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A B S T R A C T

Drug–food interactions (DFIs) crucially impact patient safety and drug efficacy by modifying absorption,
distribution, metabolism, and excretion. The application of deep learning for predicting DFIs is promising, yet
the development of computational models remains in its early stages. This is mainly due to the complexity of
food compounds, challenging dataset developers in acquiring comprehensive ingredient data, often resulting
in incomplete or vague food component descriptions. DFI-MS tackles this issue by employing an accurate
feature representation method alongside a refined computational model. It innovatively achieves a more precise
characterization of food features, a previously daunting task in DFI research. This is accomplished through
modules designed for perturbation interactions, feature alignment and domain separation, and inference
feedback. These modules extract essential information from features, using a perturbation module and a feature
interaction encoder to establish robust representations. The feature alignment and domain separation modules
are particularly effective in managing data with diverse frequencies and characteristics. DFI-MS stands out
as the first in its field to combine data augmentation, feature alignment, domain separation, and contrastive
learning. The flexibility of the inference feedback module allows its application in various downstream tasks.
Demonstrating exceptional performance across multiple datasets, DFI-MS represents a significant advancement
in food presentations technology. Our code and data are available at https://github.com/kkkayle/DFI-MS.
1. Introduction

Over recent decades, the study of drug–food interactions (DFIs) has
gained significant attention. DFIs, encompassing both pharmacokinetic
and pharmacodynamic interactions, can significantly alter the effec-
tiveness and safety of drugs by affecting their absorption, distribution,
metabolism, and excretion [1]. Understanding these interactions is
crucial for patient safety and improving treatment outcomes. Clini-
cal physicians can customize drug treatment plans based on patients’
dietary habits and nutritional needs, integrating this knowledge into
patient care. This approach is especially important for the treatment of
medications with a narrow therapeutic index and chronic diseases with
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a significant diet-related aspect [2]. Patient education on DFIs is also a
key aspect, guiding them on when to take medications relative to meals
and which foods to avoid. This comprehensive understanding of DFIs
helps in minimizing adverse effects, improving medication adherence,
and overall, enhances treatment outcomes.

In recent years, as scientific research has deepened, people have
gained a more detailed understanding of drug–food interactions. For ex-
ample, resveratrol is a common component of common foods, found in
grapes, blueberries, and some nuts and vegetables. Resveratrol inhibits
the activity of various drug-metabolizing enzymes, such as CYP1A1 [3].
Grapefruit and certain cholesterol-lowering drugs (such as statins):
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grapefruit juice may increase the plasma concentration of statins,
thereby increasing the risk of muscle damage and liver damage [4].
High-potassium foods (such as bananas, oranges, and tomatoes) and
potassium-sparing diuretics (such as amiloride, spironolactone) may
cause hyperkalemia, leading to arrhythmia [5].

Our current understanding of DFIs relies on costly and less efficient
clinical studies [6]. These studies use traditional experimental design
methods, often requiring extensive time to ensure the reliability of
the results [7]. Additionally, they often struggle to fully capture the
complexity of biomarkers and the diversity of patient characteristics,
limiting their application in precision medicine and the design of
personalized treatment plans. This is particularly significant in clinical
settings where the understanding of DFIs is essential for optimizing
patient care. Healthcare professionals rely on these studies to guide
prescription practices, considering how certain foods can alter the
effectiveness and metabolism of medications. In particular, new drugs
often require extensive testing to determine their safety before clinical
use [8], including DFIs. Drug–food interactions have prompted the
medical industry to pay attention to drug–food interactions. For the
treatment of diseases, it is imperative for physicians to factor in the
interactions between medications and food, thereby mitigating poten-
tial adverse reactions. However, with the onset of the big data era, we
have been presented with unprecedented opportunities [9]. Methods
grounded in molecular simulations [10] and machine learning have
now been implemented across various sectors of food science [11–14],
including chemical composition analysis [15] and biological transfor-
mation processes [16]. The advent of these methodologies addresses
the inefficiencies of traditional techniques, hence offering invaluable
insights for the evolution of the food science discipline [17].

While significant advancements have been made in computational
methods across various fields, the area of DFI remains largely underex-
plored. Consequently, there is an urgent need to develop an effective
and accurate computational approach to expedite the identification
of DFIs. Such advancements would not only enhance the precision
of biochemical experiments but also reduce associated costs [18]. To
our knowledge, the application of deep learning models for predicting
DFI relationships in this field is exceedingly limited. For instance,
DFinder [19] employs a graph neural network based on drug struc-
tural similarity scoring to predict DFI relationships, demonstrating
commendable performance in recommendation tasks. However, this
method has room for improvement in exploring DFIs on a large scale.
Other DFI computational models primarily originate from supplemen-
tary experiments on drug–drug interactions [20]. The challenge of
acquiring comprehensive information about food composition not only
results in high costs but also leads to the scarcity and inadequacy of
DFI datasets. The majority of existing datasets lack detailed and clear
descriptions of food components, presenting significant obstacles for
the development and refinement of computational models, particularly
in the aspect of feature engineering. This limitation underscores the
need for more robust and innovative approaches in the DFI research
field.

