy allocation factor, and carry out static and dynamic pre-
allocation. 𝑆 represents the static pre-allocated energy, 𝐷 represents
the dynamic pre-allocated energy, and the size of the square represents
the amount of pre-allocated energy. (6) Find the optimal processor and
frequency combination for parallel application tasks. (7) Execute the
application according to the optimal combination.

4.1. The energy pre-allocate strategy

We first introduce a few concepts, these concepts help understand
our pre-allocate strategy.

Definition 2. Energy Demand Rate (EDR). The energy demand rate is
defined as the minimum energy demand of each task divided by the
minimum energy demand of the application.

EDR(𝑡𝑖) =
𝐸min

(

𝑡𝑖
)

𝐸min(𝐺)
. (18)

Definition 3. Energy Allocation Factor (EAF). The energy allocation
factor 𝛼 is defined for dividing the allocatable energy into the static
pre-allocate energy (to meet the energy demand of low-priority tasks)
and the dynamic pre-allocate energy (to meet the energy demand of

high-priority tasks).

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.
Fig. 2. General flow of HEA-PAS.
Definition 4. Static Pre-allocate Energy (SAE). SAE is defined as the
energy constraint that is statically allocated to tasks in advance to meet
the energy constraints of applications.

In this study, SAE can be calculated as the minimum energy con-
sumption requirement of the task plus the allocatable energy con-
sumption times the energy demand rate times the energy consumption
distribution factor, as defined in Eq. (19):

𝐸sae
(

𝑡𝑖
)

= 𝐸min
(

𝑡𝑖
)

+ 𝛥𝐸ae(𝐺) × EDR(𝑡𝑖) × 𝛼. (19)

The energy allocated to the task does not need to exceed its maximum
energy demand, so there is:

𝐸pre
(

𝑡𝑖
)

= min
{

𝐸sae
(

𝑡𝑖
)

, 𝐸max
(

𝑡𝑖
)}

. (20)

Definition 5. Application Assigned Energy (AAE). The energy con-
sumed by the application refers to the energy consumed during the
scheduling process:

AAE𝑠(𝑗)(𝐺) =
𝑗−1
∑

𝑖=1
𝐸
(

𝑡𝑠(𝑖), 𝑝𝑘(𝑠(𝑖)), 𝑓𝑘(𝑠(𝑖)),ℎ(𝑠(𝑖))
)

. (21)

Definition 6. Application Unassigned Energy (AUE). The energy con-
sumed by the application refers to the unallocated energy consumption
during the scheduling process:

AUE𝑠(𝑗)(𝐺) =
|𝑇 |
∑

𝐸pre
(

𝑡s(𝑖)
)

. (22)
5

𝑖=𝑗+1
Definition 7. Residual Energy (RE). For task 𝑡𝑠(𝑗), its residual energy
is defined in Eq. (23):

𝐸re(𝑡𝑠(𝑗)) = 𝐸cons(𝐺)

−
𝑗
∑

𝑖=1
𝐸
(

𝑡s(𝑗), 𝑝𝑘(𝑠(𝑗)), 𝑓𝑘(𝑠(𝑗)),ℎ(s(𝑗))
)

−
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡s(𝑖)
)

.

(23)

We schedule tasks according to the priority queue of the upward
sorting value. Assuming that the current task to be allocated is 𝑡𝑠(𝑗)
then {𝑡𝑠(1), 𝑡𝑠(2),… , 𝑡𝑠(𝑗−1)} represents the assigned task set, and the
unallocated task set consists of {𝑡𝑠(𝑗+1), 𝑡𝑠(𝑗+2),… , 𝑡𝑠(|𝑇 |)}. All tasks of
the DAG application are unassigned at the beginning. To ensure that
each task allocation meets the energy limit of the DAG application,
and each unallocated task of our propose strategy provides pre-allocate
according to Eqs. (20) and (21). Among them, the energy consumption
of the DAG application is defined as:

𝐸𝑠(𝑗)(𝐺) =
𝑗−1
∑

𝑖=1
𝐸
(

𝑡𝑠(𝑖), 𝑝𝑘(𝑠(𝑖)), 𝑓𝑘(𝑠(𝑖)),ℎ(𝑠(𝑖))
)

+ 𝐸
(

𝑡𝑠(𝑗), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝐸pre
(

𝑡𝑠(𝑖)
)

.

(24)
𝑖=1

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.

T

𝐸

S

According to the definition of the problem, 𝐸𝑠(𝑗)(𝐺) must be less than
or equal to 𝐸cons(𝐺). Therefore, it is expressed as:
𝑗−1
∑

𝑖=1
𝐸
(

𝑡𝑠(𝑖), 𝑝𝑘(𝑠(𝑖)), 𝑓𝑘(𝑠(𝑖)),ℎ(𝑠(𝑖))
)

+ 𝐸
(

𝑡𝑠(𝑗), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=1
𝐸pre

(

𝑡𝑠(𝑖)
)

≤ 𝐸cons(𝐺).

(25)

Hence, the energy consumption of task 𝑡𝑠(𝑗) should have the following
constraints:
𝐸
(

𝑡s(𝑗), 𝑝𝑘, 𝑓𝑘,ℎ
)

≤ 𝐸cons(𝐺) −
𝑗−1
∑

𝑖=1
𝐸
(

𝑡s(𝑖), 𝑝𝑘(𝑠(𝑖)), 𝑓𝑘(𝑠(𝑖)),ℎ(s(𝑖))
)

−
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡s(𝑖)
)

.

(26)

Therefore, the energy consumption constraint given by task 𝑡𝑠(𝑗) is:

𝐸cons
(

𝑡s(𝑗)
)

= 𝐸cons(𝐺)

−
𝑗−1
∑

𝑖=1
𝐸
(

𝑡s(𝑗), 𝑝𝑘(𝑠(𝑗)), 𝑓𝑘(𝑠(𝑗)),ℎ(s(𝑗))
)

−
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡s(𝑖)
)

.

(27)

As long as each task meets its energy consumption constraint, that
is, 𝐸

(

𝑡𝑠(𝑗), 𝑝𝑘(𝑠(𝑗)), 𝑓𝑘(𝑠(𝑗)),ℎ(𝑠(𝑗))
)

⩽ 𝐸cons
(

𝑡𝑠(𝑗)
)

, then the energy con-
sumption constraint of the application will be satisfied. Hence, when
processing task 𝑡𝑖, only the energy constraints of the task itself need
to be considered, not the total energy consumption constraints of the
application.

4.2. Feasibility of the proposed strategy

In this section, we give Theorem 1 to illustrate that our proposed
strategy can satisfy the application energy consumption constraints
when scheduling each task.

Theorem 1. Given a DAG-based application 𝐺 and energy constraints
𝐸min(𝐺) ≤ 𝐸cons(𝐺) ≤ 𝐸max(𝐺), through the HEA strategy to pre-allocates
the energy constraints of unscheduled tasks, each task 𝑡𝑠(𝑗) can always find
a processor that satisfies:

𝐸s(𝑗)(𝐺) =
𝑗−1
∑

𝑖=1
𝐸
(

𝑡s(𝑗), 𝑝𝑘(s(𝑗)), 𝑓𝑘(s(𝑗)),ℎ(s(𝑗))
)

+ 𝐸
(

𝑡s(𝑗), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡s(𝑖)
)

≤ 𝐸cons(𝐺).

