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A B S T R A C T

With the advent of the Internet of Things (IoT), more computation-intensive applications are migrated to IoT
devices. Whereas the battery with limited capacity and the processor with low computing power become the
bottlenecks that limit its further development. Mobile edge computing (MEC) provides a promising solution
to break through the bottlenecks. Many effective methods are proposed to guide how to offload tasks from
IoT devices to MEC to enhance the computing capacity and prolong the battery life of devices. This paper
investigates the task offloading problem for a multi-device single-MEC system whose status, such as task arrival
rate and channel state, is dynamically changing over time and aims at minimizing the energy consumption of
devices and maintaining the system stability in the long term. This problem requires lots of future information
about the system, which brings a challenge since it is difficult to obtain future information. Moreover, to
improve the system performance with respect to task response time, we define an individual queue length
threshold for each IoT device such that the queue length of each device can stabilize around the predefined
threshold. To address this problem, we first construct a virtual queue for each device to transform the
queue length threshold constraint into the virtual queue stability constraint. Secondly, applying the Lyapunov
optimization method, the original problem, which requires future system information, is transformed into
a problem that only depends on the information of the current time. Thirdly, a dynamic energy-efficient
task offloading algorithm is proposed to optimize the time-average energy consumption while maintaining
the queue length constraint. This algorithm generates the offloading decision in real-time without requiring
system statistical information. Lastly, simulations are conducted to analyze the effect of different parameters
on performance. A group of comparisons are given, showing that the task queue length under the proposed
method can be controlled effectively compared with the existing studies.
1. Introduction

Tthe rapid development of Internet of Things (IoT) technology
enables billions of IoT devices capable of computation and communica-
tion, e.g., mobile devices, wearable devices, etc., to be connected to the
Internet via cellular networks [1]. The variety of computation-intensive
applications executed on the devices becomes ever-growing [2,3], and
processing them always requires powerful computing capability and
consumes quite a lot of energy. Whereas due to size limitations, the
battery capacity of IoT devices is extremely limited. Moreover, the
processor is always of low performance. For these two reasons, it is
hard to satisfy the requirements of many applications on computing
capability, e.g., augmented reality and image processing [4,5], and the
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device’s battery life is extremely short. A promising solution to alleviate
the two intrinsic problems of IoT devices is to offload a part of computa-
tion tasks to the nearby servers for processing. Mobile edge computing
(MEC) provides such a technology that deploys server resources at the
edge of network [6]. Via computation offloading, an IoT device can deal
with tasks with high computing capacity requirements, and the battery
life of devices is prolonged effectively.

In this paper, we focus on the computation partial offloading prob-
lem on a dynamic MEC system with limited resources, with the goal of
reducing device energy consumption as much as possible while ensur-
ing execution performance in the long run. There are several challenges
to resolving this problem. First, the offloading problem is divided into
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two sub-problems: task assignment and resource allocation. The pur-
pose of task assignment is to determine how to divide and assign each
device’s tasks, how much is executed locally, and how much is executed
remotely. The purpose of resource allocation is to determine how to
allocate the limited resources for each device. The resource allocation
decision depends on the number of tasks offloaded by each device, and
the task assignment decision of each device depends on the amount
of resources allocated to it. The solutions to the two sub-problems are
inextricably linked, which brings great difficulty. Second, we aim at
reducing the energy consumption of devices while also ensuring long-
term execution performance. To achieve long-term energy consumption
optimization, task assignment, and resource allocation decisions should
be made by combining future states. For devices, the energy consump-
tion of transmitting tasks is affected by the channel state greatly. A
better channel condition leads to a higher transmission rate and a
shorter transmission time. Consequently, the transmission energy con-
sumption is lowered. In contrast, when the channel condition worsens,
the energy efficiency decreases, and transmitting the same amount of
tasks might consume more energy. A reasonable strategy is postponing
task offloading until the wireless channel becomes better. Under this
strategy, future system information regarding task load and resource
state must be known in advance. Most existing studies assume that
future information is known in advance and kept unchanged, or they
can be predicted precisely according to historical statistics. However,
due to the system dynamics, this information cannot be predicted
precisely [7], which leads to another challenge. Hence, it is necessary
to design an effective method to solve the long-term energy-efficient
computation offloading problem in dynamic systems [8]. This paper
applies the Lyapunov optimization method to solve this problem. Lya-
punov optimization is widely used in the optimal control of dynamic
systems to optimize the target performance in the long term while
maintaining system stability. It can transform the original problem,
which requires much future information, into a novel problem that
only depends on the information at the current time. Via problem
transformation, the optimal offloading decisions can be made in real-
time such that the objective performance is optimized in the long
run and the system stability is maintained as well. Many studies have
applied Lyapunov optimization to solving energy-efficient computa-
tion offloading problems, and each of them stressed different aspects.
However, most existing studies leveraging Lyapunov optimization only
require maintaining the system stability but do not care how long the
queue length is at the stable state. In this case, the task execution
performance, which significantly depends on the task queue length,
would be inferior since the queue length of devices might be very
long when the system reaches stability. Motivated by this shortage, we
introduce a queue length threshold for each device. Under the queue
length constraint, the performance concerning task response time can
be guaranteed effectively. Meanwhile, we can control and adjust the
system performance artificially by adjusting the threshold settings. Our
significant contributions are summarized as follows:

• We consider the computation offloading problem for a dynamic
MEC system where the amount of arrived tasks and the wireless
channel state change over time. Our goal is to minimize the
energy consumption of all devices in the long run. An individual
threshold is defined to constrain the queue length of each device
to guarantee long-term execution performance concerning task
response time. The threshold settings make the task execution
performance adjustable.

• We formulate the energy-efficient task offloading problem as a
time-average energy minimization problem with queue length
and resource constraints. To leverage the Lyapunov optimiza-
tion method, we construct a virtual queue for each device and
transform the queue length constraint into the virtual queue
stability constraint. After that, the Lyapunov optimization method
2

is applied to transform the original problem, which relies on
future information, into a real-time optimization problem only
depending on the information of the current time. An iterative
two-stage heuristic algorithm is proposed to solve the real-time
optimization problem. By the proposed algorithm, the offloading
schemes, i.e., the number of tasks to be processed for each device,
the ratio of tasks executed locally and offloaded to MEC, and the
resource allocation scheme, are determined in real-time.

• We give a theoretical analysis of the performance of the proposed
method and do a series of experiments to observe the effect
of different parameters on the performance in terms of queue
length and energy consumption. Besides, we conduct a group of
simulations to verify the adaptability of the method to dynamic
performance requirements by changing the queue length thresh-
old at run time. Lastly, a group of comparative experiments is
given to verify the performance improvement of our algorithm
compared with three strategies.

The proposed method can be applied to edge computing in agricul-
ture and can help improve agricultural production efficiency, decision
support, and resource management. By deploying sensors and IoT
devices, bringing edge computing to agriculture can enable smart agri-
culture. Sensors can collect environmental data from farmland in real-
time, such as soil moisture, temperature, and light, and then process
and analyze the data through edge devices. There is no clear deadline
for processing these data, but only a certain period of time to cor-
respond to. This enables real-time farm monitoring, precise irrigation
control, and fine-grained crop management.

The organization of the article is given as follows. Section 2 summa-
rizes the related work on offloading optimization in edge computing.
Section 3 describes the models used in this paper, and then our time-
average energy-efficient offloading problem is rigorously defined. In
Section 4, we introduce the details of applying Lyapunov optimiza-
tion to solve this problem and propose an algorithm QC-EEDOA. In
Section 5, the performance of QC-EEDOA is analyzed theoretically. In
Section 6, several groups of experiments are performed to evaluate the
performance of QC-EEDOA, and the performance comparison between
four strategies is presented. Section 7 concludes the article finally.

2. Related work

The energy-aware offloading optimization problem in MEC has been
widely studied from different aspects [9,10].

Bi et al. [6] investigated the full offloading on a multi-user MEC
system powered by wireless power transfer (WPT), and aimed at maxi-
mizing the weighted computation rate. Dinh et al. [11] focused on the
offloading of a multi-server MEC system with one DVFS-enabled device
to optimize the task execution latency and energy consumption of the
device. Tao et al. [12] studied the energy-efficient and performance-
guaranteed partial offloading problem for a multi-user single-MEC
system. Liu et al. [13] also focused on partial computation offloading
for a multi-user multi-MEC environment. It aims at maximizing the
deadline-satisfying ratio. An offloading policy is proposed based on
game theory to find the Pareto optimal solution. Li [14] defined two
offloading problems with energy and time constraints, respectively.
Combinatorial optimization is utilized to solve the problems, and a
two-stage method is proposed, which jointly generates the offloading
decision and decides the computation speeds of UEs and the commu-
nication speeds. Tong et al. [15] introduced the Stackelberg game to
describe the relationship between MEC servers and end-users (EUs) and
proposed uniform pricing and differentiated pricing algorithms to solve
the task offloading problem for EUs. However, this article does not
consider the energy consumption of followers in the Stackelberg game.

Above works can achieve good performance in terms of energy con-
sumption or execution efficiency. However, most of the above studies
assume that task arrival rate and channel state are known prior or can

be predicted based on historical statistics. In actuality, the task arrival
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rate is dynamic and the wireless channel quality is affected by many
factors. Hence they are hard to be predicted precisely.