The essence of the DFI problem is still that two or more com-
pounds undergo chemical reactions or produce certain effects on the
human body through complex regulatory mechanisms. DDI research
has many similarities with DFI in many respects. Compared with DFIs,
DDI research has certain advantages in data availability, quality, and
feature engineering. Drugs usually have relatively complete molecular
structure information and pharmacokinetic parameters, which helps
construct feature vectors for model use. This has great reference value
for our research on DFI problems. For example, DeepDDI [20] uses the
names and structural information of drug–drug or drug–food ingredient
pairs as input to predict DDIs. DeepDrug [21] uses residual graph
convolutional networks (RGCNs) and convolutional networks (CNNs)
to learn the integrated structure and sequence representation of drugs
2

and proteins to improve the accuracy of DDI prediction. SSI-DDI [22]
proposes substructure-substructure interaction and drug–drug interac-
tion, achieving richer feature extraction. Although these models are
developed based on DDI tasks, they can also be migrated to DFI tasks
to some extent. We will use their performance on DFIs as a baseline
for DFI-MS. To mitigate the negative impact of insufficient feature
information on model performance, we have been inspired by some
methods [23–26] and have tried to mine more effective information
from known DFI relationships to find multi-level feature drugs Inter-
action relationships with food, using these known DFI relationships to
guide the embedding layer of the model, in order to obtain accurate and
effective drug (food) feature representation. We divide this process into
three sub-modules for training feature representations: perturbation
interaction module, feature alignment and domain separation module,
and inference feedback module.

The Perturbation Interaction module, underpinned by data aug-
mentation principles, employs a masking layer to perturb Drug (Food)
features, thereby constructing two sets of analogous feature representa-
tions. These similar sets are forwarded to the feature interaction layer
with the objective of minimizing differences in features output from the
interaction layer.

The Feature Alignment module is designed to mitigate the impact of
long-tail distribution and heterogeneous datasets on feature representa-
tion and model performance. As various datasets often exhibit long-tail
distributions [27], models’ fitting results tend to favor high-frequency
samples. Feature alignment achieves global balance among different
Drug (Food) features within the same dimension, thereby alleviating
these issues’ impact on model performance.

The Inference Feedback module establishes an inference network
by calculating Drug (Food) features within neural networks. Through
loss calculation, it updates network parameters to obtain higher-quality
Drug (Food) feature representations. Our primary contributions are
summarized below:

1. We propose a novel multi-level feature optimization method that
can extract effective information from higher-order features and
be used to train high-quality drug (food) feature representations.

2. We propose DFI-MS, a contrastive learning DFI prediction model
based on multi-level self-supervised feature optimization, which
achieves the best performance on multiple datasets.

3. We leverage effective information extracted from higher-order
features to guide the training of high-quality features. This ap-
proach offers a fresh perspective for DFI and datasets with
limited data availability.

2. Materials and methods

2.1. Dataset

The data used in this study comes from the work of DFinder [19],
involving two datasets: DrugBank-DFI and PubMed-DFI.

First, researchers collected DFI data from the DrugBank (v5.1.7)
database, which contains specific information about each drug, such
as drug interactions, pharmacological properties, chemical structures,
target actions, and metabolic pathways [19,28,29]. During the process
of parsing the database, researchers filtered out mutually exclusive
relationships, invalid relationships, and other unclear relationships be-
tween food components and drugs and manually extracted DFI in-
formation from the text. In this process, only small-molecule drugs
and food components were retained. Eventually, the DrugBank-DFI
dataset contains 1784 interactions, covering 143 drugs and 213 food
components [19].

In addition, researchers realized that a large amount of valuable DFI
information was still hidden in biomedical literature, so they attempted
to extract DFI information from PubMed publications and established

the following rules:
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Fig. 1. The interaction distribution plot of the DrugBank dataset, in which more than half of the nodes have fewer than 20 interactions.
1. In the retrieved literature, each DFI pair should appear at least
20 times.

2. DFIs with the same food component and drug component are
removed.

3. Semantic similarity is calculated between food and drug com-
ponents in the same literature; if the similarity is high, it is
discarded.

Under these three rules, researchers obtained the PubMed-DFI dataset,
which contains 15,890 drug–food component interactions, representing
779 drugs and 818 food components.

2.2. Feature alignment and domain separation module

2.2.1. Long-tail distribution
The long-tail distribution refers to a phenomenon in a dataset where

certain categories contain substantially more samples than others, re-
sulting in most data points residing in the "tail’’, thereby creating a
"long tail." This distribution pattern is characteristic of a majority of
natural datasets.

Within the realm of deep learning, the long-tail distribution poses
unique challenges. Given that some categories within the dataset con-
tain a relatively low number of samples, the model may inadequately
learn from these sparse categories during training. This often results in
the model’s tendency to be biased towards high-frequency categories.
Despite the under-representation of these sparse categories, their cu-
mulative total is substantial. If not properly addressed, the long-tail
distribution can significantly impact overall performance [27,30,31].

Notably, the DrugBank-DFI dataset used in this experiment exhibits
a pronounced long-tail distribution, as illustrated in Fig. 1.

