
Reliability/Performance-Aware Scheduling for
Parallel Applications With Energy Constraints on

Heterogeneous Computing Systems
Jiwu Peng , Kenli Li , Senior Member, IEEE, Jianguo Chen , and Keqin Li , Fellow, IEEE

Abstract—Heterogeneous Computing Systems (HCSs) have developed rapidly due to their high performance and low cost,

and have been adopted by more and more applications. Energy consumption, reliability, and schedule length are the core

issues of HCSs. Due to the negative correlation between frequency and reliability, DVFS-supported HCSs requires high energy

consumption and a long schedule length to obtain high reliability, which resulting in performance degradation. In this paper,

we focus on the reliability and performance-aware scheduling for energy-constrained parallel applications on HCSs. First, we

design an energy pre-allocation mechanism based on Energy Demand Rate (EDR) to pre-allocate energy reasonably. Second,

we propose an EDR-aware Maximizing Reliability of Energy-Constrained parallel applications (EMREC) scheduling algorithm.

Third, considering that maximize reliability will cause the schedule length to be too long and unacceptable, we further highlight

the concept of Reliability Performance Ratio (RPR). Finally, we propose a Maximizing RPR with Energy-Constrained parallel

applications (MRPEC) scheduling algorithm, which enables parallel applications have a smaller schedule length while with high

reliability. Extensive experimental results in real-world and randomly generated applications show the effectiveness of the

proposed algorithms under different conditions.

Index Terms—DVFS, energy consumption constrained, energy demand rate, parallel application scheduling, performance and reliability,

reliability performance ratio

Ç

1 INTRODUCTION

1.1 Motivation

WITH the promotion of new technologies such as artifi-
cial intelligence, big data, and the Internet of Things

(IoT), the types of applications are diversified. Meanwhile,
the calculation of application requirements is also different,
and the trend of diversification of calculation is unstoppa-
ble. Heterogeneous Computing Systems (HCSs) can better
meet individual computing requirements, play an increas-
ingly important role in carrying applications, and has a
broad space for development [1], [2], [3], [4]. Environmental
constraints are a prominent contradiction in the current
economic and social development. Promoting energy

conservation is of great significance to the realization of sus-
tainable economic development. In addition, energy saving
can prolong the service life of the device, thereby improving
the usability of the device, which is especially important in
embedded devices of IoTs [5], [6], [7]. In recent years, paral-
lel application scheduling based on energy consumption
constraints has attracted widespread attention [8], [9], [10].

As an effective energy-saving technology, dynamic volt-
age and frequency scaling (DVFS) has been widely used in
academic research and industrial practice [11], [12], [13].
Currently, most mainstream chip manufacturers support
DVFS technology, such as Intel SpeedStep, AMD Power-
Now, and ARM IEM (Intelligent Energy Manager) and AVS
(Adaptive Voltage Scaling)[10], [14]. However, dynamically
reducing the chip’s voltage may cause the processor’s tran-
sient failure to rise sharply thereby affecting the reliability
of the system [15], [16]. Therefore, it is very important to
maximize the reliability of parallel applications of energy
constraints on the DVFS-supported HCSs. Although the
above issues have been studied in [17], [18], due to the pes-
simistic energy pre-allocation characteristics, there is still
room for improvement. At the same time, performance is
also one of the core indicators of HCSs. However, most
existing algorithms for maximizing reliability and energy
consumption optimization do not consider application per-
formance, and exhibit poor scheduling lengths for large-
scale tasks. In this case, the schedule length of the maximum
reliability algorithm with energy consumption constraints is
too pessimistic. Therefore, it is critical to propose an effec-
tive algorithm that balances reliability and performance.

� Jiwu Peng and Kenli Li are with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China.
E-mail: {jiwu_peng, lkl}@hnu.edu.cn.

� Jianguo Chen is with the Institute for Infocomm Research, Agency for Sci-
ence Technology and Research, Singapore 117684.
E-mail: chen_jianguo@i2r.a-star.edu.sg.

� Keqin Li is with the College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha 410082, China and also with the
Department of Computer Science, State University of New York, New
Paltz, NY 12561 USA. E-mail: lik@newpaltz.edu.

Manuscript received 19 June 2021; revised 18 December 2021; accepted 20
January 2022. Date of publication 27 January 2022; date of current version 8
September 2022.
This work was supported in part by the National Key R&D Program of China
under Grant 2020YFB2104000 and in part by the National Natural Science
Foundation of China under Grants 61860206011, 62172151, and 61876061.
(Corresponding author: Kenli Li.)
Recommended for acceptance by G. Min.
Digital Object Identifier no. 10.1109/TSUSC.2022.3146138

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022 681

2377-3782 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8514-6628
https://orcid.org/0000-0002-8514-6628
https://orcid.org/0000-0002-8514-6628
https://orcid.org/0000-0002-8514-6628
https://orcid.org/0000-0002-8514-6628
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5009-578X
https://orcid.org/0000-0001-5009-578X
https://orcid.org/0000-0001-5009-578X
https://orcid.org/0000-0001-5009-578X
https://orcid.org/0000-0001-5009-578X
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:jiwu_peng@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:chen_jianguo@i2r.a-star.edu.sg
mailto:lik@newpaltz.edu

1.2 Contributions

In this paper, we first introduce the concept of Energy
Demand Rate (EDR) and propose a novel EDR-aware Maxi-
mize Reliability for Energy-Constrained parallel applica-
tions (EMREC) scheduling algorithm in HCSs. Then, to
solve the problem of excessively long schedule length in the
process of maximizing application reliability, we propose
the concept of Reliability Performance Ratio (RPR) to bal-
ance reliability and performance. Further, we propose a
Maximize RPR for Energy-Constrained parallel applications
(MRPEC) scheduling algorithm in HCSs. The main contri-
butions of this paper can be summarized as follows:

� We introduce the concept of EDR to reasonably
transfer the energy consumption constraints of the
application to the constraints of each task. Then, we
propose EMREC, an EDR-based scheduling algo-
rithm, to maximize parallel applications reliability.

� We introduce the concept of RPR to balance applica-
tions reliability and performance. Then, we further
propose MRPEC, a RPR-based scheduling algorithm
to maximize parallel applications RPR. RPR is not
only used as the optimization objective of algo-
rithms, but also as an evaluation index.

� We conduct extensive experiments on real-world
and randomly generated parallel applications to
evaluate the effectiveness of the proposed algorithms
by comparing with the state-of-the-art algorithms.
Experimental results proved that the proposed
EMREC and MRPEC algorithms have superiority in
balancing reliability and schedule length under dif-
ferent energy consumption constraints and applica-
tion scales.

The rest of this article is organized as follows. Section 2
introduces related work. Section 3 builds related models and
introduces the preliminaries. Section 4 proves the feasibility
of EDR-based scheduling and introduces the proposed
EMREC algorithm. Section 5 describes the scheduling strat-
egy based on RPR and introduces the proposed MRPEC
algorithm. Section 6 verifies the performance of the proposed
algorithms. Section 7 summarizes this work.

2 RELATED WORK

We mainly review the latest studies on the energy, reliabil-
ity, schedule length, and their relationship of parallel appli-
cation scheduling in HCSs.

Energy consumption optimization of DAG-based parallel
applications is a hot research topic in recent years. There are
a lot of excellent research in energy optimization. In [19], Lee
et al. studied energy-saving-conscious scheduling that simul-
taneously minimizes the energy consumption and schedule
length of parallel applications. In [20], Salami et al. proposed
an energy-saving framework for heterogeneous perception
fairness, which uses DVFS to satisfy fairness constraints and
provides energy-saving scheduling in heterogeneous multi-
core processors. In [21], Tang et al. investigated the energy
consumption optimization problem of computing nodes on
the fat-tree interconnection network. They proposed an
energy-saving scheduling algorithm based on the heuristic
list method to achieve low communication and calculation

ratio. In [22], Song et al. investigated the minimization of the
schedule length for energy-constrained applications in
HCSs. The core of their work is the energy pre-allocation
mechanism. However, the above studies do not consider the
reliability of the applications.

Reliability-based scheduling of parallel applications has
also been extensively studied. In [23], Tang et al. investi-
gated the reliable scheduling of DAG-based parallel appli-
cations on large heterogeneous grid systems, and proposed
a hierarchy-based reliability-driven scheduling algorithm.
In [24], Naithani et al. conducted a large number of investi-
gations and showed that applications showed different reli-
ability characteristics on large high-performance cores, and
showed huge opportunities on small energy-saving cores.
They monitor reliability characteristics and dynamically
schedule applications to the different heterogeneous core to
maximize system reliability. In [25], Wang et al. designed a
replication-based scheduling algorithm to maximize system
reliability, and incorporated task communication into sys-
tem reliability. In [17], Zhang et al. proposed a competitive-
aware reliability method for parallel application in HCSs.

Various work has been conducted to maximize reliability
under energy consumption constraints. In [26], Zhang et al.
focused on the reliability maximization energy conservation
problem in HCSs, and proposed the reliability maximiza-
tion energy conservation (RMEC) algorithm. In [18], Xiao
et al. studied the reliability maximization problem under
energy consumption constraints, and proposed a method of
pre-allocating each task according to the minimum energy
demand. However, this method is too pessimistic and there
is still the possibility of further improvement, and they did
not study the problem of reliability performance balance
under energy consumption constraints. In [27] Kumar et al.
investigated the energy consumption optimization of het-
erogeneous multi-processor environments by restricting the
timing and reliability of non-preemptive periodic real-time
tasks. However, they did not consider the scheduling prob-
lem based on the precedence-constrained tasks, and the
optimization goals they consider are not the same as ours.
In [28], Zhou et al. focused on the joint optimization of soft-
error reliability (SER) and lifetime reliability (LTR) of real-
time homogeneous MPSoC systems. However, they did not
consider heterogeneous systems and the issue of reliability
and performance balance under energy constraints.