To address the above shortages, different stochastic optimization
strategies were applied in recent studies, which can make online deci-
sions without requiring any prior information. Among these techniques,
Lyapunov optimization is one of the most common ones [16–25]. Islam
et al. [26] provided a comprehensive review of MEC task offloading
schemes proposed by various researchers. It discusses the issues, chal-
lenges, and future research directions in the field of task offloading to
MEC servers. Chen et al. [17] studied the task offloading problem in
a multi-user MEC system. This paper considered the dynamical task
arrival rate and the time-varying channel condition and proposed a
stochastic energy-efficient optimization algorithm such that the long-
term energy consumption is minimized while the queue state keeps
stable. This paper offloads all tasks in the queue to MEC and does not
take advantage of local computing capacity, which is unreasonable. Lin
et al. [18] utilized the Lyapunov optimization method to design a real-
time offloading algorithm for addressing the business congestion arising
from the spatiotemporal dynamics of randomly generated mobile user
demand tasks, but it does not take into account the energy consumption
of the system. Sun et al. [20] investigated the offloading problem for
a single user in an MEC-enabled ultra-dense network where multiple
BSs are densely deployed. A dynamic mobility management scheme is
proposed to reduce the average delay of tasks and guarantee to satisfy
the energy consumption constraint of devices in the long run. Chen
et al. [21] studied the computation peer offloading among small-cell
base stations (SBSs) in load-unbalanced small-cell networks. Because
of the system dynamics, an online peer offloading strategy is proposed.
By applying the strategy, the long-term system performance can be
improved efficiently on the premise of ensuring the individual long-
term energy consumption constraint. Liang et al. [22] investigated
service function chaining in edge core networks and proposes a profit-
driven heuristic search algorithm to optimize the average latency of
all service function chains in the edge core network. Wu et al. [23]
proposed a latency-aware energy-saving online offloading algorithm
that adaptively offloads more tasks when the network quality is good
while ensuring that tasks do not violate deadlines during periods of
poor network quality. Similar to [17], this article also does not take
advantage of local computing capacity. Zhen et al. [25] considered the
system dynamics, including computing resources, the radio environ-
ment, and the battery power, and proposed a dynamic optimization
scheme based on Lyapunov optimization. Many works also studied
dynamic offloading for MEC systems where devices are energy harvest-
ing [27–29]. However, most dynamic task offloading algorithms only
aim to maintain system stability in terms of queue length. Hence, the
task queue length of the system, as well as the response time of tasks,
are uncontrollable. Our work is motivated by this shortage.

3. The models

In this section, we first introduce the related models. Based on the
models, the energy-efficient computation offloading problem can be
formulated and studied rigorously.

3.1. System model

The MEC system with one base station (BS) is considered in this
paper, which is depicted in Fig. 1. An MEC server deployed at the BS
provides services to nearby IoT devices. Let  = {1, 2,… , 𝑛} be the
index set of the 𝑛 IoT devices within the coverage of the BS. Due to
the dynamic nature of the system, we divide time into a series of time
slots  = {0, 1,… , 𝑇 − 1,…}. The length of each slot is identical and
denoted as 𝜏. It is assumed that the system status keeps static during
such a small time slot. Table 1 lists the key notations used in this paper.

Each IoT device 𝑖 generates new tasks during each time slot. Let
𝐴 (𝑡) (in bits) denote the number of tasks that arrive at device 𝑖 in
3

𝑖

Table 1
Definitions of mathematical notations.

Notation Definition

𝐴𝑖(𝑡) The amount of tasks which arrive at device 𝑖 in slot 𝑡

𝐵 The bandwidth of each sub-channel

𝐷𝑙
𝑖 (𝑡) The amount of tasks executed locally of device 𝑖 in slot 𝑡

𝐷𝑜
𝑖 (𝑡) The amount of tasks offloaded to MEC of device 𝑖 in slot 𝑡

𝑒𝑙𝑖(𝑡) The energy consumption for local computation of device 𝑖 in
time slot 𝑡

𝑒𝑜𝑖 (𝑡) The transmit energy consumption of device 𝑖 in slot 𝑡

𝑓𝑖 The computation speed (in Hz) of device 𝑖

ℎ𝑖(𝑡) The channel power gain of device 𝑖 in slot 𝑡

𝑁0 The noise power spectral density

𝑃𝑖 The computing power consumption (in Watts) of device 𝑖 in
time slot 𝑡

𝑃 𝑖
𝑡𝑟𝑎 The transmit power (in Watts) of device 𝑖

𝑞𝑖𝑐𝑜𝑛𝑠 The queue length threshold for each device 𝑖

𝑞𝑖(𝑡) The initial queue length of device 𝑖 at slot 𝑡

𝑟𝑖(𝑡) The communication speed (in bits/s) from device 𝑖 to MEC in
time slot 𝑡

𝑆(𝑡) The number of sub-channels which are available during time
slot 𝑡

𝜅𝑖(𝑡) The duration of a sub-channel allocated to device 𝑖 for
offloading in time slot 𝑡

Fig. 1. Task offloading model.

slot 𝑡. Notice that the bits of the tasks generated by the devices are
bit-wise independent so that partial offloading schemes can be applied
on each device [16,17]. After tasks arrive, they are firstly stored in a
task buffer queue and wait to be processed. The tasks in the queue are
processed in the first-come-first-served (FCFS) discipline. Let 𝑞𝑖(𝑡) be the
initial queue length of device 𝑖 in slot 𝑡, 𝐷𝑙

𝑖(𝑡) and 𝐷𝑜
𝑖 (𝑡) be the number

of tasks executed locally and offloaded to MEC in slot 𝑡 respectively,
and 𝐷𝑖(𝑡) be the total amount of tasks processed in slot 𝑡. We have
𝐷𝑖(𝑡) = 𝐷𝑙

𝑖(𝑡)+𝐷
𝑜
𝑖 (𝑡). It is obvious that each device cannot process more

tasks than what it has, so

𝐷𝑖(𝑡) = 𝐷𝑙
𝑖(𝑡) +𝐷

𝑜
𝑖 (𝑡) ≤ 𝑞𝑖(𝑡) + 𝐴𝑖(𝑡),∀𝑖 ∈  (1)

holds always.

3.2. Computation and energy models

The delay and energy models are introduced firstly for local com-
putation and task transmission [17].
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Local Computation. For generality, the IoT devices considered in
his paper are heterogeneous. Let 𝑓𝑖 be the computation speed (in Hz)

of device 𝑖, and 𝐶𝑖 (in cycles/bit) be a known constant which describes
the number of CPU cycles needed to process one bit of task for device
𝑖. Then, the time required to process 𝐷𝑙

𝑖(𝑡) bits tasks in device 𝑖 is
𝑇𝑖(𝑡) = 𝐷𝑙

𝑖(𝑡)𝐶𝑖∕𝑓𝑖. Since the tasks should be processed within current
ime slot, that is, 𝑇𝑖(𝑡) ≤ 𝜏, we have

0 ≤ 𝐷𝑙
𝑖(𝑡) ≤

𝜏𝑓𝑖
𝐶𝑖
,∀𝑖 ∈  (2)

hat means, the tasks allocated to device 𝑖 in slot 𝑡 cannot exceed its
omputing capacity.

Let 𝑃𝑖 be the computing power consumption (in Watts) of device
. Generally, 𝑃𝑖 depends on the chip architecture of the device, and
t is proportional to CPU frequency, which is 𝑃𝑖 = 𝜉𝑓 3

𝑖 where 𝜉 is a
oefficient depending on chip architecture [30–32]. Then, the energy
onsumption of device 𝑖 for local computation is
𝑙
𝑖(𝑡) = 𝑃𝑖𝑇𝑖(𝑡) = 𝜉𝑓 2

𝑖 𝐶𝑖𝐷
𝑙
𝑖(𝑡).

Task Transmission. Let 𝑃 𝑖tra be the transmit power (in Watts) of
device 𝑖. The communication speed (in bits/s) from device 𝑖 to MEC is

𝑟𝑖(𝑡) = 𝐵 log2

(

1 +
𝑃 𝑖𝑡𝑟𝑎ℎ𝑖(𝑡)
𝐵𝑁0

)

,

where 𝐵 denotes the bandwidth of each sub-channel, ℎ𝑖(𝑡) is the chan-
nel power gain in slot 𝑡 [33], and 𝑁0 is the noise power spectral
ensity [14,34,35].

For generality, we assume that the channel resources are dynam-
cally changing over different time slots in this paper. Let 𝑆(𝑡) be
he number of sub-channels which are available during time slot 𝑡.
o achieve optimal performance, the channel resources should be
llocated to different devices properly. Define the channel allocation
ecisions as 𝜿(𝑡) = {𝜅1(𝑡),… , 𝜅𝑛(𝑡)}, where 𝜅𝑖(𝑡) represents the duration
f a sub-channel allocated to device 𝑖 for offloading. Then, the task
mount that device 𝑖 can offload during slot 𝑡 is
𝑜
𝑖 (𝑡) = 𝑟𝑖(𝑡)𝜅𝑖(𝑡).

ecause a device cannot offload more tasks than what it has, 𝜅𝑖(𝑡)
hould satisfy

𝑖(𝑡) ≤
𝑞𝑖(𝑡)+𝐴𝑖(𝑡)

𝑟𝑖(𝑡)
,∀𝑖 ∈  . (3)

onsider each IoT device operates in narrow-band [1], hence each
evice can only access a sub-channel at a time, so we have

≤ 𝜅𝑖(𝑡) ≤ 𝜏,∀𝑖 ∈  . (4)

ombining (3) with (4), we obtain

≤ 𝜅𝑖(𝑡) ≤ min
{ 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)

𝑟𝑖(𝑡)
, 𝜏
}

,∀𝑖 ∈  . (5)

Similar to [17,36], we considered that different devices can access a
sub-channel at different times during one slot. Hence, the total duration
of channel resources allocated to all devices cannot exceed the total
communication length of all sub-channels, that is,
𝑛
∑

𝑖=1
𝜅𝑖(𝑡) ≤ 𝑆(𝑡)𝜏. (6)

or device 𝑖, the transmit energy consumption in slot 𝑡 is
𝑜
𝑖 (𝑡) = 𝑃 𝑖tra(𝑡)𝜅𝑖(𝑡).