(28)

Proof. Mathematical induction is used to prove Theorem 1. Firstly, for
the entry task 𝑡𝑠(1), all tasks are not allocated to the processor, and the
application 𝐺 should meet its energy consumption constraints:

𝐸𝑠(1)(𝐺) = 𝐸
(

𝑡𝑠(1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=2
𝐸pre

(

𝑡𝑠(𝑖)
)

≤ 𝐸cons(𝐺).

(29)

According to Eqs. (24), (25), (29), there is 𝐸pre(𝑡𝑖) ≤ 𝐸sae(𝑡𝑖), so we can
get:

𝐸
(

𝑡𝑠(1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=2
𝐸pre

(

𝑡𝑠(𝑖)
)

≤ 𝐸
(

𝑡𝑠(1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝐸sae
(

𝑡𝑠(𝑖)
)

,

(30)
6

𝑖=2
w

and have

𝐸
(

𝑡s(1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=2
𝐸sae

(

𝑡s(𝑖)
)

= 𝐸
(

𝑡s(1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=1
𝐸sae

(

𝑡s(𝑖)
)

− 𝐸sae
(

𝑡s(1)
)

≤ 𝐸
(

𝑡s(1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=1
𝐸sae

(

𝑡s(𝑖)
)

− 𝐸𝑠𝑎𝑒
(

𝑡s(1)
)

+ 𝐸re(𝑡𝑠(1)).

(31)

Obviously, according to Eq. (19), 𝐸𝑠𝑎𝑒
(

𝑡s(1)
)

+ 𝐸ex(𝑡𝑠(1)) is greater than
or equal to 𝐸min(𝑡𝑠(1)), so the processor with the energy consumption
can at least be allocated to 𝑡𝑠(1). Therefore, 𝑡𝑠(1) can find an allocated
processor and frequency to satisfy:

𝐸s(1)(𝐺) =𝐸
(

𝑡s(1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=2
𝐸pre

(

𝑡𝑠(𝑖)
)

≤ 𝐸cons(𝐺).

(32)

Secondly, suppose that 𝑡𝑠(𝑗) can find a processor and the correspond-
ing frequency to satisfy the constraint, and there is:

𝐸s(𝑗)(𝐺) =
𝑗−1
∑

𝑖=1
𝐸
(

𝑡s(𝑖), 𝑝𝑘(s(𝑖)), 𝑓𝑘(s(𝑖)),ℎ(s(𝑖))
)

+ 𝐸
(

𝑡s(𝑗), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡s(𝑖)
)

=
𝑗
∑

𝑖=1
𝐸
(

𝑡𝑠(𝑖), 𝑝𝑘(𝑠(𝑖)), 𝑓𝑘(𝑠(𝑖)),ℎ(𝑠(𝑖))
)

+
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡𝑠(𝑖)
)

≤ 𝐸cons (𝐺).

(33)

Hence,
𝑗
∑

𝑖=1
𝐸
(

𝑡𝑠(𝑖), 𝑝𝑘(𝑠(𝑖)), 𝑓𝑘(𝑠(𝑖)),ℎ(𝑠(𝑖))
)

≤ 𝐸cons(𝐺) −
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡𝑠(𝑖)
)

.
(34)

Therefore, for 𝑡𝑠(𝑗+1), the energy consumption of the parallel application
𝐺 is:

𝐸s(𝑗+1)(𝐺) =
𝑗
∑

𝑖=1
𝐸
(

𝑡s(𝑖), 𝑝𝑘(s(𝑖)), 𝑓𝑘(s(𝑖)),ℎ(s(𝑖))
)

+ 𝐸
(

𝑡s(𝑗+1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=𝑗+2
𝐸pre

(

𝑡s(𝑖)
)

.

(35)

hen, substitute Eq. (34) into Eq. (35) to get

s(𝑗+1)(𝐺) =
𝑗
∑

𝑖=1
𝐸
(

𝑡s(𝑖), 𝑝𝑘(s(𝑖)), 𝑓𝑘(s(𝑖)),ℎ(s(𝑖))
)

+ 𝐸
(

𝑡s(𝑗+1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=𝑗+2
𝐸pre

(

𝑡s(𝑖)
)

≤ 𝐸cons(𝐺) −
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡s(𝑖)
)

+ 𝐸
(

𝑡s(𝑗+1), 𝑝𝑘, 𝑓𝑘,ℎ
)

+
|𝑇 |
∑

𝑖=𝑗+2
𝐸pre

(

𝑡s(𝑖)
)

≤ 𝐸cons(𝐺) − 𝐸pre
(

𝑡s(𝑗+1)
)

+ 𝐸
(

𝑡s(𝑗+1), 𝑝𝑘, 𝑓𝑘,ℎ
)

.

(36)

ince the value of 𝐸pre(𝑡(𝑠)(𝑗+1)) is greater than or equal to 𝐸min(𝑡𝑠(𝑗+1)),

e can get a similar result when 𝑗 = 1, that is 𝐸𝑠(𝑗+1)(𝐺) ≤ 𝐸cons(𝐺).

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.

e

e

2

T
T
l
t
t
w
t
a
a
t
a
c

This means that 𝑡𝑠(𝑗+1) can also find a specified processor to meet the
nergy constraints.

When all tasks can find a single allocated processor to meet the en-
rgy consumption constraint, the correctness of Theorem 1 proved. □

4.3. The proposed HEA-PAS algorithm

When assigning task 𝑡𝑠(𝑗), according to Theorem 1, the energy
consumption constraint of this task can be given as:

𝐸cons
(

𝑡𝑠(𝑗), 𝑝𝑘, 𝑓𝑘,ℎ
)

= 𝐸cons(𝐺) −
𝑗−1
∑

𝑖=1
𝐸
(

𝑡𝑠(𝑖), 𝑝𝑘(𝑠(𝑖)), 𝑓𝑘(𝑠(𝑖)),ℎ(𝑠(𝑖))
)

−
|𝑇 |
∑

𝑖=𝑗+1
𝐸pre

(

𝑡𝑠(𝑖)
)

.

(37)

Therefore, after determining the given energy for each task, the hybrid
energy allocation algorithm (HEA-PAS) proposed in Algorithm 1. In
HEA-PAS, for each task traverses each processor to find the frequency
with the EFT under a given energy consumption constraint. Adjust the
energy allocation factor, repeat the above steps, and find the minimum
schedule length of the application. The detailed description of each
stage is as follows:

(1) Prioritization of tasks. In Line 1, HEA-PAS sort the tasks in
parallel application by descending order of 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) as 𝑆dsort .

(2) Calculation of the minimum and maximum energy consumption
of tasks and application. In Lines 2–5, HEA-PAS calculate minimum
and maximum energy consumption of each task and the application
by using Eqs. (7) and (8).

(3) Static energy pre-allocation (first stage). In Line 6–9, HEA-PAS
calculate energy demand rate of each task and pre-allocate the SAE
for each task, respectively (to meeting the energy requirements of
low-priority tasks).

(4) Dynamic energy pre-allocation (second stage). In Lines 13–
15, HEA-PAS calculate application assigned energy and application
unassigned energy of scheduling task sequence 𝑡𝑠(𝑗) and pre-allocate the
DAE for each task (to meeting the energy requirements of high-priority
tasks).