Current methodologies in the mainstream predominantly address
the issue of data imbalance [32], using techniques such as data augmen-
tation for underrepresented categories and undersampling for overrep-
resented ones. While these techniques can indeed mitigate the effects
of long-tail distribution, they come with their own set of challenges,
including the introduction of redundant and noisy data. Specifically,
the risk of overfitting looms with data augmentation, whereas under-
sampling could potentially lead to underfitting. Therefore, finding the
sweet spot between these strategies presents a significant challenge.
3

2.2.2. Heterogeneous data
Heterogeneous data is defined as data exhibiting substantial varia-

tions in distribution, features, and labels. For instance, within a single
dataset, there exists a degree of heterogeneity between the training
set and the test set, with even greater heterogeneity present between
different datasets. The presence of such heterogeneous data can ad-
versely affect the model’s performance, compromising its ability to
generalize from the training set to the test set, which subsequently
results in diminished generalization performance. Macroscopically, the
heterogeneity can manifest in the feature representation of Drug (Food)
entities. In the DFI model, the occurrence of heterogeneous data is
often attributed to biased data distributions. This situation typically
arises at the tail nodes of long-tail distributions and in cases where
there is an extreme imbalance between negative and positive data in
some samples. Due to this imbalance, the model may face difficulties
in processing these data. A major problem with heterogeneous data is
that they are prone to causing overfitting in the model. Overfitting
arises when the model becomes excessively attuned to specific pat-
terns and noise present in the training data, leading to the capture
of idiosyncratic characteristics that are not universally applicable. This
leads to the model performing well on the training set but struggling
to maintain the same performance on test data because it has not
effectively learned underlying principles that can be generalized to new
data. A brief representation of this concept through data visualization
is provided in Fig. 2. These feature values diverge significantly from
the majority of the dataset, presenting a challenge for the model to
adequately accommodate during the fitting process. To navigate the
issue of heterogeneous data, researchers have employed strategies pri-
marily encompassing transfer learning. Here, the model is pre-trained
on the source domain and fine-tuned on the target domain (which
houses the test data), facilitating the transfer of knowledge from the
source domain to the target domain [33]. Multi-task learning, another
popular strategy, involves the simultaneous training of multiple related
tasks, thereby enabling the model to learn more generalized feature rep-
resentations [34]. These methods augment the model’s generalization
ability with respect to heterogeneous data. However, these methods
typically require a substantial amount of training data to optimize
model performance. Therefore, they may not perform well in the DFI
domain, which is relatively data-deficient.

2.2.3. Feature alignment
To address the challenges delineated above, we propose the de-

ployment of a technique known as feature alignment. This technique
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Fig. 2. The heat map representation of heterogeneous data in a low-dimensional
feature space. In this heat map, the data at the bottom represent data with unique
feature values, the significant differences of which indicate that these data are far
apart in the feature space, highlighting their heterogeneity compared to other data.

identifies meaningful correspondences across heterogeneous datasets
or disparate data representations and minimizes the distance among
respective features. Consequently, feature alignment can attenuate data
variance and stabilize the feature data, thereby leading to a more robust
data representation [35]. In a more comprehensive context, feature
alignment encourages features of identical dimensions to cluster more
compactly within the feature space. This configuration facilitates the
learning process of feature representation and mapping relationships,
thereby enhancing the accuracy and robustness of the model. While
feature alignment is a prevalent technique in fields such as computer vi-
sion and natural language processing, its application in bioinformatics
is limited.

In the context of the long-tail distribution of pharmaceutical and
food categories, feature alignment identifies common characteristics
between head and tail samples. This approach significantly enhances
the recognition of minority class samples, which are often overshad-
owed by high-frequency categories. Traditional deep learning models
typically perform better on these high-frequency categories because
the models have more opportunities to learn the features and patterns
of high-frequency samples during training, optimizing their internal
representations in the process. To reduce model bias towards high-
frequency categories while maintaining data representativeness, this
study introduces a feature alignment method. In a shared feature space,
knowledge encapsulated in high-frequency nodes is used to guide the
learning of low-frequency nodes. Through this method, knowledge from
high-frequency samples can be transferred to low-frequency ones. This
transfer of knowledge is not only reflected in the feature space but also
encompasses higher levels of learning in the model, including pattern
learning and relational inference. The application of feature align-
ment technology has effectively enhanced the model’s performance in
handling complex and diverse data.

In the context of heterogeneous data, feature alignment enhances
the knowledge transfer process across such datasets, aiding in the
discovery of shared features and mitigating the negative impacts of
data inconsistency. This methodology facilitates the learning of het-
erogeneous data under the guidance of homogeneous data knowledge,
thereby bolstering the model’s ability to generalize. The learned fea-
tures are, therefore, predicated on shared information rather than
specific data sources, resulting in more effective decision boundaries. A
schematic representation of the feature alignment process is provided
in Fig. 3. In DFI-MS, feature alignment is implemented through the
4

following loss function:

𝐿𝑎 =
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒
∑

𝑖=1

|

|

𝐸𝑖 − 𝐸𝑂
|

|𝐿2
(1)

Where 𝐸 denotes the embedding of Drug(Food), 𝑂 denotes the
Drug(Food) in a batch except 𝑖, and |⋅|𝐿2 denotes the 𝐿2 distance.