Based on the above calculation, the total energy consumed by all
evices is

(𝑡) =
𝑛
∑

𝑖=1

(

𝜉𝑓 2
𝑖 𝐶𝑖𝐷

𝑙
𝑖(𝑡) + 𝑃

𝑖
tra𝜅𝑖(𝑡)

)

. (7)

In this paper, the computing capacity of the MEC server is assumed
o be enough, and we do not consider the allocation of the computing
4

i

esources of the MEC server for two reasons. First, the communica-
ion resources are the main bottleneck limiting the benefits of task
ffloading compared with the MEC computation resources. Second,
his work is to minimize the energy consumption of devices, and the
nergy consumption is not affected by the computing capacity of MEC
nd the MEC computing resource allocation schemes. Hence, the above
ssumption is reasonable, which is also adopted in many existing works
uch as [17,37,38].

.3. Queue state transition model

Recall that 𝑞𝑖(𝑡) is the initial queue length of device 𝑖 at slot 𝑡.
ccording to our problem, the queue length in the next slot is

𝑖(𝑡 + 1) = max{𝑞𝑖(𝑡) + 𝐴𝑖(𝑡) −𝐷𝑖(𝑡), 0}, (8)

here 𝑞𝑖(0) = 0 for each device 𝑖.
In this paper, we try to maintain the queue stability of all IoT de-

ices and stabilize each device’s queue backlog below a given threshold
n the long term. Hence, the average queue backlog across multiple time
lots should be bounded for each device 𝑖, that is,

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝐸{𝑞𝑖(𝑡)} ≤ 𝑞𝑖cons,∀𝑖 ∈  , (9)

here 𝑞𝑖cons is the queue length threshold for each device 𝑖.
The reasons for introducing such a queue backlog threshold for

ach device are explained as follows. Under the queue stability con-
traint, the average queue backlog is uncontrollable. When the system
eaches stability, the queue backlog might be huge. According to Little’s
aw [39], the average queuing delay is proportional to queue backlogs.
nder a large queue backlog, the performance in terms of task response

ime will deteriorate significantly. By introducing a queue backlog
hreshold, we can not only minimize the task response time but also
ontrol the system performance effectively by adjusting the threshold
alues.

.4. Energy optimization problem

Next, we give a formal definition of our energy optimization prob-
em with resource constraint and queue length constraint.

According to the model description, it is obvious that the quality of
ireless channels is dynamically changing, and the amount of arriving

asks are dynamic over time. Consequently, the total energy consumed
y all devices fluctuates too. Therefore, the energy consumption should
e averaged over a long time scale, which can be expressed as

𝑒 = lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝐸{𝑒(𝑡)}.

From Eq. (7), we know that the energy consumption in each slot
𝑡 is varying and depends on the task offloading decision (𝐷𝑙

𝑖(𝑡), 𝐷
𝑜
𝑖 (𝑡)),

where 𝐷𝑜
𝑖 (𝑡) depends on the channel allocation decision 𝜅𝑖(𝑡) further. To

chieve minimal energy consumption, the proper decisions in terms of
ask offloading and resource allocation should be determined for each
ime slot, and our energy optimization problem is formulated as

𝐏𝟏) min
𝑫𝒍(𝑡),𝜿(𝑡)

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝐸{𝑒(𝑡)},

s.t. (1), (2), (5), (6), (9),

where 𝑫𝒍(𝑡) = {𝐷𝑙
1(𝑡),… , 𝐷𝑙

𝑛(𝑡)}.
Analyzing problem (𝐏𝟏), it is a stochastic optimization problem.

Solving this problem requires the future system information, including
𝐴𝑖(𝑡), ℎ𝑖(𝑡), and 𝑆(𝑡), etc. However, the statistical information is gener-
lly hard to predict accurately in real systems, so solving this problem
ffline is of great challenge. This paper proposes a Lyapunov optimized
nline task offloading strategy to address the problem. The algorithm
akes decisions only depending on current information of devices

nd channel conditions but has no requirements on the statistical
nformation for a long time.
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4. Lyapunov optimized energy-efficient dynamic offloading

In this section, the original stochastic optimization problem is first
transformed into a real-time decision problem by applying Lyapunov
optimization. After that, an energy-efficient dynamic offloading algo-
rithm with queue length constraint (QC-EEDOA) is designed.

4.1. Problem transformation

To transform our problem, a virtual queue 𝑄 is constructed firstly
for the queue length constraint [40], which is shown as

𝑄𝑖(𝑡 + 1) = max{𝑄𝑖(𝑡) + 𝑞𝑖(𝑡 + 1) − 𝑞𝑖cons, 0}, (10)

where 𝑄𝑖(𝑡) is the virtual queue backlog in slot 𝑡. Noticed that 𝑄 is
different from 𝑞, since 𝑞 is the actual queue of devices, while 𝑄 is a
virtual queue. The virtual queue backlog 𝑄𝑖(𝑡) reflects the degree that
𝑞𝑖 exceeds the threshold 𝑞𝑖cons by the end of time slot 𝑡, and 𝑄𝑖(0) = 0
for all devices. When the queue length of 𝑞 exceeds the threshold 𝑞cons
at 𝑡, the queue backlog of Q increases, and vice versa. The specific
transformation process is depicted in Fig. 2. Hence, the long-term queue
length constraint (9) is transformed into a stability constraint of the
queue backlog of Q. Until that, the Lyapunov optimization theory can
be utilized to solve this problem.

Denoting 𝛩(𝑡) ≜ {𝑄1(𝑡),… , 𝑄𝑛(𝑡)}, we define the Lyapunov function
as

𝐿(𝛩(𝑡)) ≜ 1
2

𝑛
∑

𝑖=1
𝑄𝑖(𝑡)2,

and the Lyapunov drift is defined as

𝛥(𝛩(𝑡)) ≜ 𝐸[𝐿(𝛩(𝑡 + 1)) − 𝐿(𝛩(𝑡))|𝛩(𝑡)].

After introducing the virtual queue 𝑄, our goal becomes to find
an energy-efficient task offloading policy while maintaining the virtual
queue stability. To achieve the dual goals, we incorporate virtual queue
stability into energy consumption with a weight of 𝑉 , and define a
Lyapunov drift-plus-penalty function as

𝛥(𝛩(𝑡)) + 𝑉 𝑒(𝑡),

where 𝑉 is a positive constant which is to trade off energy consumption
against virtual queue backlog.

Now, the original optimization problem (𝐏𝟏) can be transformed as

(𝐏𝟐) min
𝑫𝒍(𝑡),𝜿(𝑡)

𝛥(𝛩(𝑡)) + 𝑉 𝑒(𝑡),

s.t. (1), (2), (5), (6).

Analyzing problem (𝐏𝟐), we find that the task offloading decision in
slot 𝑡 still depends on the information of next time slot. To address this
problem, we calculate the upper bound of 𝛥(𝛩(𝑡))+𝑉 𝑒(𝑡) as Theorem 1.

Theorem 1. If 𝐴𝑖(𝑡) is upper bounded by 𝐴max
𝑖 over time, the drift-plus-

penalty value under any task offloading algorithm satisfies

𝛥(𝛩(𝑡)) + 𝑉 𝑒(𝑡) ≤ 𝐵1+𝐵2+𝑉 𝑒(𝑡)

+
𝑛
∑

𝑖=1

(

𝐷𝑖(𝑡)2

2
+
(

𝑞𝑖cons−𝑞𝑖(𝑡)−𝐴𝑖(𝑡)−𝑄𝑖(𝑡)
)

𝐷𝑖(𝑡)
)

,
(11)

where

𝐵1 =
1
2

𝑛
∑

𝑖=1

(

(𝐴max
𝑖 )2 + (𝑞𝑖cons)

2
)

,

and

𝐵2 =
𝑛
∑

𝑖=1

(

1
2
𝑞𝑖(𝑡)2 + 𝐴max

𝑖 𝑞𝑖(𝑡) +𝑄𝑖(𝑡)
(

𝑞𝑖(𝑡) + 𝐴max
𝑖 − 𝑞𝑖cons

)

)

.

5

Fig. 2. Transformation process of virtual queue 𝑄.

Proof. Taking the square of (10) and exploiting (max{𝑎, 0})2 ≤ 𝑎2, we
have
𝑄𝑖(𝑡 + 1)2 −𝑄𝑖(𝑡)2

≤ (𝑄𝑖(𝑡) + 𝑞𝑖(𝑡 + 1) − 𝑞𝑖cons)
2 −𝑄𝑖(𝑡)2

= (𝑞𝑖(𝑡 + 1) − 𝑞𝑖cons)
2 + 2𝑄𝑖(𝑡)(𝑞𝑖(𝑡 + 1) − 𝑞𝑖cons)

= 𝑞𝑖(𝑡 + 1)2 − 2𝑞𝑖(𝑡 + 1)𝑞𝑖cons + 2𝑄𝑖(𝑡)𝑞𝑖(𝑡 + 1)

+ (𝑞𝑖cons)
2 − 2𝑄𝑖(𝑡)𝑞𝑖cons.