(5) Satisfaction of energy constraints. In Lines 16–29, HEA-PAS
traverse each processor and frequency to satisfy the energy constraint
transferred to each task from the application energy constraint. Lines
19–21 skip the frequencies that are greater than the energy constraints
of each task.

(6) Minimization of schedule length. In Lines 22–28, HEA-PAS
minimize the schedule length of the application through minimize the
earliest finish time of each task.

(7) Record of the optimal energy allocation factor. In Lines 34–38,
HEA-PAS record the minimum scheduling length, energy consumption
and the most effective energy allocation factor.

Complexity analysis. For traversing energy allocation factor con-
sumes 𝑂(|𝐴|) time, where |𝐴| represents the number of energy alloca-
tion factor. For each task, selecting the processor and frequency with
the EFT has complexity 𝑂(|𝑇 |2 × |𝑃 | × |𝐹 |), and |𝐹 | is the number of
discrete frequencies from [𝑓𝑘,low, 𝑓𝑘,max]. Thus, the total time complexity
is 𝑂(|𝐴|× |𝑇 |2 × |𝑃 |× |𝐹 |). Through a large number of experiments, we
found that the optimal energy allocation factor is between 0.7 and 1.
Therefore, we set 𝐴𝑠 to 0.7, and the increase rate is 0.01, at this time
𝑂(|𝐴|) = 30. Calculating the earliest start time only needs to traverse
the predecessor nodes of the task, generally speaking, the value of
|𝑇 | is relatively small. Generally, HEA-PAS has higher time complexity
for HEFT and other heuristic algorithms, but much lower complexity
for media heuristic algorithms. For the same heterogeneous platform
and the same application, only need to run once to find and fix the
optimal energy distribution factor, and the complexity at this time is

2

7

𝑂(|𝑇 | × |𝑃 | × |𝐹 |), which is the same as HEFT.
Algorithm 1 The HEA-PAS Algorithm.
Require: 𝐺 = (𝑇 ,𝐸, 𝐶,𝑊),𝑃 ,𝐸cons(𝐺).
Ensure: SL(𝐺), 𝐸(𝐺), 𝛼(𝐺).
1: Sort tasks in the application by descending order of 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) as 𝑆dsort ;
2: for (∀𝑖, 𝑡𝑖 ∈ 𝑇) do
3: Calculate 𝐸min(𝑡𝑖), 𝐸max(𝑡𝑖) using Eq. (7);
4: end for
5: Calculate 𝐸min(𝐺), 𝐸max(𝐺) using Eq. (8);
6: for (∀𝑖, 𝑡𝑖 ∈ 𝑇) do
7: Calculate EDR(𝑡𝑖) using Eq. (18);
8: Calculate 𝐸pre(𝑡𝑖) using Eqs. (19) and (20);
9: end for

10: for (∀𝑗, 𝛼(𝑗) ∈
[

𝐴𝑠, 1
]

do
11: while tasks in 𝑆dsort do
12: 𝑡𝑖 ← 𝑆𝑑𝑠𝑜𝑟𝑡.out();
13: Calculate AAE𝑠(𝑖)(𝐺) using Eq. (21);
14: Calculate AUE𝑠(𝑖)(𝐺) using Eq. (22);
15: Calculate 𝐸cons(𝑡𝑖) using Eq. (27);
16: for (∀𝑘, 𝑝𝑘 ∈ 𝑃) do
17: for (𝑓𝑘,ℎ ∈

[

𝑓𝑘,low, 𝑓𝑘,max
]

do
18: Calculate 𝐸(𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ) using Eq. (5);
19: if 𝐸(𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ) > 𝐸cons(𝑡𝑖) then
20: Continue;
21: end if
22: if (EFT

(

𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ
)

< AFT
(

𝑡𝑖
)

) then
23: 𝐸(𝑡𝑖) ← 𝐸(𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ);
24: AST(𝑡𝑖) ← EST(𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ);
25: AFT(𝑡𝑖) ← EFT(𝑡𝑖, 𝑝𝑘, 𝑓𝑘,ℎ);
26: 𝑃 (𝑡𝑖) ← 𝑝𝑘; ∕∕Record the actual allocation processor;
27: 𝐹 (𝑡𝑖) ← 𝑓𝑘,ℎ; ∕∕Record the actual allocation frequency;
28: end if
29: end for
30: end for
31: Compute the 𝐸𝛼(𝑗)(𝐺) using Eq.(5);
32: Compute the SL𝛼(𝑗)(𝐺) using Eq.(12);
33: end while
34: if SL𝛼(𝑗)(𝐺) < SL(𝐺) then
35: 𝐸(𝐺) ← 𝐸𝛼(𝑗)(𝐺);
36: SL(𝐺) ← SL𝛼(𝑗)(𝐺);
37: 𝛼(𝐺) ← 𝛼(𝑗); ∕∕Record real energy allocation factor;
38: end if
39: end for
40: return SL(𝐺), 𝐸(𝐺), 𝛼(𝐺)

4.4. Example of the HEA-PAS algorithm

As in [16–18], we use Fig. 1 as an example of motivation. Table 3
lists the parameters of all tasks. Table 4 lists all processors parame-
ters, such as dynamic power independent of frequency 𝑃𝑘,ind, effective
switched capacitance 𝐶𝑘,𝑒 and dynamic power index 𝑚𝑘. The maximum
frequency 𝑓𝑘,max of each processor is 1.0, and its frequency accuracy is
0.01. The minimum energy efficiency frequency 𝑓𝑘,ee is derived from
the Eq. (2). Therefore, according to the Eqs. (13) and (14), 𝐸min(𝐺) =
0.31 and 𝐸max(𝐺) = 161.99. We set the energy constraint of application
𝐺 to 𝐸cons(𝐺) ≤ 𝐸max(𝐺), and we set 𝐸cons(𝐺) to 𝐸HEFT(𝐺) × 0.5. Then,

able 5 shows the task allocation of the parallel application in Fig. 1.
he actual energy consumption of the application is 79.04, which is

ess than 𝐸cons(𝐺). It can be seen from the motivation example that
he schedule length of our algorithm is 80, which is the same as
he HEFT algorithm, but the energy consumption of HEFT is 103.49,
hich exceeds the cons energy consumption 𝐸cons(𝐺). Correspondingly,

he schedule length of MSLECC [16] is 129.37, ESECC [17] is 84.03,
nd ISAECC [18] is 86.28. It can be seen from the example that our
lgorithm has a shorter schedule length than the previous work. For
he sake of intuition, Fig. 3 describes the scheduling Gantt chart. The
bove example shows that our method can balance the different energy
onsumption requirements of high-priority tasks and low-priority tasks.

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.
Table 3
Parameters of example tasks.

Task 𝑝1 𝑝2 𝑝3 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖)

𝑡1 14 16 9 108.000
𝑡3 11 13 19 80.000
𝑡4 13 8 17 80.000
𝑡2 13 19 18 77.000
𝑡5 12 13 10 69.000
𝑡6 13 16 9 63.333
𝑡9 18 12 20 44.333
𝑡7 7 15 11 42.667
𝑡8 5 11 14 35.667
𝑡10 21 7 16 14.667

Table 4
Parameters of example processors.
𝑝𝑘 𝑘,ind 𝐶𝑘,𝑒𝑓 𝑚𝑘 𝑓𝑘,low 𝑓𝑘,max

𝑝1 0.03 0.8 2.9 0.26 1.0
𝑝2 0.04 0.8 2.5 0.26 1.0
𝑝3 0.07 1.0 2.5 0.29 1.0

Table 5
The results of example application in Fig. 1 by using HEA-PAS algorithm.

