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Predicting the popularity of web contents in online social networks is essential for many applications. How-

ever, existing works are usually under non-incremental settings. In other words, they have to rebuild models

from scratch when new data occurs, which are inefficient in big data environments. It leads to an urgent need

for incremental prediction, which can update previous results with new data and conduct prediction incre-

mentally. Moreover, the promising direction of group-level popularity prediction has not been well treated,

which explores fine-grained information while keeping a low cost. To this end, we identify the problem of

incremental group-level popularity prediction, and propose a novel model IGPP to address it. We first predict

the group-level popularity incrementally by exploiting the incremental CANDECOMP/PARAFCAC (CP) ten-

sor decomposition algorithm. Then, to reduce the cumulative error by incremental prediction, we propose

three strategies to restart the CP decomposition. To the best of our knowledge, this is the first work that

identifies and solves the problem of incremental group-level popularity prediction. Extensive experimental

results show significant improvements of the IGPP method over other works both in the prediction accuracy

and the efficiency.
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1 INTRODUCTION

With the continuous emergence of a variety of new social platforms, various types of information,
such as videos, pictures, and posts, are being posted and diffused to a wide range in online so-

cial networks (OSNs) every day. Popularity prediction aims to predict the future popularity of
online content (i.e., how many users repost or view contents), and to predict how information is
propagated. It is an essential issue for many real-world applications, including online advertising
services [4], recommendation systems [11, 15, 18], and so on [17, 19, 42]. Due to the massive growth
of online diffusion data, it is very challenging to predict popularity efficiently. In this article, we
strive to explore an efficient incremental approach for popularity prediction. Our work can also
be used to deal with more other applications in the big data environment.

As has been pointed out in [2], although there is a growing interest in web content popularity
prediction, incremental prediction (or online learning) has not been addressed. In fact, the incre-
mental method is essential and more suitable for real-world scenarios for the following two rea-
sons. First, as an enormous amount of information diffusion data is continuously being generated,
it is almost impossible to obtain the global data at once. Even if the global data is already avail-
able, the computation of non-incremental methods is extremely expensive due to high time and
space complexity. Second, for content diffusing over time in real-world scenarios, when new dif-
fusion data occurs, non-incremental methods have to rebuild the model from scratch and conduct
popularity prediction, whereas the incremental method can reuse and update previous results to
predict popularity efficiently based on the new data. Hence, there is an urgent need for incremental
prediction.

Existing works on popularity prediction are usually from either the macro or the micro perspec-
tive. The macro approaches predict the population-level popularity [5, 6, 31, 34] (i.e., how many
users in total will react to content). In this direction, most previous works [5, 31, 34] extract var-
ious type of features, including content features, temporal features, structural features, and user
features [25, 40, 41], then predict the future popularity of information by training a regression
or classification model based on the historical contents. These approaches are based on the intu-
ition that contents from the same social media follow a similar diffusion pattern with respect to
observed features [7]. There are also some generative approaches [6, 9, 33] that are devoted to
characterizing and modeling the process that a content obtains attentions. These models generally
assume that the diffusions of contents are independent of each other and learn content-specific
parameters without the diffusion information of other contents [7]. The micro approaches predict
the user-level popularity (i.e., predict which users will react to a content [24], or estimate the prop-
agation probability that a content propagates from one individual to another [16]) by modeling
behaviors of individual users [26].

Most recently, Hoang et al. [14] found that in many OSNs, users naturally form groups [12], re-
flecting their interests, communities, or locations; users in the same group are fairly consistent in
reacting to a content. Motivated by the preceding observation, they proposed a novel framework
for predicting the group-level popularity of contents based on the user network and historical con-
tents. The group-level prediction is much less noisy and takes smaller computational cost than the
user-level prediction, and it is more detailed and cohesive than the population-level prediction. To
some degree, the population-level popularity and user-level popularity are two extreme cases of
the group-level popularity (i.e., when all users are in the same group or each user is as a group).

However, the only method for the group-level popularity prediction, GPOP [14], cannot support
the incremental prediction, because it exploits a global batch processing and a non-incremental
framework. It conducts multiple static tensor decomposition with a hierarchical constraint on the
global data to predict the group-level popularity. Therefore, it has to rebuild the model from scratch
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every time for prediction the next time. In other words, it cannot reuse previous results and update
incrementally with new data. In addition, it has no incremental version, because its incremental
updates and restarting are the same in this setting (i.e., rebuilding the model from scratch). This
violates the idea of incremental prediction—that is, reusing and updating the previous results with
new data to predict incrementally.

To this end, we identify the problem of incremental group-level popularity prediction, which
aims to take advantage of the evolving feature of information diffusion to predict group-level
popularity incrementally. There are three main challenges to solve this problem:

(1) Data organization: For accurate popularity prediction, we need to integrate all the data of
users’ social network, content propagation, and temporal information. But how can organize these
data cohesively and efficiently?

(2) Incremental prediction: As new data may occur now and then, it will be time consuming and
space consuming to combine the new data in the current one and repeat all operations on the
combined data to predict popularity. So, how can efficiently update the model and incrementally
predict popularity with new data?

(3) Error reduction: In incremental prediction, we use the predictive value in the previous steps
as the true value to predict the popularity the next time. Inevitably, there is cumulative error in
the process of predicting popularity incrementally with new data. Then, how can we reduce the
cumulative error caused by incremental prediction?

To address the preceding challenges, we propose IGPP, a novel incremental group-level popu-
larity prediction method, which is based on two intuitions mentioned earlier (i.e., the similarity
of users’ behaviors and interests in the same group [14], and the strong correlation between the
future and early popularity with respect to temporal features [34]). For data organization, IGPP

uses a tensor [22, 30], which is a multidimensional or N-way array, to organize and represent all
related data clearly and naturally. For incremental prediction, IGPP exploits incremental CANDE-

COMP/PARAFAC (CP) decomposition, which is an incremental low-rank tensor approximation
technique for feature extraction, dimensionality reduction, and knowledge discovery on a tensor
[52], for exploring the underlying patterns of newly added data and predicting group-level popu-
larity incrementally. For the third challenge, we design three restarting strategies for cumulative
error reducing. In summary, our contributions are as follows:

• We identify the problem of incremental group-level popularity prediction, which brings up
new insights to track the evolving processes of contents over time incrementally, and predict
the group-level popularity incrementally. To the best of our knowledge, this is the first work
that identifies and addresses the problem of incremental group-level popularity prediction.
• We propose a novel IGPP model to address the problem. We first exploit the incremental

CP decomposition to predict the group-level popularity incrementally. Then, we propose
three restarting strategies to reduce the cumulative error caused by incremental updates
and improve the prediction accuracy.
• We conduct extensive experiments to test the IGPP model variants on two real datasets of

Behance and Twitter. The experimental results confirm that our methods achieve higher
accuracy and take shorter running time than baselines. To be specific, IGPP-8h, IGPP-0.001,
and IGPP-10% run up to 90.86×, 37.41×, and 45.43× faster than the state-of-the-art group-
level popularity prediction method GPOP while having lower prediction errors.

It is worth noting that, popularity prediction is different from trending topic prediction [27, 28]
and event prediction [29, 32, 48, 50], which are more complex issues. A topic is described as a
coherent set of semantically related contents. Trending topic prediction [27, 28] needs to first
retrieve related contents and detect trending topics, and then predict the future popularity of the
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detected topics. An event refers to a real-world occurrence that happens at some specific time and
location with a specific semantic topic [50]. Event prediction [29, 32, 50] focuses on anticipating
events in the future, given the event data and historical event data. Its output are entities with
rich information, such as time, location, and semantics. Real-time event prediction [32] requires
continuous monitoring of the observed input data to trigger timely alerts of future potential events.
To some degree, popularity prediction can be taken as an essential part of trending topic prediction.
For instance, the owners of social platforms can use popularity prediction to trend topic tracking
and to avoid serious information overload problems caused by super popular contents.

