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a b s t r a c t

Range query is an important data search technique in cloud-based electronic healthcare (eHealth)
systems. It enables authorized doctors to retrieve target electronic health records (EHRs) that are
generated and outsourced by patients from the cloud server. In reality, patients always encrypt
their EHRs before outsourcing, making the range query impossible. In this paper, we identify three
threats in real cloud-based eHealth systems, i.e., privacy leakage, frequency analysis, and identical
data inference. To capture the security properties that resist these threats, we define a security notion
of indistinguishability under multi-source ordered chosen plaintext attack (IND-MSOCPA). Then, we
propose a multi-source order-preserving encryption (MSOPE) scheme for cloud-based eHealth systems
to enable range queries over encrypted EHRs from multiple patients. Security analysis proves that
the MSOPE scheme is IND-MSOCPA secure. We also conduct comprehensive performance evaluations,
which demonstrate the high efficiency of the MSOPE scheme.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Characterized by convenient storage and management, elec-
tronic health records (EHRs), which have shown great potential
in digitization and visualization in electronic healthcare (eHealth)
systems [11], are capable to provide efficient care coordination
and enhanced healthcare quality. By utilizing online health record
management systems such as Microsoft HealthVault1 and Zebra-
Health,2 patients can outsource their EHRs to a remote cloud and
manage their digital health records anytime anywhere via the
Internet [38]. In cloud-based eHealth systems, multiple patients
can easily share their EHRs with doctors to enhance the health-
care quality [27]. Meanwhile, authorized doctors can perform
queries on EHRs provided by hundreds of thousands of patients,
and later collect qualified biomedical data to build a diagnosis
model [12,16].

As an important technique for collecting qualified biomedical
data, range query returns a set of interesting EHRs between an
upper bound and a lower bound, helping doctors to investigate
specific disease. As shown in Table 1, heart disease EHRs pro-
vided by multiple patients are collected to a remote cloud-based

∗ Corresponding author.
E-mail address: zqin@hnu.edu.cn (Z. Qin).

1 http://www.healthvault.com.
2 https://www.zebrahealth.com.

eHealth system. When a doctor wants to investigate adolescent
heart disease, he/she will perform a range query at the age
column with 0 ≤ Age ≤ 16 and obtain qualified EHR rows
with No. 2, 4, 5, 6. Meanwhile, when another doctor wants to
investigate the relationship between gender and heart disease,
he/she will query EHR whose gender column is ‘‘male’’, i.e., the
gender column equals ‘1’, and therefore performs a range query
on EHRs via setting the upper bound and the lower bound equal
to ‘1’, namely, 1 ≤ Gender ≤ 1. Thus, the range query is a
powerful technique to query qualified biomedical data on EHRs.

However, the risk of patients’ EHRs breach weakens the desire
of using the cloud-based eHealth system. A cloud server is always
considered as a semi-trusted party and therefore patients will
concern about the unauthorized use for their EHRs stored in the
public cloud [18]. At the same time, doctors will also worry about
the privacy leakage when searching the EHRs on a semi-trusted
cloud server, because searching operations may leak the content
of EHRs. Therefore, the content of EHRs should be protected
when using the cloud-based eHealth system. With such security
constraints, a significant amount of regulations and laws such
as Health Insurance Portability and Accountability Act (HIPAA)
and the European Data Protection Directive 95/46/EC have been
proposed for managing and sharing EHRs [11]. Apart from the
aforementioned regulations, it is desirable to design efficient and
privacy-preserving range query schemes to protect the privacy
of EHR contents as well as to enable range query over EHRs col-
lected from multiple patients. We consider two requirements for
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Table 1
EHRs that stored in a cloud-based eHealth system.
No. Name Gender (0/1) Age Heart Disease (0/1)

1 Alice 0 (female) 26 0 (No)
2 Bob 1 (male) 16 1 (Yes)
3 Cathy 0 (female) 23 0 (No)
4 David 1 (male) 14 1 (Yes)
5 Eve 0 (female) 15 0 (No)
6 Frank 1 (male) 7 0 (No)

privacy-preserving range query schemes in cloud-based eHealth
systems: (1) privacy preservation, i.e., unauthorized users cannot
obtain the content of EHRs; and (2) functionality and efficiency,
i.e., authorized users can perform efficient range query over the
protected EHRs.

Order-preserving encryption (OPE) enables efficient range
query on encrypted data, which balances the efficiency and se-
curity [2,3]. With an important characteristic that the ciphertext
and plaintext are in the same order, order-preserving encryption
has been widely used in encrypted databases [26,35]. Recently,
plenty of OPE schemes have been proposed for a single data
source scenario, which involves a data provider and a cloud server
[13–15,25,29]. Most of the works are more of theoretic attempts
to push the security notions to the limit, such as indistinguisha-
bility under ordered chosen plaintext attack (IND-OCPA). However,
the single data source schemes are not applicable in cloud-based
eHealth systems because such schemes cannot support privacy-
preserving range queries over EHRs from multiple patients, which
is an essential functionality in cloud-based eHealth systems.

To support multiple patients cases, multi-source (or abbrevi-
ated as multi-provider or multi-user) order-preserving encryp-
tion schemes have been used in cloud-based eHealth systems
[35,36]. Multi-source order-preserving encryption schemes not
only protect the privacy of EHR contents but also enable efficient
range query over multi-source encrypted EHRs. Most of the ex-
isting multi-source schemes [32,35,36] focus on the practicality
but leak both the value of plaintext and distance between any
two plaintexts [4]. Meanwhile, these schemes suffer from fre-
quency analysis threat. As a comparison, the security feature of
frequency hiding has been implemented in Kerschbaum’s single-
source scheme [13] but not in most of existing multi-source
schemes.

In this paper, we first identify three threats from real cloud-
based eHealth systems, i.e., privacy leakage, frequency analysis, and
identical data inference. To capture the security that thwarts these
threats, we define a security notion called indistinguishability
under multi-source ordered chosen plaintext attack (IND-MSOCPA).
Then, we propose a multi-source order-preserving encryption
(MSOPE) scheme for cloud-based eHealth systems which en-
ables doctors to perform privacy-preserving range queries over
encrypted EHRs from multiple patients. This work extends our
previous research in [17] by improving the encryption efficiency
and enhancing the functionality for achieving privacy-preserving
range query.

We summarize our contributions as follows.

• We define a security notion of IND-MSOCPA, which captures
the security against threats in real cloud-based eHealth sys-
tems, i.e., privacy leakage, frequency analysis, and identical
data inference.
• We propose the MSOPE scheme for cloud-based eHealth sys-

tems, which enables doctors to perform range queries over
outsourced ciphertexts (i.e., encrypted EHRs). The MSOPE
scheme is built on a secure comparing protocol with a min-
imal number of homomorphic encryption operations, which
significantly improves its computational efficiency.

Fig. 1. Cloud-based eHealth system.

• We present a formal security proof to demonstrate that the
MSOPE scheme is IND-MSOCPA secure. Extensive experi-
ments show that the MSOPE scheme is more efficient than
the primary version of this work in terms of computational
overhead [17].

The remainder of this paper is organized as follows: Sec-
tion 2 presents the system model, threat model, and design goals.
Section 3 presents the preliminaries and definitions. Section 4
elaborates the proposed scheme. Section 5 provides performance
analysis and evaluations. Section 6 shows related works. Section 7
concludes this paper. We also provide Appendices A and B to ver-
ify the correctness of the proposed secure comparing protocol and
provide formal security proof for the proposed MSOPE scheme,
respectively.

2. Models and design goals

2.1. System model

We consider a cloud-based eHealth system in Fig. 1, which
involves three different parties, i.e., patients, a cloud server, and
a doctor.

Cloud Server (CS): The cloud server stores the EHRs collected
from multiple patients and provides range query service for an
authorized doctor.