Task 𝐸cons(𝑡𝑖) 𝑝(𝑡𝑖) 𝑓 (𝑡𝑖) 𝐴𝑆𝑇 (𝑡𝑖) 𝐴𝐹𝑇 (𝑡𝑖) 𝐸(𝑡𝑖) 𝐸𝑟𝑒(𝑡𝑖)

𝑡1 18.2562 𝑝3 1.00 0.0 9.0 9.6300 8.6262
𝑡2 15.4061 𝑝3 0.84 9.0 30.4286 15.3577 0.0484
𝑡3 15.9253 𝑝1 1.00 21.0 32.0 9.1300 6.7953
𝑡4 13.6017 𝑝2 1.00 18.0 26.0 6.7200 6.8817
𝑡5 6.5295 𝑝3 0.67 30.4286 45.3539 6.5290 6.0E−4
𝑡6 7.0322 𝑝1 0.78 32.0 48.6667 6.9865 0.0457
𝑡7 5.4708 𝑝1 0.96 48.6667 55.9583 5.4008 0.0700
𝑡8 4.6883 𝑝1 1.00 55.9583 60.9583 4.1500 0.5383
𝑡9 9.3845 𝑝2 0.94 58.3539 71.1199 9.2597 0.1248
𝑡10 7.8312 𝑝2 1.00 72.9583 80.0 5.8800 1.9512

𝐸(𝐺) = 79.0438 ≤ 𝐸cons(𝐺) = 80.995, 𝑆𝐿(𝐺) = 𝑆𝐿HEFT(𝐺) = 80

Fig. 3. The scheduling Gantt chart of application in Fig. 1 using HEA-PAS.

5. Experiments

To better illustrate the superiority of the propose algorithm, this
section will do further comparative experiments. The algorithms partic-
ipating in the comparison are HEFT [28], MSLECC [16], ESECC [17],
ISAECC [18], HEA-PAS. The HEFT algorithm does not consider energy
consumption constraints, and only minimizes the schedule length as an
optimization objective. Since we use the energy consumption generated
by the HEFT as the benchmark for energy consumption constraints (ie
𝐸HEFT(𝐺)×𝜆, 0 ≤ 𝜆 ≤ 1), we use the results of the HEFT algorithm as the
benchmark for comparison. The main idea of the MSLECC algorithm is
to transfer the overall remaining energy consumption of the application
8

Fig. 4. Example of the FFT parallel application with 𝜌 = 4.

to for each task, ESECC adopts a strategy of evenly distributing the
remaining energy consumption to each task, and ISAECC adopts a
weighting strategy at the application level, it is one of the best per-
forming algorithms in the current research on this problem. We mainly
compare the actual energy consumed 𝐸(𝐺) (Unit: kWs) [34] and the
schedule length SL(𝐺) (Unit: s) (application response time/complete
time/makespan) by each algorithm. We use two real-world parallel
applications Fast Fourier Transform (FFT) and Gaussian Elimination
(GE) [18,28,35], and randomly generated applications to verify the
related algorithms.

5.1. Experimental metrics

In this study, we focus on the task scheduling design phase of par-
allel applications. We conduct the experiments on a custom simulated
heterogeneous platform with 64 processors. Like CloudSim [36], our
simulator also uses java as the programming language. The widely used
task graph generator TaskGraphGenerator [37] is used as a compo-
nent to generate random parallel applications The parameters of the
processors in the experiment are the same as in [18]. The detailed
processor and application parameter ranges are set as follows: 10s ≤
w𝑖,𝑘 ≤ 100s, 10s ≤ 𝑐𝑖,𝑗 ≤ 100s, 0.03 ≤ 𝑘,ind ≤ 0.07, 0.8 ≤ 𝐶𝑘,𝑒𝑓 ≤
1.2, 2.5 ≤ 𝑚𝑘 ≤ 3.0. all frequencies are discrete, with an accuracy of
0.01 GHz. 𝐴𝑠 is set from 0.7 to 1 with a step size of 0.01. Note that for
a given type of application in a heterogeneous system, it only needs to
run once to fix the energy allocation factor 𝛼. Because the parameter
range of the experiment is fixed, a large number of experimental results
show a relatively stable law, so the result data of the following specific
experiments are only randomly selected once to display.

5.2. Experimental results for FFT applications

We use the parameter 𝜌 as the size of the FFT parallel application,
and the total number of tasks is |𝑇 | = (2 × 𝜌 − 1) + 𝜌 × log2𝜌, where
𝜌 = 2𝑦 [28]. Fig. 4 shows an example of an FFT parallel application
with 𝜌 = 4.

Experiment 1. This experiment uses the FFT application graph,
and experiment with the same size FFT graph under different energy
constraints, and compare the energy consumption value and schedule
length is generated by different scheduling algorithms. The size of the
FFT graph is set to 𝜌 = 64, that is, the total number of tasks is 511.
For comparison, the energy consumption value of the HEFT algorithm
scheduling result is taken as the standard here, denoted as 𝐸HEFT(𝐺),
and the energy constraint range is set to 𝐸HEFT(𝐺)×0.3 to 𝐸HEFT(𝐺)×0.8,
that is, from strict energy constraints to loose energy constraints.

In particular, when the constraints are more stringent, that is, less
energy is given, the improvement of HEA-PAS is greater than that of
MSLECC, and the performance of ESECC and ISAECC is also improved
to a certain extent. For example, as shown in Table 6, when the energy

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.
Table 6
Final energy consumption (Unit: kWs) and actual schedule length (Unit: s) of FFT applications by fix 𝜌 = 64 for varying energy constraints.
𝜆 |𝑇 | 𝐸cons(𝐺) HEFT [28] MSLECC [16] ESECC [17] ISAECC [18] HEA-PAS

𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺)

0.3 511 3569.98 11899.92 1006.00 3569.98 2027.92 3569.86 1183.46 3569.86 1180.63 3569.88 1129.24
0.4 511 4759.97 11899.92 1006.00 4759.97 1976.05 4759.85 1099.29 4759.96 1098.71 4759.88 1061.14
0.5 511 5949.96 11899.92 1006.00 5949.96 1826.20 5949.91 1082.59 5948.30 1081.25 5949.79 1029.36
0.6 511 7139.95 11899.92 1006.00 7139.95 1615.83 7132.86 1139.48 7130.77 1112.00 7138.976 1015.80
0.7 511 8329.95 11899.92 1006.00 8329.94 1457.01 8320.70 1112.00 8311.83 1124.78 8315.85 1006.00
0.8 511 9519.94 11899.92 1006.00 9519.94 1452.00 9477.15 1052.88 9508.99 1098.93 9515.31 1006.00
Table 7
Final energy consumption (Unit:kWs) and actual schedule length (Unit:s) of FFT application by fix 𝐸cons(𝐺) = 𝐸HEFT(𝐺) × 0.5 for varying different 𝜌.
𝜌 |𝑇 | 𝐸cons(𝐺) HEFT [28] MSLECC [16] ESECC [17] ISAECC [18] HEA-PAS

𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺)

8 39 489.07 978.14 484.80 489.07 653.88 480.84 541.16 480.44 540.42 485.24 513.45
16 95 1214.21 2428.43 634.20 1214.21 885.75 1206.32 724.65 1204.51 724.11 1213.35 669.26
32 223 2580.16 5160.31 796.40 2580.16 1266.88 2578.51 913.50 2578.55 907.24 2579.64 852.46
64 511 5691.31 11382.61 939.20 5691.31 1836.68 5690.28 1079.93 5690.35 1085.15 5691.01 1003.92
128 1151 11994.07 23988.14 1121.00 11994.07 3294.27 11993.98 1292.00 11993.91 1291.98 11993.95 1207.79
256 2559 23722.07 47444.14 1313.50 23722.07 6191.44 23721.98 1539.25 23721.92 1537.49 23721.99 1424.50
Fig. 5. The results of FFT parallel applications under different energy consumption constraints and application scales.
constraint is set to 𝜆 = 0.3, the schedule length generated by HEA-
PAS is 1129.24, while the schedule length of MSLECC is 2027.92,
and the schedule length of the state-of-the-art algorithm ISAECC is
1180.63. Compared with MSLECC, the schedule length of HEA-PAS
is reduced by 898.68. Compared with ISAECC, it is also reduced by
51.39. Fig. 5(a) plots the changing trend of the final schedule length.
The reason for this reduction is that when the energy is relatively
small, using the energy allocation method in the MSLECC algorithm
will only allocate high-priority tasks, while low-priority tasks will not
have enough energy. The ISAECC algorithm uses a weighting strategy
for energy consumption levels, but does not consider the difference
in energy consumption requirements between high priority and low
priority.

Experiment 2. In this experiment, we fix 𝜆 = 0.5 (i.e., 𝐸cons(𝐺) =
𝐸HEFT(𝐺) × 0.5), and then we change the FFT application from a small
scale (𝜌 = 8, |𝑇 | = 39) to a large scale (𝜌 = 256, |𝑇 | = 2559).
The scheduling results are shown in Table 7. Similar to Experiment
1, although HEFT can obtain the minimum schedule length, HEFT
does not consider energy consumption and consumes more energy
in each case. Moreover, MSLECC, ESECC, ISAECC, and HEA-PAS can
always meet energy consumption limits. Furthermore, Fig. 5(b) plots
the changing trend of the final schedule length. As can be seen from
the figure, for the MSLECC algorithm, with the scale grows, the final
schedule length will increase sharply, while the final schedule length
obtained by our algorithm HEA-PAS will only increase slightly, which
fundamentally explains our algorithm has better scalability. We also
9

show advantages compared with ESECC and ISAECC algorithms.
5.3. Experimental results for GE applications

In this section, another important real parallel application, GE
application, is used as an experimental object to verify the performance
of the proposed HEA-PAS algorithm. While, the number of tasks can be
calculated by |𝑇 | = 𝜌2+𝜌−2

2 . Fig. 6 shows an example of a GE parallel
application with 𝜌 = 5.

Experiment 3. This experiment uses GE applications, and conducts
different energy constraint experiments on GE graphs of the same
scale. Then, we compares the energy consumption values and schedule
lengths generated by different scheduling algorithms. Here, the size of
GE application is set to 𝜌 = 31, that is, the total number of tasks is
495. This is to get closer to the number of tasks in the FFT mapping in
Experiment 1, so that the level comparison can be approximated. Paral-
lel effect of two application graphs. Similarly, the energy consumption
value of the HEFT algorithm scheduling result here is still the standard,
and the energy constraint range 𝐸cons(𝐺) is set to 𝐸HEFT(𝐺) × 𝜆. We
change 𝜆 from 0.3 to 0.8. Fig. 7(a) plots the final schedule length in
all cases, and the detailed scheduling results are shown in Table 8.
Both indicate that HEA-PAS has less schedule length than MSLECC and
ISAECC.

Although the schedule length of the Gaussian elimination applica-
tion of the same scale is higher than that of the FFT application, their
overall trends are similar. First, as the budget increases, the completion
time of applications generated using HEA-PAS gradually decreases.
The results show that the proposed HEA-PAS algorithm is effective in
different types of parallel applications, and the effect is stable.

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.

i
o
c
l
p
p

b
v
f
G
3
a
s

Table 8
Final energy consumption (Unit: kWs) and actual schedule length (Unit: s) of GE applications by fix 𝜌 = 31 for varying energy constraints.
𝜆 |𝑇 | 𝐸cons(𝐺) HEFT [28] MSLECC [16] ESECC [17] ISAECC [18] HEA-PAS

𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺)

0.3 495 3026.88 10089.60 3188.00 3026.88 5794.8 3026.81 4116.25 3026.82 4117.23 3026.80 3996.12
0.4 495 4035.84 10089.60 3188.00 4035.84 5517.97 4035.70 3896.38 4035.72 3899.87 4035.79 3808.25
0.5 495 5044.8 10089.60 3188.00 5044.80 5159.45 5044.62 3783.16 5044.69 3778.35 5044.80 3726.82
0.6 495 6053.76 10089.60 3188.00 6053.76 5083.72 6051.63 3684.74 6052.30 3683.53 6053.67 3600.70
0.7 495 7062.72 10089.60 3188.00 7062.72 4338.14 7058.58 3652.19 7059.27 3649.09 7061.96 3520.45
0.8 495 8071.68 10089.60 3188.00 8071.68 4121.34 8059.30 3426.84 8066.36 3397.39 8066.29 3319.90
Table 9
Final energy consumption (Unit: kWs) and actual schedule length (Unit: s) of GE application by fix 𝐸cons(𝐺) = 𝐸HEFT(𝐺) × 0.5 for varying different 𝜌.
𝜌 |𝑇 | 𝐸cons(𝐺) HEFT [28] MSLECC [16] ESECC [17] ISAECC [18] HEA-PAS

𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺)

13 90 1089.43 2178.86 1317.00 1089.43 2036.43 1083.51 1697.66 1083.62 1703.6 1089.27 1635.05
21 230 2265.30 4530.60 2172.00 2265.30 3265.31 2265.10 2619.71 2265.16 2617.55 2265.16 2511.19
31 495 5280.95 10561.89 3490.00 5280.94 5334.57 5280.77 4142.10 5280.73 4141.99 5280.78 3966.62
47 1127 12290.43 24580.85 5236.00 12290.42 8402.05 12287.70 6098.55 12288.12 6116.46 12288.71 6035.58
71 2555 30858.79 61717.57 7763.00 30858.78 13258.22 30853.52 9043.57 30853.37 9064.61 30856.62 8901.57
Fig. 6. Example of the GE parallel application with 𝜌 = 5.

Experiment 4. In this experiment, we fix 𝐸cons(𝐺) as 𝐸HEFT(𝐺) ×
0.5, and change 𝜌 from 13 (|𝑁| = 90, small scale) to 71 (|𝑇 | =
2555, large scale). Corresponding to parallel FFT applications, these
ratios are roughly equal to the number of tasks in Experiment 2.
Similarly, the actual energy consumption of MSLECC, ESECC, ISAECC
and HEA-PAS is still within the given constraints. Compared with
the MSLECC algorithm, our algorithm can produce a shorter sched-
ule length. In addition, through experimental comparison, when 𝜌
ncreases, the schedule length obtained by our method and HEFT
nly slightly increases in the FFT application experiment, but it in-
reases sharply in the GE experiment. At the same time, the schedule
ength generated by MSLECC has also increased dramatically. This
henomenon is due to the fact that FFT parallel applications have better
arallelism than GE parallel applications.