2.2.4. Domain separation
Although feature alignment alleviates the impact of long-tailed

distributions and heterogeneous data to some extent, it also introduces
new problems. For example, feature alignment may overfit between
the source and target domains, leading to decreased generalization
performance in new domains or tasks. In feature space, this can be
manifested as multiple nodes being tightly distributed within the same
dimension of features. To address this issue and further improve the
quality of Drug (Food) feature representation, we introduce the concept
of domain separation. The feature vectors for drugs and food are
defined as distinct domains, and our objective is to maximize the
difference between these domains. This allows the model to better
distinguish the patterns of different domains. A simple schematic of this
domain separation is provided in Fig. 3. In DFI-MS, domain separation
is implemented through the following loss function:

𝐿𝑠 =
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒
∑

𝑖=1
cos sim

(

𝐹𝑖𝑑, 𝐹𝑖𝑓
)

(2)

Where 𝐹 represents a certain dimension of the embedding of
Drug(Food), 𝑑 represents the Drug, 𝑓 represents the Food, and cos sim
represents cosine similarity.

2.3. Perturbation interaction module

2.3.1. Feature perturbation
Feature perturbation, as a data augmentation method, has been

widely applied in various deep learning tasks. Although in the past
feature perturbation was mainly used for supervised learning tasks,
recent research results indicate that the application potential of feature
perturbation in unsupervised learning environments cannot be ignored,
and is even more competitive in some scenarios than supervised learn-
ing [36]. By introducing minor modifications to the original data,
feature perturbation generates new data points, thereby enhancing
the diversity of the dataset and aiding the model in learning more
generalized features. Compared to other data augmentation methods,
such as interpolation and adversarial training, the advantage of feature
perturbation lies in its independence from specific data structures,
enabling its application across a broader spectrum of scenarios [37].

However, to ensure the effectiveness of feature perturbation, it is
imperative to accurately determine the optimal degree of perturbation.
Excessive perturbation may lead to the loss of crucial features, while
insufficient perturbation might not significantly enhance the model’s
generalization capabilities. Identifying this balance requires precise
experimentation. In summary, although feature perturbation presents
potential advantages in unsupervised learning, its ultimate efficacy
depends on meticulous adjustment and experimental validation of the
perturbation level.

In this paper, we apply feature perturbation to unsupervised learn-
ing to help the model mine effective information from feature data.
We adopt a random feature perturbation algorithm, with the formula
as follows:

�̂� = 𝐸 ⋅ 𝐼, 𝐼 ∼ Bernoulli(𝑝) (3)

Where Bernoulli(⋅) is a Bernoulli distribution and 𝐼 is a matrix of
Bernoulli random variables where each variable has 𝑝 with probability
1, 1 − 𝑝 with probability 0.
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Fig. 3. A simple schematic of the feature alignment and domain separation modules.
2.3.2. Feature interaction
Feature perturbation can hardly guarantee the quality of the per-

turbed feature embeddings, and it is easy to introduce irrelevant noise
into the unsupervised learning process, thus affecting the accuracy of
the final feature representation. To address this issue, we introduce a
Transformer-based [38] feature interaction encoder, which is widely
used to extract vector-level relationships of features, thereby increasing
the robustness of the self-supervised model to perturbed features. We
deploy a shared Transformer feature interaction encoder in the model,
which, after inputting two pairs of perturbed feature interaction pairs
(Drug–food embedding pair) at a set ratio, outputs two pairs of feature
interaction representations extracted from the features. We then use
a contrastive loss function to reduce the distance between the two
pairs of feature interaction representations, thus training the accuracy
of the feature interaction encoder and features. By processing through
the feature interaction encoder, we can more effectively capture the
potential associations between features, mine long-distance dependen-
cies between features, and further enhance the expression of feature
interaction, thereby improving the accuracy of feature representation.
The reduction of the distance between perturbed feature interaction
pairs is achieved through the following loss function:

𝐿𝑝𝑖 =
1

batchsize

batchsize
∑

𝑖=1

|

|

|

𝐼
(

�̂�1
)

− 𝐼
(

�̂�2
)

|

|

|𝐿2
(4)

where |⋅|𝐿2 denotes the 𝐿2 distance, �̂� represents the perturbed
Drug(Food) embedding, and 𝐼 represents the feature interaction layer.

2.4. Inference feedback module

The inference feedback module’s purpose is to estimate the exis-
tence of an interaction relationship between food and drugs based
on Drug (Food) features. We experimented with several modules, for
the DFI inference task. After a performance comparison, we selected
FM [39] as the DFI-MS’s inference feedback module. The FM used
in this module has the advantage of capturing the interplay among
features, and representing Drug (Food) features with latent vectors
enables effective expression of higher-order interaction terms. Further,
FM exhibits robust adaptability to sparse data, such as DFI. By feeding
5

the corresponding features of Drug (Food) into the model, we yield the
probability value of a Drug–Food Pair interaction. The model parame-
ters are then trained using the binary cross-entropy loss function. In this
paper’s experiments, we categorize Drug–Food Pairs with a predicted
probability value exceeding 0.5 as positive and those with a value
below 0.5 as negative.

2.5. Model overview

The DFI-MS model, illustrated in Fig. 4, is designed for deriving
high-quality drug and food features from DFI relationships through self-
supervised learning. The model integrates four key sub-modules in its
framework.