Patients (P = {P1,P2, . . . ,Pk}): Patients are owners of EHRs,
who outsource their EHRs to the cloud server, and authorize some
doctors to access their EHRs. We assume that there are k patients,
and each patient Pi ∈ P is an EHR data source.

Doctor (D): The doctor D is an authorized data user, who
submits a range query request for EHRs and then obtains the
corresponding results.

In our system model, EHRs are considered as private data to
the owner of it. Therefore, the content of each EHR can only be
exposed to the data owner or the authorized data user, i.e., the
corresponding patient Pi and the doctor D. Namely, Pi can only
manage his/her EHRs stored in CS, but should not access to other
patients’ EHRs. Therefore, Pi is an authorized user to his/her EHRs
but an unauthorized user to other patients’ EHRs. CS needs to
provide range query service to D but it should not access to any
EHRs, namely, CS is an unauthorized user to EHRs. The doctor D
can perform range queries to EHRs stored in CS and obtain the
corresponding results. Namely, D is an authorized user to EHRs
stored in CS.
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2.2. Threat model

We adopt the Honest-but-Curious (HbC) model, which has
been widely adopted in privacy-preserving search work in cloud
computing. The HbC adversary will follow the protocol honestly
but be curious about the data content. We assume that each
patient in our scheme is HbC adversary, who is only authorized
to access his/her EHRs but curious about the content of other
patients’ EHRs. Meanwhile, the cloud server is considered as a
HbC adversary, who is curious about the content of patients’ EHRs
and the doctor’s query. The doctor is considered as an honest
user because he/she is authorized to perform range query to the
patients’ EHRs.

To enable efficient and privacy-preserving range queries on
EHRs, we design multi-source order-preserving encryption,
whose ciphertexts preserve the order information of EHRs. With-
out leakage of auxiliary information, the order information of
EHRs cannot recover the encrypted EHRs [8], and therefore we
assume that the order information of EHRs is not private informa-
tion for patients. We identify three threats in cloud-based eHealth
systems as follows.

Privacy leakage. Privacy leakage means that a cloud server
may recover the encrypted EHRs to the plaintext form if the
encrypted EHRs leak additional information other than the order
information. To understand how the cloud server can recover
the encrypted EHRs by using additional information, consider the
scheme in [35], whose core idea is described as follows. For a
data provider i, li,d and ui,d are pre-defined as the lower limit and
the upper limit of the OPE ciphertext for d respectively, where
li,d < ui,d. The encryption of plaintext d for data provider i is
li,d + (Cd mod (ui,d − li,d)), where Cd is the AES encryption of d.
Namely, for data provider i, the OPE encryption scheme in [35]
maps a plaintext d to a pre-defined interval [li,d, ui,d]. Since li,d
and ui,d are reused many times, the fixed interval [li,d, ui,d] will be
leaked because the AES encryption is a pseudo-random function.
Suppose an attacker obtains two ciphertexts c1 and c2 of d, which
are encrypted by data provider i. Namely, c1 = li,d+(Cd mod (ui,d−

li,d)), c2 = li,d + (C ′d mod (ui,d − li,d)). Since AES encryption is a
pseudo-random function, Cd ̸= C ′d. Assume that c1 ≤ c2. Then
the fixed interval [li,d, ui,d] is partially leaked, because [c1, c2] ⊆
[li,d, ui,d]. Note that the fixed interval would be fully leaked when
c1 = li,d and c2 = ui,d. The adversary then could recover the
ciphertext c∗ to the plaintexts form d if c∗ ∈ [c1, c2], because li,d
and ui,d would be reused many times. The later scheme in [36]
suffers from the same threat, which would leak more information
other than the order information. Consider that the field ‘‘age’’
of EHRs are encrypted by methods with additional leakage, the
encrypted values may be recovered by the cloud server and the
content of ‘‘age’’ will be leaked.

Frequency analysis. Frequency analysis means that a cloud
server may analyze the distribution of encrypted EHRs and fur-
ther recover the encrypted EHRs to the plaintext form because
some order-preserving encryption schemes reveal the distribu-
tion information of EHRs and the content of EHRs are not dis-
tributed uniformly. To understand how the cloud server can
learn the content of EHRs from data distributions, we provide
an example of encrypting the field ‘‘gender’’ of EHRs from a
gynaecology hospital. It is normal that the field ‘‘gender’’ of EHRs
contain only ‘‘male’’ or ‘‘female’’. In a gynaecology hospital, the
registered women would much more than men, and therefore
gender ‘‘female’’ will appear much more frequently than ‘‘male’’.
Some existing order-preserving encryption schemes generate the
same ciphertexts for the same plaintexts, such as schemes in [25]
and [14]. The encrypted field ‘‘gender’’ of EHRs may be recovered
by the cloud server because the encrypted EHRs reveals the distri-
bution of ‘‘gender’’ and the cloud server learns that the keyword

‘‘female’’ appears more frequently than ‘‘male’’ in a gynaecology
hospital.

Identical data inference. Identical data inference means that
unauthorized patients may try to recover the content of EHRs
by searching the identical encrypted EHRs. Some existing order-
preserving encryption schemes in a single data source scenario
generate the same ciphertexts for repeated plaintexts, such as
the schemes in [25] and [14]. This characteristic would be used
by honest-but-curious patients for recovering others’ encrypted
EHRs. Take the ‘‘age’’ field of EHRs as an example. Assume that
both Alice and Bob are 38 years old, and the OPE encryption
of ‘‘38’’ is ‘‘357’’. Thus, the encrypted ‘‘age’’ field of both Alice
and Bob are ‘‘357’’. The work-flow of identical data inference is
described as follows. Alice obtains ‘‘357’’ as the OPE encryption
of her age ‘‘38’’. Alice then searches the encrypted ‘‘age’’ field of
EHRs, and finds that Bob’s encrypted age is also ‘‘357’’. Thus, Alice
can infer that Bob is also ‘‘38’’ years old because she owns the
same OPE ciphertexts of ‘‘38’’.

2.3. Design goals

Our goal is to design a privacy-preserving range query scheme
to protect the data content of EHRs from the adversaries and
provide efficient range query services over EHRs in terms of com-
putational overhead. Specifically, the following objectives should
be achieved in our proposed scheme.

Privacy preservation. The first design goal is to protect the
content of EHRs from the adversaries under the above three
threats, i.e., privacy leakage, frequency analysis, and identical data
inference.

Functionality and Efficiency. The second design goal is to
achieve range queries over multi-source EHRs for the doctor and
to improve the computational efficiency than the primary version
of this work [17].

3. Preliminaries and definitions

3.1. Preliminaries

We outline some cryptographic preliminaries, which serve as
the building blocks of the MSOPE scheme. Let κ be the security
parameter.

Symmetric key encryption (SKE). A symmetric key encryp-
tion contains three polynomial-time algorithms, i.e., SKE = (SKE.
Gen, SKE.Enc, SKE.Dec). We use wi,∗ to denote an EHR collected
from Pi, and ŵi,∗ to denote the corresponding encrypted EHR.
Each patient Pi ∈ P generates a secret key ski. Then, the sym-
metric key encryption is described as follows.

• Key Generation: ski ← SKE.Gen(1κ , Pi).
• Encryption: ŵi,∗ ← SKE.Enc(ski, wi,∗).
• Decryption: wi,∗ ← SKE.Dec(ski, ŵi,∗).

Homomorphic encryption (HOM). A homomorphic encryp-
tion contains three polynomial-time algorithms, i.e., HOM =
(HOM.Gen, HOM.Enc, HOM.Dec). We use wi,∗ to denote an EHR
collected from Pi, and Jwi,∗K to denote the corresponding en-
crypted EHR. Each patient Pi ∈ P generates a public key PKi and
a private key SKi of HOM. Then, the homomorphic encryption is
described as follows.

• Key Generation: PKi, SKi ← HOM.Gen(1κ , Pi).
• Encryption: Jwi,∗K← HOM.Enc(PKi, wi,∗).
• Decryption: wi,∗ ← HOM.Dec(SKi, Jwi,∗K).