2 RELATED WORKS

Popularity prediction in recent years has become one of the most popular research contents in the
field of social networking [2, 10, 37, 51]. Researchers make a lot of effort to study popularity pre-
diction, and their work can be generally classified into three categories: the classification problem,
the ranking problem, and precise popularity prediction. We will introduce them in detail.

2.1 Classification-Based Popularity Prediction

Some papers regard the popularity prediction as classification problems [43, 44]. Their popularity
status space can be either a binary space {Popular, Unpopular} or {Low Popularity, Medium Popu-
larity, High Popularity} or other more refined space containing multiple levels of popularity. Kim
et al. [21] defined four different types of discrete temperature scale, such as explosive, hot, warm,
and cold, and derived a sound regression model to predict the popularity temperature. Xu et al. [44]
developed contextual bandits learning by incorporating the contextual information of the social
network, and proposed Pop-Forecast, a systematic method for the popularity prediction of videos
promoted through social networks. Xu et al. [43] proposed the Social-Forecast algorithm, which
can choose to make a prediction classification using the currently observed context information
or wait to make this prediction until the next period.

2.2 Ranking-Based Popularity Prediction

Some papers regard the popularity prediction as a ranking problem [35, 36, 38, 45], which aims
to rank articles based on their predicted popularity. Yin et al. [45] assumed that each person has
two personalities, Conformer and Maverick, which guide the voting behavior. Combining both of
positive and negative votes, Yin et al. [45] proposed a Conformer-Maverick (CM) model to predict
whether an item will be popular or not, and ranked top-k potentially popular items based on the
early votes they received. Tatar et al. [35, 36, 38] considered two properties of news articles, the
distribution of popularity and the lifetime of articles, and predicted the popularity of news articles
based on user comments.

2.3 Precise Popularity Prediction

The preceding two types of popularity prediction cannot predict a numeric value, such as the exact
amount of retweets or forwards that a content will receive, so they have limited application. More
and more research focuses on the precise popularity prediction, which can be generally divided
into three categories: popularity-level popularity prediction, user-level popularity prediction, and
group-level popularity prediction.

2.3.1 Population-Level Popularity Prediction. Many papers predict the popularity from the pop-
ulation level that predicts how many users in total will react to a content [7, 31, 34]. Szabo and Hu-
berman [34] found that a strong linear correlation exists between the logarithmically transformed
popularity of content at early and later times, and presented a model (also the SH model) to pre-
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dict future popularity. Pinto et al. [31] extended the SH model and proposed the multivariate linear
model (also called the Pinto model) and the MRBF model. Cao et al. [7] improved the SH model [34]
and the Pinto model [31] by dividing messages into groups and trained a group-specific model for
the messages of each group. Bao et al. [5] focused their attention on the structural characteristics
of the networks composed of early adopters (i.e., the link density and the diffusion depth). Then
they improved the SH model [34] by using structural characteristics. Shen et al. [33] proposed a
generative probabilistic framework using a reinforced Poisson process, RPP, to model and predict
the popularity of individual items. Gao et al. [9] developed the RPP model that divides the whole
process of retweeting dynamics into several subprocesses, and each subprocess is modeled by an
RPP model. Bao et al. [6] proposed a probabilistic model using SEHP (Self-Excited Hawkes Process)
to characterize and predict the popularity of individual microblogs.

2.3.2 User-Level Popularity Prediction. Some papers predict the popularity from the user level.
In other words, they predict which users will react to a content [24] or estimate the propagation
probability that a content propagates from one individual to another [16] by modeling behaviors
of individual users. Huang et al. [16] found that the probability a message propagates between two
individuals decays with the length of time latency since their latest interaction, obeying a power-
law rule, and proposed a temporal model to estimate future propagation probabilities between
individuals. Lerman and Hogg [24] proposed stochastic models of user behavior and predicted
popularity based on early user reactions to new content. Matsubara et al. [26] introduced TriMine
to find patterns and trends in large set of clicks, including predicting the clicks number from a
specific user on the next day. Yu et al. [46] found two interesting phenomena, minor dominance and
early stage dominance, and proposed a novel Networked Weibull Regression mode for behavioral
dynamics modeling. Zaman et al. [47] developed a probabilistic model of the Bayesian approach
to provide popularity predictions and posterior credible intervals for the predictions.

2.3.3 Group-Level Popularity Prediction. However, there are some shortcomings in the preced-
ing works. The user-level popularity prediction is susceptible to noisy (i.e., missing) data and of-
ten is costly to learn [8]. The population-level popularity prediction is only able to provide a very
coarse view. Recently, Hoang et al. [14] proposed a promising direction of group-level popularity,
which is more fine grained than the aggregate network level while less noisy than the individual
user level. They also address the problem by designing the GPOP model, which first groups user
into cohesive clusters and then adopts CP decomposition to predict group-level popularity.

Although there are lots of works on web content popularity, there is a significant lack of solu-
tions for incremental prediction (or online learning and data streams). This was previously noted
in other works [2, 37] and has been unexplored so far. In this article, we identify the problem of
incremental group-level popularity prediction, which focuses on the incremental prediction and
combining the advantages of group-level popularity prediction. To address the problem, we pro-
pose the IGPP model based on the incremental CP decomposition method, which fully exploits the
new data, updates the previous results incrementally, and predicts the group-level popularity of
contents incrementally.

3 PROBLEM DEFINITION

In this section, we first identify the problem of incremental group-level popularity prediction. Then
we introduce an overview of our solution. The notations used in this article are listed in Table 1.

3.1 The Problem of Incremental Group-Level Popularity Prediction

The incremental group-level popularity prediction problem. Given a network G, a set of historical
contents P = {p1,p2, . . . ,pm } (each content is observed over a period of q timestamps), a set of

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 20. Publication date: September 2021.



20:6 J. Wang et al.

Table 1. Notations

Notation Explanation
t1 Initial size on temporal mode
k Number of similar contents being selected
n Number of nodes
m Number of historical contents
q Maximum timestamp
l Number of groups
Δ Fixed time interval for restarts
θ Threshold for restarts
C User groups

x ,x,X,X Scalar, vector, matrix, and tensor
xi jt Element of X, the accumulative popularity of content i over group j until timestamp t

A,B,C Loading matrices of X by CP decomposition

AT ,A−1, Transpose, inverse, Moore-Penrose

A†, ‖A‖ pseudoinverse, and Frobenius norm of A
X(i ) ,Xold (i ) Unfoldings of X, Xold along mode i
�, ⊗, ∗ Kronecker, Khatri-Rao, and Hadamard product

Fig. 1. Illustration of the incremental group-level popularity prediction problem.

user groups, C = {C1,C2, . . . ,Cl }, and the group-level popularity of a new content pm+1 during
a observable period of t1 timestamps (t1 < q), the task is to incrementally predict the group-level
popularity of pm+1 during the period [t1 + 1,q]. In other words, suppose the popularity (i.e., the
number of being retweeted or propagated) of pm+1 over all groups at t1 is vector xm+1,t1 , given
{xm+1,1,xm+1,2, . . . ,xm+1,t1 }, and as time goes on successively predicts its popularity in future
time points {xm+1,t1+1}, {xm+1,t1+2}, . . ., {xm+1,q } (Figure 1).

