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Abstract To satisfy the high-performance requirements of application executions,
many kinds of task scheduling algorithms have been proposed. Among them,
duplication-based scheduling algorithms achieve higher performance compared to
others. However, because of their greedy feature, they duplicate parents of each task
as long as the finish time can be reduced, which leads to a superfluous consumption
of resource. However, a large amount of duplications are unnecessary because slight
delay of some uncritical tasks does not affect the overall makespan. Moreover, these
redundant duplications would occupy the resources, delay the execution of subsequent
tasks, and increase the schedule makespan consequently. In this paper, we propose a
novel duplication-based algorithm designed to overcome the above drawbacks. The
proposed algorithm is to schedule tasks with the least redundant duplications. An
optimizing scheme is introduced to search and remove redundancy for a schedule
generated by the proposed algorithm further. Randomly generated directed acyclic
graphs and two real-world applications are tested in our experiments. Experimental
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results show that the proposed algorithm can save up to 15.59 % resource consumption
compared with the other algorithms. The makespan has improvement as well.

Keywords Directed acyclic graph · Duplication-based task scheduling ·
Heterogeneous computing system · Resource awareness

1 Introduction

In the past decade, to satisfy the high-performance requirements of application execu-
tions, much attention has been focused on the task scheduling problem for applications
on heterogeneous computing systems. A heterogeneous computing (HC) system is
defined as a distributed suite of computing machines with different capabilities inter-
connected by different high-speed links utilized to execute parallel applications [1,2].
An application is represented in the form of a directed acyclic graph (DAG) consisting
of many tasks. Task computation cost and intertask communication cost in a DAG are
determined for an HC system via estimation and benchmarking techniques [3–5].

The challenge of task scheduling is to find an assignment of the tasks of an appli-
cation onto the processors of a target HC system, which results in minimal schedule
length, while respecting the precedence constraints among tasks [6]. Finding a sched-
ule of the minimal length for a given task graph is, in its general form, an NP-hard
problem [7,8]. Hence, many heuristics are proposed to obtain sub-optimal scheduling
solutions. Task scheduling has been extensively studied and various heuristics have
been proposed in the literature [9–17]. The general task scheduling algorithms can
be classified into a variety of categories, such as list scheduling algorithms, cluster-
ing algorithms, duplication-based algorithms, and so on. The objective of existing
algorithms is to achieve a minimal schedule length. To achieve this goal, they always
scarify a large amount of resource, and hence there is a sharp increase in energy con-
sumption. In recent years, with the growing advocacy for green computing systems,
energy conservation has become an important issue and has gained particular inter-
est. In this paper, we present a new task scheduling algorithm on HC systems which
considers resource consumption as well as makespan.

Among all algorithms, the kind of duplication-based algorithms have the best per-
formance in terms of makespan. The idea of duplication-based algorithms is to sched-
ule a task graph by mapping some of its tasks to several processors, which reduces
communication among tasks. The quality of a solution generated by a duplication-
based algorithm is usually much better than that generated by a nonduplication-based
algorithm in terms of makespan. A duplication-based algorithm belongs to the class
of greedy algorithms, as each task is assigned a processor which allows the earliest
finish time of the task, and a parent is duplicated for a task as long as its finish time can
be reduced. Due to the greedy mechanism, some of the tasks of an application are exe-
cuted repeatedly, which leads to superfluous consumption of resource. According to
our analysis, a large amount of duplications are redundant. Slight delay of some uncrit-
ical tasks without those redundant duplications does not affect the overall makespan.
These redundant copies not only waste a huge amount of processor resource, but
also occupy the locations of subsequent tasks, hence delaying the overall makespan.
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A resource-aware scheduling algorithm 1349

Therefore, in this paper, we attempt to explore the method of reducing redundant dupli-
cations during the scheduling process to overcome the above-mentioned drawback.
In addition, a further optimizing scheme is proposed for a schedule generated by our
algorithm.

In our paper, all information of a DAG including execution times of tasks, the data
sizes of communication between tasks, and task dependencies are known a priori,
which are necessary information required in static scheduling. Static task scheduling
takes place during compile time before task execution. Once a schedule is determined,
tasks can be executed following the order and processor assignments.

The contributions of this paper are summarized as follows.

• We propose a novel resource-aware scheduling algorithm called RADS, which
searches and deletes redundant task duplications dynamically in the process of
scheduling.
• A further optimizing scheme is designed for the schedules generated by our

algorithm, which can further reduce resource consumption without degrading the
makespan.
• Experiments are conducted to verify that both the proposed algorithm and the opti-

mizing scheme can achieve good performance in terms of makespan and resource
efficiency. The factors affecting the performance of our algorithm are analyzed.

The remainder of this paper is organized as follows. Section 2 reviews some related
work, including some typical heuristic algorithms on HC systems and the current
research status of resource-aware algorithms. In Sect. 3, we define the scheduling
problem and present related models. Our proposed RADS algorithm is developed in
detail in Sect. 4, together with its time complexity analysis. In addition, an example
is also provided in this section to explain our algorithm better. Section 5 describes the
optimizing scheme of RADS. The experimental results are demonstrated in Sect. 6,
together with an analysis of the impacts of different parameters on the performance of
the proposed method. Finally, we conclude this paper and give an overview of future
work in Sect. 7.

2 Related work

DAG scheduling algorithms can be classified into two categories with respect to
whether to duplicate tasks or not. List scheduling and clustering algorithms are two
kinds of nonduplication-based algorithms. List scheduling algorithms provide sched-
ules of good quality and their performance is comparable with other categories at lower
time complexities. Due to no duplication, list scheduling algorithms consume less
processor resource than duplication-based algorithms. However, the high communi-
cation cost among tasks limits the performance of list scheduling in terms of makespan.
Classical examples of list scheduling algorithms are dynamic critical path (DCP) [18],
heterogeneous earliest finish time (HEFT) [13], critical path on a processor (CPOP)
[13], and the longest dynamic critical path (LDCP) [11]. Clustering algorithms merge
tasks in a DAG to an unlimited number of clusters, and tasks in a cluster are scheduled
on the same processor. Some examples in this category include clustering for het-
erogeneous processors (CHP) [19], clustering and scheduling system (CASS) [20],
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objective-flexible clustering algorithm (OFCA) [21], and so on. Duplication-based
algorithms achieve much better performance in terms of makespan compared with
nonduplication-based algorithms by mapping some tasks redundantly, which reduces
intertask communication. Many duplication-based algorithms are proposed in recent
years, for example, selective duplication (SD) [17], heterogeneous limited duplication
(HLD) [12], heterogeneous critical parents with fast duplicator (HCPFD) [15], hetero-
geneous earliest finish with duplication (HEFD) [22], and so on. As mentioned before,
duplication-based algorithms improve the makespan at the cost of significant waste
of processor resource. There are some researches such as [23] combining DVS tech-
nique with duplication strategy to reduce energy consumption and increase processor
utilization. The resource wasting problem still exists due to duplication.

To overcome the above shortcoming of duplication-based algorithms, two novel
algorithms to solve the problem of resource waste were proposed in [24] and [25].
The algorithm proposed in [24] is designed to delete the original copies of join nodes
when some particular conditions are satisfied. The algorithm proposed in [25] consists
of two sub-algorithms, namely, SDS sub-algorithm, which assigns tasks to processors,
and SC sub-algorithm, which merges two partial schedules to one. These two algo-
rithms can reduce duplications efficiently, but they aim at the scheduling problem on
homogeneous systems. Therefore, they are not applicable to DAG scheduling on HC
systems.