130 J. Liang, Z. Qin, S. Xiao et al. / Journal of Parallel and Distributed Computing 135 (2020) 127–139

In this paper, we use the Paillier homomorphic encryption [24]
to construct the MSOPE scheme, which is additively homomor-
phic encryption, satisfying

Jw1K · Jw2K = Jw1 + w2K, (1)

where w1 and w2 are plaintexts in W .

3.2. Definitions

We define that the EHRs collected from multiple patients
are merged as a sequence W = {w∗,1, w∗,2, . . . , w∗,n} with n
not necessarily distinct numerical data, where the subscript ∗
is a wildcard denoting a patient in P . Namely, if the jth EHR is
collected from patient Pi, then w∗,j should be expressed as wi,j.
We assume that each EHR has been transformed to numerical
data, because each column of EHRs can be coded to numerical
data. For example, name ‘‘Bob’’ can be coded via ASCII code and
transformed to ‘‘0x426F62’’. We use ni to denote the number of
EHRs provided by patient Pi, i.e.,

n =
k∑

i=1

ni. (2)

We use Wi to denote an EHR sequence provided by Pi, which
involves ni EHRs. We define that the domain of EHRs is D, namely,

1 ≤ wi,j ≤ D, (3)

where i = 1, 2, . . . , k and j = 1, 2, . . . , n.
The MSOPE scheme is constructed based on secret states,

which could be implemented by a self-balancing binary search
tree (AVL tree) [1], because the in-order traversal for an AVL
tree reveals the ascending order of data stored in the AVL tree.
We use T to denote the AVL tree with N nodes, which is also
the secret state of our MSOPE scheme. According to the previous
work [17], for a uniformly chosen EHR sequence of size n, the
expected number of N is

E[N] =
k∑

i=1

D
(
1−

(
D− 1
D

)ni)
, (4)

where

n =
k∑

i=1

ni. (5)

The AVL tree T is stored in the cloud and can be accessed
by P , D, and CS . In T , each node stores a patient’s ID and a
SKE ciphertext of an EHR. For instance, for an EHR wi,x, the
corresponding node of wi,x in T is (Pi, ŵi,x).

We use C = {c∗,1, c∗,2, . . . , c∗,n} to denote the corresponding
MSOPE ciphertext of EHR sequence W , where the subscript ∗ is a
wildcard that denotes a patient in P . For example, we use ci,j to
denote the corresponding MSOPE ciphertext of wi,j. We use M to
denote the ciphertext domain of MSOPE, i.e.,

0 ≤ ci,j ≤ M. (6)

The ciphertexts of our scheme are generated by the secret state
(an AVL tree) with N values. Let H be the minimum height of an
AVL tree, then M = 2H . According to the primary version of this
work [17], H satisfies:

H =
⌈
3
2
log2(N + 1)− 1

⌉
. (7)

In order to store N EHRs on the AVL tree, M should not be less
than 2H . For simplicity, we define M as follows.

M = 2H . (8)

Table 2
Important notations.
Notation Descriptions

CS The cloud server.
P The set of k different patients
Pi The ith patient in P .
D The doctor.
W The EHRs sequence.
wi,j The jth EHR in W , which is collected from Pi .
n The number of values in W .
ni The number of EHRs provided by Pi .
D The domain of W .
T The AVL tree, which is the secret state of MSOPE.
N The number of nodes in T .
C The corresponding MSOPE ciphertext of W .
M The domain of C .
d The subscript of data provided by D.
wd,ub The upper limit of D’s query range.
wd,lb The lower limit of D’s query range.
cd,ub The corresponding MSOPE ciphertext of wd,ub .
cd,lb The corresponding MSOPE ciphertext of wd,lb .

The MSOPE scheme involves a privacy-preserving range query
scheme, which enables the doctor to perform range query over
the encrypted EHRs. We use a subscript d to denote the doctor D.
Furthermore, we use wd,ub and wd,lb to denote the upper bound
and lower bound of the doctor’s query range, respectively, and
cd,ub and cd,lb to denote the corresponding MSOPE ciphertexts
generated. Important notations are summarized in Table 2.

The MSOPE scheme contains four polynomial-time algorithms,
i.e., Secret State Generation, Encryption, Decryption, and Range
Query. We define these four algorithms as follows.

• Secret State Generation: The secret state generation algo-
rithm is an initialization scheme, which generates an empty
AVL tree T and fixes the ciphertext domain M .
• Encryption: For an input EHR wi,x provided by patient

Pi, the encryption algorithm generates the corresponding
MSOPE ciphertext ci,x by inserting a new node t to T and
then updates the secret state T .
• Decryption: For an encrypted EHR ci,x, the decryption al-

gorithm finds the location of ŵi,x in T , and returns wi,x by
decrypting ŵi,x.
• Range Query: For an upper bound wd,ub and a lower bound

wd,lb, the range query algorithm generates cd,ub and cd,lb and
returns the desired EHRs wi,x that satisfies cd,lb ≤ ci,x ≤ cd,ub.

3.3. Security definitions

The security design goal of our MSOPE scheme is to protect the
content of EHRs against privacy leakage, frequency analysis, and
identical data inference threats. We define a strong security notion
for multi-source order-preserving encryption, i.e., indistinguisha-
bility under multi-source ordered chosen plaintext attack (IND-
MSOCPA), which thwarts the aforementioned three threats in
cloud-based eHealth systems. Before we define the IND-MSOCPA
security notion, we define a multi-source randomized order,
which permutates the order of identical EHRs provided by dif-
ferent patients. We define the multi-source randomized order as
follows.

Definition 1 (Multi-source Randomized Order). Consider a
multi-source EHR sequence W = {w∗,1, w∗,2, . . . , w∗,n}, a multi-
source randomized order Π = {π∗,1, π∗,2, . . . , π∗,n} of W
satisfies

∀i, j, w∗,i < w∗,j ⇒ π∗,i < π∗,j,
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and

∀i, j, π∗,i < π∗,j ⇒ w∗,i ≤ w∗,j,

where ∀i ∈ [1, n], π∗,i ∈ [1, n] and ∀i, j ∈ [1, n], i ̸= j ⇒ π∗,i ̸=

π∗,j.

The multi-source randomized order is a permutation of the
order of unnecessarily distinct EHRs collected from different pa-
tients. Namely, the multi-source randomized order not only re-
veals the order of distinct EHRs but also randomizes the order of
identical EHRs collected from different patients. For example, Pi
provides Wi = {1, 2, 4, 7} and Pj provides Wj = {1, 3, 5, 7}. The
integrating EHR sequences is W = {1, 1, 2, 3, 4, 5, 7, 7}. Possible
multi-source randomized orders for W are Π1 = {1, 2, 3, 4, 5, 6,
7, 8}, Π2 = {2, 1, 3, 4, 5, 6, 7, 8}, Π3 = {1, 2, 3, 4, 5, 6, 8, 7}, and
Π4 = {2, 1, 3, 4, 5, 6, 8, 7}. We can find that the order of EHR ‘7’
is different because it is an identical EHR provided by different
patients. In addition, an example with different frequency of Π1
is W ′ = {1, 2, 3, 3, 5, 5, 7, 8}.

Therefore, the leakage of multi-source randomized order from
the protected EHRs will not leak the content of EHRs under the
above three threats, because:

1. The multi-source randomized order denotes the order in-
formation of an EHR sequence, and hence only leaks the
order information of EHR sequence, which protects the EHR
content from privacy leakage.

2. The multi-source randomized order randomizes the or-
der of identical EHRs provided by different patients and
therefore hides the frequency information of EHR contents.

3. The multi-source randomized order randomizes the order
of distinct EHRs provided by different patients. Then, the
order of identical EHRs provided by different patients will
be distinct, and therefore protects the content of EHRs from
identical data inference.