However, based on our investigation, there is currently
no research work on the balance between reliability and
schedule length under given energy constraints for DAG-
based parallel applications in HCSs.

3 MODELS AND PRELIMINARIES

The main concepts and their definitions in this paper are
listed in Table 1.

3.1 Application Model

G ¼ ðT ; E; C;WÞ is used to define the DAG application
model in this paper, where T is the set of computing tasks,
E is the set of communication edges, C represents the set of
communication time, and W is a computing matrix. ti 2 T
represents a computing task, ci;j 2 C represents the commu-
nication time between tasks ti and tj, and wi;k 2 W is the

682 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

execution time of task ti running on processor pk with maxi-
mum frequency. P ¼ fp1; p2; . . . ; pjPjg represents the set of
processors in a HCS. predðtiÞ and succðtiÞ respectively rep-
resent the direct predecessor and successor set of task ti.
tentry and texit represents the entry task and the exit task of
the application. Fig. 1 shows an example of a DAG-based
application with 10 tasks , where the integer between nodes
represents their communication time and arrows indicate
dependencies between tasks [15], [22], [29].

3.2 Energy Model

In this study, we adopt the system-level power model origi-
nally proposed in [30], which has been widely used in
recent works such as [15], [31]. The system power model1 of
the frequency f is given by

’ðfÞ ¼ ’s þ h ’ind þ ’dð Þ ¼ ’s þ h ’ind þ �eff
�ð Þ; (1)

where ’s is static power, ’ind is frequency-independent
power, frequency-dependent dynamic power is expressed
as ’d , h is the system state, �ef represents the effective capac-
itance, and � represents the dynamic power exponent. For a
HCS, the parameter sets are defined as follows:

’ind ¼ ’ind;1;’ind;2; . . . ;’ind;jPj
n o

’d ¼ ’1;d;’2;d; . . . ;’jPj;d
n o

�ef ¼ �ef;1; �ef;2; . . . ; �ef;jPj
� �

� ¼ �1; �2; . . . ; �jPj
� �

flow ¼ ff1;low;f2;low; . . . ;fjPj;lowg:

8>>>>>>>>><
>>>>>>>>>:

(2)

The energy-efficient frequency [30] is denoted as fee, which
is computed by

fee ¼ �

ffi
’ind

ð�� 1Þ�ef

r
:

The actual frequency f is in the interval ½flow;fmax�, where
flow ¼ max fmin;feeð Þ. The actual effective frequency set is
defined as

ff1; low ;f1;a;f1;b; . . . ;f1;maxg
ff2; low ;f2;a;f2;b; . . . ;f2;maxg

� � � ;
ffjPj; low ;fjPj;a;fjPj;b; . . . ;fjPj;maxg:

Then, the energy consumption of task ti executed on the
processor pk with frequency fk;h is calculated by

Eðti; pk;fk;hÞ ¼ rind þ �k;ef � f
�k
k;h

� �
� wi;k �

fk;max

fk;h

; (3)

where �k;ef represents the effective capacitance and �k repre-
sents the dynamic power exponent of the processor pk.
Therefore, the energy consumption of the application G is
obtained by

EðGÞ ¼
XjT j
i¼1

Eðti; pk;fk;hÞ: (4)

Then, the minimum and maximum energy consumption of
task ti can be calculated as

EminðtiÞ ¼ minpk2P Eðti; pk;fk;lowÞ;
EmaxðtiÞ ¼ maxpk2P Eðti; pk;fk;maxÞ:

(
(5)

Similarly, the minimum and maximum energy consump-
tion of application G can be calculated as

TABLE 1
Important Notations in this Study

Symbol Meaning

P The set of processors in HCS.
G The DAG-basd application model.
’k;ind Dynamic frequency independent of frequency in

processor mk.
�k;ef Effective switched capacitance in processor mk.
tentry Entry task of application G.
texit Exit task of application G.
ESTðtiÞ Earliest start time of task ti executed on processor

pk.
EFTðtiÞ Earliest finish time of task ti executed on

processor pk.
ASTðtiÞ Actual execute time of task pi.
AFTðtiÞ Actual finish time of task ti.
SLðGÞ Final schedule length of application G.
E tið Þ Energy consumption of task ti.
EðGÞ Total energy consumption of application G.
EaeðGÞ Allocable energy of application G.
EDRðtiÞ Energy demand rate of each task in the

application.
EtaeðtiÞ Task allocation energy of task ti.
EpreðtiÞ Pre-allocated energy constraints of task ti.
EconsðtiÞ Energy constraints of task ti.
EconsðGÞ Given energy constraints of application G.

Fig. 1. Example of a DAG-based parallel application.

1. The power consumption model is based on [30], and more
advanced power consumption models will be studied in the future.

PENG ETAL.: RELIABILITY/PERFORMANCE-AWARE SCHEDULING FOR PARALLEL APPLICATIONS WITH ENERGYCONSTRAINTS ON... 683

EminðGÞ ¼
PjT j

i¼1 EminðtiÞ;
EmaxðGÞ ¼

PjT j
i¼1 EmaxðtiÞ:

(
(6)

We define EconsðGÞ as the energy constraint of application
G. EconsðGÞ is set between EminðGÞ and EmaxðGÞ, which is
lower than EminðGÞ the application cannot be scheduled,
and greater than EmaxðGÞ energy cannot be saved. The rela-
tionship between EconsðGÞ, EminðGÞ, and EmaxðGÞ is EminðGÞ �
EconsðGÞ � EmaxðGÞ.

3.3 Reliability Model

In actual HCS, transition errors in the task execution stage
cannot be predicted and avoided, and usually follow a
probability distribution [32]. The commonly used model of
processor transient failure is the Poisson distribution with
the parameter � [15]. In a non-DVFS system, let �k be the
failure rate of each time unit of processor pk, the reliability
of task ti is calculated by

R ti; pkð Þ ¼ e��kwi;k : (7)

For a DVFS-capable system, the failure rate varies with fre-
quency due to the effect of DVFS on transient failures [15].
Let �k;max be the failure rate of each per time unit in maxi-
mum frequency of the processor pk. Then, the failure rate
�k;h of each time unit at frequency fk;h is

�k;h ¼ �k;max10
d fk;max�fk;hð Þ
fk;max�fk;min ;

(8)

where d is the sensitivity of failure rates to voltage scaling.
From Eqs. (7) and (8), the reliability of task ti executed on
the processor pk at frequency fk;h can be calculated as

R ti; pk;fk;h

� � ¼ e
��k;h�

wi;k�fk;max
fk;h : (9)

Correspondingly, for the application G , its reliability
denoted by RðGÞ, which is computed as

RðGÞ ¼
Y
ti2T

R tið Þ ¼
Y
ti2T

R ti; pk;fk;h

� �
: (10)

3.4 Preliminaries

In a DVFS-capable HCS, a DAG-based parallel application
has its own unique execution model. We introduce the pre-
liminaries of the application execution model here.

1) Earliest Start Time (EST): The EST of task ti executed on
processor pk with frequency fk;h is denoted asEST ðti; pk;fk;hÞ

ESTðtentry; pk;fk;hÞ ¼ 0

ESTðti; pk; fk;hÞ ¼ maxtj2predðtiÞ avail½k�;maxðAFTðtjÞ þ c
0
j;iÞ

n o
;

8<
:

(11)

where avail½k� is the available timeline of the processor uk.
2) Earliest Finish Time (EFT): The EFT of task ti executed

on processor pk with frequency fk;h is denoted as
EFTðti; pk;fk;hÞ
EFT ti; pk;fk;h

� � ¼ EST ti; pk;fk;h

� �þ wi;k �
fk;max

fk;h

: (12)

3) Task Priority Scoring (TPS): TPS is an important issue of
DAG list scheduling in HCSs. Considering that the focus of
this work is energy and reliability efficiency scheduling, we
introduce the task priority scoring method in [29] in our
work. The task priority scoring method is widely used in
energy-saving scheduling and reliability-aware scheduling
[15], [18], [22]. TPS is obtained by:

rank
u
ðtiÞ ¼ wi þ max

tj2succ tið Þ
ci;j þ rank

u
ðtiÞ

	

; (13)

where wi ¼
PjPj

k¼1 wi;k

� �
=jPj.

4) Schedule length (SL): The schedule length SLðGÞ of an
application is defined as the execution time of the applica-
tion from the entry task to the exit task, as calculated as

SLðGÞ ¼ max
ti2exit task

AFTðtiÞ: (14)

4 MAXIMIZING RELIABILITY WITH ENERGY

CONSTRAINTS

In this section, we first describe the problem of maximizing
reliability with energy constraints. Then, we introduce the
energy consumption satisfaction mechanism based on the
minimum energy requirement and the EDR. Finally, we
propose a maximum reliability energy constraints algorithm
based on the EDR.

4.1 Problem Description

The target platform of this research is a heterogeneous
multi-processor system, and each processor supports differ-
ent frequency levels. Correspondingly, the problem to be
solved in this section is to allocate available processors pk
with appropriate frequency fk;h for each task ti of parallel
applications, while maximizing reliability and ensuring
energy consumption does not exceed the given energy limit.
The formal description is given as follows:

Maximize : RðGÞ ¼
XjT j
i¼0

RðtiÞ

Subject to : EðGÞ ¼
XjT j
i¼1

E ti; pk;fk;h

� � � EconsðGÞ

EminðGÞ � EconsðGÞ � EmaxðGÞ: (15Þ

4.2 Satisfying Energy Constraints

For the current allocated task tsðjÞ, ftsð1Þ; tsð2Þ; . . . ; tsðj�1Þg
represents the allocated task set, meanwhile, the unallo-
cated task set is ftsðjþ1Þ; tsðjþ2Þ; . . . ; tsðjNjÞg. In [18], the mini-
mum energy consumption is pre-allocated to ftsðjþ1Þ;
tsðjþ2Þ; . . . ; tsðjNjÞg to maximize application reliability. How-
ever, due to its pessimistic allocation method, the allocat-
able energy is allocated by high-priority tasks and the low-
priority tasks will have fewer and fewer feasible processor
and frequency combinations, resulting in reliability and
schedule length not optimistic. Therefore, we propose a
more effective pre-allocation mechanism based on the pro-
posed energy demand rate. For convenience of description,
the concept of energy demand rate and allocatable energy
are defined as follows.