Our research is different from all existing works, because the focus of our work
is on resource-aware scheduling of applications on HC systems, and the aim is at
reducing resource consumption as well as makespan, whereas existing works do not
take resource efficiency into account or are based on homogeneous systems. In our
previous work [26], we proposed an initial algorithm to delete redundant copies of
tasks. In this paper, we conduct further research on this issue.

3 Models

A task scheduling system model consists of a target computing platform and an appli-
cation model. In this section, we present our computing system model and application
model used in this paper. Moreover, the performance measures used to evaluate the
performance of the scheduling algorithms are introduced as well. In Table 1, we sum-
marize all the notations used in the paper to improve the readability.

3.1 Computing system model

This paper studies the task scheduling problem for applications on heterogeneous
computing systems. Let P = {pi | 0 ≤ i ≤ m − 1} be a set of m processors with
different capacities. The capacity of a processor in processing a task depends on how
well the processor’s architecture matches the task’s processing requirement. A task
scheduled on a better-suited processor will take shorter execution time than on a less-
suited processor. The best processor for one task may be the worst one for another
task. This HC model is described by [27] and used in [9,13–15].
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Table 1 Notations used in this paper

Notation Description

P The set of m processors in system, P = {pi |0 ≤ i ≤ m − 1}
G A DAG representing an application

V The set of n nodes in a DAG, V = {vi |1 ≤ i ≤ n}
w The computation cost of tasks on processors, wi, j ∈ w representing the

computation cost of vi on p j
c The communication cost between tasks, c(ei j ) ∈ c representing the

communication cost between vi and v j
wi The average cost of task vi

parei (vi ) The immediate parent set of vi

parem (vi ) The mediate parent set of vi

childi (vi ) The immediate parent set of vi

childm (vi ) The mediate parent set of vi

S a schedule

st (vi , pk ) The start time of vi on pk

f t (vi , pk ) The finish time of vi on pk

Pbt (S) The processor busy time of schedule S

π(vi ) The processor set where have a copy of vi

ranku(vi ) The upward rank of vi

est (vi , pk ) The earliest start time of vi on pk

e f t (vi , pk ) The earliest finish time of vi on pk

dat (vi , pk ) The time that the data of vi arrives at pk

l f t (vi , pk ) The latest finish time of vi on pk

Mi,k The important immediate parent of vi on pk

H the idle slot set of processor, which consists of a series of idle slot < hs
r , h f

r >

< vi , pk > a copy of vi on pk

ξ(vi ) the copy of vi with the earliest finish time

ϑ(vi ) the processor of ξ(vi )

l f t (vi , pk ) the latest finish time of vi on pk

Vl c(vi , pk ) the local children set of (vi , pk )

Voc(vi , pk ) the children copy set of vi without local duplication of vi

Vl p(vi , pk ) the local parent set of (vi , pk )

Vo p(vi , pk ) the fixed copies of the off-processor parents of (vi , pk )

3.2 Application model

An application is represented by a directed acyclic graph (DAG) G(V, E , w, c),
which consists of a set of nodes V = {vi | 1 ≤ i ≤ n} representing the tasks of the
application, and a set of directed edges E representing dependencies among tasks. A
positive weight wi,k ∈ w represents the computation time of task vi on processor pk

for 1 ≤ i ≤ n and 0 ≤ k ≤ m − 1. A nonnegative weight c(ei j ) associated with an
edge ei j ∈ E represents the communication time to send data from vi to v j .
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Fig. 1 A simple DAG
representing an application
graph with precedence
constraints

Table 2 Computation costs of
tasks in Fig. 1

Task node p0 p1 p2 p3 wi

v1 3 2 1 2 2

v2 1 3 1 3 2

v3 2 1 3 2 2

v4 2 3 4 1 2.5

v5 1 1 1 1 1

v6 5 8 7 4 6

v7 2 1 2 3 2

v8 4 3 2 3 3

v9 1 3 2 2 2

v10 6 3 4 7 5

v11 2 1 3 2 2

v12 2 3 4 2 2.75

v13 2 1 2 3 2

We demonstrate a simple DAG in Fig. 1 which consists of 13 nodes. Table 2 lists the
computation times. In Table 2, the columns of p0 to p3 represent the computation cost
of tasks on different processors. The average computation cost of task vi is defined as
wi = 1

n

∑n
k=1 wi,k , which is the average of the columns. The sample graph will be

employed as an example throughout the following sections.
An edge ei j ∈ E from node vi to v j , where vi , v j ∈ V , represents v j ’s receiving

data from vi , where vi is called an immediate parent of v j , and v j is an immediate child
of vi . The immediate parent set of task vi is denoted by parei (vi ), and the immediate
child set of task vi is denoted by childi (vi ). For example, the immediate parent set and

123



A resource-aware scheduling algorithm 1353

child set of task v7 are {v3, v4} and {v10, v12}, respectively. In a DAG, if ei j ∈ E , and
e jk ∈ E , we term vi a mediate parent of vk , and vk a mediate child of vi . The mediate
child set and mediate parent set of task vi are denoted by childm(vi ) and parem(vi ),
respectively. For example, the mediate parent set and child set of task v7 are {v1, v2}
and {v13}, respectively.

A task having no parent is called an entry task, such as tasks v1 and v2 in Fig. 1.
A task having no child is called an exit task, such as tasks v12 and v13. A DAG may
have multiple entry tasks and multiple exit tasks.

3.3 Performance measures

In this paper, we adopt two important measures to evaluate the performance of schedul-
ing algorithms. Because the original objective of task scheduling is the fastest execution
of an application, the schedule length, or makespan, is undoubtedly one of the most
important criteria.

For a task vi scheduled on processor pk , let st (vi , pk) and f t (vi , pk) represent its
start time and finish time. Because preemptive execution is not allowed, f t (vi , pk) =
st (vi , pk)+ wi,k . The makespan is defined as

makespan = max{ f t (vi , pk) | vi is an exit task}. (1)

Due to resource awareness of our algorithm, the processor resource consumed
by a schedule has to be measured, and the criterion is processor busy time (Pbt).
The processor busy time is the total period of time when processors execute tasks.
It measures the processor requirement of a schedule. Let S = {(vi , pk, st (vi , pk),
f t (vi , pk)) | vi ∈ V, pk ∈ P} be a schedule generated by any algorithm, then its
processor busy time is calculated by

Pbt (S) =
∑

vi∈V

∑

pk∈π(vi )

( f t (vi , pk)− st (vi , pk)), (2)

where π(vi ) is the set of processors which have a copy of vi .
Figure 2 presents a duplication-based schedule of the DAG in Fig. 1, whose proces-

sor busy time is 33.