The IND-MSOCPA security notion guarantees that MSOPE ci-
phertexts only leaks the multi-source randomized order, and
therefore MSOPE ciphertexts are resistant to privacy leakage, fre-
quency analysis, and identical data inference threats. Namely, the
corresponding ciphertexts of two plaintext sequences with the
same multi-source randomized order should be indistinguishable.

The IND-MSOCPA security game involves an adversary A, a
challenger C, and k patients in P . A generates two sequences
W 0
= {w0

∗,1, w
0
∗,2, . . . , w

0
∗,n} and W 1

= {w1
∗,1, w

1
∗,2, . . . , w

1
∗,n}

with n EHRs, which have the same multi-source randomized
order relation. Namely, when 1 ≤ i, j ≤ n, w0

∗,i < w0
∗,j ⇔ w1

∗,i <

w1
∗,j. Note that the subscript ∗ denotes a patient P∗ ∈ P , which

is defined by A. Namely, when A defined that the ith EHR is
provided by Px, then w0

∗,i = w0
x,i and w1

∗,i = w1
x,i. We define the

IND-MSOCPA security game as follows.

IND-MSOCPA security game.

1 A sends W 0 and W 1 to the challenger.
2 C chooses a random bit b ∈ {0, 1}.
3 C and P engage in n rounds. At round x, where x =

1, 2, . . . , n:

(1) C sends wb
i,x to Pi, where Pi denotes a patient who

provides the ith EHR and is defined by A.
(2) Pi returns ci,x to C.

4 C returns the corresponding OPE ciphertext sequence C =
{c∗,1, c∗,2, . . . , c∗,n} to A, where the subscript ∗ is a wild-
card denoting a patient in P .

5 A outputs b′, its guess for b. ■

We say that A wins the game if his guess for b is correct,
i.e., b′ = b. Let winA be the probability that indicates the success
of the adversary wins the above game. We define the indistin-
guishability under a multi-source ordered chosen plaintext attack
(IND-MSOCPA) notion as follows.

Definition 2. IND-MSOCPA: indistinguishability under multi-
source ordered chosen plaintext attack. A multi-source order-
preserving encryption scheme is IND-MSOCPA secure if for all
p.p.t. adversaries, Pr[winA] ≤

1
2 .

When an MSOPE scheme is IND-MSOCPA secure, then the
leakage of the MSOPE scheme is a multi-source randomized order
of the plaintexts. With such characteristics, an IND-MSOCPA se-
cure scheme thwarts three threats, i.e., privacy leakage, frequency
analysis, and identical data inference threats.

4. The MSOPE scheme

4.1. Overview of the MSOPE scheme

The MSOPE scheme is designed for privacy-preserving range
query on encrypted outsourced EHRs. The work-flow of privacy-
preserving range query involves two phases, i.e., EHRs outsourc-
ing and EHRs querying, which are described as follows.

EHRs outsourcing. In this phase, CS invokes the Secret State
Generation algorithm to generate an empty AVL tree, and fix
the ciphertext domain. Then, each patient Pi ∈ P invokes the
Encryption algorithm to encrypt his/her EHRs, and later uploads
the encrypted EHRs to CS .

EHRs querying. In this phase, there are two different data
users. On the one hand,D invokes the Range Query to encrypt the
upper limit and lower limit of EHRs and then obtains the required
encrypted EHRs. Later D invokes the Decryption algorithm to
decrypt the required EHRs. On the other hand, Pi could query
his/her EHRs and invokes the Decryption algorithm to decrypt
the outsourced encrypted EHRs.

4.2. Construction of the MSOPE scheme

The MSOPE scheme is constructed based on the multi-source
randomized order, which permutates the order of identical data
from different patients randomly. We implement the multi-source
randomized order by constructing the secret state T secretly, and
later generate the order-preserving ciphertexts for EHRs collected
from multiple patients based on T . The MSOPE scheme contains
four polynomial-time algorithms, i.e., Secret State Generation,
Encryption, Decryption, and Range Query.

Before we illustrate these four algorithms, we propose a se-
cure comparing protocol, which compares the EHRs provided by
different patients secretly. The secure comparing protocol is the
key technique to generate the secret state T with EHRs provided
by multiple patients. The output of the secure comparing protocol
not only reflects the numerical order of the input EHRs but also
randomizes the numerical order of two identical EHRs.

Secure Comparing Protocol. The secure comparing protocol is
a secure two-party computation protocol involving two patients,
i.e., Pi and Pj. We utilize Paillier cryptosystem [24] (an additive
homomorphic encryption) to construct it. The input of the secure
comparing protocol is two EHR ciphertexts encrypted by SKE,
i.e., ŵi,x and ŵj,y, and the output of the secure comparing protocol
is the comparison result R, which is one bit size denoting whether
wi,x is less than wj,y. The secure comparing protocol is described
in Algorithm 1.

In our secure comparing protocol, Pi uses bi to randomize the
comparison result R. We show the relation between bi and R in
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Algorithm 1 Secure Comparing Protocol
Input: ŵi,x and ŵj,y.
Output: R.
1: Pj runs HOM.Gen(1κ , Pj), generates a public key PKj and a

private key SKj, and sends PKj to Pi. Then Pi and Pj decrypts
ŵi,x and ŵj,y to obtain wi,x and wj,y, respectively.

2: Pj uses PKj to encrypt (−wj,y) and sends J−wj,yK to Pi.
3: Pi computes Jwi,xK and flips a random coin bi ∈ {0, 1}. Next, Pi

randomly chooses two large random numbers ri and r ′i , with
ri > r ′i . Then Pi calculates:

V = (Jwi,xK·J−wj,yK)(−1)
bi ·ri ·J−r ′i K = Jri·(−1)bi ·(wi,x−wj,y)−r ′i K.

Finally, Pi sends V to Pj.
4: Pj decrypts V . If HOM.Dec(SKj, V ) < 0, Pj sends result = 0 to

Pi; Otherwise, Pj sends result = 1 to Pi.
5: Pi calculates R = result ⊕ bi.

Table 3. We use R = 0 to denote wi,x < wj,y and R = 1 to denote
wi,x > wj,y. Since Pi chooses bi randomly, the compare result R
of two identical EHRs is randomized. In our two-party comparing
protocol, Pi uses ri and r ′i to randomize J(−1)bi ·(wi,x−wj,y)K. Thus,
Pj cannot recover (−1)bi · (wi,x−wj,y) by decrypting V . Therefore,
our secure comparing protocol not only reflects the numerical
order of the input EHRs, but also randomizes the numerical order
of two identical EHRs.

Now we illustrate the four polynomial-time algorithms as
follows, i.e., Secret State Generation, Encryption, Decryption,
and Range Query.

Secret State Generation. The secret state generation algorithm
generates the secret state T and the ciphertext domain M . We
present the secret state generation algorithm in Algorithm 2.

Algorithm 2 Secret State Generation
Input: N/A.
Output: T and M .
1: CS generates an empty AVL tree T as the secret state.
2: CS fixes M , which can be estimated by equation (7) and (8).

Encryption. The MSOPE encryption algorithm generates a
MSOPE ciphertext ci,x for EHR wi,x that provided by Pi. The MSOPE
encryption algorithm involves three algorithms, i.e., Tree Node
Construction, Secret State Update, and Ciphertext Generation. We
firstly present the encryption algorithm in Algorithm 3, and later
describe these three algorithms.

Algorithm 3 Encryption
Input: wi,x.
Output: ci,x.
1: Pi invokes the Tree Node Construction algorithm to encrypt

wi,x and generate the message ti,x as and AVL tree node.
2: Pi invokes the Secret State Update algorithm to insert the tree

node ti,x to the AVL tree T .
3: CS invokes the Ciphertext Generation algorithm to generate

order-preserving ciphertexts according to T .

Tree Node Construction. In the tree node construction algo-
rithm, the patient uses his SKE key to encrypt wi,x, and later
generates the tree node message ti,x. We present the tree node
construction algorithm in Algorithm 4.