684 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

Definition 1. The Energy Demand Rate (EDR) is defined as the
minimum energy requirement of each task divided by the mini-
mum energy requirement of the application, which is calculated by

EDRðtiÞ ¼Emin tið Þ
EminðGÞ : (16)

Definition 2. The Allocatable Energy (AE) is defined as the
given energy constraint minus minimum energy consumption
requirement of the application, which is calculated by

DEaeðGÞ ¼ EconsðGÞ � EminðGÞ: (17)

In order to assign the allocatable energy more reason-
ably, we propose a distributable energy consumption allo-
cation mechanism for each task based on the EDR:

Etae tið Þ ¼ Emin tið Þ þ DEaeðGÞ � EDRðtiÞ: (18)

Since the energy required for the task does not need to be
greater than its maximum energy requirement, we have

Epre tið Þ ¼ min Etae tið Þ; Emax tið Þf g: (19)

Thus, the task nsðjÞ, the energy consumption of the applica-
tion can be expressed as:

EsðjÞðGÞ ¼
Xj�1
x¼1

E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞ
� �

þ E tsðjÞ; pk;fk;h

� �þXjT j
x¼1

Epre tsðxÞ
� �

: (20)

Pj�1
x¼1 EðtsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞÞ represents the energy con-

sumed by the assigned tasks. EðtsðjÞ; pk;fk;hÞ represents the
energy consumed by the current task. The last partPjNj

x¼1 Epre tsðxÞ
� �

is the pre-allocated energy of unallocated
tasks. From the definition of the problem, EsðjÞðGÞ �
EconsðGÞ, so we have

EsðjÞðGÞ ¼
Xj�1
x¼1

E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;pðsðxÞÞ
� �

þ E tsðjÞ; pk;fk;h

� �þXjT j
x¼1

Epre tsðxÞ
� �

� EconsðGÞ: (21)

For task tsðjÞ, according to Eq. (21), we have

E tsðjÞ; pk;fk;h

� � � EconsðGÞ

�
Xj�1
x¼1

E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞ
� �

�
XjT j
x¼jþ1

Epre tsðxÞ
� �

: (22)

As each task satisfies the given energy consumption con-
straint, that is, E tsðjÞ; pk;fk;h

� �
4Econs tsðjÞ

� �
, then EðGÞ �

EconsðGÞ. Thus, the energy consumption constraints of paral-
lel applications G are decomposed into each task. Theorem 1
illustrate the feasibility of the EDR-based mechanism.

Theorem 1. Given energy constraints of the application
EminðGÞ � EconsðGÞ � EmaxðGÞ, using pre-allocation mecha-
nism based on the EDR, each task tsðjÞ can always find a proces-
sor frequency combination that satisfying:

EsðjÞðGÞ ¼
Xj�1
x¼1

E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞ
� �

þ E tsðjÞ; pk;fk;h

� �þ XjT j
x¼jþ1

Epre tsðxÞð Þ � EconsðGÞ:

Proof. We use mathematical induction to prove Theorem 1.
First, for task tsð1Þ, all other tasks are not assigned, and G
should satisfy its energy constraints:

Esð1ÞðGÞ ¼ E tsð1Þ; pk;fk;h

� �þXjT j
x¼2

Epre tsðxÞ
� � � EconsðGÞ: (23)

According to Eq. (19), there is EpreðtiÞ � EtaeðtiÞ,

E tsð1Þ; pk;fk;h

� �þXjT j
x¼2

Epre tsðxÞ
� �

� E tsð1Þ; pk;fk;h

� �þXjT j
x¼2

Etae tsðxÞ
� �

: (24)

Correspondingly, by Eqs. (18), (19), and (20), we have,

E tsð1Þ; pk;fk;h

� �þXjT j
x¼2

Epre tsðxÞð Þ

¼ E tsð1Þ; pk;fk;h

� �þXjT j
x¼1

Epre tsðxÞð Þ �Epre tsð1Þð Þ

� E tsð1Þ; pk;fk;h

� �þ EconsðGÞ � Etae tsð1Þð Þ: (25)

Evidently, according to Eq. (25) Etae tsð1Þð Þ is greater than
or equal to Eminðtsð1ÞÞ. Thus, the available processor and
frequency combinations can be found by tsð1Þ to satisfy:

Esð1ÞðGÞ ¼ E tsð1Þ; pk;fk;h

� �þXjT j
x¼2

Epre tsðxÞ
� �

� EconsðGÞ: (26)

Second, assuming that the jth task tsðjÞ can find a pro-
cessor frequency combination that satisfy the energy con-
straints, then have

EsðjÞðGÞ ¼
Xj�1
x¼1

E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞ
� �

þ E tsðjÞ; pk;fk;h

� �
þ

XjT j
x¼jþ1

Epre tsðxÞð Þ � EconsðGÞ: (27)

Therefore, the ðjþ 1Þth task tsðjþ1Þ energy consumption
of the parallel application G is

Esðjþ1ÞðGÞ ¼
Xj

x¼1
E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞ
� �

þE tsðjþ1Þ; pk;fk;h

� �þ XjT j
x¼jþ2

Epre tsðxÞð Þ: (28)

PENG ETAL.: RELIABILITY/PERFORMANCE-AWARE SCHEDULING FOR PARALLEL APPLICATIONS WITH ENERGYCONSTRAINTS ON... 685

Substitute Eq. (27) into Eq. (28), we have

Esðjþ1ÞðGÞ ¼
Xj�1
x¼1

E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞ
� �

þ E tsðjÞ; pkðsðjÞÞ;fkðsðjÞÞ;hðsðjÞÞ
� �

þ E tsðjþ1Þ; pk;fk;h

� �þ XjT j
x¼jþ1

Epre tsðxÞð Þ

� Epre tsðjþ1Þð Þ � EconsðGÞ
þ E tsðjþ1Þ; pk;fk;h

� �� Epre tsðjþ1Þð Þ: (29)

Since EpreðtðsÞðjþ1ÞÞ � Eminðtsðjþ1ÞÞ, similar to j ¼ 1, there
is Esðjþ1Þ � EconsðGÞ. Therefore, tsðjþ1Þ can also have a
suitable processor frequency combination that satisfies
the energy constraints. Thus, the correctness of Theorem
1 is proved. tu

4.3 EDR-Based Reliability Maximization

According to Theorem 1, when the task tsðjÞ is allocated, the
energy constraint of tsðjÞ can be expressed as

Econs tsðjÞ
� � ¼ EconsðGÞ

�
Xj�1
x¼1

E tsðxÞ; pkðsðxÞÞ;fkðsðxÞÞ;hðsðxÞÞ
� �

�
XjT j
x¼jþ1

Epre tsðxÞ
� �

: (30)

The energy required by the task does not need to be greater
than themaximumenergy consumption of the task, so there is

Econs tsðjÞ
� � ¼ min Econs tðjÞ

� �
; Emax tðjÞ

� �� �
: (31)

Therefore, after determining the given energy for each task,
an algorithm for maximizing reliability under energy con-
straints based on the EDR is given in Algorithm 1. In
EMREC, for each task, under a given energy constraint, it
traverses the maximum reliability search frequency of each
processor, repeats the above steps, and finds the maximum
reliability value of the application under the energy con-
straint. We describe the detailed steps of each stage as
follows:

(1) Prioritize tasks. In Line 1, EMREC sorts each task
in the application into Sdsort according to
rankuðtiÞ.

(2) Obtainminimum andmaximum energy consumption.
In Lines 2-5, EMREC uses Eqs. (5) and (6) to calculate
the minimum and maximum energy consumption for
each task and the application, respectively.

(3) Acquire energy demand rate and pre-allocated
energy. In lines 6-9, EMREC calculates EDR and pre-
allocates energy constraints for each task.

(4) Determine the given energy constraint for each task.
In Lines 11-12, EMREC calculates application allo-
cated energy and application unallocated energy of
scheduling task sequence tsðjÞ and calculate the
energy constraints for each task.

(5) Satisfy energy constraints. In Lines 13-30, EMREC
traverses each processor frequency combination, and
finds the combination with the greatest reliability
value that meets the task energy constraint at the
same time. Lines 16-18 skip frequencies that are
greater than the energy constraint.

(6) Maximize application reliability. In Lines 22-28,
EMREC finds the processor frequency combination
with the maximum reliability and updates the rele-
vant values.

(7) Calculate EðGÞ; SLðGÞ; RðGÞ. In Lines 32-34, EMREC
calculate the energy consumption of the application
EðGÞ, the actual reliability RðGÞ, and the schedule
length SLðGÞ.

The time complexity of EMREC is mainly in lines 10-31.
The time complexity of traversing jT j tasks is OðjT jÞ. For
each task, the complexity of using EFT to select the proces-
sor and frequency is OðjT j � jPj � jFjÞ, where jFj is the dis-
crete frequency number from ½fk;low;fk;max�. Therefore, the
total time complexity of EMREC is OðjT j2 � jPj � jFjÞ.