4 Proposed algorithm

In the past decade, many duplication-based algorithms for heterogeneous computing
environments, such as HLD [12], HCPFD [15], and HEFD [22], have been proposed.
These algorithms achieved good performance in terms of makespan. However, they
do not take resource consumption into consideration. In this section, we present a
resource-aware scheduling algorithm with duplications (RADS), which considers
resource efficiency as well as makespan. The detailed description of our algorithm
is presented in the following subsections.
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Fig. 2 A schedule of DAG in
Fig. 1

4.1 Task priority

In RADS, all tasks in a DAG are assigned with scheduling priorities based on upward
ranking [13]. The task with the highest priority is scheduled first. The upward rank of
task vi is recursively calculated by

ranku(vi ) = wi + max
v j∈childi (vi )

(c(ei j )+ ranku(v j )), (3)

where childi (vi ) is the set of immediate children of task vi . The rank value of exit
task vexi t is

ranku(vexit) = wexit. (4)

The upward ranks of all tasks in the example DAG are listed in Table 3. From
the example we can see that the rank value of a task must be greater than that of its
children, that is, a parent must be scheduled before a child.

4.2 RADS algorithm

In this subsection, we give a detailed description on our proposed RADS algorithm.
The tasks are scheduled in nonincreasing order of ranku . The scheduling process of
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Table 3 The upward ranks of tasks

Task node v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

ranku 30 27 24 23.5 12 16 13 15 8 8 5 2.75 2

Algorithm 1 RADS algorithm
Require: The application V and the processor set P
Ensure: The generated schedule S
1: Construct a task priority queue � in a nonincreasing order of ranku
2: �← ∅ \\ � is the task set whose redundant copies have been deleted
3: C ← ∅ \\ C is the task set in which all children have been scheduled in current loop
4: while � is not empty do
5: vi ← first unscheduled task in �

6: for all pk ∈ P do
7: call cal_eft(vi , pk ) and record e f t (vi , pk )

8: end for
9: schedule vi on pk with minimum e f t (vi , pk )

10: child(v j )← {child(v j )− vi } ∀v j ∈ V
11: f lag← f alse
12: for all task v j in V do
13: if child(v j ) = ∅ and v j �∈ � then
14: C ← C ∪ v j
15: f lag← true
16: end if
17: end for
18: if f lag = true then
19: call Algorithm 3 to delete redundant copies
20: �← � ∪ C
21: C ← ∅
22: end if
23: end while

each task is divided into two stages, namely, the task-mapping stage, in which the task
is mapped to the processor which results in the earliest finish time of the task, and
the redundancy deletion stage, in which redundant copies of the task are found out
and deleted from the schedule. The pseudo-code of the RADS algorithm is given in
Algorithms 1–3.

4.2.1 Task mapping stage

In the task-mapping stage, the earliest finish time (e f t) of each task vi is calculated
for each processor pk ∈ P , which is denoted by e f t (vi , pk). Task vi is mapped to the
processor that provides the minimum e f t . Notice that e f t (vi , pk) is the earliest finish
time of vi on pk . To calculate e f t (vi , pk), all parents of vi must have been executed
before vi and their finish times must be known in priori. Let v� be a parent of vi which
is assigned to pε, and its finish time is denoted by f t (v�, pε). Because task v� may
be assigned to multiple processors due to duplication, vi receives data from the one
whose data arrive earliest. Hence, the data arrival time (dat) of v� on processor pk

is calculated by the following equation,
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Algorithm 2 cal_eft(vi , pk)

1: calculate e f t
′
(vi , pk ) without duplication

2: Mi,k ← the miip of task vi on pk
3: if Mi,k does not exist or is already scheduled on pk then

4: return e f t
′
(vi , pk )

5: else
6: if a suitable slot exists for Mi,k on pk then

7: duplicate Mi,k and calculate e f t
′′

(vi , pk )

8: end if
9: if e f t

′′
(vi , pk ) < e f t

′
(vi , pk ) then

10: return e f t
′′

(vi , pk )

11: else
12: return e f t

′
(vi , pk )

13: end if
14: end if

dat (v�, pk) = min
pε∈π(v�)

{ f t (v�, pε)+ c(e�,i )}, (5)

where π(v�) is the set of processors which have a copy of v� and c(e�,i ) is the
communication cost between v� and vi . It is clear that c(e�,i ) = c(e�,i ) if pk �= pε,
and c(e�,i ) = 0 otherwise.

Once all parents of vi have been scheduled, the earliest finish time of task vi on
processor pk can be calculated by

e f t (vi , pk) = max
v�∈parei (vi )

{dat (v�, pk)} + wi,k, (6)

where parei (vi ) is the immediate parent set of vi .
According to Eq. (6), we can conclude that e f t (vi , pk) is mainly determined by the

most important immediate parent (miip) that has the latest data arrival time. Therefore,
reducing the dat of miip can minimize the e f t of task vi . RADS adopts duplication
strategy to realize the goal, and the detailed process is shown in Algorithm 2. First,
RADS calculates the earliest finish time of vi on pk without duplication, which is
denoted by e f t

′
(vi , pk). Second, RADS finds out the miip of vi on pk , which is

denoted by Mi,k , and recalculates the finish time of vi , e f t
′′

(vi , pk), assuming that
Mi,k is duplicated on the same processor pk . Third, by comparing the two results,
RADS selects and records the schedule which results in a smaller e f t .

To duplicate the miip of task vi on processor pk , where v j , a suitable scheduling
hole should be exploited. We assume that H is the free slot set on processor pk , which
consists of a series of free slots < hs

r , h f
r >. A suitable scheduling hole to duplicate

v j must satisfy the following equation.

max{dat (v j , pk), hs
r } + w j,i ≤ h f

r (7)

In all the suitable scheduling holes which satisfy Eq. (7), we select the earliest one
to duplicate v j to minimize the e f t of vi as much as possible.
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After all processors pk ∈ P are traversed, e f t values of vi on all pk ∈ P are
calculated. RADS assigns task vi to the processor pk with minimum e f t (vi , pk). Till
now, the current schedule of vi has been generated.

According to our algorithm, we can see that a task may have multiple copies in
a schedule, and all of them could provide data for their children. However, a child
chooses to receive data from the parent copy whose data arrive the earliest. In general,
if there exists a parent copy on the same processor as a child, the child receives data
from the parent copy with a higher priority; otherwise, it receives data from a parent
copy assigned to a different processor. To distinguish the two kinds of parent copies,
we give a definition as follows.

Definition 1 Let vc be a child of vi , and (vc, pl) represents a copy of vc on pl . If there
exists a copy of vi on the same processor pl , denoted by (vi , pl), such that (vi , pl)

is scheduled earlier than (vc, pl), and (vc, pl) is to receive data from (vi , pl) without
communication, then (vi , pl) is called a local parent of vc and (vc, pl) is called a local
child of vi . If (vc, pl) does not have a local parent and it is required to receive data from
another copy of vi on processor pk , then the copy (vi , pk) is called an off-processor
parent of (vc, pl) and (vc, pl) is called an off-processor child of vi .

Definition 2 The parent set and child set of vi , represented by parent (vi ) and
child(vi ), are parent (vi ) = parei (vi ) ∪ parem(vi ), and child(vi ) = childi (vi ) ∪
childm(vi ), respectively.

After the current task vi has been scheduled, vi is removed from the child set of all
tasks in line 10. If there exists a task whose child set becomes empty, RADS turns to
the second stage to search and delete the redundant copies.