Table 3
A description of our secure comparing protocol.
Case bi result R = result ⊕ bi
wi,x < wj,y 0 0 0
wi,x < wj,y 1 1 0
wi,x = wj,y 0 0 0
wi,x = wj,y 1 0 1
wi,x > wj,y 0 1 1
wi,x > wj,y 1 0 1

Algorithm 4 Tree Node Construction
Input: wi,x.
Output: ti,x.
1: Pi uses his SKE key ski to encrypt the EHR wi,x, and obtains

the corresponding ciphertext ŵi,x.
2: Pi generates the message ti,x = (Pi, ŵi,x) as an AVL tree node.

Secret State Update. In the secret state update algorithm, Pi
updates the secret state by inserting the message (Pi, ŵi,x) to the
AVL tree T , if (Pi, ŵi,x) has not been in T . The secret state update
algorithm can be described in Algorithm 5.

Algorithm 5 Secret State Update
Input: ti,x = (Pi, ŵi,x)
Output: T
1: If the node (Pi, ŵi,x) has already in T , the secret state will

not be updated. The secret state update algorithm outputs the
prior secret state T and ends this algorithm. Otherwise, goes
to the next step.

2: Pi asks CS for the root node of T .
3: CS returns a node t to Pi.
4: If the node t is provided by Pi, i.e., t = (Pi, ŵi,r ), then Pi

decrypts ŵi,r and compares wi,x with wi,r . If the node t was
not provided by Pi, i.e., t = (Pj, ŵj,r ), then Pi invokes the
secure comparing protocol to compares wi,x with wj,r secretly.

5: If the compared result shows that wi,x < wi,r or wi,x < wj,r ,
then Pi asks CS for the left child node of t in T . Otherwise, Pi
asks CS for the right child node of t in T .

6: If CS does not arrive at an empty spot of T , CS returns the next
qualified child node to Pi and goes back to step 3; otherwise,
it goes to the next step.

7: CS inserts a new node (Pi, ŵi,x) to the AVL tree T and balances
the AVL tree T . Then secret state T is updated after the new
node insertion and the balance operation.

Ciphertext Generation. In the ciphertext generation algorithm,
the cloud server generates order-preserving ciphertexts for EHRs
stored in T . The ciphertexts are generated from T and the ci-
phertext domain M . We use recursion to generate the order-
preserving ciphertexts for EHRs in T . We use Min and Max to
denote the lower bound and the upper bound of recursion re-
spectively. The ciphertext generation algorithm returns the corre-
sponding order-preserving ciphertext of wi,x for Pi. The ciphertext
generation algorithm can be described in Algorithm 6.

Decryption. The MSOPE decryption algorithm is used for Pi to
decrypt his encrypted EHR ci,x. The decryption algorithm can be
described in Algorithm 7.

Range Query. The range query algorithm is a variant of the En-
cryption algorithm, which is used for D to perform a range query
over encrypted multi-source EHRs. When D wants to search
the desired EHRs that lie between the upper bound wd,ub and
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Algorithm 6 Ciphertext Generation
Input: Min, Max, and T .
Output: ci,x.
1: CS initializes Min to be −1, and Max to be M . Then CS starts

ciphertext generation phase from the root node in T .
2: For a node t = (P∗, ŵ∗,r ) in T , CS calculates

c∗,r =
⌈
Max+Min

2

⌉
.

Then CS stores (P∗, ŵ∗,r , c∗,r ).
3: If the left subtree of t is not empty, CS resets Max to c∗,r , and

generates the order-preserving ciphertext for left child of t by
using the same procedure in Step 2.

4: If the right subtree of t is not empty, CS resets Min to c∗,r ,
and generates the order-preserving ciphertext for left child of
t by using the same procedure in Step 2.

5: Finally, CS generates order-preserving ciphertexts for EHRs in
T . Then CS returns ci,x to Pi.

Algorithm 7 Decryption
Input: ci,x.
Output: wi,x.
1: Pi sends ci,x to CS.
2: CS searches ci,x in T , and returns the corresponding SKE

ciphertext ŵi,x to Pi.
3: Pi decrypts ŵi,x by using ski, and obtains the corresponding

EHR wi,x.

the lower bound wd,lb, he firstly encrypts wd,ub and wd,lb, and
generates cd,ub and cd,lb by using the Encryption algorithm. Note
that when applying the secure comparing protocol, the random
coin bd chosen by D should be fixed, i.e., when encrypting the
upper bound wd,ub, bd should always be 1, and when encrypting
the lower bound wd,lb, bd should always be 0. By doing so, for
each EHR wi,x from Pi, if wi,x = wd,ub, then ci,x < cd,ub, else if
wi,x = wd,lb, then ci,x > cd,lb. Then, CS returns a set of encrypted
nodes {t} in T whose OPE ciphertext c satisfies cd,lb ≤ c ≤ cd,ub.
Note that each node ti,x = (Pi, ŵi,x). Finally, D uses the SKE key
to decrypt the corresponding SKE encrypted data. If ti,x satisfies
cd,lb ≤ ci,x ≤ cd,ub, then D uses ski to decrypt ŵi,x and obtains the
corresponding EHR wi,x. We present the Range Query algorithm
in Algorithm 8.

Algorithm 8 Range Query
Input: T , wd,lb and wd,ub.
Output: any EHR wi,x in T with wd,lb ≤ wi,x ≤ wd,ub.
1: D uses encrypts wd,ub and wd,lb, and generates cd,ub and cd,lb.
2: CS returns a set of encrypted nodes {t} in T whose OPE

ciphertext c satisfies cd,lb ≤ c ≤ cd,ub.
3: D uses the SKE key to decrypt the corresponding SKE en-

crypted data. Namely, if ti,x satisfies cd,lb ≤ ci,x ≤ cd,ub, then
D uses ski to decrypt ŵi,x and obtains the corresponding EHR
wi,x.

4.3. Examples of the MSOPE scheme

We provide two examples to describe our scheme, i.e., one
for the Encryption algorithm, and the other for the Range Query
algorithm.

Fig. 2 is an example for our Encryption algorithm, includ-
ing three patients P1, P2, P3, and a cloud server CS , which is
described as follows.

(1) P1, P2, and P3 want to outsource their EHRs {15, 19, 81},
{3, 1, 14}, and {91, 15, 15} to CS , respectively.

(2) P1, P2, and P3 use SKE encryption to encrypt their EHRs
and construct AVL tree nodes.

(3) P1, P2, and P3 help CS to construct the secret state (the AVL
tree) by inserting the tree node to the AVL tree (invoking
the secret state update algorithm). Note that P3 only inserts
{91, 15} to the secret state because repeated EHR 15 only
inserts once. In the secret state, we can find that identical
EHR 15 provided by P1 and P3 have different positions in
the AVL tree because our comparing protocol randomizes
the compared result of 15 provided by different patients.

(4) CS invokes the ciphertext generation algorithm to generate
the MSOPE ciphertexts. Finally, we can find that the corre-
sponding ciphertexts of EHRs {15, 19, 81, 3, 1, 14, 91, 15,
15} are {6, 10, 12, 2, 1, 4, 14, 8, 8}.

Fig. 3 is an example for the Range Query algorithm, which
involves D and CS , and is described as follows.

(1) D sets the lower bound and upper bound of range query
domain to be 15 and 18, respectively, i.e., wd,lb = 15, and
wd,ub = 18.

(2) D uses his SKE key to encrypt wd,lb and wd,ub, and later
constructs AVL tree nodes for these two encrypted EHRs.

(3) D inserts the upper bound and the lower bound of his
query to the secret states. Note that when inserting ŵd,lb to
the secret state, the random coin bd chosen by D in secure
comparing protocol is 0, i.e., bd = 0. When inserting ŵd,ub,
then bd = 1. Afterwards, wd,lb and wd,ub will be inserted to
the secret state at the positions shown in Fig. 3. Then CS
updates the MSOPE ciphertexts for nodes in secret state.