Fig. 7(b) shows the variation curve of the schedule length applied
y GE under different energy constraints. Table 9 lists the detailed data
alues of these 5 algorithms. By comparing with Table 7, it can be
ound that under the same energy constraint, the schedule length of
E application is longer than that of FFT application, which is about
times different. This also verifies that the parallelism of the FFT

pplication is much higher than that of the GE application. At the
ame time, the comparison between HEA-PAS and MSLECC also shows
10
that HEA-PAS has better performance, and can also produce a smaller
schedule length compared with other proposed algorithms.

5.4. Randomly generated parallel applications

Without loss of generality, we consider parallel applications ran-
domly generated by the task graph generator [37]. It is assumed that
the target platform is composed of heterogeneous distributed systems.
As long as the value of the heterogeneity factor is adjusted, it is easy to
realize the heterogeneity of randomly generated parallel applications.
The number of randomly generated tasks is roughly equal to that of
FFT and GE parallel applications.

Experiment 5. To prevent other conditions from having too much
influence on the HEA-PAS algorithm and the MSLECC algorithm, we
set the number of tasks is fixed to |𝑁| = 511, heterogeneity factor
ℏ = 0.1 and the energy constraint range 𝐸cons(𝐺) is set to 𝐸HEFT(𝐺) ×
𝜆. We change 𝜆 from 0.3 to 0.8. Fig. 8(a) plots the final schedule
length information of parallel applications randomly generated with
low heterogeneity under different energy consumption constraints by
using five different algorithms. It can be seen that the performance of
the HEA-PAS algorithm is better than that of MSLECC and other algo-
rithms proposed in previous studies, whether it is a low heterogeneity
application or a high heterogeneity application.

Experiment 6. As in Experiment 5, to prevent other conditions
from having too much influence on the HEA-PAS algorithm and the
MSLECC algorithm, we set the number of tasks is fixed to |𝑇 | = 511,
heterogeneity factor ℏ = 1.0 (high heterogeneity) and the energy
constraint range 𝐸cons(𝐺) is set to 𝐸HEFT(𝐺) × 𝜆. We change 𝜆 from 0.3
to 0.8.

Fig. 8(b) plots the final schedule length information of a parallel
application randomly generated with low heterogeneity under different
energy consumption constraints by using five different algorithms.
Since the target computing platform is composed of heterogeneous
processors, the degree of heterogeneity may also affect application
performance. Combining Experiment 5 and Experiment 6, it can be
seen that the performance of HEA-PAS algorithm is better than that of
MSLECC and other algorithms proposed in previous studies, whether it
is low heterogeneity applications or high heterogeneity applications.

Experiment 7. In this experiment, we observe the performance of
the algorithms in low heterogeneity applications at different scales.
We set heterogeneity factor ℏ = 0.1 (low heterogeneity), and select
the number of tasks from {93, 225, 520, 1175, 2560}. The value of
𝐸cons(𝐺) remains unchanged, and set to 𝐸HEFT(𝐺) × 0.5. Table 10 shows
the results of scheduling different numbers of tasks through parallel
applications generated randomly with low heterogeneity when using all

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.

T
g
d
h
l

Fig. 7. Comparison results of GE parallel applications under different energy consumption constraints and application scales.
Fig. 8. The scheduling results of low and high heterogeneity parallel applications.
Table 10
Final energy consumption (Unit: kWs) and actual schedule length (Unit: s) of low heterogeneity (ℏ = 0.1) applications by fix |𝑇 | = 551 for varying energy constraints.
𝜆 |𝑇 | 𝐸cons(𝐺) HEFT [28] MSLECC [16] ESECC [17] ISAECC [18] HEA-PAS

𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺)

0.3 551 7304.43 24348.11 1382.00 7304.43 60606.71 7304.26 2401.48 7304.06 2405.62 7304.38 2385.31
0.4 551 9739.25 24348.11 1382.00 9739.24 52418.92 9738.96 1875.08 9738.88 1870.19 9738.94 1698.88
0.5 551 12174.06 24348.11 1382.00 12174.05 43324.98 12173.75 1688.70 12173.64 1692.30 12174.04 1412.33
0.6 551 14608.87 24348.11 1382.00 14608.87 34108.90 14608.60 1574.54 14608.73 1574.94 14608.44 1382.00
0.7 511 17043.68 24348.11 1382.00 17043.68 25184.08 17043.67 1484.62 17043.41 1484.09 17043.49 1382.00
0.8 511 19478.49 24348.11 1382.00 19478.49 16288.37 19478.31 1415.83 19478.28 1419.29 19478.06 1382.00
Table 11
Final energy consumption (Unit: kWs) and actual schedule length (Unit: s) of low heterogeneity (ℏ = 1.0) applications by fix |𝑇 | = 551 for varying energy constraints.
𝜆 |𝑇 | 𝐸cons(𝐺) HEFT [28] MSLECC [16] ESECC [17] ISAECC [18] HEA-PAS

𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺) 𝐸(𝐺) 𝑆𝐿(𝐺)

0.3 551 781.28 2604.25 730.00 781.27 804.72 781.27 816.50 781.27 816.90 781.27 807.53
0.4 551 1041.70 2604.25 730.00 1041.70 730.00 1041.63 778.41 1041.69 778.26 1041.70 757.47
0.5 551 1302.13 2604.25 730.00 1302.12 730.00 1301.41 758.58 1301.49 758.34 1302.07 736.43
0.6 551 1562.55 2604.25 730.00 1562.55 730.00 1555.87 745.75 1560.98 745.21 1562.54 730.00
0.7 511 1822.98 2604.25 730.00 1822.97 730.00 1820.02 732.51 1811.67 732.39 1822.95 730.00
0.8 511 2083.40 2604.25 730.00 2083.40 730.00 2064.25 730.00 2047.80 730.00 2081.85 730.00
algorithms. The experimental results show that the proposed HEA-PAS
algorithm also has good performance in low heterogeneity applications,
and demonstrates the high performance and stability of the proposed
algorithm.

Experiment 8. In this experiment, to observe the performance of
the proposed algorithm under different scales with high heterogeneity
applications, we select the number of tasks from {93, 225, 520, 1175,
2560}, and set heterogeneity factor ℏ = 1.0 (high heterogeneity). The
value of 𝐸cons(𝐺) remains unchanged, and set to half of 𝐸HEFT(𝐺).

able 11 shows the results of parallel applications that are randomly
enerated with high heterogeneity for different numbers of tasks with
ifferent algorithms. It can be concluded that applications with high
eterogeneity may have higher energy savings and shorter schedule
ength. The experimental results show that the proposed HEA-PAS
11
algorithm shows effectiveness in both low heterogeneity and high
heterogeneity, which fully proves the performance advantages and
stability of the algorithm.