The Embedding Module initially transforms the raw data into a
continuous feature representation. Initially, embedding might not ac-
curately depict the true properties of food and drugs, but through
the model’s training process, it is refined for better accuracy. Follow-
ing this, the Inference Feedback Module, which processes Drug–Food
Pairs, employs Factorization Machines (FM) to efficiently calculate
interaction terms between feature vectors. It does so by computing the
difference between the sum of squares and the square of sums, thus
significantly enhancing computational efficiency. Simultaneously, the
Perturbation Interaction Module introduces random perturbations to
the input embeddings. This results in two distinct sets of perturbed
embeddings that are further processed using a shared transformer
encoding layer. The process is constrained within the feature space
using an L2 loss function, which contributes to the model’s robustness.
Additionally, the Feature Alignment and Domain Separation Module
plays a pivotal role. It tunes a batch of input feature pairs using L2
norm and cosine similarity loss functions, focusing on both batch and
domain dimensions. This module ensures the alignment of features and
separation of domains effectively.

The training of the model adopts a multi-task strategy, optimiz-
ing these modules collectively in an end-to-end manner. The feature
alignment and domain separation module, along with the perturbation
interaction module, are set for interval training to optimize their per-
formance, while the inference feedback module is involved in every
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Fig. 4. The DFI-MS model consists of four key sub-modules:
a. Embedding Module: Converts raw input data into continuous feature representations.
b. Inference Feedback Module: Utilizes Drug–Food Pairs and employs Factorization Machines (FM) for efficient computation of interaction terms.
c. Perturbation Interaction Module: Applies random perturbations to input embeddings and uses a shared transformer encoding layer for robustness.
d. Feature Alignment and Domain Separation Module: Adjusts input feature pairs using L2 norm and cosine similarity loss functions for feature alignment and domain separation.
training cycle. The final objective function of the model is formulated
as:

𝐿 = 𝐿𝐵𝐶𝐸 + 𝛼 ⋅ 𝐿𝑝𝑖 + 𝛽 ⋅
(

𝐿𝑎 + 𝐿𝑠
)

(5)

where 𝐿𝐵𝐶𝐸 represents the BCELOSS, and 𝛼 and 𝛽 are adjustable
hyper-parameters.

In the model’s testing phase, only the input of trained Drug–Food
pair features into the inference feedback module is required for pre-
diction. This module’s design allows for adaptability to various down-
stream tasks by modifying its network structure and loss functions.
Similarly, the feature alignment and domain separation module, as well
as the perturbation interaction module, can be easily adjusted for new
tasks with simple changes in parameter settings.

3. Result

3.1. Evaluation metrics

In all experiments conducted in this paper, we are more concerned
with the discovery of positive samples, so we chose AUC, AUPR, F1-
score, Recall, and Precision to evaluate the performance of DFI-MS
and other comparison models. The specific metric explanations are as
follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝐹𝑃 + 𝑇𝑃

, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

𝐹1 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) (6)
6

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
where TP and TN denote the number of positive and negative samples
correctly predicted by the model; FP and FN denote the number of
positive and negative samples incorrectly predicted by the model,
respectively.

AUC (Area Under the Curve): Refers to the area under the ROC
curve (Receiver Operating Characteristic Curve). The ROC curve is a
curve plotted with the True Positive Rate (TPR) as the vertical axis
and the False Positive Rate (FPR) as the horizontal axis. The closer the
AUC value is to 1, the more effective the classifier is in distinguishing
between positive and negative samples.

AUPR (Area Under the Precision–Recall Curve): Refers to the area
under the Precision–Recall Curve. The Precision–Recall Curve is a curve
plotted with Recall (also known as the True Positive Rate) as the
vertical axis and Precision as the horizontal axis. AUPR focuses more
on the recognition effect of positive cases, especially in cases of class
imbalance.

3.2. Comparison models

To evaluate the performance of DFI-MS on the two datasets, we
compared DFI-MS with seven DDI prediction models and one DFI pre-
diction model. Here are some brief introductions to these comparison
models:

1. CASTER [40]: A DDI prediction model that effectively charac-
terizes drug functional substructures based on DDI mechanism
sequential pattern mining modules while using an autoencoder
module to improve generalization ability and interpretability.
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Table 1
Comparison of the performance of DFI-MS with eight state of the art methods on the
DrugBank-DFI dataset.

Method AUC AUPR F1-score Recall Precision

CASTER 60.72% 8.47% 8.37% 7.67% 9.22%
MR-GNN 63.24% 10.32% 17.83% 17.4% 18.31%
GCN-BMP 74.88% 19.45% 24.14% 22.99% 25.42%
EPGCN-DS 77.89% 21.55% 3.50% 2.41% 6.45%
SSI-DDI 92.84% 57.46% 42.15% 30.20% 69.76%
DeepDrug 89.85% 37.75% 40.93% 39.20% 42.84%
DeepDDI 92.51% 64.84% 44.80% 31.67% 76.56%
DFinder 97.53% 81.58% 20.20% 11.24% 99.58%
DFI-MS 96.92% 87.10% 81.27% 70.34% 96.22%

Bold indicates the optimal value among the compared methods, and italic indicates the
suboptimal value.

2. MR-GNN [41]: An end-to-end graph neural network DDI model
that uses a multi-resolution architecture to extract node features
and employs a dual-graph state long short-term memory network
to capture interaction features between entities.

3. GCN-BMP [42]: A DDI prediction method that adopts end-to-end
graph representation learning and key-aware information prop-
agation mechanism, achieving high-performance prediction and
interpretability provided by the built-in attention mechanism.