3.2 Solution Overview

Taking the data organization, incrementally predicting, and error reducing into consideration, we
propose an IGPP method by exploiting the incremental CP decomposition to solve the problem
of incremental group-level popularity prediction. This is because the tensor can organize and rep-
resent all related data clearly and naturally, and incremental CP decomposition can track the CP
decomposition incrementally for exploring and extracting the underlying patterns and the hidden
information of new data. The IGPP has three steps: preprocessing, incrementally predicting, and
restarting:

(1) Preprocessing: We preprocess information diffusion data to improve the data quality and
build a group-level popularity tensor Xinit for the target content pm+1 as the initial conditions
(Section 4.1).

(2) Incrementally predicting: For each new chunk of diffusion data Xnew , where the group-level
popularity of pm+1 is missing and needs to be predicted, Xc is expanded from Xold by appending
Xnew at its time mode. We exploit the incremental CP decomposition to predict the group-level
popularity of pm+1 incrementally (Section 4.2).
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(3) Restarting: To improve the prediction accuracy, we propose the CP decomposition restarting
method with three strategies to reduce the cumulative error caused by incremental prediction
(Section 4.3).

The differences in our work from the work of Hoang et al. [14]. We would like to highlight the differ-
ences between our work and the original group-level popularity prediction paper [14], including
problems and methods. First, our problem is developed from the recent work in group-level pop-
ularity prediction [14]. However, our problem, the incremental group-level popularity prediction,
focuses on the study of incremental prediction and has profound implications in real-world appli-
cations as mentioned in Section 1, which essentially motivates this article. Second, we also use
the CP decomposition, but our method, IGPP, is very different from GPOP [14]. To be specific, the
basic idea of IGPP is an incremental CP decomposition [52], which updates the previous results
based on new data and tracks the CP decomposition of an online tensor incrementally. Based on
this, we design different restarting CP decomposition strategies to reduce the cumulative error
and improve the prediction accuracy. GPOP is a non-incremental method, and it is impossible to
develop an incremental version. It first conducts the traditional CP decomposition on four tensors,
which store the group-level popularity and population-level popularity of historical contents and
the target content, respectively. Then, it predicts group-level popularity in a hierarchical constraint
prediction framework.

The fundamental differences in the methods lead to different performances. We conduct exten-
sive experiments to compare our method with GPOP in detail. Compared with GPOP, IGPP is more
accurate and more efficient. What is more, we deeply study the effect of different restarting strate-
gies on IGPP, and we recommend the appropriate restarting strategy to consumers with different
requirements for accuracy and efficiency.

4 IGPP: THE MODEL DETAILS

In this section, we introduce the IGPP model in detail, including preprocessing, incrementally
predicting, and restarting. We also analyze the time complexity.

4.1 IGPP: Preprocessing

We conduct some preprocessing to build the group-level popularity tensor, including grouping
users and selecting top-k similar contents for pm+1. We adopt the methods proposed by Hoang
et al. [14] for preprocessing. We briefly introduce the basic idea as follows.

4.1.1 Grouping Users. Hoang et al. [14] define a network-constrained popularity graph G∗,
which is obtained by weighting of the users’ historical activities network and the user network.
Then, they use the multilevel k-way partitioning algorithm [20] on G∗ for graph clustering.

To study the effect of different groups on the IGPP method, we construct a user graphG, a popu-
larity graphGS , and a network-constrained popularity graphG∗, respectively (see the appendix for
more details). Then, we obtain three different groups by using the multilevel k-way partitioning
algorithm. We also group users randomly. We test the impacts of different groups via experiments.

After grouping users, we can build the group-level popularity tensor X, whose element xi jt

refers to the accumulative popularity of content i over group j until timestamp t . It is worth noting
that the life cycle of a content in OSNs is usually short, and the changes of the user network during
this period are relatively insignificant. Therefore, without loss of generality, we assume that the
user groups are unchanged. In other words, we use the user groups obtained at the maximum
observed timestamp to predict the popularity in the future short period.

4.1.2 Selecting Top-k Similar Contents for the Target Content. To make X smaller and more
relevant for low computational cost and high accurate prediction, we select k similar contents for
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ALGORITHM 1: Preprocessing of IGPP

Input: P = {p1, ·, ·, ·,pm }: historical contents.

pm+1: the target content being predicted.

t1: the observable period of pm+1.

Output: Xinit : initial group-level popularity tensor.

1 Set the number of groups as l ;

2 Build a network-constrained popularity graph G∗;
3 Group users C = {C1,C2, . . . ,Cl } on the graph using k-way partition algorithm;

4 Construct X for P and pm+1 based C;

5 Normalize X at timestamps t1 with Equation (1);

6 Calculate D∗t1
(pi ,pm+1) (i = 1, . . .m) with Equation (3);

7 Select k contents with the smallest D∗t1
(pi ,pm+1) (i = 1, . . .m) as the top-k similar contents of pm+1;

8 Construct Xinit based on C and top-k similar contents;

9 return Xinit ;

pm+1 in a normalized space like that of Hoang et al. [14]. Given the observable time period [1, t1],
we normalize every content in X at timestamp t1 as follows:

x̃i jt = xi jt

/∑
j

xi jt1 ∀i, t , j, (1)

where
∑

j xi jt1 is the accumulative popularity of content i over all groups until timestamp t and
is called the normalized factor of content i . Then, the distance at timestamp t1 between pm+1 and
another content pi is defined as the Euclidean distance as follows:

Dt1 (pi ,pm+1) =

√ ∑
t=1, ...,t1;j=1, ...,l

(x̃i jt − x̃m+1, j,t ). (2)

To reduce the impacts of outliers (similar to pm+1 at timestamp t1, but very different from pm+1

in the future), we also include an outlierness score, which is defined as the average distance at
timestamp q between pi and the rest of the historical contents. So, the distance is finally defined
as

D∗t1
(pi ,pm+1) = Dt1 (pi ,pm+1) ×

∑
j=1, ...,m;j�i Dq (pi ,pj )

m − 1
. (3)

Then, we select k contents with the smallest distance to pm+1 as the top-k similar contents
of pm+1. After grouping users and selecting top-k similar contents, we construct a group-level

popularity tensor Xinit ∈ R(k+1)×l×t1 for the k similar contents and pm+1 during the observable
time period [1, t1] as the initial conditions.

4.1.3 Preprocessing Algorithm. The detailed preprocessing of IGPP is shown in Algorithm 1.
IGPP first groups users onG∗ (lines 1–3). Next, IGPP selects k similar contents for pm+1 (lines 4–7).
Finally, IGPP constructs Xinit based on the preceding groups and similar contents (lines 8 and 9).

Complexity analysis. In Algorithm 1, the time complexity of grouping users based on the multi-
level k-way partitioning algorithm is O ( |E |). Selecting k similar contents needs to calculate the
distance between each historical content and pm+1, and chooses top-k contents with the smallest
distance, whose time complexity is O (m2ql ). Therefore, the total time complexity is O (m2ql + |E |).

4.2 IGPP: Incrementally Predicting

The incrementally predicting process is shown in Figure 2. It exploits the incremental CP de-
composition [52] to track CP decomposition of the group-level popularity tensor and predict
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Fig. 2. IGPP : incrementally predicting.

group-level popularity incrementally. This process has three stages: the initialization stage, the
update stage, and the prediction stage.