(12)

Taking square on (8), we have

𝑞𝑖(𝑡 + 1)2 ≤ (𝑞𝑖(𝑡) −𝐷𝑖(𝑡) + 𝐴𝑖(𝑡))2

= (𝑞𝑖(𝑡)−𝐷𝑖(𝑡))2 + 𝐴𝑖(𝑡)2 + 2𝐴𝑖(𝑡)(𝑞𝑖(𝑡)−𝐷𝑖(𝑡))

= 𝑞𝑖(𝑡)2 − 2𝑞𝑖(𝑡)𝐷𝑖(𝑡) +𝐷𝑖(𝑡)2 + 𝐴𝑖(𝑡)2

+ 2𝐴𝑖(𝑡)𝑞𝑖(𝑡) − 2𝐴𝑖(𝑡)𝐷𝑖(𝑡).

(13)

In addition, because 𝐷𝑖(𝑡) ≤ 𝑞𝑖(𝑡) + 𝐴𝑖(𝑡), we can also obtain

− 2𝑞𝑖(𝑡 + 1)𝑞𝑖cons = 2𝐷𝑖(𝑡)𝑞𝑖cons − 2𝑞𝑖cons(𝑞𝑖(𝑡) + 𝐴𝑖(𝑡)), (14)

and

2𝑄𝑖(𝑡)𝑞𝑖(𝑡 + 1) = 2𝑄𝑖(𝑡)(𝑞𝑖(𝑡) + 𝐴𝑖(𝑡)) − 2𝑄𝑖(𝑡)𝐷𝑖(𝑡). (15)

Substituting (13), (14), (15) to (12), we have

𝑄𝑖(𝑡 + 1)2 −𝑄𝑖(𝑡)2

≤ 𝐷𝑖(𝑡)2 + 2
(

𝑞𝑖cons − 𝑞𝑖(𝑡) − 𝐴𝑖(𝑡) −𝑄𝑖(𝑡)
)

𝐷𝑖(𝑡)

+ 𝑞𝑖(𝑡)2 + 𝐴𝑖(𝑡)2 + 2𝐴𝑖(𝑡)𝑞𝑖(𝑡) − 2𝑞𝑖cons
(

𝑞𝑖(𝑡) + 𝐴𝑖(𝑡)
)

+ 2𝑄𝑖(𝑡)
(

𝑞𝑖(𝑡) + 𝐴𝑖(𝑡) − 𝑞𝑖cons
)

+ (𝑞𝑖cons)
2

≤ 𝐷𝑖(𝑡)2 + 2
(

𝑞𝑖cons − 𝑞𝑖(𝑡) − 𝐴𝑖(𝑡) −𝑄𝑖(𝑡)
)

𝐷𝑖(𝑡)

+𝑞𝑖(𝑡)2+(𝐴max
𝑖 )2+2𝐴max

𝑖 𝑞𝑖(𝑡)

+2𝑄𝑖(𝑡)(𝑞𝑖(𝑡)+𝐴max
𝑖 − 𝑞𝑖cons) + (𝑞𝑖cons)

2.

Let

𝐵1 =
1
2

𝑛
∑

𝑖=1

(

(𝐴max
𝑖 )2 + (𝑞𝑖cons)

2
)

,

and

𝐵2 =
𝑛
∑

𝑖=1

(

1
2
𝑞𝑖(𝑡)2 + 𝐴max

𝑖 𝑞𝑖(𝑡) +𝑄𝑖(𝑡)
(

𝑞𝑖(𝑡) + 𝐴max
𝑖 − 𝑞𝑖cons

)

)

.

The objective function (11) can be upper bounded as

𝛥(𝛩(𝑡)) + 𝑉 𝑒(𝑡) ≤ 𝐵1+𝐵2+𝑉 𝑒(𝑡)

+
𝑛
∑

𝑖=1

(

𝐷𝑖(𝑡)2

2
+
(

𝑞𝑖cons−𝑞𝑖(𝑡)−𝐴𝑖(𝑡)−𝑄𝑖(𝑡)
)

𝐷𝑖(𝑡)
)

.

The lemma is proven. □

Till now, we can transform the original problem (problem (𝐏𝟐)) and
turn to minimize its upper bound. By doing so, the average energy con-
sumption can be reduced effectively while the queue length constraint
of each IoT device can be guaranteed. Since 𝐵1 is a constant during
all time slots and 𝐵 is fixed at a specific time slot, 𝐵 and 𝐵 can be
2 1 2
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discarded from the objective function and the problem is constructed
as

(𝐏𝟑) min
𝑫(𝑡),𝑫𝒍(𝑡),𝜿(𝑡)

𝑉
𝑛
∑

𝑖=1

(

𝜉𝑓 2
𝑖 𝐶𝑖𝐷

𝑙
𝑖(𝑡) + 𝑃

𝑖
tra(𝑡)𝜅𝑖(𝑡)

)

+
𝑛
∑

𝑖=1

(

𝐷𝑖(𝑡)2

2
+
(

𝑞𝑖cons−𝑞𝑖(𝑡)−𝐴𝑖(𝑡)−𝑄𝑖(𝑡)
)

𝐷𝑖(𝑡)
)

,

s.t. (1), (2), (5), (6).

Since 𝐷𝑖(𝑡) = 𝐷𝑙
𝑖(𝑡) + 𝐷𝑜

𝑖 (𝑡) = 𝐷𝑙
𝑖(𝑡) + 𝑟𝑖(𝑡)𝜅𝑖(𝑡), we have 𝐷𝑙

𝑖(𝑡) =

𝑖(𝑡) − 𝑟𝑖(𝑡)𝜅𝑖(𝑡). Substituting 𝐷𝑙
𝑖(𝑡) into (𝐏𝟑), we have

(P4) min
𝑫(𝑡),𝜿(𝑡)

𝑛
∑

𝑖=1
𝜓𝑖(𝑡)𝜅𝑖(𝑡)+

𝑛
∑

𝑖=1

(

𝐷𝑖(𝑡)2

2
+𝜔𝑖(𝑡)𝐷𝑖(𝑡)

)

,

s.t. (1), (2), (5), (6),

where 𝜓𝑖(𝑡) = 𝑉 𝑃 𝑖tra(𝑡)−𝑉 𝜉𝑓
2
𝑖 𝐶𝑖𝑟𝑖(𝑡) and 𝜔𝑖(𝑡) = 𝑞𝑖cons−𝑞𝑖(𝑡)−𝐴𝑖(𝑡)−𝑄𝑖(𝑡)+

𝜉𝑓 2
𝑖 𝐶𝑖.

4.2. Energy-efficient dynamic offloading algorithm

Analyzing problem (𝐏𝟒), 𝐷𝑖(𝑡) and 𝑘𝑖(𝑡) are the optimization vari-
ables in the optimization problem. Since (𝐏𝟒) exists the dynamic cou-
pling between The number of tasks and the offloading duration of IoT
device, finding the optimal values of decision variables is difficult.
Thus, an energy-efficient dynamic offloading algorithm with queue
length constraint (QC-EEDOA) is proposed.

This algorithm can minimize the drift plus penalty’s upper bound.
Through the observation of (𝐏𝟒.𝟐), we find that the range of 𝐷𝑖(𝑡)
depends on the value of 𝑘𝑖(𝑡). Accordingly, the objective optimization
problem can be decomposed into two sub-problems, allowing each to
be addressed independently. Next, we notice that the portion of (𝐏𝟒)
associated with the variable 𝑘𝑖(𝑡). Thus, the problem (𝐏𝟒) is transformed
into (𝐏𝟒.𝟏), and we apply the knapsack theory to find a sub-optimal
solution of 𝑘𝑖(𝑡) in (𝐏𝟒.𝟏). After solving the problem (𝐏𝟒.𝟏), the problem
(𝐏𝟒.𝟐) is equal to (𝐏𝟒.𝟐).

(𝐏𝟒.𝟏) min
𝜿(𝑡)

𝑛
∑

𝑖=1
𝜓𝑖(𝑡)𝜅𝑖(𝑡),

s.t. (5), (6),

where 𝜓𝑖(𝑡) = 𝑉 𝑃 𝑖tra(𝑡) − 𝑉 𝜉𝑓
2
𝑖 𝐶𝑖𝑟𝑖(𝑡).

(P4.2) min
𝑫(𝑡)

𝑛
∑

𝑖=1

(

𝐷𝑖(𝑡)2

2
+𝜔𝑖(𝑡)𝐷𝑖(𝑡)

)

,

s.t. 𝑟𝑖(𝑡)𝜅𝑖(𝑡)≤𝐷𝑖(𝑡) ≤ min
{

𝑟𝑖(𝑡)𝜅𝑖(𝑡)+
𝜏𝑓𝑖
𝐶𝑖
, 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)

}

,

∀𝑖∈ , (17a)

where 𝜔𝑖(𝑡) = 𝑞𝑖cons−𝑞𝑖(𝑡)−𝐴𝑖(𝑡)−𝑄𝑖(𝑡)+𝑉 𝜉𝑓
2
𝑖 𝐶𝑖.

The steps of determining the offloading decision per time slot are
given as follows:

(1) Solving problem (𝐏𝟒.𝟏) to find a solution for 𝜿(𝑡);
(2) Updating the value range of 𝐷𝑖(𝑡) (see (17a)), and solving prob-

lem (𝐏𝟒.𝟐) to find a solution for 𝑫(𝑡);
(3) Adjusting the value of 𝜿(𝑡) and repeating step 2 until the solution

cannot be optimized.