4. EPGCN-DS [43]: A molecular structure DDI detection method
based on graph convolutional networks and deep ensembles,
which uses more discriminative convolutional layers and main-
tains permutation invariance of input predictions while captur-
ing complex interactions.

5. SSI-DDI [22]: A DDI prediction method that decomposes and
transforms the drug–drug interaction prediction task into rec-
ognizing pairwise interactions between structures by extracting
rich features through manipulating the original molecular graph
representations of drugs.

6. DeepDrug [21]: A DDI prediction model that leverages residual
graph convolutional networks (RGCN) and convolutional net-
works (CNN) to learn comprehensive structural and sequential
representations of drugs and proteins.

7. DeepDDI [20]: A DDI prediction model that uses drug pair and
drug–food component pair names and structural information,
through structural similarity analysis and multi-label classifica-
tion model.

8. DFinder [19]: An end-to-end DFI prediction method based on
graph embedding combined with LightGCN [44] to aggregate
node attribute features and topological structure features for
learning drug and food component representations.

3.3. Experimental setup

We set the embedding size of Drug(Food) to 64, the batch size to
256, the learning rate to 0.015, and the weight decay to 1e−6. In the
perturbation interaction module, the perturbation ratio is set to 0.2, and
the training intervals of the feature alignment and domain separation
modules and the perturbation interaction module are set to 30 epochs
in DrugBank and 10 epochs in PubMed. Additionally, in the DrugBank
dataset, we set alpha in the multi-task loss function to 0.05 and beta to
0.1. In the PubMed dataset, alpha is set to 0.1 and beta is set to 0.01.
Furthermore, we randomly divided the positive and negative samples,
with 20% used as the test set and the remaining 80% for five-fold
cross-validation in the training set.

3.4. Experimental results

The performance of DFI-MS was compared to eight alternative mod-
els, with the results presented in Tables 1 and 2. The table enumerates
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the performances of DFI-MS on two distinct datasets.
Table 2
Comparison of the performance of DFI-MS with eight state of the art methods on the
PubMed-DFI dataset.

Method AUC AUPR F1-score Recall Precision

CASTER 63.88% 6.24% 12.59% 11.41% 14.05%
MR-GNN 68.15% 10.73% 15.39% 14.24% 16.76%
GCN-BMP 76.64% 12.65% 19.13% 17.81% 20.67%
EPGCN-DS 75.52% 14.88% 14.90% 8.48% 61.43%
SSI-DDI 84.28% 23.37% 10.66% 5.91% 54.57%
DeepDrug 89.22% 23.78% 30.06% 28.77% 31.48%
DeepDDI 90.04% 46.83% 47.49% 46.99% 48.02%
DFinder 90.08% 40.22% 20.20% 4.81% 98.79%
DFI-MS 93.78% 61.35% 55.59% 43.38% 77.39%

Bold indicates the optimal value among the compared methods, and italic indicates the
suboptimal value.

On the DrugBank dataset, DFI-MS demonstrated a substantial im-
provement in comprehensive metrics, such as AUPR and F1-Score,
compared to the alternative models. Due to the relative sparsity of
the DFI dataset, there was an imbalance in the ratio of positive to
negative samples in the test set, which reduced the reliability of AUC
in the experiment. However, AUPR, being indicative of the model’s
performance on such imbalanced datasets, can more comprehensively
demonstrate the model’s discriminative ability across categories, as it
focuses on precision and recall across the board. Please refer to Fig. 5
for comparisons of AUPR performance. The seven DDI prediction mod-
els’ performance on the DFI task was slightly lacking when compared to
the dedicated DFI model. As compared to the highest performing DDI
model, DFI-MS’s AUPR index rose by 21.92%, and when compared to
the latest DFI model, the AUPR increased by 5.18%. In addition, DFI-MS
achieved the highest F1-score at the default threshold, reflecting the
robustness and generalizability of the features trained by the DFI-MS
model, along with its resistance to the influence of imbalanced training
samples.

On the PubMed dataset, DFI-MS outperformed the alternatives in
both AUPR and F1-Score. The model’s ability to recognize positive
samples improved noticeably, as indicated by a significant enhance-
ment in the AUPR metric. In addition, it achieved the highest F1-Score
at the default threshold on both datasets. We attribute this to the
feature alignment and domain separation module and the perturbation
interaction module that trained high-quality features. These effectively
modulated the range between various feature values during the training
process, pushing dissimilar types of features apart in the feature space,
while bringing similar features closer together. This strategy not only
adeptly addressed the challenges posed by the incomplete nature of the
DFI dataset, but also had beneficial effects on a variety of downstream
tasks.