4.2.1 The Initialization Stage. As shown in the upper left part of Figure 2, for the initial

group-level popularity tensor Xinit ∈ R(k+1)×l×t1 , we calculate its CP decomposition Xinit ≈
�Ainit ,Binit ,Cinit �. Ainit ∈ R(k+1)×R , Binit ∈ Rl×R ,Cinit ∈ Rt1×R are latent content, group,
and time feature matrices, and their row vectors representing content-specific, group-specific, and
time-specific latent feature vectors, respectively. R is the number of latent dimension. We also use
complementary matrices to store the information of previous results in the process of incremental
updates for A and B. Here, we initialize complementary matrices Finit , Hinit ,Uinit , and Zinit as
follows so that Ainit = Finit H−1

init and Binit = Uinit Z−1
init . In other words, Finit ,H

−1
init are feature

weight matrices for Ainit , and Uinit ,Z
−1
init are feature weight matrices for Binit :

Finit = Xinit (1) (Cinit � Binit ),

Hinit = (CT
init Cinit ) ∗ (BT

init Binit ),

Uinit = Xinit (2) (Cinit � Ainit ),

Zinit = (CT
init Cinit ) ∗ (AT

init Ainit ),

(4)

where Xinit (1) and Xinit (2) are the unfoldings of Xinit along mode 1 and mode 2, respectively. In
addition, � and ∗ are the Khatri-Rao product and Hadamard product [22], respectively.

4.2.2 The Update Stage. As time goes on, a piece of new data Xnew ∈ R(k+1)×l×tnew comes,
where the group-level popularity of pm+1 is missing (see the white part of Xnew in Figure 2). The

current group-level popularity tensor Xc ∈ R(k+1)×l×tc (tc = told + tnew ) is expanded from Xold ∈
R

(k+1)×l×told by appending the new data Xnew at its time mode. We update the factor matrices
based on the unfolding ofXnew , complementary matrices and the previous factor matrices ofXold

(the lower left and middle parts of Figure 2).
The update process is similar to the classical alternating least squares algorithm [52]. In other

words, we first fix the content mode A and the group mode B to update the time mode C. We then
update matrices A and B successively by fixing the other two matrices. It is worth noting that
unlike A and B, the size of factor matrix C on the time mode has changed (see Figure 2). So, the
ways to update them are different.

Update the time mode C. By fixing factor matrices of A and B as Aold and Bold , the factor matrix
of time mode C is updated by appending the projection Cnew of Xnew (3) via the factor matrices
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Aold and Bold , to Cold —that is,

C =

[
Cold

Cnew

]
=

[
Cold

Xnew (3) ((Bold � Aold )T )†

]
. (5)

Update content mode A and group mode B. First, we update A. By fixing B and C as Bold and C,
the objective is to minimize the estimation error L, which can be written as L = 1

2 ‖X(1) −A(C �
Bold )T ‖2. The derivative of L w.r.t. A is as follows:

∂L
∂A
= X(1) (C � Bold ) − A(C � Bold )T (C � Bold ). (6)

By setting Equation (6) to zero and letting F = X(1) (C � Bold ) and H = (C � Bold )T (C � Bold ),
we have A = FH−1. By representing X(1) and C with the old and new components, and Fold =

Xold (1) (Cold �Bold ), F can be represented as F = Fold +Xnew (1) (Cnew �Bold ). Similarly, H can be

represented as H = Hold+ (Cnew �B)T (Cnew �B). The Khatri-Rao product (Cnew �B)T (Cnew �B)
can be obtained by calculating it as (CT C ∗ BT

old
Bold ) [22].

Therefore, the factor matrix on content mode A can be updated incrementally as follows:

F← Fold + Xnew (1) (Cnew � Bold )

H← Hold +
(
CT

new Cnew

)
∗
(
BT

old Bold

)
A← FH−1.

(7)

The update rule for the factor matrix on group mode B can be derived in a similar way, as
follows:

U← Uold + Xnew (2) (Cnew � A)

Z← Zold + (CT
new Cnew ) ∗ (AT A)

B← UZ−1.

(8)

4.2.3 The Prediction Stage. Based on the incremental updates, we can obtainXc ≈ �A,B,C�c =

X̂c , where A is the factor matrix for the k historical contents and pm+1, B is the factor matrix for
l groups, and C is the factor matrix for the time mode. These three factor matrices capture the
latent representations at the group levels using the k historical contents, and also map pm+1 to the
same latent space as that of the historical contents. We predict pm+1’s group-level popularity at tc
timestamp as follows:

xm+1,tc
← {x̂m+1, j,tc

|j = 1, . . . , l }, tc ∈ [t1 + 1,q]. (9)

4.2.4 Case Study. Figure 3 is the flow chart of IGPP for a target content, whose observable
period is three timestamps. In preprocess, we cluster users into l = 5 groups and select its k = 5
similar contents. Then, we build its group-level popularity tensor X ∈ R6×5×3, where the sixth
content is the target content (see Figure 4(a)). We normalize X with Equation (1) and obtain the
normalized initial group-level popularity tensor Xinit (the tensor in Figure 4(c)). Here, we set the
rank R = 1 for simplicity.

In the initialization stage of incrementally predicting, we first calculate CP decomposition of
Xinit to get factor matrices Ainit , Binit , and Cinit (Figure 4(c)), and initialize all complementary
matrices F, H, U, and Z with Equation (4) (Figure 4(b)).

In the update stage, for each new data Xnew ∈ R6×5×1, where group-level popularity values
of the sixth content are zeros and need to be predicted, we first update the factor matrix C by
appending the projection of Xnew to Cinit with Equation (5). Next, we update the factor matrix
A of content mode with Equation (7) and the factor matrix B of group mode with Equation (8)
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Fig. 3. A flow chart of the case study.

Fig. 4. An example.

(Figure 5(b) shows the updated complementary matrices). So, we get the updated factor matrices,
A, B, and C (see Figure 5(c)).

In the prediction stage, the matrices A, B, and C are the factor matrices of the current tensor
Xc ∈ R6×5×4 by incremental updates. Then, the vector x6j4 (j = 1, . . . , 5) in the reconstructed

tensor X̂c by A, B, and C is the predicted group-level popularity of the sixth content at the fourth
timestamp in the normalized space. Based on the normalized factor with Equation (1), we can get
the predicted group-level popularity finally (see Figure 5(d)). Due to page limitations, we only show
the update process once, and the predicted results of the sixth content are shown in Figure 5(d).

4.3 IGPP: Restarting

We test the prediction performance of IGPP and find that the root mean square error (RMSE)

of IGPP increases greatly and monotonically with time (shown in Figure 6). There are two main
reasons. First, as new data increases, IGPP has to continuously update incrementally. The recon-
struction loss of the observable data increases due to the approximation on incremental updates
of incrementally predicting. Thus, the prediction error of the missing data increases. Second, for
each new data, IGPP updates the previous results to get new ones and predicts the missing data.
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Fig. 5. Incrementally predicting for a new data. (a) New data 1. (b) Complementary matrices after update.

(c) Factor matrices after update. (d) Ground truth, predicted group-level popularity and RMSE.

Fig. 6. Performance of IGPP without restarts (unit of timestamps: hours).

Then, it will reuse these new results to update incrementally for the next new data. In this process,
the prediction results are taken as the true values for the next prediction, which further expand
the prediction error.

To address the preceding issues, we propose an effective approach of restarting the CP decompo-
sition at some timestamps, which can reset the cumulative error induced by incrementally predict-
ing. Some work has been proposed to restart SVD in an incremental SVD method [49]. However,
no work has been done to restart CP decomposition in incremental CP decomposition. We propose
three heuristic strategies to determine the restarting time points in this article, as follows.

Fixing the time interval Δ (IGPP-Δ). We periodically restart the CP decomposition after a certain
time interval Δ. It is simple and easy to apply.

Fixing the maximum relative cumulative error I by a threshold θ (IGPP-θ ). In this strategy, we
focus on the relative cumulative error I of the observable data. To be specific, we introduce the
threshold θ and then restart the CP decomposition when the maximum relative cumulative errorI
is larger than θ . We first give two key concepts. Then, we present the detailed calculation process
of I.