4.2.2 Redundancy deletion stage

In the task-mapping stage, a task is assigned to the processor which results in the
minimal finish time. To execute tasks as early as possible, RADS tries to duplicate
the miip for each task. Hence, the task-mapping stage has the greedy feature. Due
to massive duplication, a task may be assigned onto more than one processor, hence
it is possible to generate many redundant copies. An example scenario is given to
demonstrate how redundant copies are generated.

Let task vi be mapped to pk firstly. Assume that all children of vi are mapped to
processors different from pk , and each child has a duplicated copy of vi . Then, the
original copy of vi on pk becomes a redundant one. Deleting the redundant copy from
a schedule does not affect the overall makespan. The redundancy deletion phase aims
at discriminating and deleting this kind of redundant copies. The deletion action has
two objectives. The first one is to decrease resource consumption and the other is to
release resource for subsequent tasks.

In scheduling, it is very critical when and how to judge if a task copy is redundant. In
our algorithm, we judge it when all children of a task are scheduled. That is because it is
concluded by analyzing that at that instant the redundant copies are really redundancies
and deleting them will not affect the whole performance in terms of makespan. Let
vi be a task of a given application. For its immediate children in childi (vi ), their
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finish times depend on the finish time of vi apparently. For the mediate children in
childm(vi ), if their finish times rely on duplicated parents, and these duplicated parents
in childi (vi ) depend on the execution of vi , the tasks in childm(vi ) are affected by
the finish time of vi . Therefore, to not deteriorate the performance, we discriminate
a task only after all its children, including immediate and mediate ones, have been
scheduled. This process is described in lines 10–16. After a task vi is scheduled, it is
deleted from the child sets of all tasks in line 1. And then, all tasks are traversed to
find out the tasks whose child set becomes empty in this loop 12–16. If the task set C
is not empty, Algorithm 3 is called to find out the redundancies.

Another important issue considered in the redundancy deletion stage is how to
determine a copy to be redundant. A copy of a task can be deleted only when the
other copies of this task can provide data needed by all its children. We give some
definitions as follows.

Definition 3 In a schedule, the fixed copy of task vi , denoted by ξ(vi ), is defined as
the one with the earliest finish time, and the corresponding processor is called its fixed
processor, denoted by ϑ(vi ).

Because the fixed copy of a task is the copy with the earliest finish time among
all copies, it is the default copy which provides data for those children without local
parent. Since the fixed copy can satisfy all off-processor children dependencies, the
only purpose of other copies is to provide data for their local children.

Lemma 1 Let task v� be a parent of task vi . v� and vi have copies on processors pε

and pk separately. We say that the copy (v�, pε) can provide data for (vi , pk) if it
satisfies the following condition,

f t (v�, pε)+ c(e�,i ) ≤ st (vi , pk), (8)

where c(e�,i ) = c(e�,i ) if pi = p j , and c(e�,i ) = 0 otherwise.

Algorithm 3 Redundancy deletion stage
Require: The set of tasks C whose redundant copies are to be deleted
Ensure: The schedule S after removing the redundant copies
1: for all tasks v j ∈ C in nondecreasing order of rank do
2: if v j has multiple copies then
3: for each processor pk that has a copy of v j do
4: delete the current copy of v j , denoted by (v j , pk )

5: if (v j , pk ) is the fixed copy then
6: determine the new ξ(v j )

7: end if
8: if ξ(v j ) cannot afford the data of (v j , pk )’s local children then
9: undo the deleting operation of (v j , pk )

10: end if
11: end for
12: update ξ(v j )

13: end if
14: end for
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Let (vi , pk) represent a copy of vi on pk . The steps of deciding if (vi , pk) is a
redundant copy are described as follows. First, (vi , pk) is deleted from the schedule.
If (vi , pk) is the fixed copy of vi , the duplicated copy of vi with the second earliest finish
time is selected as the new fixed copy. Then, we decide whether the new fixed copy
can provide data for the children without local parent of vi . If (vi , pk) is a duplicated
copy, we decide if the fixed copy of vi can provide data for (vi , pk)’s local children.
If the constraints between tasks can still be satisfied, we can determine (vi , pk) to be
redundant; otherwise, (vi , pk) is not redundant and cannot be deleted.

4.3 A scheduling example

To demonstrate the process of RADS, an example schedule of the DAG given
in Fig. 1 is demonstrated in Fig. 3. The priorities of tasks are calculated by
Eq. (3), and the task queue is constructed using the priorities, which is {v1,v2,v3,v4,
v6,v8, v7,v5,v9,v10,v11,v12,v13}. Tasks are selected one by one from the queue and
mapped to their most proper processors. When there is a task in which all children
have been scheduled, RADS turns into the redundancy deletion phase to determine if
this task has redundant copies. After that, the algorithm returns to the first phase to
map tasks again. The process is repeated until all tasks are scheduled. In the example,
the children set of task v1 is denoted by child(v1) = {v3, v4, v5, v6, v7, v8}. It is easy
to know that the tasks in child(v1) are all scheduled when the assignment of v5 is
determined. Till now, the generated schedule is shown in Fig. 3(a). According to the
rules, the RADS algorithm enters the redundancy deletion phase and the copy (v1, p2)

is judged to be redundant and is removed from the generated schedule. A new schedule
is formed, which is shown in Fig. 3(b).

Next, tasks v9, v10, v11 and v12 are mapped one by one. After v12, the child set of
v2 becomes empty, and the algorithm enters the redundancy deletion phase again. At
this phase, no redundant copy is found. At last, when all tasks are scheduled, the child
sets of all tasks become empty, so all of them are judged in the second phase. The final
schedule is given as in Fig. 3(e), and both of (v8, p2) and (v2, p2) are removed from
the original schedule shown in Fig. 3(d). It is apparent that the duplicates generated
by RADS is three less than the schedule given in Fig. 2.

4.4 Time complexity of RADS

The time complexity of RADS is expressed in terms of the number of nodes |V | = n,
the number of edges |E |, the number of processors |P| = m, and the in/out degree
of each task din/dout , where

∑
din =∑

dout = |E |. The complexity of task priority
queue generating phase is O(|E |+ |V | log |V |). The complexity of computing the est
of each task is O(din), so the complexity of computing the est of all tasks is O(|E |).
The complexity of computing the dat of each task on a given processor is O(dout ), so
the complexity of computing the dat of all tasks is O(|E |). The complexity of finding
a suitable hole for duplicated task is O(|V |), so the complexity of the duplication
operation of all tasks on a processor is O(|V |2). Because the est of each task must be
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(a) (b) (c)

(d) (e)

Fig. 3 A running trace of the RADS algorithm

calculated two times for each processor, one for nonduplication and one for duplication,
the complexity of task-mapping and duplicating phase is O((3|E | + |V |2)|P|).

When all children of a task have been assigned, Algorithm 3 is called to search
the redundancy of tasks in �. The complexity of Algorithm 3 is O(

∑
vt∈� max(dout ,

|P|)) = O(|�||P|). The number of children of a task is equal to its out-degree dout ,
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and the number of duplicated copies of this task is no more than dout . The worst-case
complexity of the duplication deletion phase is calculated by O (

∑|V |
i=1 i × P) =

O(|V |2|P|).
Taking into account that |E | is O(|V |2), the total algorithm complexity is

O(|V |2|P|) = O(mn2).