(4) CS returns ‘0x97bcd7’ and ‘0xe652af ’ to D because the
corresponding MSOPE ciphertext of these two encrypted
EHRs are less than cd,ub and larger than cd,lb.

(5) D decrypts ‘0x97bcd7’ and ‘0xe652af ’ by using the SKE key
provided by the owner of these two EHRs.

(6) D obtains the corresponding EHRs, i.e., ‘15’ and ‘15’.

4.4. Security analysis

The security design goal of the MSOPE scheme is to protect the
content of EHRs against privacy leakage, frequency analysis, and
identical data inference threats. As we have defined in Section 3.3,
the IND-MSOCPA security definition guarantees that schemes
only leak the multi-source randomized order of EHRs, and thus
protect EHRs against the aforementioned threats. We assume
that SKE encryptions are computationally indistinguishable from
random values, HOM encryption is IND-CPA secure [24]. We state
the security properties of the MSOPE scheme in Theorem 1.

Theorem 1. The multi-provider order-preserving encryption scheme
is secure against multi-source ordered chosen plaintext attack.
Namely, our scheme is IND-MSOCPA secure.

We provide formal security proof for Theorem 1 in Appendix B.

5. Performance analysis and evaluations

5.1. Performance analysis

We analyze four polynomial-time algorithms in MSOPE in
terms of computational complexity, i.e., Secret State Generation,
Encryption, Decryption, and Range Query.

The Secret State Generation algorithm creates an empty AVL
tree as secret states, and thus the computational complexity is
O(1).
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Fig. 2. An example of the Encryption algorithm.

Fig. 3. An example of the Range Query algorithm.

The Encryption algorithm involves three algorithms. The Tree
Node Construction algorithm encrypts an EHR and generates a se-
cret state ti,x, whose computational complexity is O(1). The Secret
State Update algorithm invokes the secure comparing protocol
to compare the node ti,x with O(logN) nodes in the AVL tree T ,
which requires complex computation such as modular exponen-
tiation computation. Thus, the computational complexity of the
Secret State Update algorithm is O(logN). The Ciphertext Gener-
ation algorithm is a pre-order traversal of the AVL tree, whose
computational complexity is O(N logN). Since the Secret State
Update algorithm requires complex computation, which requires
more time than the pre-order traversal in Ciphertext Generation
phase, the computational complexity of Encryption algorithm is
O(logN).

The Decryption algorithm finds the corresponding SKE cipher-
text of an MSOPE ciphertext in the AVL tree and decrypts the SKE
ciphertext. Since the depth of the AVL tree is O(logN), searching
a qualified node in the AVL tree requires O(logN) comparison
operations. Since ciphertexts encrypted by order-preserving en-
cryption preserve the order information of the plaintexts, the
comparison operations could be performed in the ciphertexts
instead of plaintexts. Therefore, the computational complexity of
Decryption is O(logN).

The Range Query algorithm encrypts the upper bound and the
lower bound of EHRs, searches for the desired encrypted EHRs,
and decrypts encrypted EHRs. The encryption phase requires
O(logN) complex computations. The search phase requires O(N)
operations. The decryption phase requires O(N) operations. Since
the encryption phase requires complex computations, which re-
quires more time than other phases. Therefore, the computational
complexity of Range Query is O(logN). We summarized the
computational complexity results in Table 4.

5.2. Performance evaluations

The experiments are conducted on a 64-Bit workstation with
an Intel Xeon E-1226 CPU with 3.30 GHz and 32 GB RAM. We

Table 4
Computational complexity.
Algorithm Computational Complexity

Secret State Generation O(1)
Encryption O(logN)
Decryption O(logN)
Range Query O(logN)

use the Paillier cryptosystem with 1024 bit key length to im-
plement our comparing protocol. We implement our scheme
(MSOPE), the conference version in [17] (MPOPE), the scheme
in [25] (MOPE), and the scheme in [13] (FHOPE) in Java 1.8. In
our experiments, we assume that each patient encrypts the same
number of EHRs. Namely, when the number of EHRs is n and the
number of patients is k, then each patient encrypts n/k EHR items.
Our evaluations target on the performance of the Encryption
algorithm and the Range Query algorithm, because the Secret
State Generation algorithm and the Decryption algorithm are
very lightweight.

5.2.1. Time cost of Encryption algorithm in MSOPE
To evaluate the performance of Encryption algorithm in

MSOPE, we first evaluate the time delay of Encryption algorithm
with respect to the number of patients k and the number of
EHRs n. Fig. 4 presents the average time cost of Encryption
algorithm with respect to k. In this experiment, we evaluate
the average running time when k = 2, 4, 8, 16, 32 and n =
4000, 16000, 64000. The experiment results show that when k
increases exponentially, the average time cost grows logarithmi-
cally. It demonstrates that when k grows, the total number of
EHRs in the AVL tree grows, and therefore the depth of AVL tree
grows (according to Eqs. (4) and (7)), which requires more time
to update the secret state.

Fig. 5 shows the time cost of Encryption algorithm with
respect to n. In this experiment, we evaluate the average running
time when k = 2, 8, 32 and n = 4000, 8000, 16000, 32000,
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Fig. 4. The time cost of Encryption algorithm in respect of k.

Fig. 5. The time cost of Encryption algorithm in respect of n.

64000. We can observe that the average running time firstly
increases and then decreases when n grows. Due to the increased
depth of the secret states, the secret state update time increases
and therefore the average running time increases firstly. Accord-
ing to Eq. (4), the expected number of N is k∗D. When n is larger
than k∗D, the Encryption algorithm does not need to update the
secret state because these identical EHRs from the same patients
do not need to be inserted to the secret state, leading to the
decreased average running time.

Since MOPE [25], FHOPE [13], and MPOPE [17] schemes
achieve similar security properties as compared to the MSOPE
scheme, we compare the time cost of Encryption of the MSOPE
scheme with existing works in Table 5. Table 5 presents a com-
parison of the MSOPE scheme with MOPE [25], FHOPE [13], and
MPOPE [17] in single patient scenario, i.e., k = 1, because existing
order-preserving encryption schemes in [25] and [13] mainly
consider a scenario with only one data source. In the single data
source scenario, both the MPOPE scheme and the MSOPE scheme
are not required to invoke the secure comparing protocol, and
therefore achieve better efficiency than that of the multiple data
source scenario.

Table 5
A comparison of encryption time of MSOPE with several existing methods.

N = 4000 N = 8000 N = 16000 N = 32000 N = 64000

MOPE [25] ∼ 1067 µs ∼ 2065 µs ∼ 3545 µs ∼ 5106 µs ∼ 5996 µs
FHOPE [13] ∼ 1153 µs ∼ 2737 µs ∼ 5838 µs ∼ 12543 µs ∼ 26825 µs
MPOPE [17] ∼ 1133 µs ∼ 2093 µs ∼ 3679 µs ∼ 5126 µs ∼ 6118 µs
MSOPE ∼ 834 µs ∼ 1687 µs ∼ 2968 µs ∼ 4168 µs ∼ 4811 µs

Fig. 6. A comparison of encryption time of MSOPE with MPOPE when k =
2, 8, 32. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

To further explore the practicality of the MSOPE scheme, we
provide comparisons of MSOPE with MPOPE, which achieves the
same security properties with the MSOPE scheme and is appro-
priate for multiple data source scenario. Fig. 6 presents total
time cost of the Encryption algorithm of MSOPE with MPOPE
when the number of patients k = 2, 8, 32 and the total number
of EHRs n = 4000, 8000, 16000, 32000, 64000. The black solid
line with square markers shows that when k = 2, the MSOPE
scheme requires 134.5 s and 1275.2 s to encrypt 4000 and 64 000
EHRs, respectively. The black dash–dot line with square markers
presents that when k = 2, the MPOPE scheme requires 403.4 s
and 3786.9 s to encrypt 4000 and 64 000 EHRs, respectively.
Meanwhile, the red solid line with roundness markers shows that
when k = 8, the MSOPE scheme requires 252.1 s and 4271.0 s to
encrypt 4000 and 64 000 EHRs respectively, while the red dash–
dot line with roundness markers shows that the MPOPE scheme
requires 744.7 s and 12787.6 s, respectively. Last but not the
least, the blue solid line with rhombic markers shows that when
k = 32, the MSOPE scheme requires 276.7 s and 5650.4 s to
encrypt 4000 and 64 000 EHRs respectively, while the blue dash–
dot line with rhombic markers demonstrates that the MPOPE
scheme requires 848.2 s and 17167.0 s, respectively.