Solution of Problem (𝐏𝟒.𝟏): Similar to [17], problem (𝐏𝟒.𝟏) can
be considered as a divisible knapsack problem in which 𝑆(𝑡)𝜏 is the
knapsack capacity, min{(𝑞𝑖(𝑡) + 𝐴𝑖(𝑡))∕𝑟𝑖(𝑡), 𝜏} is the size of each item,
and 𝜓𝑖(𝑡) can be considered as the unit value of each item. To obtain
the optimal solution of the divisible knapsack problem, the principle
is to fulfill the knapsack with the smallest negative 𝜓𝑖(𝑡) in priority.
The detailed process is described in Alg. 1. In the algorithm, all devices
are sorted in the ascending order of 𝜓 (𝑡) firstly. And then, the device
6

𝑖 𝜅
with the smallest negative 𝜓𝑖(𝑡) is selected and allocated with the most
available offloading duration. The process is repeated until the unit
value of the selected device is positive or the knapsack is empty.

Algorithm 1: Determining 𝜿(𝑡)
Input: device parameters such as 𝑃 𝑖

tra(𝑡), 𝜉𝑖, 𝑓𝑖, 𝐶𝑖; channel parameters
such as 𝐵, ℎ𝑖(𝑡), 𝑁0, 𝑆(𝑡); queue state such as 𝑞𝑖(𝑡);

Output: the solution of 𝜿(𝑡);
1 for all 𝑖 ∈  do
2 Calculate 𝑟𝑖(𝑡) and 𝜓𝑖(𝑡);
3 𝜅𝑖(𝑡) ← 0;
4 end
5 Sort all devices in the ascending order of 𝜓𝑖(𝑡);
6 restK ← 𝑆(𝑡)𝜏;
7 while restK > 0 do
8 𝑖← pop the index of the first device with the smallest 𝜓𝑖(𝑡);
9 if 𝜓𝑖(𝑡) < 0 then
10 𝜅𝑖(𝑡) ← min{restK,min{(𝑞𝑖(𝑡)+𝐴𝑖(𝑡))∕𝑟𝑖(𝑡), 𝜏}};

restK← restK − 𝑘𝑖(𝑡);
11 else
12 break;
13 end
14 end

Solution of Problem (𝐏𝟒.𝟐): After determining the value of 𝜿(𝑡) in
he first step, the value ranges of 𝐷𝑖(𝑡) can be fixed. Since the values of
𝑖(𝑡) are non interacting, which are only related to 𝜅𝑖(𝑡), it is easy to
etermine 𝐷𝑖(𝑡) for each device 𝑖 as follows. Let

𝑖(𝐷𝑖(𝑡)) = 𝐷𝑖(𝑡)2∕2 + 𝜔𝑖(𝑡)𝐷𝑖(𝑡), (18)

t is a quadratic equation of 𝐷𝑖(𝑡) obviously. Taking the derivative with
espect to 𝐷𝑖(𝑡), we have
𝜕𝑖(𝐷𝑖(𝑡))
𝜕𝐷𝑖(𝑡)

= 𝐷𝑖(𝑡) + 𝜔𝑖(𝑡),

o the theoretical optimum is 𝐷𝑖(𝑡) = −𝜔𝑖(𝑡). Since the value range of
𝑖(𝑡) is limited as (17a), the actual optimum of 𝐷𝑖(𝑡) is discussed as the
lg. 2.

Algorithm 2: Determining 𝑫(𝑡)
Input: 𝜿(𝑡) determined by Alg. 1;
Output: the solution of 𝑫(𝑡);

1 for all 𝑖 ∈  do
2 Calculate 𝑟𝑖(𝑡) and 𝜔𝑖(𝑡);
3 if −𝜔𝑖(𝑡) < 𝜅𝑖(𝑡)𝑟𝑖(𝑡) then
4 𝐷𝑖(𝑡) ← 𝜅𝑖(𝑡)𝑟𝑖(𝑡);
5 end
6 if 𝜅𝑖(𝑡)𝑟𝑖(𝑡) ≤ −𝜔𝑖(𝑡) ≤ min{𝑟𝑖(𝑡)𝜅𝑖(𝑡)+𝜏𝑓𝑖∕𝐶𝑖, 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)} then
7 𝐷𝑖(𝑡) ← −𝜔𝑖(𝑡);
8 end
9 if −𝜔𝑖(𝑡) > min{𝑟𝑖(𝑡)𝜅𝑖(𝑡)+𝜏𝑓𝑖∕𝐶𝑖, 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)} then
10 𝐷𝑖(𝑡) ← min{𝑟𝑖(𝑡)𝜅𝑖(𝑡)+𝜏𝑓𝑖∕𝐶𝑖, 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)};
11 end
12 end

Adjustment of 𝜿(𝑡) and 𝑫(𝑡): In Alg. 2, if −𝜔𝑖(𝑡) < 𝜅𝑖(𝑡)𝑟𝑖(𝑡), 𝐷𝑖(𝑡)
s set as 𝜅𝑖(𝑡)𝑟𝑖(𝑡). In that case, the solution of 𝜅𝑖(𝑡) and 𝐷𝑖(𝑡) can be
ptimized further.

Substituting 𝐷𝑖(𝑡) = 𝜅𝑖(𝑡)𝑟𝑖(𝑡) into 𝑖(𝐷𝑖(𝑡)), we have

𝑖(𝜅𝑖(𝑡)) =
1
2
𝑟2𝑖 (𝑡)𝜅

2
𝑖 (𝑡) + 𝜔𝑖(𝑡)𝑟𝑖(𝑡)𝜅𝑖(𝑡).

et

𝑖(𝜅𝑖(𝑡)) = 𝜓𝑖(𝑡)𝜅𝑖(𝑡),

hen both 𝑖 and 𝑖 are functions of 𝜅𝑖(𝑡). According to Alg. 1, if
(𝑡) > 0, it has 𝜓 (𝑡) < 0. Taking the derivative of  and  with
𝑖 𝑖 𝑖 𝑖
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respect to 𝜅𝑖(𝑡), we have
𝜕𝑖(𝜅𝑖(𝑡))
𝜕𝜅𝑖(𝑡)

= 𝑟2𝑖 (𝑡)𝜅𝑖(𝑡) + 𝜔𝑖(𝑡)𝑟𝑖(𝑡) > 0,

and
𝜕𝑖(𝜅𝑖(𝑡))
𝜕𝜅𝑖(𝑡)

= 𝜓𝑖(𝑡) < 0.

ence, 𝑖 and 𝑖 are monotonically increasing and decreasing with
𝑖(𝑡), respectively.

If 𝑟2𝑖 (𝑡)𝜅𝑖(𝑡)+𝜔𝑖(𝑡)𝑟𝑖(𝑡) > |𝜓𝑖(𝑡)|, then the value of 𝑖(𝜅𝑖(𝑡)) + 𝑖(𝜅𝑖(𝑡))
decreases with the decrease of 𝜅𝑖(𝑡) until 𝑟2𝑖 (𝑡)𝜅𝑖(𝑡)+𝜔𝑖(𝑡)𝑟𝑖(𝑡) = |𝜓𝑖(𝑡)|.

ence, we can conclude that the optimum of 𝜅𝑖(𝑡) can be determined
y

𝑖(𝑡) = min
{−𝜓𝑖(𝑡) − 𝜔𝑖(𝑡)𝑟𝑖(𝑡)

𝑟2𝑖 (𝑡)
, 0
}

. (19)

The details are given as Alg. (3).

Algorithm 3: Adjusting 𝜿(𝑡) and 𝑫(𝑡)

1 iteratively Input: 𝜿(𝑡) and 𝑫(𝑡) determined by Alg. 1 and Alg. 2;
Output: 𝜿(𝑡) and 𝑫(𝑡) after adjustment;

2 do
3 isChanged ← 𝑓𝑎𝑙𝑠𝑒;
4 restK ← 𝑆(𝑡)𝜏 −

∑

𝜿(𝑡);
5 for all 𝑖 ∈  do
6 if 𝑟2𝑖 (𝑡)𝜅𝑖(𝑡)+𝜔𝑖(𝑡)𝑟𝑖(𝑡)> |𝜓𝑖(𝑡)| then
7 Calculate 𝜅𝑖(𝑡) by Eq. (19);
8 Update 𝐷𝑖(𝑡) based on 𝜅𝑖(𝑡) according to Alg. 2;
9 isChanged← 𝑡𝑟𝑢𝑒;
10 end
11 end
12 restK’ ← 𝑆(𝑡)𝜏 −

∑

𝜿(𝑡);
13 if restK = 0 and restK’ > 0 then
14 Allocate restK’ to the devices having no channel resources

according to Alg. 1;
15 Calculate the correspond 𝜅𝑖(𝑡) and 𝐷𝑖(𝑡);
16 isChanged ← 𝑡𝑟𝑢𝑒;
17 end
18 while isChanged = 𝑡𝑟𝑢𝑒;

4.3. Algorithm complexity

Since we focus on the computation offloading problem of the dy-
namic system where many parameters change over time, our algorithm
should make snap decisions on the offloading decision and resource
allocation scheme per time slot. The time complexity of our algorithm
is expressed in terms of the number of devices 𝑛. For Alg. 1, the com-
plexity of parameter calculation is 𝑂(𝑛) (lines 1–4), the complexity of
sorting is 𝑂(𝑛 log2 𝑛) (line 5), and the complexity of allocating channel
resources is 𝑂(𝑛) (lines 7–14). Therefore, the time complexity of Alg. 1
is 𝑂(𝑛 log2 𝑛). In Alg. 2, there are only comparison and assignment
operations, so the time complexity of Alg. 2 is 𝑂(𝑛). In Alg. 3, the
values of 𝜅𝑖 and 𝐷𝑖 are updated at most once for each device. Hence,
its time complexity is 𝑂(𝑛). In total, the complexity of the proposed
solution is 𝑂(𝑛 log2 𝑛). Besides, the space complexity of our proposed
algorithm is relatively low. When the program runs on the computer,
the memory changes in the system are very small. This is because
the algorithm uses metadata to compute the optimal offloading policy,
which is simple and efficient, rather than performing tasks. When
running the algorithm, the CPU usage increased from 7% to 41%. The
change is also acceptable.