In comparison with other baseline models, DFI-MS demonstrates
balanced characteristics across various performance metrics, which is
particularly noteworthy. In the context of DDI models, most mod-
els are not specifically optimized for DFI tasks. Precise predictions
of DDI models depend on accurate drug (or food) characterization
extraction, which is especially challenging in DFI tasks, leading to
relatively weaker performance of DDI models in these tasks. Moreover,
the DFinder model, which uses graph neural networks to predict DFI
relationships, shows higher performance on the densely linked Drug-
Bank dataset. However, its performance significantly decreases on the
more sparsely connected PubMed dataset, particularly in terms of the
AUPR metric, which reflects the model’s ability to predict positive
samples. Also, when using the default threshold (0.5), DFinder performs
poorly in terms of recall rate. In contrast, DFI-MS leverages multi-layer
self-supervised learning to develop more versatile embedding repre-
sentations, significantly boosting its recall rate in environments with
sparse connections. This enhancement is particularly relevant in the
context of sparse interactions with low-frequency samples, indicating

that DFI-MS is capable of learning more universally applicable feature
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Fig. 5. Comparison of AUPR metrics between DFI-MS and eight methods.
representations. It does so without excessively depending on sparse
or random data points. This method proves extremely effective in
environments with sparse data, providing robust support for accurately
identifying DFI relationships.

3.5. Parameter experiment

To verify the role of the feature alignment and domain separation
module and the perturbation interaction module in DFI-MS, we con-
ducted parameter experiments. We achieved this goal by changing the
loss function ratio (𝛼 and 𝛽). In the experiment, we selected the Drug-
Bank dataset and the PubMed dataset, and varied the values of 𝛼 and
𝛽 proportionally. Heatmaps were generated based on the experimental
results, where Fig. 6 represents the experimental results for DrugBank
and PubMed. These experimental findings corroborate our initial hy-
pothesis, indicating that the self-supervised learning enabled module
enhances the quality of Drug(Food) feature sets. This, in turn, augments
the feature distinctiveness among different categories and sharpens
the model’s decision boundary. Similarly, the perturbation interaction
module contributes to an ongoing update of features and optimizes
model performance, drawing on a training approach reminiscent of
generative adversarial training.

The specific relationship between the parameters of the feature
alignment and domain separation modules and the experimental results
in AUPR shows a significant correlation. In the two datasets studied, we
observed that higher 𝛽 parameters tend to decrease model performance.
This phenomenon can be attributed to the fact that excessively high 𝛽
values might lead to an overemphasis on the distribution of features
of drugs (or food), thereby impairing the model’s ability to capture
true semantic information. However, a moderate 𝛽 parameter, by pro-
moting knowledge sharing among high-frequency samples, significantly
enhances the model’s generalization ability for low-frequency samples.
Furthermore, the perturbation interaction module also plays a key role
in enhancing model performance. Although it does not show a signifi-
cant linear correlation with the overall performance of the model, this
is mainly because the design of the module involves the introduction of
random noise data. An appropriate level of noise can not only cultivate
more generalizable embedding layers but also, in combination with the
feature alignment and domain separation modules, further enhance the
overall efficacy of the model. Despite its marginal contribution possibly
being less directly observable, the introduction of the perturbation
interaction module undoubtedly provides an indispensable perspective
for improving model performance.

Additionally, the batch size and embedding size have an impact
on the self-supervised loss function. We conducted further experiments
on these two parameters on two datasets, with the results shown in
Fig. 7. Relatively, the PubMed dataset requires a smaller embedding
8

size and a larger batch size to achieve better performance. We believe
this is due to the large number of elements in PubMed but a lower
proportion of positive samples. An excessively large embedding size
is detrimental to achieving good generalization of positive samples in
larger datasets; meanwhile, a smaller batch size might lead to unavoid-
able errors in feature alignment due to limited receptive fields. The
DrugBank dataset exhibits better robustness to these two parameters,
but an excessively large embedding size still significantly harms model
performance, which is also due to high generalization errors caused by
overfitting. Overall, reasonably adjusting the batch size and embedding
size according to the different characteristics of datasets is crucial for
improving the performance and generalization ability of the DFI-MS.

4. Feature distribution analysis

To verify the effectiveness of the Feature Alignment and Domain
Separation Module (FD) and the Perturbation Interaction Module (PI),
we conducted an in-depth analysis of the embedding layer of our
model. Firstly, we reduced the dimensionality of the embedding us-
ing the t-SNE algorithm, and the visualization results are shown in
Figs. 8–11. Secondly, we quantitatively evaluated the performance
of the embedding layer using three metrics: Silhouette Coefficient,
Davies–Bouldin Index, and Calinski–Harabasz Index, with the results
presented in Table 3.

The Silhouette coefficient is a valuable metric for evaluating the
similarity among samples, taking into account both the cohesion within
a category and the separation from the nearest neighboring category.
A higher Silhouette coefficient suggests superior feature separation in
the embedding layer, indicating that samples within the same category
are similar to each other and distinct from those in different cate-
gories [45]. The Davies–Bouldin index is defined based on the ratio
of intra-cluster similarity to inter-cluster dissimilarity. A lower Davies–
Bouldin index value indicates that the samples within a cluster are
closely packed and there is clear separation between different clusters,
which is important for the performance of feature embedding [46].
Similarly, the Calinski–Harabasz index is based on the ratio of between-
cluster dispersion to within-cluster dispersion. A higher value of this
index indicates that the clusters are not only well-separated but also
compact, demonstrating the effectiveness of the embedding layer in or-
ganizing and distinguishing data [47]. These metrics comprehensively
reflect the performance of the embedding layer in effectively separating
and grouping data, thereby indicating the quality of features in the
embedding layer.