Fig. 6 shows that when n increases exponentially, the running
time of Encryption algorithm in MSOPE and MPOPE increases
linearly. Both the MSOPE scheme and the MPOPE scheme achieve
the same security property but uses different secure comparing
protocols. The comparison results of running time of Encryption
algorithm show that our MSOPE scheme is about five times faster
than the MPOPE scheme, which demonstrates that our secure
comparing protocol is more efficient than the secure comparing
protocol in [17], and therefore our MSOPE is more efficient than
MPOPE in terms of computational overhead of the Encryption
algorithm.
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Fig. 7. A comparison of range query time of MSOPE with MPOPE, when k =
2, 8, 32. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5.2.2. Time cost of Range Query algorithm in MSOPE
We also evaluate the time cost of Range Query algorithm,

which returns qualified EHRs to D, and compare the total time
cost of MSOPE with MPOPE. Note that the Range Query algorithm
is a variant of Encryption algorithm, because D is required to
encrypt the upper bound and the lower bound of query range
and obtain the corresponding ciphertexts that less than the en-
crypted upper bound but larger than the lower bound. Fig. 7
presents the comparison results when the number of patients
k = 2, 8, 32 and the total number of EHR item in the public
cloud n = 4000, 8000, 16000, 32000, 64000. The black solid
line with square markers shows that when k = 2, the MSOPE
scheme requires 134.5 ms and 169.1 ms to query qualified EHRs
when 4000 and 64 000 encrypted EHRs stored in the public cloud
respectively, while the black dash–dot line with square markers
demonstrates that the MPOPE scheme requires 605.4 ms and
760.8 ms for performing range query, respectively. The red solid
line with roundness markers shows that when k = 8, the MSOPE
scheme requires 135.3 ms and 179.4 ms to query qualified EHRs
when 4000 and 64 000 encrypted EHRs stored in the public cloud,
respectively, while the red dash–dot line with roundness markers
demonstrates that the MPOPE scheme requires 609.0 ms and
807.5 ms for performing range query, respectively. The blue solid
line with rhombic markers shows that when k = 32, the MSOPE
scheme requires 135.5 ms and 182.5 ms to query qualified EHRs
when 4000 and 64 000 encrypted EHRs stored in the public cloud,
respectively, while the blue dash–dot line with rhombic markers
demonstrates that the MPOPE scheme requires 609.9 ms and
821.3 ms for performing range query, respectively.

Fig. 7 shows that when n increases exponentially, the running
time of Range Query algorithm in MSOPE and MPOPE increases
linearly. Both the MSOPE scheme and the MPOPE scheme achieve
privacy-preserving range query by encrypting the upper limit and
lower limit of query and comparing the encrypted EHRs with
the encrypted upper limit and encrypted lower limit. Therefore,
the running time of Range Query algorithm of both MSOPE and
MPOPE are dependent on the running time of Encryption algo-
rithm. The comparison results of running time of Range Query
algorithm show that our MSOPE scheme is about five times faster
than MPOPE, which demonstrates that our secure comparing
protocol is more efficient than the secure comparing protocol

in [17], and therefore our MSOPE is more efficient than MPOPE
in terms of time overhead of the Range Query algorithm.

6. Related works

With the development of cloud computing, sensitive personal
data has been outsourced to the public cloud [33], such as elec-
tronic health records [11,18], social network data [20,23], and
location data [6,10,22,34]. However, the risk of outsourced data
breach becomes a roadblock of using the cloud-based applica-
tions [19], especially in cloud-based eHealth systems [7,30,31].
The main reason is that once the sensitive EHRs is outsourced to
a public cloud, the content of EHRs will be exposed to the cloud
server directly, which may leak the patients’ data privacy [37,39].
Therefore, privacy issues have become one of the most impor-
tant issues in cloud-based eHealth systems [16,40]. To extract
the value behind EHRs while protecting the privacy, privacy-
preserving range query has been regarded as an important issue
in cloud-based eHealth systems [9,21].

Order-preserving encryption is an efficient and privacy-
preserving method for range query, which jointly considers ef-
ficiency and security [28]. Agrawal et al. proposed the first order-
preserving encryption scheme in [2]. Boldyreva et al. [3] proposed
the ideal security notion for order-preserving encryption: indis-
tinguishability under ordered chosen plaintext attack (IND-OCPA),
which leaks no information about data contents except the or-
der of data (the minimum requirement for the order-preserving
property). Order-preserving encryption schemes with IND-OCPA
security only leaks the order information of plaintexts, and thus is
secure against privacy leakage. Popa et al. proposed the first IND-
OCPA secure order-preserving encryption scheme by constructing
a stateful order-preserving encoding method via binary search
tree [25]. Considering the high communication overhead of the
scheme in [25], Kerschbaum and Schropfer proposed an efficient
and IND-OCPA secure order-preserving encryption scheme [14].
Since the schemes in [25] and [14] leak the frequency infor-
mation of plaintexts, Kerschbaum proposed a stronger security
notion for order-preserving encryption: indistinguishability under
frequency analyzing ordered chosen plaintext attack (IND-FAOCPA),
which implies IND-OCPA and is secure against frequency analysis
threats [13]. Then, Kerschbaum proposed an efficient and IND-
FAOCPA secure scheme, which is secure against privacy leakage
and frequency analysis threats. However, the scheme in [13] incurs
a high storage space requirement. Inspired by the obfuscation
technique, Boneh et al. proposed an order-revealing encryption
scheme via multi-linear map [5]. Roche et al. proposed a partial
order-preserving encryption scheme which achieves IND-FAOCPA
security notion while providing extremely fast insertion and effi-
cient search [29]. Lewi and Wu provided a novel order-revealing
encryption against inference attack [15]. Aforementioned order-
preserving encryption schemes consider a system model with a
data provider and a cloud server, which are more of theoretic
attempts to push the security notions to the limit. Yet, these
schemes are not applicable in cloud-based eHealth systems, be-
cause they cannot support range queries on EHRs from multiple
patients.

In this paper, we mainly focus on a multi-source scenario,
i.e., cloud-based eHealth systems. In this scenario, an authorized
doctor can perform privacy-preserving range queries on EHRs
collected from multiple patients. To achieve the functionality goal
and security goal, some multi-source order-preserving encryption
schemes have been proposed. Xiao et al. proposed the first multi-
source order-preserving encryption [32]. Their scheme achieves
the multi-source property by using a group of key agents to
enable distributed encryption. Yet, their scheme cannot resist
threats such as privacy leakage and frequency analysis. Yao et al.
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proposed a multi-source order-preserving encryption scheme for
cloud-based eHealth applications by using monotone minimal
perfect hash function [36]. The scheme in [36] is a one-wayness
order-preserving encryption scheme whose security is guaran-
teed by the random order-preserving function (ROPF). However,
Boldyreva et al. proved that one-wayness order-preserving en-
cryption schemes leak the value of any plaintext as well as the
distance between any two plaintexts [4], and therefore their
scheme cannot resist threats such as privacy leakage and fre-
quency analysis. Our primary work in [17] improved the security
property of order-preserving encryption, which is secure against
threats such as privacy leakage, frequency analysis, and identical
data inference. Different from [17], we develop an efficient and
secure comparing protocol, which significantly improves the effi-
ciency of encryption and range query in terms of computational
overhead. The experimental evaluations show that our proposed
scheme is about five times faster than the primary version of
this work [17]. Meanwhile, compared with order-preserving en-
cryption schemes for cloud-based eHealth systems [32,35,36], our
proposed scheme significantly improves the security property,
and resists threats such as privacy leakage, frequency analysis, and
identical data inference.