6. Conclusion

In this study, we solved the problem of minimize the schedule
length of energy-constrained parallel applications on HCS. We de-
fined the concepts of task energy demand rate and energy distribution
factor to allocate energy of tasks reasonably. We proposed a novel
two-stage hybrid energy allocation (HEA) strategy, which divide the
allocatable energy into two parts according to the energy allocation
factor, namely static pre-allocate energy (SAE) (to meeting low-priority
energy requirements) and dynamic pre-allocate energy (DAE) (to meet-

ing high-priority tasks energy requirements), and provided a rigorous

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.
mathematical proof to verify its feasibility. Moreover, we designed a
novel scheduling algorithm (HEA-PAS) based on the above two-stage
hybrid energy allocation strategy. Extensive experiments conducted in
real-world applications and randomly generated applications proved
that our algorithm can obtain better schedule length while meet-
ing energy consumption constraints compare with the state-of-the-art
algorithms, which is effective and competitive.

In the future, we plan to use the idea of HEA-PAS to find a reason-
able energy allocation solution, considering the problem of reliability
maximization, and the trade-off between schedule length and reliability
under energy constraints.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors wish to express their sincere appreciation to all the
anonymous reviewers and the editor for their worthwhile and construc-
tive comments. The research was partially funded by the National Key
R&D Program of China (2020YFB2104000), the National Outstanding
Youth Science Program of National Natural Science Foundation of
China (61625202), the National Natural Science Foundation of China
(Grant Nos. 61860206011, 61876061, 62172151).

References

[1] H. Djigal, J. Feng, J. Lu, J. Ge, IPPTS: an efficient algorithm for scientific
workflow scheduling in heterogeneous computing systems, IEEE Trans. Parallel
Distrib. Syst. 32 (5) (2021) 1057–1071.

[2] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2011) 1374–1381.

[3] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heterogeneous
computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014) 2867–2876.

[4] L. Zhang, K. Li, C. Li, K. Li, Bi-objective workflow scheduling of the energy
consumption and reliability in heterogeneous computing systems, Inform. Sci.
379 (2017) 241–256.

[5] L. Zhang, L. Zhou, A. Salah, Efficient scientific workflow scheduling for deadline-
constrained parallel tasks in cloud computing environments, Inform. Sci. 531
(2020) 31–46.

[6] M.D. Weiser, B.B. Welch, A.J. Demers, S. Shenker, Scheduling for reduced CPU
energy, in: Proceedings of the First USENIX Symposium on Operating Systems
Design and Implementation, OSDI, Monterey, California, USA, November 14–17,
1994, USENIX Association, 1994, pp. 13–23.

[7] B. Salami, H. Noori, M. Naghibzadeh, Fairness-aware energy efficient scheduling
on heterogeneous multi-core processors, IEEE Trans. Comput. 70 (1) (2021)
72–82.

[8] M. Jarus, S. Varrette, A. Oleksiak, P. Bouvry, Performance evaluation and
energy efficiency of high-density hpc platforms based on intel, AMD and
ARM processors, in: European Conference on Energy Efficiency in Large Scale
Distributed Systems, Vol. 8046, Springer, 2013, pp. 182–200.

[9] S.K. Mishra, D. Puthal, B. Sahoo, S.K. Jena, M.S. Obaidat, An adaptive task
allocation technique for green cloud computing, J. Supercomput. 74 (1) (2018)
370–385.

[10] N. Khattar, J. Sidhu, J. Singh, Toward energy-efficient cloud computing: a survey
of dynamic power management and heuristics-based optimization techniques, J.
Supercomput. 75 (8) (2019) 4750–4810.

[11] K. Li, Energy-efficient task scheduling on multiple heterogeneous computers:
Algorithms, analysis, and performance evaluation, IEEE Trans. Sustain. Comput.
1 (1) (2017) 7–19.

[12] G. Xie, G. Zeng, L. Liu, R. Li, K. Li, High performance real-time scheduling
of multiple mixed-criticality functions in heterogeneous distributed embedded
systems, J. Syst. Archit. (2016) 3–14.

[13] Y. Xu, L. Liu, Z. Ding, DAG-aware joint task scheduling and cache management
in spark clusters, in: 2020 IEEE International Parallel and Distributed Processing
Symposium, IPDPS, New Orleans, la, USA, May 18-22, 2020, IEEE, 2020, pp.
12

378–387.
[14] S. Shi, Q. Wang, X. Chu, B. Li, A DAG model of synchronous stochastic gradient
descent in distributed deep learning, in: 24th IEEE ICPADS, Singapore, December
11-13, IEEE, 2018, pp. 425–432.

[15] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (3)
(1975) 384–393.

[16] X. Xiao, G. Xie, R. Li, K. Li, Minimizing schedule length of energy consump-
tion constrained parallel applications on heterogeneous distributed systems, in:
Trustcom/BigDataSE/ISPA, 2016, pp. 1471–1476.

[17] J. Song, G. Xie, R. Li, X. Chen, An efficient scheduling algorithm for energy con-
sumption constrained parallel applications on heterogeneous distributed systems,
in: ISPA/IUCC, 2017, pp. 32–39.

[18] Z. Quan, Z.J. Wang, T. Ye, S. Guo, Task scheduling for energy consumption
constrained parallel applications on heterogeneous computing systems, IEEE
Trans. Parallel Distrib. Syst. 31 (5) (2020) 1165–1182.

[19] J. Chen, C. Du, P. Han, X. Du, Work-in-progress: Non-preemptive scheduling
of periodic tasks with data dependency upon heterogeneous multiprocessor
platforms, in: IEEE Real-Time Systems Symposium, RTSS 2019, Hong Kong, SAR,
China, December 3-6, 2019, IEEE, 2019, pp. 540–543.

[20] J. Chen, C. Du, F. Xie, B. Lin, Scheduling non-preemptive tasks with strict periods
in multi-core real-time systems, J. Syst. Archit. 90 (2018) 72–84.

[21] J. Chen, C. Du, F. Xie, Z. Yang, Schedulability analysis of non-preemptive strictly
periodic tasks in multi-core real-time systems, Real Time Syst. 52 (3) (2016)
239–271.

[22] G. Liu, Y. Zeng, D. Li, Y. Chen, Schedule length and reliability-oriented multi-
objective scheduling for distributed computing, Soft Comput. 19 (6) (2015)
1727–1737.

[23] P.R. Kumar, K. Santhakumar, S. Palani, An intelligent approach for optimizing
energy consumption and schedule length of embedded multiprocessors, J. Intell.
Fuzzy Systems 31 (1) (2016) 579–587.

[24] S. Yu, K. Li, Y. Xu, A DAG task scheduling scheme on heterogeneous cluster
systems using discrete IWO algorithm, J. Comput. Sci. 26 (2018) 307–317.

[25] Z. Zong, A. Manzanares, X. Ruan, X. Qin, EAD and PEBD: Two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous clusters,
IEEE Trans. Comput. 60 (3) (2011) 360–374.

[26] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, X. Huang, Enhanced energy-efficient
scheduling for parallel applications in cloud, in: 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa,
Canada, May 13-16, 2012, IEEE Computer Society, 2012, pp. 781–786.

[27] G. Xie, G. Zeng, X. Xiao, R. Li, K. Li, Energy-efficient scheduling algorithms for
real-time parallel applications on heterogeneous distributed embedded systems,
IEEE Trans. Parallel Distrib. Syst. 28 (12) (2017) 3426–3442.