Algorithm 1. The EMREC Algorithm

Input: G ¼ ðN ; E; C;WÞ;P; EconsðGÞ.
Output: EðGÞ, SLðGÞ.
1: Sort tasks in application by descending order of rankuðtiÞ

as Sdsort;
2: for ð8i; ti 2 T Þ do
3: Calculate EminðtiÞ, EmaxðtiÞ using Eq. (5);
4: end for
5: Calculate EminðGÞ, EmaxðGÞ using Eq. (6);
6: for ð8i; ti 2 NÞ do
7: Calculate EDRðtiÞ using Eq. (16);
8: Calculate EpreðtiÞ using Eqs. (17) and (18);
9: end for
10: while tasks in deslist do
11: ti deslist.out();
12: Calculate EconsðtiÞ using Eqs.(25) and (26);
13: for (8k; pk 2 ðPÞÞ do
14: for (fk;h 2 fk;low;fk;max

� �
do

15: Calculate Eðti; pk;fk;hÞ using Eq. (3);
16: if Eðti; uk;fk;hÞ > EconsðtiÞ then
17: Continue;
18: end if
19: Calculate ESTðti; pk;fk;hÞ using Eq. (12);
20: Calculate EFTðti; pk;fk;hÞ using Eq. (13);
21: Calculate Rðti; pk;fk;hÞ using Eq. (9);
22: if ðR ti; uk; fk;h

� �
< R tið ÞÞ then

23: EðtiÞ Eðti; uk;fk;hÞ;
24: ASTðtiÞ ESTðti; pk;fk;hÞ;
25: AFTðtiÞ EFTðti; pk; fk;hÞ;
26: RðtiÞ Rðti; pk; fk;hÞ;
27: break; == Skip lower frequencies;
28: end if
29: end for
30: end for
31: end while
32: Calculate the EðGÞ using Eq. (4);
33: Calculate the RðGÞ using Eq. (10);
34: Calculate the SLðGÞ using Eq. (14);
35: returnEðGÞ, SLðGÞ, RðGÞ

686 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

5 MAXIMIZEING RPRWITH ENERGY CONSTRAINTS

After analyzing the energy-constrained maximum reliabil-
ity algorithm, we found that as the number of tasks
increases, the schedule length of the application program
will increase sharply, which is unacceptable, resulting in
extremely poor user QoS. Therefore, how to strike a balance
between application reliability and performance is an prob-
lem to be solved. In this section, we will address this issue.

Algorithm 2. The MRPEC Algorithm

Input: G ¼ ðN ; E; C;WÞ;P; EconsðGÞ.
Output: EðGÞ, SLðGÞ, RðGÞ, RPRðGÞ.
1: Sort tasks in application by descending order of rankuðtiÞ

as Sdsort;
2: for ð8i; ti 2 NÞ do
3: Calculate EminðtiÞ, EmaxðtiÞ using Eq. (5);
4: Calculate wðtiÞ using Eq. (5);
5: end for
6: Calculate EminðGÞ, EmaxðGÞ using Eq.(6);
7: CalculateWðGÞ using Eq. (14);
8: for ð8i; ti 2 T Þ do
9: Calculate EDRðtiÞ using Eq. (16);
10: Calculate EpreðtiÞ using Eqs. (17) and (18);
11: end for
12: while tasks in deslist do
13: ti deslist.out();
14: Calculate EconsðtiÞ using Eqs.(25) and (26);
15: for (8k; pk 2 PÞ do
16: for (fk;h 2 fk;low;fk;max

� �
do

17: Calculate Eðti; pk; fk;hÞ using Eq. (4);
18: if Eðti; pk;fk;hÞ > EconsðtiÞ then
19: Continue;
20: end if
21: Calculate Rðti; pk; fk;hÞ using Eq. (10);
22: Calculate ESTðti; pk;fk;hÞ using Eq. (12);
23: Calculate EFTðti; pk;fk;hÞ using Eq. (13);
24: Calculate RPRðti; pk; fk;hÞ using Eq. (30);
25: if ðRPRðti; pk; fk;hÞ < RPRðtiÞÞ then
26: EðtiÞ Eðti; pk; fk;hÞ;
27: ASTðtiÞ ESTðti; pk;fk;hÞ;
28: AFTðtiÞ EFTðti; pk;fk;hÞ;
29: RðtiÞ Rðti; pk;fk;hÞ;
30: RPRðtiÞ RPRðti; pk;fk;hÞ;
31: break; == Skip lower frequencies;
32: end if
33: end for
34: end for
35: end while
36: Calculate the EðGÞ using Eq. (4);
37: Calculate the SLðGÞ using Eq. (14);
38: Calculate the RðGÞ using Eq. (10);
39: Calculate the RPRðGÞ using Eq. (32);
40: return EðGÞ, SLðGÞ, RðGÞ, RPRðGÞ

5.1 Problem Description

As in Section 4.1, we consider a heterogeneous multi-pro-
cessor platform that supports DVFS. In this section, the
problem to be solved is to allocate an available processor
and appropriate frequency for each task in DAG-based par-
allel applications, while maximizing the application

reliability performance rate, and ensuring that the energy
consumption does not exceed a given energy constraints.

We formalize this problem as follows:

Maximize : RPRðGÞ ¼
XjT j
i¼0

RPRðtiÞ

Subject to : EðGÞ ¼
XjT j
i¼1

E ti; pk;ffk;hg
� �

� EconsðGÞ

EminðGÞ � EconsðGÞ � EmaxðGÞ:
(32)

5.2 Reliability/Performance-Aware
Scheduling Strategy

As seen in the experimental part, the algorithm based on
maximum reliability increases the schedule length sharply
when the task volume increases, reaching a very high value,
which greatly extends the response time. Meanwhile, when
the performance-based algorithm increases with the amount
of tasks, the reliability value decreases sharply. For this rea-
son, maintaining high reliability of tasks and making paral-
lel applications run at a reasonable schedule length is the
focus of our research. For the first time, we define the con-
cepts of task reliability performance ratio and application
reliability performance ratio to address this problem. For
the convenience of description, we make the following
definitions:

Definition 3. The Task Execution Time (TET) of the task ti is
denoted as TETðtiÞ, which is calculated by

TETðtiÞ ¼ AFTðtiÞ �ASTðtiÞ: (33)

Definition 4. The Task Execution Time (TET) of the application
G is denoted as TETðGÞ, which is calculated by

TETðGÞ ¼
XjT j
i¼0
ðAFTðtiÞ �ASTðtiÞÞ: (34)

Note that in order to obtain the reliability performance ratio,
in this studyTETðGÞ refers to the sum of the execution time of
each task on the processors, that is

PjT j
i¼0 TETðtiÞ=TETðGÞ ¼ 1.

Definition 5. The Reliability Performance Ratio (PRP) of the
task ti is denoted as RPRðtiÞ, which is calculated by

RPRðtiÞ ¼ RðtiÞ
1

TETðtiÞ
wðtiÞ ¼

RðtiÞ
1
� wðtiÞ
TETðtiÞ : (35)

Definition 6. The Reliability Performance Ratio (PRP) of the
application G is denoted as RPRðGÞ, which is calculated by

RPRðGÞ ¼ RðGÞ
1

TETðGÞ
WðGÞ ¼

RðGÞ
1
� WðGÞ
TETðGÞ : (36)

The first part of Eq. (35) (i.e., RðtiÞ
1) focuses on reliability,

where 1 means completely reliable. When the actual reliabil-
ity value RðtiÞ is larger, the overall RPRðtiÞ is also larger.
The second part of Eq. (35) (i.e., wðtiÞ

TETðtiÞ) focuses on perfor-
mance, when the task’s TETðtiÞ is smaller, the overall
RPRðtiÞ is also larger. Namely, RPRðtiÞ is a trade-off
between actual reliability and execution time. By using the
strategy of finding maximum task performance reliability

PENG ETAL.: RELIABILITY/PERFORMANCE-AWARE SCHEDULING FOR PARALLEL APPLICATIONS WITH ENERGYCONSTRAINTS ON... 687

ratio in the task scheduling process, the mutual exclusion
contradiction between reliability and performance can be
alleviated. The task and application can be maintained at a
higher ISO26262[33] exposure level. We carried out the
algorithm design of this strategy in the next section.

5.3 The Proposed MRPEC Algorithm

The MRPEC algorithm uses the energy demand rate
mechanism, which is the same as EMREC in terms of
energy for each task. However, we change the optimiza-
tion goal to maximize the reliability performance rate of
each task, thereby balancing application reliability and
performance. Namely, it has a smaller schedule length
while maintaining high reliability. We describe the
detailed process of difference from the EMREC algorithm
as follows:

(1) Get the average expected execution time. MRPEC cal-
culates the average expected execution time of task ti in
Line 4, and calculates the serial average expected execution
time of the application in Line 7.

(3) Obtain the RPR value of each task. In Line 25, MRPEC
calculates the reliability performance ratio of task ti under
the combination of processor uk and frequency fk;h.

(2) Maximize the PRP. In Lines 26-34, MRPEC traversing
all processors and frequencies, first skip frequencies greater
than the given energy constraint of the task. When the
energy constraint is reached, each task will select the proces-
sor with the highest reliability performance ratio and
update the relevant value.

(3) Calculate EðGÞ, SLðGÞ, RðGÞ, RPRðGÞ. In Lines 38-41,
MRPEC calculate the energy consumption EðGÞ, the

schedule length SLðGÞ, the actual reliability RðGÞ, and the
reliability performance ratio RPRðGÞ of the application.

The time complexity of MRPEC is mainly in lines 12-35.
The time complexity of traversing jT j tasks is OðjT jÞ. For
each task, the complexity of using EFT to select the proces-
sor and frequency is OðjT j � jPj � jFjÞ, where jFj is the dis-
crete frequency number from ½fk;low;fk;max�. Therefore, the
total time complexity of MRPEC is OðjT j2 � jPj � jFjÞ,
which is the same as HEFT.

5.4 Example of the Proposed Algorithms

We use the standard example in Fig. 1 to illustrate the moti-
vation of our algorithms, the same as [18]. The parameters
of each task in the parallel application in Fig. 1 are listed in
Table 2. The processor parameters are listed in Table 3, such
as dynamic power and frequency ’k;ind, effective switching
capacitance �k;e and dynamic power index �k, and related
frequency parameters. The frequency accuracy of each pro-
cessor is set to 0.01, and the maximum frequency fk;max is
1.0 [18]. Therefore, according to Eq. (5), EminðGÞ ¼ 20:31 and
EmaxðGÞ ¼ 161:99, respectively. The energy constraint of the
standard example application is set to EminðGÞ � EconsðGÞ �
EmaxðGÞ, and set EconsðGÞ to EHEFTðGÞ � 0:5 ¼ 80:995. Table 4
shows the task allocation of EMREC algorithm for the stan-
dard example application. The results of the standard exam-
ple application using the MRPEC algorithm are shown in
Table 5.