7. Conclusions

In this paper, we have identified three threats, i.e., privacy
leakage, frequency analysis, and identical data inference in cloud-
based eHealth systems. Besides, we have defined the security
notion of IND-MSOCPA for multi-source order-preserving encryp-
tion to capture the security properties that resist the threats.
Furthermore, we have proposed the MSOPE scheme to enable
doctors to perform privacy-preserving range queries over out-
sourced EHRs from multiple patients in cloud-based eHealth sys-
tems. We have provided a formal security proof to show that
the MSOPE scheme is IND-MSOCPA secure. Extensive perfor-
mance experiments demonstrate that the MSOPE scheme is more
efficient than the primary version of this work.

Regarding the future works, we will investigate how to con-
struct privacy-preserving range query schemes on other crypto-
graphic primitives for cloud-based eHealth systems. Since
existing order-preserving encryption techniques cannot protect
the order information of EHR contents against cloud servers,
which may enable adversaries to extract information about EHRs
from the leaked order. Meanwhile, we will try to investigate
secure comparing protocols, which could further reduce the time
delay of order-preserving encryption based privacy-preserving
range query schemes. Last but not least, we will try to further de-
sign privacy-preserving range query schemes for multi-attribute
EHRs.
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Appendix A. Correctness of the secure comparing protocol

The goal of Algorithm 1 is to compare wi,x with wj,y secretly,
and outputs one bit size compare result R. We find 6 cases for the
compare result R. When wi,x < wj,y, then R = 0. When wi,x < wj,y,
then R = 1. When wi,x = wj,y, then the value of R depends on
a random bit bi. Namely, when bi = 0 and wi,x = wj,y, then
R = 0; when bi = 1 and wi,x = wj,y, then R = 1. We analyze
the correctness of the secure comparing protocol in Algorithm 1
as follows.

1. When wi,x < wj,y and bi = 0, then Pi calculates

V = Jri · (−1)bi · (wi,x −wj,y)− r ′i K = Jri · (wi,x −wj,y)− r ′i K,

and sends V to Pj. After decrypting V , since wi,x < wj,y and
ri > r ′i > 0,

HOM.Dec(SKj, V ) < 0.

Thus, Pj sends result = 0 to Pi. Since bi = 0 and result = 0,

R = result ⊕ bi = 0⊕ 0 = 0.

2. When wi,x < wj,y and bi = 1, then Pi calculates

V = Jri · (−1)bi · (wi,x −wj,y)− r ′i K = Jri · (wj,y −wi,x)− r ′i K,

and sends V to Pj. After decrypting V , since wi,x < wj,y and
ri > r ′i > 0,

HOM.Dec(SKj, V ) > 0.

Thus, Pj sends result = 1 to Pi. Since bi = 1 and result = 1,

R = result ⊕ bi = 1⊕ 1 = 0.

3. When wi,x = wj,y and bi = 0, then Pi calculates

V = Jri · (−1)bi · (wi,x − wj,y)− r ′i K = J−r ′i K,

and sends V to Pj. After decrypting V , since r ′i > 0,

HOM.Dec(SKj, V ) < 0.

Thus, Pj sends result = 0 to Pi. Since bi = 0 and result = 0,

R = result ⊕ bi = 0⊕ 0 = 0.

4. When wi,x = wj,y and bi = 1, then Pi calculates

V = Jri · (−1)bi · (wi,x − wj,y)− r ′i K = J−r ′i K,

and sends V to Pj. After decrypting V , since r ′i > 0,

HOM.Dec(SKj, V ) < 0.

Thus, Pj sends result = 0 to Pi. Since bi = 1 and result = 0,

R = result ⊕ bi = 0⊕ 1 = 1.

5. When wi,x > wj,y and bi = 0, then Pi calculates

V = Jri · (−1)bi · (wi,x −wj,y)− r ′i K = Jri · (wi,x −wj,y)− r ′i K,

and sends V to Pj. After decrypting V , since wi,x > wj,y and
ri > r ′i > 0,

HOM.Dec(SKj, V ) > 0.

Thus, Pj sends result = 1 to Pi. Since bi = 0 and result = 1,

R = result ⊕ bi = 1⊕ 0 = 1.

6. When wi,x > wj,y and bi = 1, then Pi calculates

V = Jri · (−1)bi · (wi,x −wj,y)− r ′i K = Jri · (wj,y −wi,x)− r ′i K,

https://doi.org/10.1016/j.jpdc.2019.08.011


138 J. Liang, Z. Qin, S. Xiao et al. / Journal of Parallel and Distributed Computing 135 (2020) 127–139

and sends V to Pj. After decrypting V , since wi,x < wj,y and
ri > r ′i > 0,

HOM.Dec(SKj, V ) < 0.

Thus, Pj sends result = 0 to Pi. Since bi = 1 and result = 0,

R = result ⊕ bi = 0⊕ 1 = 1.

Therefore, the correct of the secure comparing protocol has
been verified.

Appendix B. Security proof

We provide a formal security proof for Theorem 1 as follows.

Proof. We prove the security goal of our scheme by induction.
Consider that when no EHR is encrypted, our scheme starts with
the same initial state which is independent of the bit b. Namely,
the corresponding MSOPE ciphertexts of w0

∗,1 and w1
∗,1 are identi-

cal. Then, we assume that it holds for i rounds, i.e., both the EHR
sequences w0

∗,1, w
0
∗,2, . . . , w

0
∗,i and w1

∗,1, w
1
∗,2, . . . , w

1
∗,i generate

two identical secret states, which leads to an identical MSOPE
ciphertext sequences c∗,1, c∗,2, . . . , c∗,i.

In the (i+1) round, we assume that both w0
∗,i+1 and w1

∗,i+1 are
provided by Px. Therefore, the (i + 1)th EHR is encrypted by Px,
i.e., c∗,i+1 = cx,i+1. We have three cases.

Case 1. wb
x,i+1 = wb

x,j and j < i + 1. Namely, Px has encrypted
another EHR wb

x,j whose value is equal to wb
x,i+1. Accord-

ing to the secret state update phase in our Encryption
algorithm, the secret state of both sequences will not
change, and the MSOPE ciphertext of wb

x,i+1 will be equal
to wb

x,j. Namely, cx,i+1 = cx,j. Since cx,j is independent of
b, cx,i+1 is independent of b.

Case 2. wb
x,i+1 = wb

y,j, and j < i + 1. Namely, another patient Py

has encrypted an EHR wb
y,j, whose value is equal to wb

x,i+1.
In this case, the secret state will be updated according
to the secret state update phase in our Encryption algo-
rithm, and the result of update is dependent on a random
coin bx in Secure Comparing Protocol. Since bx of both
w0

x,i+1 and w1
x,i+1 are the same, the corresponding MSOPE

ciphertexts of both w0
x,i+1 and w1

x,i+1 are the same. Since
bx is randomly chosen by Px and is independent of b,
cx,i+1 is independent of b.

Case 3. wb
x,i+1 has not been encrypted. Px interacts with CS and

updates the secret state. Since W 0 and W 1 have the same
order relation, the secret state of both plaintexts are the
same. Hence, the MSOPE ciphertexts of both plaintexts
must be the same. Therefore, cx,i+1 is independent of b.

Therefore, our encryption algorithm produces the same MSOPE
ciphertext sequence for W 0 and W 1, and hence A cannot dis-
tinguish between them. Note that if different patients provide
identical plaintexts, the corresponding MSOPE ciphertexts are
randomized (like the second case). Therefore, our scheme is IND-
MSOCPA secure. □
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