5. Performance analysis

In this section, the theoretical analysis are conducted to verify the
7

performance of the proposed offloading policy.
5.1. Queue length constraint

We first show that the solution derived by problem (𝐏𝟒) satisfies
he long-term queue length constraint defined in (9). To do so, we first
erive the following theorem.

heorem 2. Adopting the proposed algorithm, the virtual queue backlog
𝑖 is upper bounded for any device 𝑖 ∈  when the average system load in
ong term is within the system computing capacity.

roof. Taking the derivative of the objective function in problem (𝐏𝟒),
he theoretical optimal value is achieved at 𝐷𝑖(𝑡) = −𝜔𝑖(𝑡). According to
lg. 2, the actual optimal value is discussed in three cases as follows.
Case 1. 𝐷∗

𝑖 (𝑡) = 𝜅∗𝑖 (𝑡)𝑟𝑖(𝑡), that means −𝜔𝑖(𝑡) < 𝜅∗𝑖 (𝑡)𝑟𝑖(𝑡). In such a
ase, we have

𝑖(𝑡)+𝐴𝑖(𝑡)+𝑄𝑖(𝑡) − 𝑞𝑖cons−𝑉 𝑃𝑖𝐶𝑖∕𝑓𝑖 < 𝜅
∗
𝑖 (𝑡)𝑟𝑖(𝑡).

ence, 𝑄𝑖(𝑡) is bounded as

𝑖(𝑡) < 𝑞𝑖cons+𝑉 𝑃𝑖𝐶𝑖∕𝑓𝑖 + 𝜅
∗
𝑖 (𝑡)𝑟𝑖(𝑡). (20)

Case 2. When 𝜅∗𝑖 (𝑡)𝑟𝑖(𝑡) ≤ −𝜔𝑖(𝑡) ≤ min{𝑟𝑖(𝑡)𝜅∗𝑖 (𝑡)+𝜏𝑓𝑖∕𝐶𝑖, 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)},
∗
𝑖 (𝑡) = −𝜔𝑖(𝑡). In such a case, we have

𝑖(𝑡) = 𝐷∗
𝑖 (𝑡) + 𝑞

𝑖
cons +𝑉 𝜉𝑖𝑓

2
𝑖 𝐶𝑖 − 𝑞𝑖(𝑡) − 𝐴𝑖(𝑡)

< 𝑞𝑖cons +𝑉 𝑃𝑖𝐶𝑖∕𝑓𝑖,
(21)

ince 𝐷∗
𝑖 (𝑡) ≤ 𝑞𝑖(𝑡) + 𝐴𝑖(𝑡).

Case 3. When −𝜔𝑖(𝑡) > min{𝑟𝑖(𝑡)𝜅∗𝑖 (𝑡)+𝜏𝑓𝑖∕𝐶𝑖, 𝑞𝑖(𝑡) + 𝐴𝑖(𝑡)}, 𝐷
∗
𝑖 (𝑡) =

in{𝑟𝑖(𝑡)𝜅∗𝑖 (𝑡)+𝜏𝑓𝑖∕𝐶𝑖, 𝑞𝑖(𝑡) + 𝐴𝑖(𝑡)}. In such a case,

𝑖(𝑡) > 𝑞𝑖cons +𝑉 𝑃𝑖𝐶𝑖∕𝑓𝑖 − 𝑞𝑖(𝑡) − 𝐴𝑖(𝑡)

+ min
{

𝑟𝑖(𝑡)𝜅∗𝑖 (𝑡)+
𝜏𝑓𝑖
𝐶𝑖
, 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)

}

.

ccording to Eq. (8), we have

𝑖(𝑡 + 1) = 𝑞𝑖(𝑡) + 𝐴𝑖(𝑡) − min
{

𝑟𝑖(𝑡)𝜅∗𝑖 (𝑡)+
𝜏𝑓𝑖
𝐶𝑖
, 𝑞𝑖(𝑡)+𝐴𝑖(𝑡)

}

,

which means that the system processes as many tasks as possible for
device 𝑖 at slot 𝑡. When the computing capacity of device 𝑖 is great
nough, 𝑞𝑖(𝑡+ 1) becomes smaller than 𝑞𝑖cons, and according to Eq. (10),
e have 𝑄𝑖(𝑡 + 1) < 𝑄𝑖(𝑡) and the value of −𝑤𝑖(𝑡) shows a downtrend.
fter limited time slots, there is a time slot 𝑡0 such that −𝑤𝑖(𝑡0) satisfies

he condition in case 1 or 2, then 𝑄𝑖(𝑡) satisfies (20) and (21) again
hen 𝑡 ≥ 𝑡0.

In all, 𝑄𝑖(𝑡) is upper bounded under the given condition. This comp-
etes the proof. □

Based on Theorem 2, we further deduce the following theorem.

heorem 3. The constraint

lim
→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝑞𝑖(𝑡) ≤ 𝑞𝑖𝑐𝑜𝑛𝑠

s satisfied if the virtual queue backlog 𝑄𝑖 is upper bounded.

roof. Suppose that the virtual queue backlog 𝑄𝑖 is upper bounded by
𝑚𝑎𝑥
𝑖 > 0 for any device 𝑖 ∈  . Then, we have

lim
𝑡→∞

𝑄𝑖(𝑡)
𝑡

≤ lim
𝑡→∞

𝑄𝑚𝑎𝑥𝑖
𝑡

= 0. (22)

Eq. (10) can be rewritten as

𝑄𝑖(𝑡 + 1) = max{𝑄𝑖(𝑡) + 𝑞𝑖(𝑡 + 1) − 𝑞𝑖𝑐𝑜𝑛𝑠, 0}

=

{

𝑄𝑖(𝑡)+𝑞𝑖(𝑡+1)−𝑞𝑖𝑐𝑜𝑛𝑠, if 𝑄𝑖(𝑡)≥𝑞𝑖𝑐𝑜𝑛𝑠−𝑞𝑖(𝑡 + 1);
𝑖

(23)

0, if 𝑄𝑖(𝑡)<𝑞𝑐𝑜𝑛𝑠−𝑞𝑖(𝑡+1).
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Reformatting (23), we have

𝑄𝑖(𝑡 + 1) −𝑄𝑖(𝑡)

=

{

𝑞𝑖(𝑡+1)−𝑞𝑖𝑐𝑜𝑛𝑠, if 𝑄𝑖(𝑡)≥𝑞𝑖𝑐𝑜𝑛𝑠−𝑞𝑖(𝑡+1),
−𝑄𝑖(𝑡), if 𝑄𝑖(𝑡)<𝑞𝑖𝑐𝑜𝑛𝑠−𝑞𝑖(𝑡+1),

= max{𝑞𝑖(𝑡 + 1) − 𝑞𝑖𝑐𝑜𝑛𝑠,−𝑄𝑖(𝑡)}

≥ 𝑞𝑖(𝑡 + 1) − 𝑞𝑖𝑐𝑜𝑛𝑠.

(24)

Taking the average of time slots 0 to 𝑇 −1 on both sides of (24) and
bringing 𝑇 to ∞, we have

lim
𝑇→∞

𝑄𝑖(𝑇 )
𝑇

≥ lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝑞𝑖(𝑡) − 𝑞𝑖𝑐𝑜𝑛𝑠. (25)

Combining (22) and (25), we have

lim
→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝐸(𝑞𝑖(𝑡)) ≤ 𝑞𝑖𝑐𝑜𝑛𝑠.

The lemma is proven. □

Combining Theorems 2 and 3, we can conclude that the queue
length constraints can be satisfied for all devices when the average
system load in long term is within the system computing capacity.

5.2. Optimality gap analysis

To analyze the performance gap between the optimal solution of the
original problem (P1) and the solution obtained from our problem (P4),

e first give a description on the optimal solution of (P1) as follows:

emma 4. If the original problem (P1) has solutions, there must be an
optimal w-only policy 𝝎∗ where the action taken in each slot 𝑡 satisfies

𝑒𝝎∗ (𝑡) = 𝑒∗,
𝐸{𝑞𝝎∗

𝑖 (𝑡)} ≤ 𝑞𝑖𝑐𝑜𝑛𝑠,

where 𝑒𝝎∗ (𝑡) denotes the energy consumption in slot 𝑡 under the optimal
w-only policy, and 𝑒∗ is the optimal objective value of problem (P1), i.e.,

∗ = min
(

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝐸{𝑒(𝑡)}

)

.

roof. The conclusion has been concluded in [41]. Hence, we omit the
etailed proofs here. □

By applying Lemma 4, we give the upper bound of the time-average
nergy consumption in Theorem 5.

heorem 5. For the given 𝑉 , the time-average energy consumption of
QC-EEDOA satisfies

𝑒QC-EEDOA ≤ 𝑒∗ + 𝐶
𝑉
,

where

𝐶 = 𝐵1 +
𝑛
∑

𝑖=1

( (𝑞max𝑖 )2

2
+

(𝐷max
𝑖 )2

2
+ 𝑞𝑖cons𝐷

max
𝑖

)

+ 𝑛𝐴max
𝑖 (𝑞𝑖cons +𝑄

𝑖
cons).