The actual energy consumption of the EMREC algorithm
is 75.98, and MRPEC is 75.99, both of which are less than
the given energy constraint. The schedule length of EMREC
and MRPEC is 100.48 and 81.46, respectively. Compared
with the EMREC algorithm, the schedule length of MRPEC
is reduced by 18.93%. The actual reliability of EMREC is
0.9470, and MRPEC is 0.9226. Compared with EMREC, the
reliability of MRPEC is only reduced by 2.24%. The PRP
value of EMREC and MRPEC algorithm is 1.0263 and
1.2758, respectively. For the sake of intuition, Figs. 2 and 3

TABLE 2
Example of Task Parameters

ti p1 p2 p3 rankuðtiÞ
t1 14 16 9 108.000
t2 13 19 18 77.000
t3 11 13 19 80.000
t4 13 8 17 80.000
t5 12 13 10 69.000
t6 13 16 9 63.333
t7 7 15 11 42.667
t8 5 11 14 35.667
t9 18 12 20 44.333
t10 21 7 16 14.667

TABLE 3
Example of Processor Parameters

pk ’k;ind �k;ef �k fk;low fk;max �k;max

p1 0.03 0.8 2.9 0.26 1.0 0.00015
p2 0.04 0.8 2.5 0.26 1.0 0.00020
p3 0.07 1.0 2.5 0.29 1.0 0.00025

TABLE 4
Scheduling Results Generated by EMREC Algorithm of Parallel Application in Fig. 1

Task EconsðtiÞ pðtiÞ fðtiÞ ASTðtiÞ AFTðtiÞ EðtiÞ RðtiÞ RPRðtiÞ
t1 8.3982 p2 0.69 0.0 23.1884 8.26 0.9879 0.5538
t2 11.1309 p1 1.0 41.1884 54.1884 10.79 0.9935 1.2737
t3 8.6076 p2 0.83 23.1884 38.8511 8.49 0.9947 0.9103
t4 7.9611 p2 1.0 38.8511 46.8511 6.72 0.9984 1.5808
t5 7.7778 p2 0.77 46.8511 63.7342 7.70 0.9931 0.6863
t6 8.1447 p1 0.85 54.1884 69.4825 8.10 0.9879 0.8182
t7 6.9202 p1 1.0 69.4825 76.4825 5.81 0.9965 1.5659
t8 6.5477 p1 1.0 76.4825 81.4825 4.15 0.9975 1.9950
t9 10.7530 p2 1.0 70.1884 82.1884 10.08 0.9976 1.3856
t10 10.8922 p2 1.0 93.4825 100.4825 5.88 0.9986 2.0923
EðGÞ ¼ 75:98, SLðGÞ ¼ 100:48, RðGÞ ¼ 0:9470, RPRðGÞ ¼ 1:2566

688 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

describe the scheduling Gantt chart of EMREC and MRPEC,
where the arrows are communication messages. Corre-
spondingly, the energy consumption of the RMEC algo-
rithm is 20.31, the reliability value is 0.192, the schedule
length is 80, and the RPR value is 0.0653. The energy con-
sumption generated by the MREC algorithm is 80.99, the
reliability value is 0.78, the schedule length is 154.78, and
the RPR value is 0.6152. It can be seen from this example
that the proposed EMREC and MRPEC algorithms have
higher reliability and RPR values than previously algo-
rithms, which indicates the effectiveness of our algorithms.

6 EXPERIMENTS

To better illustrate the superiority of the proposed algorithm,
further comparative experiments are carried out. RMEC[26],
MREC[18], EMREC and MRPEC algorithms are used to par-
ticipate in the comparison in our experiments. RMEC [26]
traverses all processor and frequency combinations, and
achieved by selecting the appropriate combination according
to the reliability maximum energy conservative function. In
[18], MREC pre-allocated the minimum energy consumption
for each task. Due to the extreme pre-allocation method of
RMEC, the allocatable energy is divided by high-priority
tasks, resulting in a relatively pessimistic actual reliability.

6.1 Experimental Metrics

The performance indicators selected for comparison are the
actual reliability RðGÞ (Eq. (10)), the final schedule length
SLðGÞ (Eq. (14)), and the reliability performance rate
RPRðGÞ value (Eq. (30)). The processor parameters in our

experiments are the same as [18]. The detailed processor
and application parameters ranges are set as follows:
10 ms � wi;k � 100 ms; 10 ms � ci;j � 100 ms; 0:03 � ’k;ind �
0:07; 0:8 � �k;ef � 1:2; 2:5 � �k � 3:0: The frequency of the
processor is discrete and the precision is 0.01GHz. A simu-
lated heterogeneous multi-processor platform with 64 pro-
cessors is adopted to execute all parallel applications.

We use two typical real-world parallel applications, Fast
Fourier Transform (FFT) and Gaussian Elimination (GE), to
verify the effectiveness of our algorithms. FFT and GE are
high parallelism and low parallelism respectively, which are
widely used in high-performance computing systems [29].
In addition, we use the parallel applications generated by the
random generator provided by [34] to verify our results
under different application scales, different energy con-
straints, different heterogeneity, and different processors.

6.2 FFT Parallel Applications

In our experiments, the parameter r is used to indicate the
size of the applications. For FFT parallel applications, the
total number of tasks is jT j ¼ ð2� r� 1Þ þ r� log 2r, where
r ¼ 2y [29]. Fig. 4a shows an example of the FFT parallel
application with r = 4.

6.2.1 Varying Number of Tasks

Experiment 1. We fix � ¼ 0:5 (ie EconsðGÞ ¼ EHEFTðGÞ � 0:5),
and change the scale of the parallel applications from r ¼ 8
(jT j ¼ 39, small scale) to r ¼ 256 (jT j ¼ 2559, large scale).
The RMEC, MREC, EMREC and MRPEC algorithms can all

TABLE 5
Scheduling Results Generated by MRPREC Algorithm of Parallel Application in Fig. 1

Task EconsðtiÞ pðtiÞ fðtiÞ ASTðtiÞ AFTðtiÞ EðtiÞ RðtiÞ RPRðtiÞ
t1 8.3982 p3 0.90 0.0 10.0 8.38 0.9876 1.2839
t2 11.0141 p1 1.0 33.4583 46.4583 10.79 0.9935 1.2737
t3 8.4872 p1 0.96 22.0 33.4583 8.49 0.9935 1.2428
t4 7.8443 p2 1.0 19.0 27.0 6.72 0.9984 1.5808
t5 7.6610 p3 0.76 10.0 23.1579 7.55 0.9745 0.8641
t6 8.1837 p3 0.88 23.1579 33.3851 8.16 0.9865 1.2218
t7 6.9095 p1 1.0 46.4583 53.4583 5.81 0.9965 1.5659
t8 6.5371 p1 1.0 54.0 59.0 4.15 0.9975 1.9950
t9 10.7424 p2 1.0 62.4583 74.4583 10.08 0.9976 1.3856
t10 10.8815 p2 1.0 74.4583 81.4583 5.88 0.9986 2.0923
EðGÞ ¼ 75:99, SLðGÞ ¼ 81:4583, RðGÞ ¼ 0:9266, RPRðGÞ ¼ 1:5167

Fig. 2. Scheduling Gantt chart generated by EMREC of parallel applica-
tion in Fig. 1 .

Fig. 3. Scheduling Gantt chart generated by MRPEC of parallel applica-
tion in Fig. 1 .

PENG ETAL.: RELIABILITY/PERFORMANCE-AWARE SCHEDULING FOR PARALLEL APPLICATIONS WITH ENERGYCONSTRAINTS ON... 689

satisfy the given energy limit, so we have not listed the
results. The experimental results are listed in Table 6.

As the number of tasks increases, the RMEC algorithm
does not significantly increase the schedule length, but its
actual reliability is greatly reduced, resulting in a substan-
tial decrease in the RPR value. At the same time, RMEC
generally maintains a low RPP value. As the number of
tasks increases, the schedule length of the MREC algorithm
will increase dramatically. This is due to MREC’s pessimis-
tic allocation strategy. The allocatable energy consumption
is divided by the higher-priority tasks, which causes the
lower-priority tasks to find tasks that can meet the energy
constraints. There are fewer and fewer available process-
ors, which leads to an extension of the schedule length.
The actual reliability of the MREC algorithm also decreases
as the number of tasks increases, but its downward trend
is slower than that of the RMEC algorithm. The Table 6
reflects that the RPR value of MREC is higher than that of
RMEC.

The schedule length of the proposed EMREC algorithm
also increases as the number of tasks increases. However,
due to the reasonable energy pre-allocation method based
on the EDR and the MREC algorithm, the EMREC algorithm
is significantly more effective in terms of schedule length,
which can almost save time. In terms of reliability, the
EMREC algorithm is always better than MREC, but the
actual reliability declines slowly, which shows the superior-
ity of the proposed EMREC algorithm. Compared with the
MREC and EMREC algorithms, the MRPEC algorithm has
the shortest schedule length, and as the number of tasks
increases, the growth trend becomes slower. Compared
with the MREC algorithm, the maximum saving is 3.49
times, and compared with the EMREC algorithm, the maxi-
mum saving is 1.97 times. In terms of actual reliability, the
MRPEC algorithm is slightly lower than the EMREC algo-
rithm, and is always better than the RMEC and MREC algo-
rithms, and maintains high reliability. In terms of reliability
performance, compared with RMEC, MREC and EMREC
algorithms, MRPEC maintains the highest RPR value. From
Table 6 and the above analysis, we can get the superiority
and effectiveness of the proposed EMREC algorithm and
MRPEC algorithm.