5 Optimizing scheme

The RADS algorithm proposed in Sect. 4 aims at deleting redundant copies dynam-
ically before the whole schedule is generated. It allocates each task to the processor,
which can lead to the earliest finish time, and belongs to the class of greedy algorithms.
In fact, as we analyzed before, the overall makespan relies on the execution of certain
critical tasks and slight delay of other tasks does not affect the overall makespan.
Based on this phenomenon, a further optimizing scheduling scheme (FOS) in terms of
resource consumption is proposed for any given valid schedule in this section.

FOS consists of three phases. In each phase, tasks are shifted earlier or later than
their scheduled times of the original schedule, which is to convert task copies to
redundant ones. To guarantee the feasibility of a schedule, the following conditions
should hold for each task vi .

• There exists at least one copy of each parent which can provide data for (vi , pk).
• The fixed copy of vi could provide data for all children without local parent vi .
• The schedule length of each processor should not exceed the overall makespan.

Generally, existing scheduling algorithms adopt the greedy mapping mechanism. It
means that tasks are finished as early as possible. To achieve this goal, the miip of each
task is to be duplicated, so a great number of duplicated copies are generated. Actually,
the finish time of a task is mainly determined by its miip, so it is unnecessary that all
parents are finished at the earliest time. Figure 2 gives a duplication-based schedule.
From the figure we can see that many tasks, such as v13, v10, v8, can be shifted to a
later time, which does not affect the overall makespan. Through shift, the duplicated
parents of some tasks become redundant because the communication time allowed is
long enough now.

Next, we discuss how to convert a task copy into a redundant one. Before further
discussion, some definitions are given first.

Definition 4 The latest finish time l f t (vi , pk) of a task vi on pk is the latest time when
the copy (vi , pk) can be shifted so that dependencies between vi and its immediate
children are preserved.

The first phase of FOS is to calculate l f t of all copies and then to shift tasks to their
l f t . If the l f t of task vi on processor pk is calculated to be∞, the copy (vi , pk) is
determined as a redundancy and is deleted.

In the second phase, the tasks which have multiple copies are shifted to start as
early as possible, to break the dependencies between them and their children and
hence generate redundancy further. To formalize the start time requirement of a copy,
the following definition is given.
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Definition 5 The earliest start time est (vi , pk) of a task vi on processor pk is the
earliest time that vi receives data from all of its parents and is ready for execution on
pk .

After the copies of a task are shifted earlier, the time intervals between them and
their children get longer. A child which relies on the local parent could receive data
from its off-processor parents; hence the local dependency is broken and the local
parent could be deleted from a schedule.

In the last phase, we try to migrate tasks between processors. The phase aims at
migrating tasks to another suitable processor, and hence their local parents become
redundant.

In the following subsections, we described the three phases in detail.

5.1 Phase 1: compute l f ts, shift tasks, and remove redundancy

The aim of the first phase is to calculate the latest finish time of each task copy, to shift
task copies to finish as late as possible, and to decide and delete redundant copies. The
pseudo-code of Phase 1 is shown in Algorithm 4.

Algorithm 4 Compute l f ts, shift tasks, and remove redundancy
Require: A schedule S generated by an arbitrary duplication-based algorithm
Ensure: The schedule S after deleting redundant copies
1: σ ←the makespan of the input schedule S
2: for each task vi in nondecreasing order of rank do
3: for each processor pk that has a copy of task vi do
4: initialize l f t (vi , pk )← σ

5: if pk = ϑ(vi ) then
6: calculate l f t (vi , pk ) by Eq. 10)
7: else
8: calculate l f t (vi , pk ) by Eq. 9)
9: end if
10: if l f t (vi , pk ) = σ and vi is not an exit task then
11: delete (vi , pk ) from S
12: else
13: shift (vi , pk ) to l f t (vi , pk )

14: end if
15: update fixed copy of task vi
16: end for
17: end for

The input of Phase 1 (see Algorithm 4) is a duplication-based schedule S, which
represents the scheduling information of all tasks. Let (vi , pk , st (vi , pk), f t (vi , pk))

be an element of schedule S, which means that task vi is assigned to pk and its execution
starts at time st (vi , pk) and finishes at time f t (vi , pk). According to Definition 3, it
is either a fixed copy or a non-fixed copy. If it is a fixed copy, it must provide data for
all the off-processor children of vi ; otherwise, it just needs to offer data for its local
children. Due to the difference, the l f ts can be calculated in two situations, which are
introduced as follows.
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Let Vlc(vi , pk) denote the local child set of vi on pk and Voc(vi , pk) denote
the children of vi without local duplication of vi . If pk �= ϑ(vi ), it means that
(vi , pk) is a non-fixed copy and has local children Vlc(vi , pk). So, (vi , pk) just needs
to provide data for its local children, and its latest finish time can be calculated
by

l f t (vi , pk) = min
(vc,pk )∈Vlc(vi ,pk )

{st (vc, pk)}. (9)

If pk = ϑ(vi ), it is the fixed copy and must provide data for all its off-processor
children in Voc(vi , pk) and its own local children in Vlc(vi , pk). Thus,

l f t (vi , pk) = min{ min
(vc,pk )∈Vlc(vi ,pk )

st (vc, pk),

min
(vc,pr )∈Voc(vi ,pk )

(st (vc, pr )− ci,c)}. (10)

In this phase, the tasks are considered in nondecreasing order of ranks, which
makes sure that all children have been shifted before their parent task. Let vi denote
the task being considered in the particular iteration of the for loop shown in lines
4-4 of Algorithm 4, and ξ(vi ) denote the fixed copy of vi . In the phase, the l f ts of
all vi ’s copies are initialized as σ . σ is the makespan of the input generated. This
means that our optimizing scheme will not deteriorate the performance of the original
schedule. According to the above analysis, if the l f ts of task copies are calculated to
be σ and they are no exit tasks, this indicates that those task copies do not need to
provide data for any children; therefore, they can be removed from the schedule. To
distinguish redundancy from exit tasks, we adopt the method as follows. If vi is not
an exit task and l f t (vi , pk) = σ , (vi , pk) is determined to be a true redundant copy.
At the end of the for loop, we delete redundancy from S and update the fixed copy
and the corresponding information.

Consider an example input schedule shown in Fig. 2. There are 13 tasks sched-
uled on four processors and the arrows in the schedule show important off-processor
children dependencies. From the figure, we can see that tasks v1, v2, and v8 have
multiple copies, which are the potential redundancy. According to Algorithm 4, tasks
are traversed in the nondecreasing order of rank. Firstly, those tasks with single copy
are shifted to their l f ts calculated by Eq. (10) or Eq. (9). Considering v8, since both
of its children v12 and v11 have local parent on p0 and p3, the copy of (v8, p2) has
neither off-processor children nor local children, so l f t (v8, p2) is calculated as 16.
Because v8 is not an exit task and σ = 16, (v8, p2) is removed from the schedule.
The processing procedures of v2 and v1 are similar to that of v8. (v2, p2) and (v1, p2)

are also deleted from the schedule. The schedule processed by Phase 1 is shown in
Fig. 4(a).

5.2 Phase 2: compute est and shift tasks backward

Phase 2 is to calculate the earliest start times of the tasks with multiple copies and to
shift them to start as early as possible. This aims at lengthening the interval between
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(a) (b)

(c)

Fig. 4 A running trace of the optimizing scheduling
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a task and its children, which makes preparation for the merging operation in Phase
3. The pseudo-code of Phase 2 is described in Algorithm 5.