Definition 4.1 (Reconstruction Error [39]). Given a 3-order tensor X and its factor matrices A,B,
and C obtained by the CP decomposition or the incremental CP methods, the reconstruction error
J refers to the loss between the reconstructed tensor by these factor matrices and the original
tensor:

J = ‖X − A � B � C‖. (10)

Definition 4.2 (Cumulative Error [39]). The cumulative error refers to the reconstruction error
caused by incremental updates of the incremental CP decomposition, excluding the reconstruction
loss by the optimal CP decomposition. For the same incremental tensor, assuming its reconstruc-
tion errors by the optimal CP decomposition and incremental CP decomposition are J oCP and
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J ICP , respectively, the cumulative reconstruction error ΔJ caused by the incremental CP de-
composition can be calculated as follows:

ΔJ = J ICP − J oCP . (11)

Since J oCP is intrinsic in the CP decomposition and cannot be reduced by restarting, it cannot
guide the time point of restarting the CP decomposition. Instead, the cumulative error induced by
incremental CP decomposition, ΔJ , is a possible measure to guide CP decomposition restart. In
addition, there are some missing data to be predicted, so we only calculate the cumulative error of
observable data.

However, the determination of a CP rank is NP-hard [13], and there is no optimal (i.e., minimum)
loss J oCP proved in theory, so it is difficult to calculate the cumulative error ΔJ by J ICP −J oCP

directly. Thus, in this work, we perform the CP decomposition on Xc for each new data Xnew ,
which serves as the optimal decomposition with the minimum loss at timestamp tc . The margin
between the incremental CP decomposition and the optimal decomposition is taken as the actual
cumulative error ΔJ . We define the relative cumulative error I at timestamp tc as follows:

I (tc ) =
ΔJ (tc )

J oCP (tc )
=
J ICP (tc ) − J oCP (tc )

J oCP (tc )

=
‖Ωc (X̂c − Xc )‖ − ‖Ωc (X̂′c − Xc )‖

‖Ωc (X̂′c − Xc )‖

Ωc (i, j, t ) =

{
0, i f Xc (i, j, t ) is missinд

1, otherwise,

(12)

where X̂c and X̂′c are the reconstruction tensor of factor matrices of Xc by the incremental CP
decomposition and the optimal CP decomposition, respectively, and J ICP (tc ) and J oCP (tc ) are
their reconstruction error at timestamp tc , respectively. In addition, Ωc is a mask tensor of Xc ,

indicating the observed entries inXc . ‖Ωc (X̂c −Xc )‖ is the reconstruction error of observable data
in Xc by incremental CP decomposition.

Fixing the maximum relative mean error of the previous prediction by a threshold σ (IGPP-σ ).
We compare the relative mean error of the previous prediction and the threshold σ to determine
whether to restart CP decomposition. To be specific, we first calculate the relative mean error for
the group REGt at timestamps t (Section 4.2) as a feedback. Then, we restart the CP decomposition
at timestamp (t + 1) if REGt is larger than σ .

We have studied the problem of reducing the cumulative error of ICP in different OSN applica-
tions. The major differences between this work and our earlier work [39] are twofold. First, we
have different focuses in the two works. In the earlier work [39], we focus on identifying the fun-
damental causes of cumulative errors by incremental CP decomposition in multiple OSN applica-
tions, and reducing errors. Second, we propose and address different problems in the earlier work
[39]. We propose two optimization problems (i.e., minimizing the restarting times that keeping
a small cumulative reconstruction error and prediction error, respectively), and proposed several
restarting strategies, and applied them in three typical OSN applications.

4.4 IGPP: The Integrated Process

In this section, based on the preprocess with Algorithm 1, we combine the incremental prediction
and restarting strategies to implement incremental group-level popularity prediction. Taking the
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ALGORITHM 2: IGPP

Input: Xinit ∈ R(k+1)×l×t1 : the initial tensor obtained from Algorithm 1.

Xnew ∈ R(k+1)×l×tnew : newly added tensor.

Δ: the threshold for IGPP with Δ.

Output: {x̂(t ) |t = 1, . . . ,T }: predicted group-level popularity of content p.

1 Calculate the CP decomposition on Xinit to obtain its factor matrices Ainit ,Binit ,Cinit and initialize

complementary matrices Finit ,Hinit ,Vinit and Zinit with Equation (4);

2 Procedure of IGPP-Δ:

3 Initialize the counter of time interval C ← 0;

4 for newly added data Xnew ∈ R(k+1)×l×tnew do

5 C ← C + tnew ;

6 if C/Δ = 0 then

7 Calculate the current tensor Xc ∈ R(k+1)×l×(t1+C ) by appending Xnew ;

8 Calculate the CP decomposition on Xc ≈ �A, B, C�;

9 Calculate complementary matrices F,H,U, and Z using Equation (4);

10 else

11 Update the temporal mode, C is updated with Equation (5);

12 Update the non-temporal mode, content mode, and group mode, A is updated with

Equation (7) and B is updated using Equation (8);

13 end

14 X̂ ← �A, B, C�;

15 x̂m+1,t1+j ← {X̂m+1, j,t |j = 1 . . . l , t ∈ [t1 + 1,q]};
16 end

17 return {x̂m+1,t1+1, . . . , x̂m+1,q }.

first restart strategy (i.e., fixing the time interval Δ) as an example, the details of IGPP are
shown in Algorithm 2. It is noticed that for different restarting strategies, IGPP has the same
initialization: IGPP conducts the CP decomposition onXinit and initializes the factor matrices and
the complementary matrices (line 1).

For IGPP with Δ, it first initiates a variable C for counting time intervals from the initial time
t1 (line 3). Then, for each newly added data Xnew , it adds tnew to the variable C , and determines
restarting or not. If C is a multiple of Δ, it calculates the current tensor Xc by appending Xnew to
the previous tensor along the time mode, and restarts the CP decomposition on Xc to obtain fac-
tor matrices and complementary matrices (lines 6–9). Otherwise, it updates incrementally factor
matrices C, A, and B successively, and complementary matrices (lines 10–13); then, IGPP pre-
dicts the group-level popularity of pm+1 in new timestamps based on A, B, and C (lines 14–15).
Finally, IGPP returns the predicted group-level popularity of pm+1 during the period [t1,+1,q]
(line 17).

Complexity analysis. In the best case, for each new dataXnew ∈ R(k+1)×l×tnew , IGPP only updates
factor matrices incrementally for prediction. Its time complexity is O (Rl (k + 1)tnew ), where R is
the number of latent dimension. There are a total of (q − t1) Xnew . So the total time complexity
is O (Rl (k + 1)tnew (q − t1)) in the best case. In the worst case, for every Xnew , IGPP needs to
update factor matrices incrementally and restart the CP decomposition to predict the group-level
popularity, whose time complexity isO (Rl (k + 1) (2tnew + told )). Then the total time complexity is
O (Rl (k + 1) (2tnew + told ) (q − t1)) in the worst case.
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Table 2. Statistics in the Two Datasets and the Prediction Tasks

Behance Twitter

#Users 85,092 22,255
#Edдes 13,428,364 575,819

#Contents 1,326 projects 1,015 hashtags
#Timestamps 60 24

Timestamp size 4 hours 4 hours
Prediction tasks

History length t1 12 (2 days) 5 (20 hours)
Future length q − t1 48 (8 days) 19 (76 hours)

5 EXPERIMENTS

5.1 Experimental Setup

Datasets. We use two real-world datasets1 for experiments: Behance [1] and Twitter [23] (Table
2). Both of them are typical social networks, and a content is a project in Behance or a hashtag in
Twitter. The popularity of a content is the number of users who have appreciated it or the number
of times it has been tweeted by users.