[28] H. Topcuoglu, S. Hariri, M.Y. Wu, Performance-effective and low-complexity task
scheduling forheterogeneous computing, IEEE Trans. Parallel Distrib. Syst. 13 (3)
(2002) 260–274.

[29] K. Cao, J. Zhou, Y. Min, T. Wei, M. Chen, Static thermal-aware task assignment
and scheduling for makespan minimization in heterogeneous real-time MPSoCs,
in: International Symposium on System and Software Reliability, 2016, pp.
111–118.

[30] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, S. Hu, Minimizing cost and makespan
for workflow scheduling in cloud using fuzzy dominance sort based HEFT, Future
Gener. Comput. Syst. 93 (2019) 278–289.

[31] M.A. Khan, Scheduling for heterogeneous systems using constrained critical
paths, Parallel Comput. 38 (4–5) (2012) 175–193.

[32] G. Xie, Z. Gang, R. Li, K. Li, Energy-aware processor merging algorithms for
deadline constrained parallel applications in heterogeneous cloud computing,
IEEE Trans. Sustain. Comput. 2 (2) (2017) 1.

[33] B. Zhao, H. Aydin, D. Zhu, Shared recovery for energy efficiency and reliability
enhancements in real-time applications with precedence constraints, ACM Trans.
Des. Autom. Electron. Syst. 18 (2) (2013) 23:1–23:21.

[34] G. Xie, J. Jiang, Y. Liu, R. Li, K. Li, Minimizing energy consumption of real-time
parallel applications using downward and upward approaches on heterogeneous
systems, IEEE Trans. Ind. Inf. 13 (3) (2017) 1068–1078.

[35] H. Arabnejad, J.G. Barbosa, List scheduling algorithm for heterogeneous systems
by an optimistic cost table, IEEE Trans. Parallel Distrib. Syst. 25 (3) (2014)
682–694.

[36] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, R. Buyya, CloudSim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw.-Pract. Exp. 41 (1) (2011)
23–50.

[37] taskgraphgen, [Online] https://sourceforge.net/projects/taskgraphgen/.

http://refhub.elsevier.com/S1383-7621(21)00226-5/sb1
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb1
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb1
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb1
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb1
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb2
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb2
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb2
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb2
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb2
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb3
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb3
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb3
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb4
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb4
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb4
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb4
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb4
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb5
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb5
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb5
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb5
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb5
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb6
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb6
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb6
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb6
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb6
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb6
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb6
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb7
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb7
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb7
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb7
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb7
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb8
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb8
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb8
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb8
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb8
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb8
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb8
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb9
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb9
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb9
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb9
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb9
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb10
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb10
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb10
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb10
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb10
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb11
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb11
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb11
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb11
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb11
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb12
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb12
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb12
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb12
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb12
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb13
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb13
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb13
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb13
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb13
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb13
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb13
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb14
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb14
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb14
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb14
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb14
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb15
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb15
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb15
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb16
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb16
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb16
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb16
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb16
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb17
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb17
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb17
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb17
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb17
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb18
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb18
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb18
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb18
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb18
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb19
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb19
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb19
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb19
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb19
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb19
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb19
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb20
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb20
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb20
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb21
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb21
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb21
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb21
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb21
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb22
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb22
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb22
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb22
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb22
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb23
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb23
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb23
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb23
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb23
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb24
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb24
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb24
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb25
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb25
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb25
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb25
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb25
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb26
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb26
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb26
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb26
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb26
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb26
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb26
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb27
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb27
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb27
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb27
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb27
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb28
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb28
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb28
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb28
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb28
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb30
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb30
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb30
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb30
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb30
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb31
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb31
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb31
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb32
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb32
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb32
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb32
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb32
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb33
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb33
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb33
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb33
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb33
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb34
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb34
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb34
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb34
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb34
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb35
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb35
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb35
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb35
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb35
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb36
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb36
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb36
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb36
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb36
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb36
http://refhub.elsevier.com/S1383-7621(21)00226-5/sb36
https://sourceforge.net/projects/taskgraphgen/

Journal of Systems Architecture 122 (2022) 102329J. Peng et al.
Jiwu Peng currently working toward the Ph.D. degree
in computer science and technology with the College of
Information Science and Engineering, Hunan University,
Changsha, China

His research interest includes high-performance com-
puting, heterogeneous distributed computing systems, em-
bedded and real-time systems, cloud computing, software
engineering and methodology.

Kenli Li received the Ph.D. degree in computer science from
Huazhong University of Science and Technology, China, in
2003. He was a visiting scholar with the University of
Illinois at Urbana-Champaign from 2004 to 2005.

He is currently a Cheung Kong professor of computer
science and technology with Hunan University, the dean of
the College of Information Science and Engineering, Hunan
University, and the director with the National Supercomput-
ing Center in Changsha.

His major research interests include high-performance
computing, parallel and distributed processing, big data
management, and cloud computing. He has published more
than 260 research papers in international conferences and
journals such as the IEEE Transactions on Computers, the
IEEE Transactions on Parallel and Distributed Systems, the
IEEE Transactions on Industrial Informatics, the IEEE Trans-
actions on Cloud Computing, ICPP, ICDCS, etc.

Prof. Li has served on the editorial board of the
IEEE Transactions on Computers, IEEE Transactions on
Sustainable Computing, and IEEE Transactions on Industrial
Informatics. He is an outstanding member of the CCF and
a senior member of the IEEE.
13
Jianguo Chen received the Ph.D. degree in Computer
Science and Technology from Hunan University, China, in
2018. He was a visiting Ph.D. student at the University
of Illinois at Chicago from 2017 to 2018. He is cur-
rently a Postdoctoral Fellow in the University of Toronto,
Canada, and Hunan University, China. His major research
areas include distributed computing, machine learning, deep
learning, and intelligence transportation systems.

Keqin Li is a SUNY Distinguished Professor of computer
science with the State University of New York. He is also a
Distinguished Professor with Hunan University, China.

His current research interests include cloud computing,
fog computing and mobile edge computing, energy-efficient
computing and communication, computer networking, high-
performance computing, big data computing, machine
learning, heterogeneous computing systems, embedded sys-
tems and cyber-physical systems, CPU-GPU hybrid and
cooperative computing, computer architectures and systems,
intelligent and soft computing. He has authored or coau-
thored more than 800 journal articles, book chapters, and
refereed conference papers, and has received several best
paper awards

He has chaired many international conferences. He is
currently an associate editor of the ACM Computing Surveys
and the CCF Transactions on High Performance Comput-
ing. He has served on the editorial boards of the IEEE
Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud
Computing, the IEEE Transactions on Services Computing,
and the IEEE Transactions on Sustainable Computing. He is
an IEEE Fellow.

	HEA-PAS: A hybrid energy allocation strategy for parallel applications scheduling on heterogeneous computing systems
	Introduction
	Background
	Motivation
	Main contributions

	Related work
	Models and preliminaries
	Application model
	Energy model
	Execution model
	Problem description
	The state-of-the-art algorithms

	Our solution
	The energy pre-allocate strategy
	Feasibility of the proposed strategy
	The proposed HEA-PAS algorithm
	Example of the HEA-PAS algorithm

	Experiments
	Experimental metrics
	Experimental results for FFT applications
	Experimental results for GE applications
	Randomly generated parallel applications

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