Algorithm 5 Compute est , shift tasks with multiple copies
Require: A schedule S generated by Phase 1
Ensure: The schedule S after shifting tasks
1: for each task vi in nonincreasing order of rank do
2: if vi has multiple copies then
3: for each parent vp of vi do
4: for each processor p j having a copy of vp do
5: est (vp, p j )← 0
6: calculate est (vp, p j ) by Eq. (11)
7: shift (vp, p j ) to est (vp, p j )

8: update the fixed copy of task vp
9: end for
10: end for
11: for each processor pk having a copy of vi do
12: est (vi , pk )← 0
13: calculate est (vi , pk ) by Eq. (11)
14: shift (vi , pk ) to est (vi , pk )

15: update the fixed copy of task vi
16: end for
17: end if
18: end for

In the schedule processed by Phase 1, each child gives preference to its local
parent to receive data. In fact, if another parent copy on a different processor can
provide the needed data instead of the local parent, the child can receive data from
the off-processor parent instead of the local parent, and then the local parent can be
removed from a schedule. To convert local constraints into off-processor constraints,
the best method is to bring forward the execution of the parents as early as possi-
ble. To calculate the earliest start time of vi on pk , the data arrival times of all its
parents must be known. Let vp be a parent of task vi . If (vi , pk) has a local copy
of vp, it receives data from the local copy (vp, pk) without communication; other-
wise, it receives data from the fixed copy of vp. The est of vi on pk is calculated
by:

est (vi , pk) = max{ max
(vp,pk )∈Vlp(vi ,pk )

f t (vp, pk),

max
(vp,ϑ(vp))∈Vop(vi ,pk )

( f t (vp, ϑ(vp))+ cp,i )}. (11)

where Vlp(vi , pk) is the local parent set of (vi , pk), and Vop(vi , pk) is the fixed copies
of the off-processor parents of (vi , pk).

Let vi be the current task being considered that has multiple copies. Because the
finish time of vi is determined by its parents, its parents must be processed before vi .
In the loop shown in lines 3–10 of Algorithm 5, the est of each parent copy (vp, p j )

is calculated and (vp, p j ) is shifted to start as early as possible. After all parents of vi

have been processed, in the loop shown in lines 11–16, est (vi , pk) of vi on each pk is
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calculated and (vi , pk) shifted backward. It is noticed that a task is allowed to jump
over another task on the same processor.

Figure 4(b) shows the schedule in our running example at the end of this phase. v1
is the first processed task which has two copies. Next, v8 is considered and it has two
parents, v2 and v4, respectively. According to our algorithm, both v2 and v4 must be
shifted before v8. By calculation, the copy of v2 on p0 is shifted to start at 0. After all
parents of v8 are processed, the ests of v8 on p0 and p3 can be calculated, respectively.
From the example, we can see that v8 on p0 jumps over v5 and v9 and starts at time 4.

5.3 Phase 3: merge local children and remove redundancy

In Phase 2, the multi-copy tasks are brought forward, so the distances between them
and their children become longer than before. The children which depend on their
local parents before can receive data from off-processor parents now; hence, the local
parents become redundant and can be deleted. In addition, we consider migrating a
local child of a task copy to another processor if it has enough idle time. By doing this,
a task copy without local children may be removed. According to the above analysis,
it can be found that there are several situations in which redundant copies can be
produced. Next, we will discuss them in detail.

Algorithm 6 outlines Phase 3. The tasks are traversed in the nondecreasing order
of rank. Let vi be the first task to be considered. To find out all redundancies of task
vi , we group all copies of vi in pairs, and each possible pair is assigned with a priority
based on the execution time difference of the two copies in the pair. Let < r, s > be
a pair of copies of task vi which are assigned to processor pr and ps . The execution
time difference of < r, s > is calculated by

di f f i
r,s = wi,s − wi,r . (12)

A pair with greater execution time difference is assigned with higher priority. In
line 2, all pairs of task vt are inserted into a queue Q in a nonincreasing priority. The
first pair is selected from Q and is denoted by < pk, pl >, where pl is called the
original processor and pk is called the objective processor. For each pair < pk, pl >,
we try to decide if (vt , pl) can be deleted with the help of (vt , pk). The possible
situations are discussed in lines 5–27 of Algorithm 6.

The copy of (vt , pl) can be deleted if the precedence constraints of all tasks are
still satisfied after (vt , pl) is deleted. If (vt , pl) has no local child (see line 5), it is
for sure the fixed copy of vt and can provide data for all of its off-processor children.
In line 7, est (vt , pl) is calculated. If vt is not an entry task yet, est (vt , pl) = 0,
according to Eq. (11), it is concluded that other copies of vt could provide data for all
its children. So, (vt , pl) is redundant and can be deleted. If (vt , pl) has local children,
lines 5–10 give three situations to decide if (vt , pl) is redundant. Let vi be the current
local child being considered. If the copy (vi , pl ) can receive data from another copy of
vt on a different processor, (vi , pl) is unnecessary to migrate and the algorithm turns
to consider the next child; otherwise, we determine if (vi , pl) can be shifted to the
objective processor pk and the steps are shown as follows. The est and l f t of vi on
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Algorithm 6 Merge local children of tasks with multi-copy
Require: A schedule S generated by Phase 2
Ensure: The schedule S after merging
1: for each task vt that has multiple copies in nondecreasing order of rank do
2: Q ← {< pl , pk > |(vt , pl ), (vt , pk ) ∈ Q}
3: for all < pl , pk >∈ Q do
4: f lag← true;
5: if Vlc(vt , pl ) = ∅ then
6: est (vt , pl )← 0
7: calculate est (vt , pl ) by Eq. (11)
8: if est (vt , pl ) = 0 and vt is not an entry-task then
9: delete (vt , pl )

10: end if
11: else
12: for all vi in Vlc(vt , pl ) do
13: if another copy of vt can provide data for vi then
14: continue;
15: end if
16: calculate est (vi , pk ) and l f t (vi , pk )

17: if there exists vi on pk during interval [est (vi , pk ), l f t (vi , pk )] then
18: delete (vi , pl ); continue;
19: else
20: find available idle slot in pk for vi during interval [est (vi , pk ), l f t (vi , pk )]
21: if proper idle slot exists then
22: delete (vi , pl ) and insert vi into pk
23: else
24: f lag← f alse; break;
25: end if
26: end if
27: end for
28: end if
29: if f lag = true then
30: Q ← Q − {< pi , p j > |for all i = l, or k = l}
31: end if
32: end for
33: end for

the objective processor pk are calculated in line 16. The constraints are satisfied only
when vi is scheduled on pk during interval [est (vi , pk), l f t (vi , pk)]. If there has been
a copy of vi on pk during the interval, we delete (vi , pl) from processor pl ; otherwise,
we search a proper idle slot on pk for vi to insert. If the proper idle period cannot
be found, (vt , pl) cannot be deleted and the flag is set as false. After the if-then-else
statement in lines 5–27 is finished, if the flag value is equal to true, it means all
local children of (vt , pl) are shifted to processor pk and the original copy (vi , pl) is
deleted. Finally, we remove all pairs related to pl from Q if (vi , pl) is deleted. Now,
the merging of a pair is complete and the next pair starts.