Baselines. We compare our method with variants of IGPP, the CP decomposition [22], and the
most recent group-level prediction method, GPOP [14], which predicts group-level popularity us-
ing CP tensor decomposition with hierarchical constraints and cannot update the model incremen-
tally over time.

Parameter setting. We set the number of groups as 12 for Behance and 11 for Twitter, consistent
with GPOP in the work of Hoang et al. [14]. It is worth noting that the group-level popularity is a
more general problem: when the number of groups is 1, it becomes the population-level popularity;
when the number of groups is equal to the number of users, it becomes the user-level popularity.
In addition, we set the size of new data at time mode tnew = 4h for simplicity. Our method can be
easily expanded to other cases with different tnew values. For each content, after preprocess (i.e.,
grouping users and selecting top-k similar content), its group-level popularity tensor possesses the
feature of contents, groups, and temporal correlation. So, we set the number of latent dimension R
as 2 [7]. Specifically, if IGPP needs to restart, we use the batch hot of CP decomposition, which is
an implementation of the ALS algorithm in Tensor Toolbox [3], and use the decomposition results
of the last timestep as the initialization for decomposing the current tensor. In each experiment,
we run all algorithms 10 times on all contents and report the average results. All experiments
are conducted on a server running CentOS Linux release 7.4.1708 with an Intel Core i5-8600K
3.60GHz processor and 23.3 GB of RAM. All algorithms are implemented in Matlab, using Tensor
Toolbox [3], Pablano Toolbox,2 and the METIS library.3

5.2 Evaluation Metrics

In this work, we adopt three standard measurements, RMSE, REG, and average running time, as
the evaluation metrics.

RMSE is a commonly used measurement of the differences between the predicted values and
the values actually observed. In this work, we test the RMSE over m contents, l groups, and q
timestamp, respectively:

1https://cs.ucsb.edu/~mhoang/gpop.tar.gz.
2https://github.com/sandialabs/poblano_toolbox.
3http://glaros.dtc.umn.edu/gkhome/metis/metis/download.
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(1) RMSE over contents (RMSE)

RMSE =
1

m

m∑
i=1

√√∑l
j=1

∑q
t=t1

(X̂i jt − Xi jt )2

l × (q − t1)

(2) RMSE over groups (RMSEдroups )

RMSEj =
1

m

m∑
i=1

√∑q
t=t1

(X̂i jt − Xi jt )2

(q − t1)

(3) RMSE over time (RMSEt imestamps )

RMSEt =
1

m

m∑
i=1

√∑l
j=1 (X̂i jt − Xi jt )2

l

We introduce another metric, relative mean error for the group (REG) defined in the work
of Hoang et al. [14] as follows:

REG =
1

m

∑
i

√∑l
j=1

∑q
t=t1

(Xi jt − X̂i jt )2√∑l
j=1

∑q
t=t1
X2

i jt

,

where X̂ and X are all predicted group-level popularity and the ground truth of m contents, re-
spectively.

In addition, we adopt the average running time for predicting popularity of one content during
all future period [t1 + 1,q], measured in seconds, to validate the time efficiency of our model. Be-
cause IGPP predicts popularity incrementally, its running time is calculated as the sum of running
time over all timestamps. For allm contents, the average running time of IGPP and other baselines
is defined as follows:

TimeIGPP =
1

m

m∑
i=1

q∑
t=t1

runninдtimek,t ,

TimeOther =
1

m

m∑
i=1

runninдtimek .

To avoid any ambiguity, we use “time” to represent the average running time and “timestamps”
to represents the future time period in experiments.

5.3 Experimental Results and Analysis

We conduct three groups of experiments: analyzing the impacts of several parameters, groups
and restarting strategies, respectively, and comparing IGPP with different restarting strategies and
baselines.

5.3.1 The Effects of Model Parameters. In this section, we test the effect of the number k of
similar contents, the observable period t1, and the thresholds on IGPP with different restarting
strategies, respectively.

The effect of the number k of similar contents. To study the effect of the number k of similar
contents, we conduct IGPP-Δ with Δ = 4h (i.e., IGPP-4h) on Behance and Twitter with varying
k from 10 to 100. From Figure 7, we can observe that as k grows, both the RMSE and the REG
of contents first decrease and then stabilize, because when k is too high, useless information is
combined. At the same time, the curves of average running time are almost stable with some small
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Fig. 7. RMSE, REG, and average running time (seconds) as the number k of similar contents varies.

Fig. 8. REG and average running time (seconds) as the observable timestamp t1 varies.

Table 3. Effects of Top-k Similar Contents on Performance

Dataset Method RMSE REG (%) Time (s)

Behance IGPP-Top60 7.80 21.43 0.30

IGPP-All 31.76 84.22 0.57
Twitter IGPP-Top80 15.82 32.98 0.15

IGPP-All 40.53 88.32 0.22

fluctuations. So, we choose the k with smaller errors—that is, k = 60 for Behance and k = 80 for
Twitter.

In addition, we compare IGPP with the top-k similar contents and IGPP with all history contents.
The comparison results in Table 3 show a strong indication to the effectiveness and efficiency of
selecting top-k similar contents.

The effect of the observable period t1. We evaluate the effect of the observable period t1 on IGPP.
To be specific, for the observable period t1 of pm+1 from 2 to 15, we run IGPP-4h to predict group-
level popularity in next q − 15 timestamps—that is, 45 timestamps on Behance and 9 timestamps
on Twitter. The results are presented in Figure 8, and the timestamps size is 4 hours. There are two
main findings. First, the REG almost decreases linearly with the increase of t1 for the two datasets.
It indicates that the longer the observation time of the target content, the higher the prediction
accuracy. Second, the running time decreases slightly with the increase of t1. In later experiments,
we set t1 = 0.2 × q (i.e., t1 = 12 on Behance and t1 = 5 on Twitter) and predict the group-level
popularity in the remaining timestamps.

The effect of different groups. We conduct experiments of IGPP-4h using four different groups as
mentioned in Section 4.1. Table 4 shows the results for the two datasets. We can see that IGPP based
on the network-constrained popularity graph G∗ (i.e., IGPP in G∗) has the smallest REG, followed
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Table 4. Impact of Different Grouping Methods

Dataset Group Methods REG (%) Average Running Time (s)

B
eh

an
ce

IGPP in G 23.99 0.30
IGPP in Gs 21.96 0.31
IGPP in G∗ 21.43 0.30
IGPP in Gr 26.53 0.29

T
w

it
te

r IGPP in G 39.32 0.18
IGPP in Gs 37.78 0.16
IGPP in G∗ 32.98 0.15

IGPP in Gr 42.24 0.17

Table 5. IGPP with Δ, IGPP with θ for Behance

Methods RMSE REG (%) Time (s) Average Restarting Times

IGPP-Δ

IGPP-4h 7.80 21.43 0.30 48
IGPP-8h 9.02 24.47 0.16 24
IGPP-12h 10.26 27.64 0.12 16
IGPP-16h 11.48 30.72 0.09 12
IGPP-20h 12.69 33.80 0.07 9

IGPP-θ

IGPP-1‰ 7.86 21.55 0.36 40.38
IGPP-3‰ 8.41 22.91 0.36 29.96
IGPP-5‰ 9.01 24.48 0.36 24.19
IGPP-10‰ 10.41 28.17 0.36 17.00
IGPP-15‰ 11.67 31.59 0.36 13.38
IGPP-20‰ 12.85 34.75 0.36 11.11
IGPP-30‰ 14.89 40.22 0.36 8.38

IGPP-σ

IGPP-5% 7.77 21.35 0.30 46.96
IGPP-8% 7.79 21.38 0.29 46.32
IGPP-10% 7.82 21.44 0.29 45.12
IGPP-12% 7.89 21.61 0.28 43.19
IGPP-15% 8.08 22.04 0.25 39.18
IGPP-18% 8.37 22.70 0.23 34.43
IGPP-20% 8.61 23.29 0.21 30.97
IGPP-25% 9.33 25.05 0.17 23.24
IGPP-30% 10.19 27.22 0.14 16.99
IGPP-35% 11.14 29.68 0.12 12.76
IGPP-40% 12.15 32.34 0.10 10.18

by IGPP in GS . Because G∗ considers both the user networks G and users’ historical activities GS ,
user groups based on G∗ are more homogeneous. IGPP with the random grouping method (IGPP

in Gr ) costs shorter time than others sometimes, but it has the largest REG. Therefore, we run
experiments with IGPP based on a network-constrained popularity graph in later experiments.