Proof. Let 𝒘′ be the task offloading strategy solved from problem (P4).
e have

(𝛩(𝑡)) + 𝑉 𝑒(𝑡) ≤ 𝐵1 + 𝐵2 + 𝑉 𝑒𝒘
′
(𝑡)

+
𝑛
∑

𝑖=1

(𝐷𝒘′
𝑖 (𝑡)2

2
+
(

𝑞𝑖cons−𝑞𝑖(𝑡)−𝐴𝑖(𝑡)−𝑄𝑖(𝑡)
)

𝐷𝒘′
𝑖 (𝑡)

)

,

where 𝑒𝒘′ (𝑡) represents the energy consumption under strategy 𝒘′, and
𝐷𝒘′ (𝑡) is the amount of tasks processed in slot 𝑡 under 𝒘′.
8

According to the problem description, 𝐷𝑖(𝑡) is obviously upper
bounded. Let 𝐷max

𝑖 denote the upper bound of 𝐷𝑖(𝑡), that is 𝐷𝑖(𝑡) ≤ 𝐷max
𝑖 .

ince 𝒘′ is the optimal solution of (P4), it can be concluded that

(𝛩(𝑡)) + 𝑉 𝑒(𝑡) ≤ 𝐵1 + 𝐵2 + 𝑉 𝑒𝒘
∗
(𝑡)

+
𝑛
∑

𝑖=1

(𝐷𝒘∗
𝑖 (𝑡)2

2
+
(

𝑞𝑖cons−𝑞𝑖(𝑡)−𝐴𝑖(𝑡)−𝑄𝑖(𝑡)
)

𝐷𝒘∗
𝑖 (𝑡)

)

≤ 𝐵1 + 𝐵2 + 𝑉 𝑒∗ +
1
2

𝑛
∑

𝑖=1
(𝐷max

𝑖 )2 +
𝑛
∑

𝑖=1
𝑞𝑖cons𝐷

max
𝑖 .

(26)

Because the system dynamics, the queue length fluctuates within
a certain range. Let 𝑞max𝑖 be the upper bound of 𝑞𝑖(𝑡). In addition,
ccording to Theorems 3 and 2, we know 𝐸{𝑞𝑖(𝑡)} ≤ 𝑞𝑖cons, and 𝑄𝑖(𝑡)
s upper bounded by 𝑄max

𝑖 . Taking expectations on 𝐵2, we have

{𝐵2} ≤ 1
2

𝑛
∑

𝑖=1
(𝑞max𝑖 )2 + 𝑛𝐴max

𝑖 (𝑞𝑖cons +𝑄
𝑖
cons).

Taking expectations on (26), we obtain

{𝐿(𝛩(𝑡 + 1))−𝐿(𝛩(𝑡))}+𝑉 𝐸{𝑒(𝑡)} ≤ 𝐶 + 𝑉 𝑒∗, (27)

here

= 𝐵1 +
𝑛
∑

𝑖=1

((𝑞max𝑖 )2

2
+

(𝐷max
𝑖 )2

2
+ 𝑞𝑖cons𝐷

max
𝑖

)

+ 𝑛𝐴max
𝑖 (𝑞𝑖cons +𝑄

𝑖
cons).

Summing (27) from slot 0 to 𝑇 − 1, it holds

𝐸{𝐿(𝛩(𝑇 )) − 𝐿(𝛩(0))} + 𝑉
𝑇−1
∑

𝑡=0
𝐸{𝑒(𝑡)} ≤ 𝑇𝐶 + 𝑉 𝑇 𝑒∗.

Since 𝐸{𝐿(𝛩(𝑇 ))} ≥ 0 and 𝐸{𝐿(𝛩(0))} = 0, it holds
𝑇−1
∑

𝑡=0
𝐸{𝑒(𝑡)} ≤ 𝑇𝐶 + 𝑉 𝑇 𝑒∗. (28)

Dividing (28) by 𝑉 𝑇 , and let 𝑇 → ∞, we obtain

lim
→∞

1
𝑇

𝑇−1
∑

𝑡=0
𝐸{𝑒(𝑡)} ≤ 𝐶

𝑉
+ 𝑒∗.

The theorem is proven. □

. Evaluation

In the experiments, we refer to other articles to set the slot length
to 1s and consider 100 IoT devices [17,23]. To fully account for

he heterogeneity of the device, the frequency of each device 𝑖 is set
s 𝑓𝑖 ∼ 𝑈 [0.5, 1] GHz, and the queue length thresholds of all devices
re set from 20000 bit to 40000 bit in equal step, that is, 𝑞𝑖cons =

20000+20000(𝑖−1)∕(𝑛−1). 𝜉 is set as 10−27 for all devices [16]. The
amount of tasks arriving at device 𝑖 per time slot is set to follow uniform
distribution within [0, 40000] bits, i.e., 𝐴𝑖(𝑡) ∼ 𝑈 [0, 40000] [40]. 𝐶𝑖 is
set to be distributed uniformly as well, i.e., 𝐶𝑖 ∼ 𝑈 [5000, 10000]. ℎ𝑖(𝑡)
follows an exponential distribution with mean of 1 [17,27]. Notice that
an exponential distribution with a mean of 1 can offer a simplified
representation of channel gain in MEC scenarios, but does not apply
to all MEC scenarios. The number of sub-channels 𝑆(𝑡) is selected
randomly within [5, 10]. The transmit power of devices is set as 𝑃𝑖 ∼
𝑈 [10, 200] mW. Besides, 𝐵 is set as 2 MHz and 𝑁0 is set as 10−6

W/Hz [17]. For each setting, we run the experiments multiple times
and average the results to improve reliability. For each setting, we
run the experiments multiple times and average the results to improve
reliability. The above experimental parameter settings are only used as
a setting to test the performance of our algorithm and cannot cover all
MEC scenarios. For different MEC scenarios, the parameter settings can
be varied according to the actual situation, but overall it will not affect
the execution of the algorithm.
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Fig. 3. Queue length and energy consumption under different 𝑉 .

6.1. Selection of trade-off parameter

This group of experiments is to determine a proper parameter
𝑉 . The relationships between 𝑉 and the performance indicators are
observed. Here, 𝑉 is set as 104, 105, 106, 107, and 108, respectively.

Fig. 3 shows the changing trends of the sum energy consumption
nd average queue length under different 𝑉 . The figure shows that both
f the two performance indicators can reach stability under different
. Whereas both of them do not show obvious changes as 𝑉 increases.
hat is because a queue length constraint is imposed on each device, so
he effect of 𝑉 on the queue length is not obvious. Consequently, the
nergy consumption is affected slightly by different 𝑉 as well. In that
ase, we set 𝑉 as 106 in the following experiments.

.2. Performance analysis

.2.1. Analysis on the system performance
The performance is analyzed from two aspects: queue stability and

onstraint satisfaction. In this group of experiments, the number of
evices 𝑛 is set as 100, the bandwidth 𝐵 is set as 2 MHz, the number of
ub-channels in each slot is generated randomly, and 𝑆(𝑡)∼𝑈 [5, 10]. In
ur problem, the queue length constraints of all devices are set from
0000 to 100000 in equal steps, that is, 𝑞𝑖cons = 50000 + 50000(𝑖 −

1)∕(𝑛 − 1). We select five from the 100 devices, which are marked
as MD , MD , MD , MD , MD , and their corresponding queue
9

10 30 50 70 90
Fig. 4. Actual queue length, energy consumption and virtual queue backlog of all
devices keep stable.

length thresholds are approximate to 55000, 65000, 75000, 85000,
and 95000, respectively. In Fig. 4, we plot the changing trend of three
important performance metrics of the five devices from time slots 0 to
100, where Fig. 4(a) shows the queue length of the five devices over
time, Fig. 4(b) shows the changing trend of energy consumption of the
selected devices, and Fig. 4(c) shows the virtual length backlog of the
five devices.

From Fig. 4(a), we can see that the queue length of each device

becomes stable quickly and the queue length constraints of all devices
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Fig. 5. Queue length and energy consumption under different 𝑉 .

are satisfied. For example, the queue length constraint of MD30 is
2000, and the actual queue length keeps stable at 22000. The figures
how that the energy consumption and the queue length can reach
tability quickly, and the virtual queue backlog is upper bound.

.2.2. Analysis on the dynamic adaptability
As mentioned before, by introducing the queue length threshold, we

an artificially adjust and control the system performance with respect
o task response time. In the group of experiments, the queue length
hresholds of all devices are set from 400000 to 600000 in equal steps
t the beginning. To verify the adaptability of the proposed algorithm to
he dynamical performance requirement, we adjust the threshold values
or all devices at time slots 200 and 400 such that the average threshold
f all devices becomes 300000 and 100000, respectively. Lastly, the
ueue length thresholds of all devices are reset to the initial values at
ime slot 600.