Fig. 4(c) shows the schedule after Phase 3. v8 is the first considered task and its
pair queue is Q = {< p3, p0 >,< p0, p3 >}. Because (v8, p0) has only one local
child v12, and (v8, p3) cannot satisfy the dependency with v12, v12 is attempted to be
shifted to p3. The est and l f t of v12 on p3 are 14 and 16, respectively. The idle slot
[14, 16] on p3 is available for v12. Hence, the shift is successful and (v8, p0) is deleted
from the schedule.
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5.4 Time complexity of FOS

Complexity of FOS is expressed in terms of the number of nodes |V |, the number of
edges |E |, the number of processors |P|, and the in/out degree of each task din/dout .

In l f t computation of Phase 1, all copies of all children of each task are considered,
resulting in time complexity of O(|E ||P|). Shifting all tasks in a processor requires
no more than O(|V |) operations because each task can be executed no more than once
on a processor. Since all copies of all tasks are considered, the overall complexity of
Phase 1 is O(|P|(|E ||P| + |V |))=O(|E ||P|2).

To calculate est of one task in Phase 2, the est of its parents must be calculated first.
Since all copies of all parents of each task must be considered, and the complexity of
calculating each copy is O(din), the complexity for all tasks is less than O(|E |dmax

in ),
where dmax

in is the maximum in-degree among all tasks. The shifting operation for all
parents requires time O(|E |). Then in calculation of est for all copies of each task,
only the fixed copy or local copy of each parent needs to be considered for each copy.
So, the complexity of calculating est of all tasks is O(|V ||P|). The overall complexity
of Phase 2 is O(|E |dmax

in + |V ||P|).
In each round of Phase 3, one pair of a task is considered to merge. The number

of elements in Q for each task is max(d2
out , |P|2). For each pair (pi , p j ) of each

task vt , the est and e f t of all local children of (vt , pi ) must be calculated, result-
ing in time complexity of O((din + dout |P|)). The overall complexity of Phase 3 is
O(|V |(max(d2

out , |P|2))(din + dout |P|)) = O(|V ||P|4).
In summary, the overall time complexity of the optimizing scheme is O(|E ||P|2+

|V ||P|4) = O(n2m2 + nm4).

6 Experimental results and analysis

We evaluate the performance of the proposed algorithms on random DAGs as well as
DAGs from two real applications. The random DAGs are generated with three varying
parameters as follows.

• DAG size n: The number of tasks in an application DAG.
• Communication to computation cost ratio CCR: The average communication cost

divided by the average computation cost of an application DAG.
• Parallelism factor λ: The number of levels of an application DAG is generated

randomly using a uniform distribution with mean value of
√

n/λ and rounded up to
the nearest integer. The width is generated using a uniform distribution with mean
value of λ

√
n and rounded up to the nearest integer. A low λ leads to a DAG with

a low parallelism degree.

In the random DAG experiments, the number of tasks is selected from the set
{100, 200, 300, 400, 500}, and both λ and CCR are chosen from the set {0.2, 0.5, 1.0,
2.0, 5.0}. To generate a DAG with a given number of tasks, λ, and CCR, first, the
number of levels is determined by the parallelism factor λ, and then the number of
tasks at each level is determined. Edges are generated only between the nodes in
adjacent levels, obeying a 0–1 distribution. Each task is assigned with a computation
cost from a given interval following a uniform distribution. To obtain the desired
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CCR for a graph, the communication cost is also randomly selected with a uniform
distribution, whose mean depends on the product of CCR in {0.2, 0.5, 1.0, 2.0, 5.0}
and the average computation cost.

We also test the algorithms on task graphs from Gaussian elimination (GE) and
molecular dynamic code (MDC) applications. For these applications, because the
shapes of the DAGs are deterministic, we only investigate the impacts of CCR and the
number of used processors on the performance. The values of computation and com-
munication cost are generated using the same method as the random DAG experiments.
For each combination of parameter values and for each DAG type, the experiments are
repeated 50 times to avoid scattering effects. The results are averaged over all tested
values.

Experimental results for RADS and RADS+FOS are presented in comparison to
HLD [12]. The performance measures adopted in the experiments are makespan and
resource consumption, which are introduced in Sect. 3.3. Since resource consumption
of applications varies with the number of tasks and has a large variation range, it is
necessary to normalize the resource consumption. Here, we define the normalized
resource consumption (NRC) as a metric measuring resource consumption:

N RC = Pbt (S)

Pbtlower
, (13)

where Pbt (S) is the resource consumed by a schedule S, and Pbtlower represents the
absolute lower bound on the resource consumed by an application. The calculation of
Pbtlower is given by

Pbtlower =
n∑

i=1

m−1
min
j=0

wi, j . (14)

6.1 Randomly Generated DAGs

In this subsection, we conduct performance comparison of the three scheduling
algorithms. In Fig. 5, the NRC obtained by each algorithm while varying the number
of tasks, the number of processors, parallelism factor, and CCR are presented. Notice
that since NRC is simply an upper bound on the resource consumption, an NRC value
greater than 1 does not indicate that the schedule has not improved.

The performance of the algorithms in terms of resource consumption is compared
with respect to various graph characteristics and different numbers of processors. From
Fig. 5, it is known apparently that both RADS and RADS+FOS perform better than
the HLD algorithm, and RADS+FOS provides the smallest NRC on average.

The first set of experiments compare resource consumption of the algorithms with
respect to various graph sizes (see Fig. 5(a)). The average NRC value of RADS on
all generated graphs is reduced by 3 % compared with the HLD algorithm. When
combining with FOS, the ratio is up to 12 %. From Fig. 5(a), we can notice that
the difference of NRC between RADS+FOS and HLD decreases with the increasing
number of tasks. The explanation is as follows. As the number of tasks scheduled
on a fixed number of processors increases, tasks become more prone to be assigned

123



1370 J. Mei et al.

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

Number of Tasks

N
R

C

 

 
HLD
RADS
RADS+FOS

(a) Average NRC for various numbers of
tasks and a given number of processors

4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

Number of Processors

N
R

C

 

 

HLD
RADS
RADS+FOS

(b) Average NRC for various numbers of
processors and a given number of tasks

0.2 0.5 1 2 5
0

0.5

1

1.5

2

2.5

3

Parallelism factor

N
R

C

 

 
HLD
RADS
RADS+FOS

(c) Average NRC for various values of
and a given number of tasks

0.2 0.5 1 2 5
0

0.5

1

1.5

2

2.5

3

CCR

N
R

C

 

 
HLD
RADS
RADS+FOS

(d) Average NRC for various values of
CCR and a given number of tasks

Fig. 5 Average NRC of random DAGs

to the same processor with their parents, so less tasks are duplicated, which reduces
the chance of duplication removal and improvement in resource consumption of the
proposed algorithms.

Figure 5(b) shows the experimental results with respect to different numbers of
processors. Similarly, both RADS and RADS+FOS outperform the HLD algorithm.
We can observe that the average NRCs increase when the number of processors
increases from 4 to 32, and is constant from 32 to 64. This is because duplication-based
algorithms are prone to duplicating more tasks when there are enough idle processors,
which leads to an increasing number of duplications and hence an increasing number
of redundant copies. According to the experimental results, RADS reduces resource
consumption by 1.93 % on average compared with HLD, while RADS+FOS reduces
by 11.25 % on average, and the ratio is up to 20.24% with 64 processors.