The effect of the thresholds on restarting strategies. We evaluate the effect of the thresholds on
IGPP with different restarting strategies with varying the thresholds (i.e., Δ from 4h to 20h, θ from
0.5% to 3%, σ from 5% to 50%). Experimental results are show in Tables 5 and 6, respectively.

IGPP with Δ (IGPP-Δ). As the time interval Δ increases, RMSE and REG of IGPP-Δ increase,
but the running time and the number of restarts decrease. This is because when Δ increases, the
number (q − t1)/Δ of restarts decreases and the running time decreases greatly; at the same time,
the cumulative error in the time interval Δ increases and the prediction errors increase.

IGPP with θ (IGPP-θ ). With the increase of θ , its number of restarts decreases, whereas RMSE
and REG increase. This is because as θ increases, the tolerance to the relative cumulative error
I increases, which leads to the decrease of the number of restarts and the increase of errors. In
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Table 6. IGPP with Δ, IGPP with θ for Twitter

Methods RMSE REG (%) Time (s) Average Restarting Times

IGPP-Δ

IGPP-4h 15.82 32.98 0.15 19
IGPP-8h 19.09 40.13 0.07 9
IGPP-12h 22.28 47.06 0.05 6
IGPP-16h 25.86 54.30 0.04 4
IGPP-20h 28.25 59.69 0.03 3

IGPP-θ

IGPP-1‰ 17.25 36.22 0.17 17.04
IGPP-3‰ 19.27 40.49 0.17 15.48
IGPP-5‰ 20.94 43.75 0.17 14.50
IGPP-10‰ 23.57 48.94 0.17 12.95
IGPP-15‰ 25.04 51.62 0.17 12.03
IGPP-20‰ 25.95 53.63 0.17 11.30
IGPP-30‰ 27.82 56.89 0.17 10.07

IGPP-σ

IGPP-5% 15.63 32.64 0.14 17.81
IGPP-8% 15.68 32.76 0.14 17.56
IGPP-10% 15.74 32.90 0.14 17.34
IGPP-12% 15.82 33.05 0.14 17.05
IGPP-15% 16.00 33.43 0.13 16.54
IGPP-18% 16.21 33.88 0.13 15.88
IGPP-20% 16.36 34.26 0.13 15.40
IGPP-25% 17.04 35.64 0.12 14.01
IGPP-30% 17.83 37.33 0.11 12.57
IGPP-35% 18.77 39.36 0.10 11.26
IGPP-40% 19.79 41.49 0.10 10.21

addition, the running time is basically unchanged with θ . This is because IGPP-θ has to compute
CP decomposition, incremental CP decomposition, and I to decide whether to restart CP decom-
position for each new data.

IGPP with σ (IGPP-σ ). With the increase of σ , its number of restarts decreases, its average run-
ning time decreases, and RMSE and REG increase.

Fine-grained study on the effect of the thresholds on restarting strategies. We further conduct fine-
grained study on the effect of the thresholds of our methods from two perspectives: the prediction
performance over different groups and that over different timestamps.

We first use the metric of RMSEдroups to study the error on each group of IGPP with differ-
ent restarting methods with varying the thresholds. The results are shown in Figure 9. There are
two main findings. First, from Figure 9, we observe that as thresholds (i.e., Δ, θ and σ ) increase,
RMSEдroups of IGPP with three restarting strategies increase, respectively. Second, theRMSEдroups

in different groups is very different. For example, for Twitter, RMSEдroups of the sixth group is far
less than that of the seventh group for all variants of IGPP. We analyze the reason and find that
this is because the magnitude of the RMSEдroups is related to the true value, and true popularity
in the sixth group is far less than that in the seventh group.

Next, we use the metric of RMSEt imestamps to study the error at different timestamps of IGPP

with three restarting methods with varying the thresholds. The results are shown in Figure 10.
There are two main findings. First, from Figure 10(a) and (d), we find that as the prediction
time increases, the RMSEt imestamps curve of IGPP-4h remains stable, and the others have many
peaks and valleys regularly, whose valleys are on the RMSEt imestamps curve of IGPP-4h. Because
IGPP-4h restarts the CP decomposition every 4 hours (i.e., every timestamps), it has the smallest
RMSEt imestamps . Second, different from IGPP with Δ, IGPP with θ and IGPP with σ have the same
rules. In other words, the RMSEt imestamps curves of IGPP with θ and IGPP with σ increase ap-
proximately linearly with the prediction time on Behance (see Figure 10(b) and (c)), and there is
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Fig. 9. RMSEдroups over groups of IGPP with three restart strategies for Behance and Twitter.

Fig. 10. RMSEt imestamps over timestamps (hours) of IGPP with three restart strategies for Behance and

Twitter.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 20. Publication date: September 2021.



Incremental Group-Level Popularity Prediction in Online Social Networks 20:21

Fig. 11. The relations of REG (%), running time (seconds), and number of restarts with varying thresholds

(i.e., Δ, θ , and σ ) on Behance (B) and Twitter (T).

the same rule after a peak on Twitter (see Figure 10(e) and (f)). The peak on Twitter is because
the magnitude of the RMSEt imestamps is related to the true value, and true popularity at some
timestamps (about 28 hours) is very high.

5.3.2 Comparison of Different Restarting Strategies. We compare different restarting strategies
in detail, and we use the same parameter settings as used on the same dataset in Tables 5 and 6.

Accuracy vs. efficiency. We test the relations between the relative error (i.e., REG) and the
running time, REG and the number of restarts, and the running time and the number of restarts,
respectively. The results are shown in Figure 11. First of all, there are general patterns except for
IGPP-θ : with the increase of running time, the relative error decreases; with the increase of the
number of restarts, the relative error decreases and the running time increases. But the running
time of IGPP-θ is unchanged throughout the experiments. This is because it needs to calculate the
CP decomposition, ICP, and cumulative error for each new data, no matter if there are restarts or
not.