Experiments demonstrate that FD and PI significantly enhance fea-
ture quality. In the DrugBank dataset, the visualization of the embed-
ding using the complete model (Figs. 8–11) displays clear clustering

effects and inter-class separation, indicating that different class features
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Fig. 6. Parameter experiments of perturbation interaction module and feature alignment and domain separation module.
Fig. 7. Parameter experiments of batch size and embedding size.
are clearly and effectively separated in space. In contrast, models with-
out these two modules show chaotic visualization in embedding, with
blurred inter-class boundaries and low feature distinction. Additionally,
we observed that FD has a more significant impact on the quality of
embedding, showing clear inter-class separation in feature distribu-
tion, which is crucial for model performance. On the PubMed dataset,
although there is more data in the embedding layer and reduced
dimensionality leads to less obvious distinctions, the comparative visu-
alization of contour maps still allows us to clearly see the advantages
and disadvantages between different methods. Models including FD
demonstrate more significant inter-class separation, indicating the se-
mantic space separation of Drugs and Food, which aligns with their
inherent differences in biological and chemical properties. This dis-
tinction is vital for the application of deep learning models in these
fields, directly affecting the accuracy and reliability of classification,
prediction, or recommendation systems.

Further validation of the effectiveness of each module is provided
by comparing the results of the Silhouette Coefficient, Davies–Bouldin
Index, and Calinski–Harabasz Index (see Table 3). The complete model
has a higher Silhouette Coefficient value, indicating high intra-class
cohesion and clear inter-class separation. The relatively lower Davies–
Bouldin Index and higher Calinski–Harabasz Index underscore the ex-
cellent clustering quality and inter-class separation effect. Conversely,
the baseline model without these modules performs poorly on these
metrics, reflecting its inadequacy in feature representation.
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Table 3
Feature quality evaluation with t-SNE based clustering metrics.

Dataset Methods Silhouette
coefficient ↑

Davies–Bouldin
index ↓

Calinski–Harabasz
index ↑

DrugBank Complete model 0.387 1.039 231.474
w/o FD 0.073 3.238 22.669
w/o PI 0.297 1.371 116.592
w/o All 0.024 7.922 3.889

PubMed Complete model 0.065 3.778 92.844
w/o FD 0.027 7.122 25.669
w/o PI 0.056 4.045 81.171
w/o All 0.012 14.202 6.562

FD:Feature Alignment and Domain Separation Module PI:Perturbation Interaction
Module.
Bold indicates the optimal value among the compared methods.

5. Discuss and conclusion

In this paper, we propose a computational model for Drug–food
interaction (DFI) named DFI-MS, which is based on feature alignment
and domain separation modules, perturbation interaction modules, and
inference feedback modules to obtain high-quality Drug(Food) embed-
dings. By using a simple inference model, we achieved the best results
on the Drugbank-DFI and PubMed-DFI datasets. To further evaluate
the effectiveness of the proposed modules, we conducted a series of
Parameter experiments, and the results demonstrated that our proposed
modules significantly improved the model’s performance. Moreover,
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Fig. 8. Complete Model(left) and Model without the Feature Alignment and Domain Separation Module(right).
Fig. 9. Model without the Perturbation Interaction Module(left) and Model without any module(right).
Fig. 10. Complete Model(left) and Model without the Feature Alignment and Domain Separation Module(right).
Fig. 11. Model without the Perturbation Interaction Module(left) and Model without any module(right).
DFI-MS can be applied to different downstream tasks by replacing the
inference feedback modules, thus providing high practical application
value.

Due to the complexity of food ingredients, DFI research faces many
limitations, and most DFI studies are based on clinical findings or
derived from DDI (drug–drug interaction) studies. Our computational
10
model offers a novel direction for addressing this issue. By using
computational methods, we can assess whether there are interactions
between drugs and food in a shorter period, which can guide clinical
practice to some extent and improve the safety and effectiveness of
medication for patients. Furthermore, the feature alignment and do-
main separation modules provide robustness for the model to handle
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heterogeneous data, allowing researchers to integrate data from various
sources into the model, thereby improving the prediction accuracy and
reliability. In addition, we believe there is room for improvement in the
model. The model needs to rely on known DFI relationships to train
accurate embeddings for drugs (foods). Although the model employs
multi-layer self-supervised learning to mitigate biases introduced by
different data distributions, the parameter setting of self-supervised
learning requires extensive experimentation to achieve ideal results.
Future work may focus on how to improve the parameter setting of self-
supervised learning and feature engineering. Furthermore, considering
the limitations of data availability, future research might explore the
use of transfer learning from the DDI domain and generative model
techniques to create data, addressing the scarcity of real-world data.
This synthetic data can not only be used for training and improving
the model but also for validating the model’s generalizability and
robustness. We also hope that such computational models can promote
the development of DFI research, provide directional guidance for
wet experiments, reduce experimental costs and time, and offer more
effective references for clinical practice. In the field of personalized
medicine, this information can assist doctors in predicting the effects
and side effects of medications, taking into account the patient’s dietary
habits and lifestyle. This enables the customization of safer and more
effective treatment plans for each patient. Additionally, knowledge of
DFIs can guide the formulation of public health policies. For example,
educating communities about drug–food interactions can raise pub-
lic awareness and reduce adverse drug reactions. Our computational
model fundamentally offers a novel approach in the field of DFI.
This method not only enhances the safety and efficacy of medications
in practical applications but also holds potential to make significant
contributions to the fields of personalized medicine and public health.
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