Fig. 5 shows the changing trends of the average task queue length
nd the sum energy consumption of all devices under the changing
hreshold settings. From Fig. 5(a), we can see that the task queue
ength of devices can stabilize at the target thresholds rapidly after each
hange. Correspondingly, the sum energy consumption shows a sharp
ncrease when the threshold changes to a smaller value and then returns
o the original steady state. That is because task processing should
peed up to rapidly reach the new steady state when the threshold
10

r

Fig. 6. Queue length and energy consumption with different arrival rates.

is set smaller. That is the reason that the sum of energy consumption
increases sharply. On the contrary, when the thresholds are set greater
at time slot 600, the energy consumption decreases first and then
stabilizes at the original level. That is because the amount of tasks
processed in unit time is reduced to reach the new stable state.

6.3. Parameter analysis

To verify the adaption of the proposed dynamic computation of-
floading algorithm to the variation of different parameters, the experi-
ments are done in several groups. In each group, we change the value
of a parameter and fix the others to observe the effect of the chang-
ing parameter on two performance indicators, i.e., the total energy
consumption and the average queue length of all devices.

6.3.1. Effect of arrival rate
Fig. 6 shows the changing trend of the two performance indicators

with different data arrival rates. The arrival rate of device 𝑖 is set as
𝐴𝑖(𝑡) where 𝐴𝑖(𝑡) ∼ 𝑈 [0, 40000] and 𝛼 = 0.5, 0.8, 1, 1.2, and 1.5,
espectively. Fig. 6(a) shows that the queue length constraint can be
atisfied when the arrival rate is increasing from 0.5𝐴𝑖(𝑡) to 1.2𝐴𝑖(𝑡)
Notice that the queue length thresholds of all devices are set from
0000 to 40000 in the step of 20000∕(𝑛−1). The mean of all threshold
alues is 30000, so the result is as expected.). However, when the arrival

ate increases to 1.5𝐴𝑖(𝑡) further, the average queue length is stabilized
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Fig. 7. Queue length and energy consumption with different number of sub-channels.

around 33000, which exceeds the defined threshold. That is because
the total data processing capacity is fixed. When the data arrival rate
becomes greater, it is harder for the system to maintain a short queue
length.

Fig. 6(b) shows that the sum energy consumption increases with
the increase of data arrival rate. That is because to maintain the queue
length constraints, more tasks should be processed in unit time as
the task arrival rate increases, which leads to an increase in energy
consumption. Moreover, we can see that the change in arrival rate
does not affect the rate of convergence. Both of the two performance
indicators reach stable very quickly.

6.3.2. Effect of number of sub-channels
In Fig. 7, two performance indicators with different numbers of sub-

channels are presented. The number of available sub-channels is set to
follow uniform distribution within different ranges, i.e., 𝑆𝑖(𝑡)∼𝑈 [0, 5],
𝑈 [5, 10], 𝑈 [10, 15], and 𝑈 [15, 20], respectively.

Fig. 7(a) shows that the queue length constraints can be guaranteed
when the number of available sub-channels changes. That is because
the system load does not exceed the task processing capacity in all
cases. Fig. 7(b) shows that as the number of sub-channels increases,
the sum energy consumption decreases as well. That is because more
available sub-channels provide higher offloading capability such that
more tasks can be offloaded to MEC for remote execution. Under the
given parameter settings, offloading tasks to MEC is beneficial to energy
saving. Hence, the sum of energy consumption per unit time is reduced
11

as the number of sub-channels increases.
Fig. 8. Queue length and energy consumption with different number of devices.

6.3.3. Effect of number of devices
Fig. 8 plots the sum energy consumption and average queue length

with different numbers of devices. In this group of experiments, the
number of devices 𝑛 is set as 50, 80, 100, 120, and 150, respectively.
From Fig. 8(a) we can see that the average queue length of devices re-
mains unchanged. That is because no matter how many devices are, the
queue length constraint is set from 20000 to 40000 in equal increments
and the average queue length of all devices is 30000. Fig. 8(b) shows
that as the number of devices rises, the number of tasks to be processed
increases, which leads to an increase in energy consumption.

6.3.4. Effect of queue length threshold
We define a queue length threshold for each device to make the

system performance in task queuing time adjustable and controllable.
According to Little’s law, the average queuing delay is proportional to
queue backlogs. By adjusting the value of the queue length threshold,
we can achieve the expected task response time. Consequently, the
energy consumption varies with different thresholds. To analyze the
effect of the queue length threshold on the total energy consumption,
we conduct another group of experiments. For simplicity, all devices
are set to the same threshold values in the group of experiments, and
the threshold values are set from 250000 to 1000000 in an increment
of 250000. The other parameters are set as Fig. 4. The experimental
results are shown in Fig. 9.

Fig. 9(a) shows that under different threshold values, the queue
length of all devices increases until it reaches and stabilizes at the
predefined queue length threshold. Moreover, the higher the threshold

is, the slower the queue stabilizes. For example, the queue reaches
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stable at time slot 75 when the threshold is 25000, while it reaches
stable at time slot 250 when the threshold is 100000. Fig. 9(b) shows
the total energy consumption of all devices at each time slot. The figure
shows that the devices consume less energy under a greater threshold
before time slot 250. That is because it takes longer for the queues to
reach a steady state under a greater threshold. Before the queue length
stabilizes at the threshold, the tasks processed in each time slot are
much less than that processed in a stable time slot. Consequently, the
energy consumption in unstable time slots is much less. Moreover, the
sum energy consumption becomes stable and identical lastly under all
queue length thresholds. That is because once the queues reach steady
states, the processed tasks should be consistent with the arrived tasks
such that the system can maintain stability.

6.3.5. Convergence analysis
The above experiments only present the results of the cases where

the queues can reach stability. If the time-average system workload
exceeds the system processing capacity, the system will never reach
a steady state. For instance, the time-average arrival rate of devices
increases to above 50000, or the transmission capability is reduced
further by reducing the bandwidth or the number of sub-channels.
In these cases, the task queue will grow indefinitely. The reasons are
apparent, so we do not give detailed experimental results here.

6.4. Comparison experiments

To further evaluate the QC-EEDOA’s performance, we compare
12

QC-EEDOA with two baseline algorithms, and EEDOA proposed in [17].
Table 2
The comparison of queue length and energy consumption of different algorithms.

Algorithm QC-EEDOA DW EA EEDOA

Queue Length (bit) 3.000 × 104 17.986 2.242 × 104 ∞
Energy Consumption (J) 1.505 1.887 2.182 0.577

• The EEDOA strategy: In the strategy, all tasks are offloaded to
MEC. By applying Lyapunov optimization, the offloading decision
is generated in each time slot to maintain system stability.

• Equal allocation strategy (EA):In slot 𝑡, the offloading duration
is equally allocated among all the devices.

• Difference-weighted strategy (DW): In slot 𝑡, the offloading
duration is allocated among all the devices according to the
weighted difference between queue length and threshold.

Notice that the first two strategies give a higher priority to remote
offloading, and the rest of the tasks are executed locally as much
as possible such that the amount of tasks processed per time slot is
maximized.

In the following experiments, the task amount generated by each
device in each time slot is valued randomly within [30000, 90000] bits.

he other parameters are set to the same values with Fig. 4. For
C-EEDOA, we define an individual queue length constraint for each
evice and 𝑞𝑖cons=200000+200000(𝑖−1)∕(𝑛−1).

Table 2 gives the average queue length and energy consumption
hen the system tends to stabilize. We can see that QC-EEODA keeps

he queue length near 1
𝑛
∑𝑛
𝑖=1 𝑞

𝑖
cons and minimizes the energy consump-

tion of the system. Compared to DW and EA, QC-EEDOA can reduce the
system energy consumption by 20% to 30%. While EEDOA significantly
reduces the energy consumption of the system, the queue length cannot
be guaranteed.

Fig. 10 presents the changing trends of the average queue length
and sum energy consumption of the four algorithms, respectively. From
Fig. 10(a), we can see that QC-EEDOA can stabilize the queue length
around the threshold effectively. EA also can maintain the system
stability, but the queue length at the steady state is uncertain. Under
the DW strategy, the tasks generated in each time slot can almost be
completed at the current time, so the queue length is minimal and
negligible. Since the EEDOA strategy only offloads tasks to MEC for
remote execution, its processing capacity is seriously inadequate under
a heavy task load. The unprocessed tasks are stored in the task buffer
queue, so the queue length grows over time. Fig. 10(b) shows that the
energy consumption of the four strategies can reach stable after several
time slots. Among all strategies, EEDOA consumes the least energy.
That is because the tasks are only offloaded to MEC and generate
transmission energy consumption. Apart from EEDOA, our strategy can
reduce energy consumption effectively compared with the EA and DW
strategies.

7. Conclusion

In this paper, we study the computation offloading problem for a
multi-device single-MEC system. Due to the dynamic system load and
the time-varying wireless channel quality, an online energy-efficient
computation offloading algorithm is proposed to approximate the min-
imal energy consumption while the system keeps in such a stable
state where the individual queue length constraints of all devices are
satisfied. This algorithm requires no priori statistic information related
to task arrival or channel condition but can adjust the ratio of tasks
executed locally and offloaded to MEC in real time based on the
system load and channel quality. The proposed algorithm is valid only
when the average system load in the long term is within the system
computing capacity. Experiments results show the proposed algorithm
can reduce the energy consumption effectively and the queue length
constraints can be guaranteed. Compared to DW and EA, QC-EEDOA
can reduce the system energy consumption by 20% to 30%.
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Fig. 10. The comparison of queue length and energy consumption of different
algorithms.
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