6.2.2 Varying Energy Constraints

Experiment 2. In this experiment, we use the FFT parallel
application to conduct experiments under different energy
constraints on the same size FFT graph. The task scale of the
FFT application is set to r ¼ 64 (jT j ¼ 511). We compare dif-
ferent scheduling algorithms in terms of schedule length,
actual reliability, and PRP values. For comparison, we take
EHEFTðGÞ as the standard, and set the energy constraints
range from EHEFTðGÞ � 0:3 to EHEFTðGÞ � 0:8, namely, the
energy constraint changes from strict to loose. Table 7
shows the relevant experimental results.

Fig. 4. Example of real parallel applications.

TABLE 6
The Fast Fourier Transform (FFT) Application Results by Varying Different r

r Task EconsðGÞ RMEC [26] MREC[18] EMREC MRPEC

SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ
8 39 536.17 476.00 0.9135 1.1519 627.00 0.9769 2.7173 619.00 0.9992 4.0719 602.00 0.9985 5.3002
16 95 1100.01 595.00 0.8258 1.0019 946.82 0.9366 2.0333 832.73 0.9974 4.4164 794.65 0.9949 5.2189
32 223 2724.31 782.00 0.6244 0.7775 1227.14 0.8387 1.9078 961.36 0.9941 4.2312 952.41 0.9899 5.2566
64 511 6058.00 1033.00 0.3278 0.4101 2013.00 0.7311 1.7501 1220.46 0.9877 4.2844 1189.31 0.9788 5.2871
128 1151 11143.88 1106.00 0.0902 0.1136 3158.38 0.3885 0.8325 1862.47 0.9657 4.0666 1350.22 0.9419 4.9023
256 2559 21213.69 1316.00 0.0042 0.0053 6092.00 0.0628 0.1167 3449.66 0.8891 3.4354 1747.88 0.8101 3.7959

TABLE 7
The Fast Fourier Transform (FFT) Application Results by Fix r ¼ 64

� Task EconsðGÞ RMEC [26] MREC[18] EMREC MRPEC

SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ
0.3 511 3446.02 904.00 0.3830 0.4567 2206.92 0.4973 0.7249 1581.53 0.9476 2.8932 1258.50 0.9112 3.4819
0.4 511 4594.69 904.00 0.3830 0.4567 2138.64 0.5676 0.9287 1368.80 0.9721 3.6016 1225.02 0.9536 4.4178
0.5 511 5743.37 904.00 0.3830 0.4567 1965.46 0.6658 1.2718 1305.45 0.9832 4.1368 1171.76 0.9735 5.1733
0.6 511 6892.04 904.00 0.3830 0.4567 1811.62 0.7750 1.8000 1367.63 0.9879 4.0767 1196.00 0.9768 5.3067
0.7 511 8040.71 904.00 0.3830 0.4567 1748.00 0.8890 2.5408 1506.17 0.9901 3.8027 1196.00 0.9768 5.3067
0.8 511 9189.38 904.00 0.3830 0.4567 1543.00 0.9909 3.5354 1576.87 0.9910 3.5657 1196.00 0.9768 5.3067

690 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

The RMEC algorithm does not pay attention to the maxi-
mum reliability algorithm, but finds the best reliability
energy function, which shows the same schedule length, reli-
ability and RPR value under different energy constraints.
The schedule length of the MREC algorithm decreases with
the increase of energy consumption, and the reliability
increases with the increase of energy consumption. In other
words, the schedule length of the MREC algorithm is
inversely proportional to the given energy consumption,
and its reliability is directly proportional to the given energy
consumption. The RPR value of the MREC algorithm
increases with the increase of energy. This is because as the
given energy increases, the processor space and frequency
space that MREC can search will also increase. Because reli-
ability is proportional to task execution time, the shorter the
scheduling time, the higher the reliability.

As the energy of the EMREC algorithm increases, the
schedule length remains relatively stable, but in general it is
better than the MREC algorithm. The reliability of EMREC
increases with the increase in energy consumption, which
shows an overwhelming advantage over MREC. In terms of
RPR value, EMREC is the highest, which is 3.25 times that
of MREC. The MRPEC schedule length is significantly bet-
ter than the MREC and EMREC algorithms. Compared with
MREC, it is reduced by up to 43%, and compared with
EMREC by up to 24%. In terms of reliability, MRPEC is gen-
erally better than the MREC algorithm, slightly lower than
the EMRC algorithm, and maintains a high reliability value
above 0.9. When the energy constraint is 0.6, it shows con-
vergence characteristics. Compared with other algorithms,
MRPEC always shows the highest PRP value. This experi-
ment illustrates the advantages of the proposed EMREC
and MRPEC algorithms in maximizing reliability and bal-
ancing reliability performance in parallel applications with
different energy constraints.

6.3 GE Applications

In order to further verify the performance of the proposed
algorithm, we take another important practical parallel
application (i.e., the GE application) as the experimental
object. For GE applications, the number of tasks with the
scale parameter r can be calculated by jT j ¼ r2þr�2

2 . Fig. 4b
shows an example of a GE parallel application with r ¼ 5.

6.3.1 Varying Number of Tasks

Experiment 3. In this section, we fix EconsðGÞ to EHEFTðGÞ �
0:5, and execute the algorithms in applications from small
scale (r ¼ 9, jT j ¼ 44,) to large scale 71 (r ¼ 71, jT j ¼ 2555).

The ratio corresponds to approximately the same scale of
FFT parallel applications in Experiment 1. Correspondingly,
the actual energy consumption of RMEC, MREC, EMREC
and MRPEC can satisfy the energy consumption limit. As
the number of tasks increases, the length of RMEC schedul-
ing increases rapidly, while reliability and RPR decrease
rapidly. When used in large-scale applications, the reliabil-
ity of RMEC is very poor and unacceptable. This is because
the parallelism of GE applications is low, and RMEC is not
the most reliable method. The schedule length of the MREC
algorithm increases sharply with the increase of tasks, and
the schedule length is very poor. The actual reliability of the
MREC algorithm also decreases as the number of tasks
increases, and shows a rapid trend, which also leads to a
decrease in PRP. Generally, the MREC algorithm is due to
the reliability of RMEC and RPR, but it is weaker than
RMEC in terms of schedule length. This is due to the
extreme pre-allocation strategy of the MREC algorithm.
This strategy causes the allocatable energy to be allocated
by high-priority tasks, while the feasible processors and fre-
quencies for low-priority tasks are narrowed, and the paral-
lelism of GE applications is low.

Compared with MREC, the proposed EMREC algorithm
has advantages in schedule length, which can save 55.6%. At
the same time, EMREC can obtain high reliability higher
than 0.9 under different number of tasks, and as the number
of tasks increases, it shows a slow downward trend. The RPR
of the EMREC algorithm is attributed to RMEC and MREC,
and the highest is nearly 4 times. The schedule length of the
proposed MRPEC algorithm shows superiority, saving
73.8% compared with MREC and 49.3% compared with
EMREC. At the same time, MRPEC remains always higher
than the high reliability value of RMEC and MREC, and
maintains a high reliability value higher than 0.85, which is
only 6% lower than EMREC. The above experimental analy-
sis shows that, compared with RMEC and MREC, the pro-
posed EMREC and MRPEC algorithms also have good
adaptability and superiority in actual low-parallel applica-
tions. The relevant experimental results are given in Table 8.

6.3.2 Varying Energy Constraints

Experiment 4. In this experiment, we use GE application and
conduct various energy constraints experiments on the
same scale. We compare the RMEC, MREC, EMREC, and
MRPEC algorithms in terms of schedule length, the actual
reliability, and the RPR values. We set r ¼ 31 (jT j=495) for
the GE applications. This setting is to approximate the num-
ber of tasks used by the FFT applications in Experiment 3,

TABLE 8
The Gaussian Elimination Application Results by Varying Different r

� Task EconsðGÞ RMEC [26] MREC [18] EMREC MRPEC

SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ
9 44 495.49 968.00 0.8804 1.1106 1772.19 0.8997 1.0881 1168.22 0.9983 4.0222 1242.00 0.9973 5.3334
13 90 957.88 1275.00 0.7441 1.0139 2739.85 0.8377 1.0523 1792.69 0.9965 3.0518 1743.21 0.9940 5.1102
21 230 1889.34 2194.00 0.5122 0.6457 4864.35 0.5559 0.6824 3165.33 0.9823 3.0721 2799.74 0.9680 4.3391
31 495 4898.41 3145.00 0.2516 0.3174 9254.72 0.3174 0.3930 4765.65 0.9760 3.3665 4173.47 0.9611 4.8318
47 1127 11937.60 5282.00 0.0411 0.0516 18690.13 0.0682 0.0823 8298.38 0.9555 3.3250 6867.24 0.9245 4.8100
71 2555 28840.57 7410.00 6.0E-4 7.0E-4 39122.22 0.0021 0.0025 20256.11 0.9138 2.9971 10270.79 0.8588 4.5882

PENG ETAL.: RELIABILITY/PERFORMANCE-AWARE SCHEDULING FOR PARALLEL APPLICATIONS WITH ENERGYCONSTRAINTS ON... 691

so as to roughly compare the experimental effects of two
different parallel applications. For the energy constraint
range, we set EconsðGÞ ¼ EHEFTðGÞ � �, where � is from 0.3
to 0.8. Table 9 lists the relevant experimental results.

As discussed in Experiment 2, RMEC has the same
schedule length, actual reliability value and reliability per-
formance ratio under different energy constraints. The
schedule length of the MREC algorithm decreases as the
energy constraint increases, and the reliability increases.
The reason is the same as experiment 2. The greater the
energy constraint, the more feasible the processor and fre-
quency combination. Generally, MREC is lower than RMEC
in terms of schedule length, better than RMEC in terms of
actual reliability, and better than RMEC in terms of RPR.
The total length of EMREC is better than that of MREC, and
it shows a downward trend as the energy increases. The
EMREC algorithm can always find a high reliability value
higher than 0.93, which is much better than the RMEC and
MERC algorithms. At the same time, the EMREC algorithm
has a higher RPR. Compared with MREC and MREC, the
proposed MRPEC algorithm has an optimal schedule
length. It shows a decreasing trend as the energy base
increases, and shows a trend of convergence after � ¼ 0:7.
Due to the existence of the RMEC and MREC algorithms, in
most cases, the actual reliability of the MRPEC algorithm
always maintains a high reliability value, and always main-
tains a high reliability value above 0.89. Under different
energy constraints, the MRPEC algorithm always maintains
the highest RPR value.