In the third set of experiments, the average NRCs produced by the three algo-
rithms are measured with various parallelism factor λ. Fig. 5(c) shows that the average
NRCs increase with the increase in λ at the beginning, reach a peak at λ = 1.0, and
then decrease gradually from 1.0 to 5.0. Moreover, the NRC provided by RADS is
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Table 4 A comparison of
makespan for random DAGs

Parameter Performance

Shorter Equal Longer

Number of tasks 86 151 13

Number of processors 93 138 19

Parallelism factor 76 151 23

CCR 126 94 30

improved by 5.22, 2.14, 1.41, 1.03, and 0.61 % compared with the HLD algorithm
for λ = 0.2, 0.5, 1.0, 2.0, and5.0, respectively. RADS+FOS reduces the resource
consumption by 16.32, 14.88, 10.66, 7.38, and 4.60 %, respectively. The data show
decreased improvement as λ increases. With a fixed number of tasks and processors,
as λ gets smaller, the generated tasks have smaller parallelism. There are enough
idle period on the processors to duplicate tasks, which benefit RADS and FOS. As λ

increases, the feature becomes weaker, which deteriorates the performance improve-
ment of RADS and FOS.

The last set of experiments aim at studying resource consumption of the three algo-
rithms with respect to various CCR values. It is clear from Fig. 5(d) that the average
NRCs get greater with increasing CCR. When CCR increases, the ratio of commu-
nication and communication cost increases, and the communication cost dominates
the computation cost when CCR > 1. Tasks are assigned repeatedly to eliminate the
communication between tasks, which is the reason that NRCs increase; hence the
performance gaps between RADS and HLD, and RADS+FOS and HLD increase.

To present the performance of our algorithms better, we give four more groups of
data shown in Fig. 6, which aim at giving a clear picture on how many duplications are
deleted by our algorithms. By using the proposed algorithms, we can obtain a remark-
able reduction in the number of duplications for all combinations of parameters. These
curves exhibit similar characteristics to those in Fig. 5, because more duplications lead
to greater resource consumption.

Since makespan is an important measure to evaluate the performance of algorithms,
we count the number of times that a schedule generated by RADS has shorter, equal,
and longer makespan compared with that generated by HLD, listed in Table 4. From
the table, we can see that the percentage for RADS that outperformed HLD in terms of
makespan was 38.1 %, and the percentage for which the schedules generated by the two
algorithms had the same makespan was 53.4 %. Overall, our algorithm improves the
performance in terms of makespan compared with HLD. Nevertheless, the improve-
ment is very small, as existing duplication-based algorithms have already achieved
strong performance in terms of makespan compared with listing scheduling algorithms.

6.2 Application graphs of real-world problems

In addition to randomly generated task graphs, we also consider application graphs of
two real-world problems, namely, the Gaussian elimination algorithm [28,29] and a
molecular dynamics code given in [30].
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Fig. 6 Average number of duplications of random DAGs

6.2.1 Gaussian elimination

Gaussian elimination is used to determine the solution of a linear system of equa-
tions [28]. In this subsection, we consider the schedule of Gaussian elimination solving
a 5× 5 matrix. The DAG is shown in Fig. 7.

Since the structure of the application graph is known, it is unnecessary to consider
those parameters such as the number of tasks and parallelism factor. For the experi-
ments of Gaussian elimination, CCR values and the number of processors are the two
factors to be studied. The same CCR values in {0.2, 0.5, 1.0, 2.0, 5.0} are used, and
the number of processors is set as three to eight. The experimental results are shown
in Fig. 8.

Figure 8(a) gives the average NRC values of the algorithms for various CCRs from
0.2 to 5.0 with five available processors. The performance of RADS and RADS+FOS
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Fig. 7 Gaussian elimination for
a matrix of size 5
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Fig. 8 Average NRC and the number of duplications for Gaussian elimination

in terms of resource efficiency is much better than HLD on average. From Fig. 8(a)
we can see that RADS has large improvement on HLD which is up to 17.46 %. When
combined with FOS, RADS can outperform HLD by up to 26.47 %. Figure 8(b) gives
the average number of duplications generated by the three algorithms with various
number of processors from 3 to 8. The figure shows that the proposed algorithms
generate much less duplications while maintaining the same performance in terms of
makespan compared with HLD.
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Fig. 9 A molecular dynamics code
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Fig. 10 Average NRC and number of duplications for molecular dynamic code

6.2.2 Molecular dynamic code

Figure 9 is the task graph of a modified molecular dynamic code given in [30].
Since the number of tasks is fixed and the structure is known, only CCR values and
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number of processors are considered in our experiments. The number of processors
in our experiments is varied from 4 to 14 in steps of 2, and the same CCR values in
{0.2, 0.5, 1.0, 2.0, 5.0} are used. Fig. 10 shows the experimental results. Fig. 10(a)
is with respect to five different CCR values when the number of processors is set as
eight. On average, the NRC ranking is HLD, RADS, RADS+FOS. From the figure
we can see that both RADS and RADS+FOS algorithms outperform the HLD algo-
rithm. For example, RADS consumes 8.86 % less resource than HLD on average, and
RADS+FOs reduces 21.59 % resource consumption on average.

Figure 10(b) presents the number of duplications with respect to six different num-
bers of processors when CCR is fixed to 1.0. It is concluded from Fig. 10(b) that the
duplications generated by RADS are much less than the HLD algorithm. Furthermore,
the number of duplications generated by RADS, when combined with FOS, is only
1/3 of that generated by HLD. Therefore, our proposed algorithms perform very well
on resource saving.

In the two groups of experiments for real-world applications, the makespan of our
proposed algorithms is much shorter than that of list scheduling algorithms, but there
is little improvement compared with duplication-based algorithms. Therefore, we do
not give the detailed results of makespan here. In summary, our proposed algorithms
are better than the existing duplication-based algorithms.

7 Conclusions

Most duplication-based algorithms duplicate parents for all tasks if the duplication
action can lead to an earlier finish time. However, our analysis shows that some dupli-
cations are unnecessary. Thus, this kind of duplications, which we call redundant
copies, cause a large amount of wasted resource, and even a longer makespan.

In this paper, we propose a resource-aware scheduling algorithm with reduced
task duplication on HC systems, which is called RADS algorithm. The algorithm
focuses on the elimination of redundant duplications dynamically during the process
of scheduling. In the proposed algorithm, when all children of a task have been
assigned, the task is reconsidered to determine whether its copies are necessary
or not. To improve the performance of RADS, a further optimizing scheme called
FOS is proposed. The performance of RADS and RADS+FOS is compared with the
HLD algorithm in terms of makespan and resource consumption. The experimental
results show that both RADS and FOS perform well on resource efficiency. Although
the makespan of our algorithms is not improved noticeably, it is also acceptable
because duplication-based algorithms already obtain good performance in terms of
makespan.

Future investigation in this area can be performed in the following direction. We will
modify the algorithms to take communication contention into consideration. Duplica-
tions can reduce the overall makespan on a communication model without contention;
however, this does not hold when there is communication contention. Improper dupli-
cations would aggravate the contention, which has great negative impact on the per-
formance of algorithms.
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