For IGPP-Δ and IGPP-σ , they show different advantages with different running time. When the
running time is short (i.e., less than 0.2 seconds on Behance, and less than 0.12 seconds on Twitter),
or the number of restarts is small, IGPP-Δ has the smaller REG than IGPP-σ . That is because for
determining whether to restart, IGPP-Δ only counts the time interval, whereas IGPP-σ needs to
calculate the relative error of the previous results. Meanwhile, when the running time is long
(i.e., larger than 0.2 seconds on Behance or 0.12 seconds on Twitter), or the number of restarts is
large, IGPP-σ has higher accuracy than IGPP-Δ. We analyze the reason and find that: The time
of restarting is much longer than that for determining whether to restart, therefore, the time to
calculate the relative error of IGPP-σ can be ignored when the running time is long. What is more,
according to the feedback of the previous results, IGPP-σ can restart the CP decomposition flexibly
and in time.
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Table 7. Prediction Error (RMSE and REG) and Average Running Time (s)

of All Algorithms

Datasets Methods RMSE REG (%) Time (s) Speedup Ratios over IGPP

Behance

IGPP-8h 9.02 24.47 0.16 70.81×
IGPP-1‰ 7.86 21.55 0.36 31.47×
IGPP-10% 7.82 21.44 0.29 39.07×

GPOP 11.96 36.60 11.33 1.00×
CP 35.08 96.27 0.19 59.63×

Twitter

IGPP-8h 19.09 40.13 0.07 90.86×
IGPP-1‰ 17.25 36.22 0.17 37.41×
IGPP-10% 15.74 32.90 0.14 45.43×

GPOP 30.21 69.23 6.36 1.00×
CP 47.41 99.69 0.13 48.92×

Comparing IGPP-Δ and IGPP-σ in detail, we find that when consumers are more concerned
about efficiency, IGPP-Δ is better; when consumers are more concerned about accuracy, IGPP-σ
is better. That is because IGPP-Δ has higher accuracy when the running time is short, whereas
IGPP-σ has higher accuracy when the running time is long.

Discussion. By comparing IGPP with three restarting methods, we discuss their threshold settings
and applicable scenarios.

For IGPP-Δ, its threshold Δ mainly depends on the speed of increased data. To reduce the number
of restarts while keeping high accuracy, a large Δ is suitable when data increases slowly; a small
Δ is suitable when data increases rapidly.

For IGPP-θ , with the increase of the number of restarts, its relative error decreases and its run-
ning time is constant. So, the smaller its threshold θ , the larger its number of restarts and the better
its performance.

For IGPP-σ , it is a purpose-driven method, which exploits the previous feedback to determine
flexibly whether to restart. Its threshold depends on the consumer’s tolerance—that is, the con-
sumer’s requirements for prediction accuracy. The smaller its threshold, the smaller its relative
prediction error.

In the remaining experiments, we set Δ = 8h, θ = 0.001, and σ = 10% as the default setting for
IGPP with three restarting strategies, respectively.

5.3.3 Comparative Studies. We compare IGPP with different restart strategies in the default
setting and baselines in terms of prediction accuracy and efficiency. We perform the same prepro-
cess, and set the same parameters for our methods and the baselines. Especially, k = 10 for the
baseline of GPOP, because when k = 10, GPOP has the highest accuracy [14]. The experimental
results on the two datasets are displayed in Table 7, where we also show the speedup ratios of all
algorithms over GPOP for comparison.

From Table 7, we can see that all variants of IGPP outperform the baselines of GPOP and CP. They
achieve smaller RMSE and REG, and take shorter running time than the baselines. This is because
our methods reuse the previous results and reduce computation by incremental updates, and the
restarting strategies reduce the cumulative error caused by the approximation of incremental pre-
diction. GPOP costs the longest running time, because it has to conduct CP decomposition multiple
times on tensors for the hierarchical prediction. To be specific, IGPP-8h takes the shortest running
time without affecting the accuracy seriously; IGPP-10% has the smallest prediction error without
affecting the efficiency seriously. The running time of the CP decomposition is close to that of
IGPP-8h, but the errors are the biggest among all methods. In general, IGPP-h8, IGPP-0.001, and
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IGPP-10% run up to 90.86×, 37.41×, and 45.43× faster than GPOP while having lower prediction
errors.

5.4 Summary of Experiments

The main findings are summarized as follows:
(1) IGPP with different restart strategies outperforms the baselines. To be specific, IGPP-8h, IGPP-

0.001, and IGPP-10% run up to 90.86×, 37.41×, and 45.43× faster than the state-of-the-art group-
level popularity prediction method GPOP while having lower prediction errors.

(2) By comparing IGPP with different restarting strategies, we find that IGPP-Δ is better for
consumers who are more concerned about efficiency; IGPP-σ is better for consumers who are
more concerned about accuracy. What is more, IGPP-σ can restart the CP decomposition flexibly
and in time based on the feedback of previous results.

(3) We check the impacts of parameters on the performance of IGPP. As the number of sim-
ilar contents k increases, the prediction errors of IGPP first decrease and then stabilize. As the
observable period t1 increases, the prediction errors of IGPP decrease. This means that the longer
the observation time of the target content, the higher the prediction accuracy, which is consistent
with the real-world scenarios.

(4) We test the impacts of groups on the performance of IGPP. IGPP with user groups by cluster-
ing on the network-constrained popularity graph G∗ has the smallest error, because G∗ combines
both the user networks and user historical activities, and the user groups are more homogeneous.

6 CONCLUSION

In this article, we identify a novel problem of incremental group-level popularity prediction, and
propose the IGPP model to solve it efficiently and effectively. It has two main steps: incrementally
predicting by exploiting incremental CP decomposition and restarting CP decomposition to reduce
cumulative error. Extensive empirical results demonstrate that IGPP outperforms other baselines in
terms of prediction accuracy and running time. In current work, we mainly focus on exploring the
dynamic diffusion over the time dimension. In future work, we would like to explore more general
incremental approaches in OSNs, which can also model the changing groups over time. We are also
interested in applying our incremental approach to more applications in big data environments.

APPENDIX

A GROUP USERS BASED ON DIFFERENT INFORMATION

The grouping goal is to divide that user into homogeneous groups with comparable size based
on their interests and interactions. That is, the behaviors and interests of users should be similar
within the same group and different across different groups; These groups have comparable sizes,
in order to avoid the large computational cost when there are many tiny groups with only a few
users. In [14], the authors define a network-constrained popularity graph G∗ (see Figure 12 (c)),
which is obtained by weighting of the users’ historical activities network and the user network
(see Figure 12 (a)). Then, they use the multilevel k-way partitioning algorithm [20] onG∗ for graph
clustering.

To be specific, given a user setV = {v1, . . . ,vn } of user graphG = (V ,E), and the users’ historical
activities, we can first construct a popularity graph GS = (V S ,ES ,N S ,W S ), which is a weighted
undirected bipartite graph (see Figure 12 (b)). In GS , the popularity vertex set S = {s11, . . . , Smq }
is the set of all combinations of m contents and q timestamps. So, vertex set V S = V ∪ S , vertex
weights N S = N ∗V ∪ N ∗S , where user vertex vj has weight as N S

vj
= 1, while popularity vertex

si,t without weight N S
si,t
= 0. The edge set and edge weights are ES and W S , respectively. For

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 20. Publication date: September 2021.



20:24 J. Wang et al.

Fig. 12. Different graphs [14].

∀vj ∈ V ,∀sit ∈ S , when user vj has reacted to content pi after the first t timestamps since pi was
created, there is an edge between vj and sit , with weight as the number of reacting to content pi

still timestamp t .
Combing G with GS , we can construct a network-constrained popularity graph G∗ =

(V ∗, E∗, N ∗, W ∗) (Figure 12 (c)) with vertex set V ∗ = V S , edge set E∗ = ES ∪ E, vertex weights
N ∗ = N S , and edge weightsW ∗ =W S ∪W , whereW is the edge weights of G, and ∀(vi , vj ) ∈ E,
W ∗

vi ,vj
=Wvi ,vj

= 1. Interested readers may refer to [14] for grouping users in details.

In order to study the effect of different groups on the IGPP method, we construct an user graph
G, a popularity graph GS and a network-constrained popularity graph G∗, respectively. Then, we
obtain three different groups by using the multilevel k-way partitioning algorithm, which is scal-
able and supports groups with comparable sizes. In addition, we group users randomly. We test
the impacts of different groups via experiments.
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