6.4 Randomly Generated Parallel Applications

For general purpose, randomly parallel applications gener-
ated by the task graph generator [34] are considered, which

is the same as [18] and [26]. Given that the target platform is
composed of heterogeneous computing systems, heteroge-
neity is an important factor affecting energy requirements.
For randomly generated parallel applications, as long as the
heterogeneity factor value is adjusted, heterogeneity can be
easily achieved [26]. Meanwhile, experiments with different
processor numbers can verify the resource utilization and
scalability of the algorithm.

6.4.1 Varying Heterogeneity

Experiment 5. In this scetion, we fix the number of tasks and
energy constraints, and observed the experimental results
of different heterogeneous applications. We set the task
benchmark execution time to 100 ms, the number of tasks
jT j ¼ 551, EconsðGÞ is set to EHEFTðGÞ � 0:5. Then, we set the
heterogeneity factor �h in the range of f0:1; 0:2; 0:4; 0:6;
0:8; 1:0g, that is, from low heterogeneity to high heterogene-
ity. The detailed experimental results are given in Fig. 5. As
shown in Fig. 5, the schedule length of RMEC decreases
with the increase of heterogeneity, while maintaining a low
schedule length. However, its reliability value is very poor,
almost completely unreliable, and its RPR value is very low.
This is because when the heterogeneity is low, the execution
time required for each task is very long, which is close to
the benchmark execution time. There is a certain inverse
relationship between execution time and reliability. The
schedule length of MREC decreases as the heterogeneity
factor increases, and the performance under low heteroge-
neity is too poor to be tolerated. MREC shows extremely
poor reliability values, but overall, it is slightly better than
RMEC, increases with increasing heterogeneity factor, and
RPR value is very poor. This is because low heterogeneity
applications usually require a long execution time. In

TABLE 9
The Gaussian Elimination Application Results by Fix r ¼ 32

� Task EconsðGÞ RMEC [26] MREC[18] EMREC MRPEC

SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ SLðGÞ RðGÞ RPRðGÞ
0.3 527 3126.92 3463.0 0.2852 0.3597 6227.17 0.3925 0.5983 5118.74 0.9366 2.6312 4912.54 0.8908 3.1174
0.4 527 4169.23 3463.0 0.2852 0.3597 6068.11 0.4687 0.8018 4861.39 0.9670 3.3631 4728.83 0.9420 4.0098
0.5 527 5211.54 3463.0 0.2852 0.3597 5879.63 0.5560 1.1038 4689.11 0.9803 3.9406 4606.99 0.9655 4.7373
0.6 527 6253.84 3463.0 0.2852 0.3597 5511.47 0.6886 1.6737 4797.00 0.9868 4.2843 4517.84 0.9794 5.2355
0.7 527 7296.15 3463.0 0.2852 0.3597 5326.76 0.8142 2.4608 4674.02 0.9904 4.3011 4517.00 0.9795 5.2383
0.8 527 8338.46 3463.0 0.2852 0.3597 4790.32 0.9917 4.0638 4788.00 0.9921 4.0815 4517.00 0.9795 5.2383

Fig. 5. Scheduling results of comparison algorithms executed in HCS with varying heterogeneity (jT j ¼ 551).

692 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

addition, due to the unreasonable energy distribution
method of MREC, the allocatable energy consumption is
divided by high-priority applications, resulting in low-pri-
ority tasks that can only be executed at low frequency and
low energy consumption. Insufficient power, low frequency
will reduce reliability.

Like MREC, the schedule length of EMREC decreases as
the heterogeneity factor increases, and the schedule length
is relatively poor, but EMREC has high reliability and can
maintain a high level of 0.8 or more when the heterogeneity
is extremely low. This is because low heterogeneity applica-
tions require longer execution time. In order to find the stan-
dard that meets the maximum reliability objective, EMREC
puts tasks on high-reliability processors for execution,
which leads to the need for longer scheduling times. The
schedule length of MRPEC also decreases as the heterogene-
ity factor increases, and remains within a relatively accept-
able range. Compared with RMEC, it can save up to 64.9%,
and compared with EMREC, it can save up to 67.3%. In
addition, regardless of low heterogeneity or high heteroge-
neity, MRPEC maintains a high reliability value and at the
same time has the highest RPR value. Experiments results
show that the MRPEC algorithm has good adaptability
under different degrees of heterogeneity.

6.4.2 Varying Number of Processors

Experiment 6. In this section, we fix the number of tasks and
energy constraints and observe the experimental results of
comparative algorithms under different processor scales.
We set the execution time of the benchmarks to 100 ms. The
number of tasks is set to jT j ¼ 551, and EconsðGÞ is set to
EHEFTðGÞ � 0:5. Then, we set the heterogeneous factor �h ¼
1:0. The number of processors P is varies within the range
of f8; 16; 32; 64; 128; 256g. The relevant experimental results
are given in Fig. 6.

It can be seen from Fig. 6. that due to the increase in proc-
essing capacity, the schedule length decreases as the num-
ber of processors increases. Since the increase in optional
high-reliability processors, the actual reliability of parallel
applications also increases with the increase of processors.
Overall, EMREC has the highest reliability, EMEC has the
lowest reliability, and the reliability of MRPEC remains
close to that of EMREC. RMEC has the lowest RPR, MRPEC
has the highest PRP, and EMREC’s PRP is better than
MREC. Compared with MREC, MRPEC can save up to

78:3%. Simultaneously, compared with EMREC, MRPEC
can save up to 70:8%. Experimental results show that the
proposed algorithms is effective on heterogeneous systems
with different processing capabilities.

6.5 Discussion

In summary, combining the above experimental results on
real-world and randomly generated applications, the pro-
posed EMREC and MRPEC algorithms are effective in max-
imizing reliability while satisfying the given energy
constraints. We make the following observations

� In terms of energy consumption and schedule
length, RMEC is superior to MREC, EMREC, and
MRPEC, but it is relatively the worst in terms of
actual reliability.

� MREC has higher reliability than RMEC, but the
schedule length is worse. In general, the schedule
length and reliability of MREC are lower than
EMREC and MRPEC, and they have similar energy
consumption.

� Compared with other algorithms, EMREC has the
largest reliability and is better than MREC in terms
of schedule length. EMREC can adapt well to differ-
ent energy-constrained environments.

� Compared with RMEC, MREC, and EMREC,
MRPEC has the highest PRP and saves 49%� 78% of
schedule length. In terms of reliability, MRPEC has
an overwhelming advantage over MREC, and is
quite close to EMREC.

7 CONCLUSION

In this paper, we addressed the problem of maximum reli-
ability and maximum Reliability Performance Ratio(RPR)
for energy-constrained parallel applications in HCSs. We
introduced the concept of Energy Demand Rate (EDR),
which reasonably pre-allocated energy for each task in par-
allel applications. Then, we proposed the EDR-aware maxi-
mize reliability energy-constrained scheduling algorithm of
parallel application to solve the defined problem. Moreover,
we defined the reliability performance ratio to evaluate the
balance between reliability and performance. RPR not only
can be used as an optimization objective, but also as an
index to evaluate the performance of different algorithms.
On this basis, we further proposed the PRP-aware energy-

Fig. 6. Scheduling results of comparison algorithms executed in HCS with different processor scales (jT j ¼ 551).

PENG ETAL.: RELIABILITY/PERFORMANCE-AWARE SCHEDULING FOR PARALLEL APPLICATIONS WITH ENERGYCONSTRAINTS ON... 693

constrained scheduling algorithm to achieve maximum
reliability performance ratio. We conducted extensive
experiments on real-world applications and random gener-
ation applications, the experimental results show that our
algorithms can achieve high reliability as well as high per-
formance. In the future, we will further consider more
advanced power consumption models and the resource cost
optimization of DAG-based parallel applications on HCSs.

ACKNOWLEDGMENTS

The authors wish to express their sincere appreciation to all
the anonymous reviewers and the editor for their worth-
while and constructive comments.

REFERENCES

[1] Q. Chen andM.Guo,Task Scheduling forMulti-core and Parallel Archi-
tectures - Challenges, Solutions and Perspectives, Berlin, Germany:
Springer, 2017.

[2] J. Huang, R. Li, J. An, D. Ntalasha, F. Yang, and K. Li, “Energy-effi-
cient resource utilization for heterogeneous embedded computing
systems,” IEEE Trans. Comput., vol. 66, no. 9, pp. 1518–1531,
Sep. 2017.

[3] R. E. Kavanagh, K. Djemame, J. Ejarque, R. M. Badia, and D. Garc
�ıa-P�erez, “Energy-aware self-adaptation for application execution
on heterogeneous parallel architectures,” IEEE Trans. Sustain.
Comput., vol. 5, no. 1, pp. 81–94, First quarter 2020.

[4] H. Djigal, J. Feng, J. Lu, and J. Ge, “IPPTS: An efficient algorithm
for scientific workflow scheduling in heterogeneous computing
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 5,
pp. 1057–1071, May 2021.

[5] S. Z. Sheikh and M. A. Pasha, “Energy-efficient multicore schedul-
ing for hard real-time systems: A survey,” ACM Trans. Embedded
Comput. Syst., vol. 17, no. 6, pp. 94:1–94:26, 2019.

[6] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, and X. Xu, “A QoS-aware
virtual machine scheduling method for energy conservation in
cloud-based cyber-physical systems,” World Wide Web, vol. 23,
no. 2, pp. 1275–1297, 2020.

[7] C. Jeong and H. Son, “Cooperative transmission of energy-con-
strained IoT devices in wireless-powered communication networks,”
IEEE Internet Things J., vol. 8, no. 5, pp. 3972–3982,Mar. 2021.

[8] Z. Zhou et al., “An adaptive energy-aware stochastic task
execution algorithm in virtualized networked datacenters,” IEEE
Trans. Sustain. Comput., early access, Sep. 24, 2021, doi: 10.1109/
TSUSC.2021.3115388.

[9] M. Adhikari, T. Amgoth, and S. N. Srirama, “A survey on schedul-
ing strategies for workflows in cloud environment and emerging
trends,”ACMComput. Surv., vol. 52, no. 4, pp. 68:1–68:36, 2019.

[10] G. Xie, X. Xiao, H. Peng, R. Li, and K. Li, “A survey of low-energy
parallel scheduling algorithms,” IEEE Trans. Sustain. Comput.,
early access, Feb. 9, 2021, doi: 10.1109/TSUSC.2021.3057983.

[11] S. Hajiamini, B. Shirazi, A. Crandall, and H. Ghasemzadeh,
“A dynamic programming framework for DVFS-based energy-
efficiency in multicore systems,” IEEE Trans. Sustain. Comput.,
vol. 5, no. 1, pp. 1–12, First quarter 2020.

[12] M. Chadha and M. Gerndt, “Modelling DVFS and UFS for region-
based energy aware tuning of HPC applications,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2019, pp. 805–814.

[13] S. Hajiamini, B. Shirazi, A. Crandall, and H. Ghasemzadeh,
“A dynamic programming framework for DVFS-based energy-
efficiency in multicore systems,” IEEE Trans. Sustain. Comput.,
vol. 5, no. 1, pp. 1–12, First quarter 2020.

[14] M. Jarus, S. Varrette, A. Oleksiak, and P. Bouvry, “Performance
evaluation and energy efficiency of high-density HPC platforms
based on intel, AMD and ARM processors,” in Proc. Eur. Conf.
Energy Efficiency Large Scale Distrib. Syst., 2013, pp. 182–200.

[15] G. Xie et al., “Reliability enhancement toward functional safety goal
assurance in energy-aware automotive cyber-physical systems,”
IEEE Trans. Ind. Inform., vol. 14, no. 12, pp. 5447–5462, Dec. 2018.

[16] M. Ansari, J. Saber-Latibari, M. Pasandideh, and A. Ejlali,
“Simultaneous management of peak-power and reliability in het-
erogeneous multicore embedded systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 3, pp. 623–633, Mar. 2020.

[17] L. Zhang, K. Li, W. Zheng, and K. Li, “Contention-aware reliabil-
ity efficient scheduling on heterogeneous computing systems,”
IEEE Trans. Sustain. Comput., vol. 3, no. 3, pp. 182–194, Third quar-
ter 2018.

[18] X. Xiao, G. Xie, C. Xu, C. Fan, R. Li, and K. Li, “Maximizing reli-
ability of energy constrained parallel applications on heteroge-
neous distributed systems,” J. Comput. Sci., vol. 26, pp. 344–353,
2018.

[19] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for
distributed computing systems under different operating con-
ditions,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1374–
1381, Aug. 2011.

[20] B. Salami, H. Noori, and M. Naghibzadeh, “Fairness-aware
energy efficient scheduling on heterogeneous multi-core process-
ors,” IEEE Trans. Comput., vol. 70, no. 1, pp. 72–82, Jan. 2021.

[21] X. Tang, W. Shi, and F. Wu, “Interconnection network energy-
aware workflow scheduling algorithm on heterogeneous sys-
tems,” IEEE Trans. Ind. Inform., vol. 16, no. 12, pp. 7637–7645,
Dec. 2020.

[22] J. Song, G. Xie, R. Li, and X. Chen, “An efficient scheduling algo-
rithm for energy consumption constrained parallel applications
on heterogeneous distributed systems,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process. Appl., IEEE Int. Conf. Ubiquitous Comput.
Commun., 2017, pp. 32–39.

[23] X. Tang, K. Li, M. Qiu, and E. H. Sha, “A hierarchical reliability-
driven scheduling algorithm in grid systems,” J. Parallel Distrib.
Comput., vol. 72, no. 4, pp. 525–535, 2012.

[24] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-aware
scheduling on heterogeneous multicore processors,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit., 2017, pp. 397–408.

[25] S. Wang, K. Li, J. Mei, G. Xiao, and K. Li, “A reliability-aware
task scheduling algorithm based on replication on heterogeneous
computing systems,” J. Grid Comput., vol. 15, no. 1, pp. 23–39,
2017.

[26] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing
reliability with energy conservation for parallel task scheduling in
a heterogeneous cluster,” Inf. Sci., vol. 319, pp. 113–131, 2015.

[27] N. Kumar, J. Mayank, and A. Mondal, “Reliability aware energy
optimized scheduling of non-preemptive periodic real-time tasks
on heterogeneous multiprocessor system,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 4, pp. 871–885, Apr. 2020.

[28] J. Zhou et al., “Resource management for improving soft-error and
lifetime reliability of real-time MPSoCs,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 38, no. 12, pp. 2215–2228,
Dec. 2019.

[29] H. Topcuoglu, S. Hariri, andM.-Y.Wu, “Performance-effective and
low-complexity task scheduling forheterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar.
2002.

[30] D. Zhu, R. Melhem, and D. Moss�e, “The effects of energy manage-
ment on reliability in real-time embedded systems,” in Proc. IEEE/
ACM Int. Conf. Comput. Aided Des., 2004, pp. 35–40.

[31] J. Li, G. Xie, K. Li, and Z. Tang, “Enhanced parallel application
scheduling algorithm with energy consumption constraint in het-
erogeneous distributed systems,” J. Circuits Syst. Comput., vol. 28,
no. 11, pp. 1950190:1–1950190:23, 2019.

[32] A. Naithani, S. Eyerman, and L. Eeckhout, “Optimizing soft error
reliability through scheduling on heterogeneous multicore pro-
cessors,” IEEE Trans. Comput., vol. 67, no. 6, pp. 830–846, Jun.
2018.

[33] S.-H. Jeon, J.-H. Cho, Y. Jung, S. Park, and T.-M. Han, “Automotive
hardware development according to ISO 26262,” in Proc. 13th Int.
Conf. Adv. Commun. Technol., 2011, pp. 588–592.

[34] Task graph generator, 2015. [Online]. Available: https://sourceforge.
net/projects/taskgraphgen/

Jiwu Peng is currently working toward the PhD
degree in computer science and technology with
the College of Information Science and Engineer-
ing, Hunan University, Changsha, China. His
research interests include heterogeneous distrib-
uted computing systems, embedded systems and
cyber-physical systems, cloud computing, mobile
edge computing, andmachine learning.

694 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

http://dx.doi.org/10.1109/TSUSC.2021.3115388
http://dx.doi.org/10.1109/TSUSC.2021.3115388
http://dx.doi.org/10.1109/TSUSC.2021.3057983
https://sourceforge.net/projects/taskgraphgen/
https://sourceforge.net/projects/taskgraphgen/

Kenli Li (Senior Member, IEEE) received the
PhD degree in computer science from the Huaz-
hong University of Science and Technology,
China, in 2003. He was a visiting scholar with the
University of Illinois at Urbana-Champaign from
2004 to 2005. He is currently a Cheung Kong pro-
fessor of computer science and technology with
Hunan University, the dean of the College of Infor-
mation Science and Engineering, Hunan Univer-
sity. His major research interests include high-
performance computing, parallel and distributed

processing, big data management, and cloud computing. He has pub-
lished more than 260 research papers in international conferences and
journals such as the IEEE Transactions on Computers, IEEE Transac-
tions on Parallel and Distributed Systems, IEEE Transactions on Indus-
trial Informatics, IEEE Transactions on Cloud Computing, ICPP, ICDCS,
etc. He has served on the editorial board of the IEEE Transactions on
Computers. He is an outstanding member of the CCF.

Jianguo Chen received the PhD degree in com-
puter science and technology from Hunan Univer-
sity, China, in 2018. He is currently a research
scientistic with Institute for Infocomm Research,
Agency for Science Technology and Research,
Singapore. He was a visiting PhD student with the
University of Illinois at Chicago from 2017 to 2018.
He was a postdoctoral fellow with the University
of Toronto, Canada, and Hunan University, China
from 2018 to 2020. His major research interests
include distributed computing, machine learning,
deep learning, and intelligence transportation
systems.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Uni-
versity of New York. He is also a national distin-
guished professor with Hunan University, China.
His current research interests include cloud com-
puting, fog computing and mobile edge computing,
energy-efficient computing and communication,
embedded systems and cyber-physical systems,
heterogeneous computing systems, big data com-
puting, high-performance computing, CPU-GPU
hybrid and cooperative computing, computer archi-

tectures and systems, computer networking, machine learning, intelligent
and soft computing. He has authored or coauthored more than 820 journal
articles, book chapters, and refereed conference papers, and has received
several best paper awards. He holds more than 60 patents announced or
authorized by the Chinese National Intellectual Property Administration. He
is among the worlds top 10most influential scientists in parallel and distrib-
uted computing based on a composite indicator of Scopus citation data-
base. He has chaired many international conferences. He is currently an
associate editor of the ACMComputing Surveys and the CCF Transactions
on High Performance Computing. He has served on the editorial boards of
the IEEETransactions on Parallel and DistributedSystems, IEEETransac-
tions on Computers, IEEE Transactions on Cloud Computing, the IEEE
Transactions on Services Computing, and IEEE Transactions on Sustain-
able Computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PENG ETAL.: RELIABILITY/PERFORMANCE-AWARE SCHEDULING FOR PARALLEL APPLICATIONS WITH ENERGYCONSTRAINTS ON... 695

	17-tsusc-peng-3146138-x

