
J Grid Computing (2015) 13:507–525
DOI 10.1007/s10723-015-9331-1

Fault-Tolerant Dynamic Rescheduling for Heterogeneous
Computing Systems

Jing Mei ·Kenli Li ·Xu Zhou ·Keqin Li

Received: 3 September 2014 / Accepted: 25 March 2015 / Published online: 14 April 2015
© Springer Science+Business Media Dordrecht 2015

Abstract As the scale and complexity of heteroge-
neous computing systems grow, failures occur fre-
quently and have an adverse effect on solving large-
scale applications. Hence, fault-tolerant scheduling
is an imperative step for large-scale computing sys-
tems. The existing fault-tolerant scheduling algo-
rithms belong to static scheduling, and they allocate
multiple copies of each task to several processors no
matter whether processor failures affect the execu-
tion of tasks. Such active replication strategies not
only waste resource but also sacrifice the makespan.
What is more, they cannot guarantee the success-
ful execution of applications. In this paper, we pro-
pose a fault-tolerant dynamic rescheduling algorithm
named FTDR, which can overcome above drawbacks.
FTDR keeps listening to the processor failure, and

J. Mei · K. Li (�) · X. Zhou · K. Li
College of Information Science and Engineering,
Hunan University, and National Supercomputing
Center in Changsha, Hunan, 410082, China
e-mail: lkl@hnu.edu.cn

J. Mei
e-mail: jingmei1988@163.com

X. Zhou
e-mail: happypanda2006@126.com

K. Li
e-mail: lik@newpaltz.edu

K. Li
Department of Computer Science, State University
of New York, New Paltz, New York 12561, USA

reschedules the suspended tasks once failures occur.
Because FTDR reschedules the tasks that are sus-
pended because of failures, it can tolerate an arbitrary
number of failures. Randomly generated DAGs are
tested in our experiments. Experimental results show
that the proposed algorithm achieves good perfor-
mance in terms of makespan and resource consump-
tion compared with its direct competitors.

Keywords Directed acyclic graph · Fault tolerance ·
Heterogeneous computing system · Task reschedule

1 Introduction

A heterogenous computing (HC) system consists of
diverse sets of resources interconnected with a high-
speed network, which can support executing compu-
tationally intensive parallel applications with diverse
computing needs. To achieve the efficient execution
of applications, many scheduling strategies are pro-
posed, for example, list scheduling [1–5], duplication
[6–12], clustering [13–15] and so on. The goal of
those algorithms is to achieve a good mapping of
tasks to processors, minimizing the schedule length
(makespan). Makespan is defined as the time differ-
ence between the start and finish of a sequence of jobs
or tasks. However, along with the increasing number
of processors in systems, the reliability is declined.
The reliability of a system is referred to as the proba-
bility that it has no failure under stated conditions for a

mailto:lkl@hnu.edu.cn
mailto:jingmei1988@163.com
mailto:happypanda2006@126.com
mailto:lik@newpaltz.edu


508 J. Mei et al.

specified amount of time [16]. Nowadays, a heteroge-
nous system such as the supercomputers has more
faults than before, so fault tolerance has become an
important role in improving the performance of the
systems.

There are two major failure types, transient and per-
manent, and they are assumed to be independent. In
a nutshell, transient failures invalidate only the execu-
tion of the current task. The processors subject to that
failures will be able to recovery after a period of time
and execute the subsequent tasks assigned to it. On the
contrary, permanent failures are unrecoverable. Once
the failure occurs, the corresponding processor is
down until the end of the whole execution. If the algo-
rithms are not fault-tolerant, the applications may be
completed unsuccessfully on the scheduling of them.
In the past decade, there are an increasing literatures
that focus on developing techniques to achieve fault
tolerance. One of the fault-tolerant techniques is repli-
cation strategy. Replication strategy is widely used in
many systems such as the distributed storage [17] and
Hadoop [18]. In such systems, replication strategy can
efficiently improve the security of data and shorten the
response time of application execution by sacrificing
a small amount of resources. However, when replica-
tion strategy is adopted in fault tolerance, it has several
drawbacks. In existing works, each task is executed
with multiple replicas to guarantee the reliability of
application execution, and the number of replicas of
each task is not small, which leads to a great amount
of extra resource overhead and longer response time.
Whereas, the great resource overhead and the sacri-
fice of performance cannot absolutely guarantee the
successful execution of applications. Hence, adopting
replication strategy to improve reliability and tolerate
fault is not recommended.

Another kind of fault-tolerant mechanism is check-
pointing [19, 20]. It achieves fault tolerance by peri-
odically saving the state of a process during the
failure-free execution and restoring the system back
to a consistent state after a failure. This mecha-
nism can improve system reliability but incurs much
additional time on saving checkpoints and rollback-
recovery [21]. The additional time may reach or even
exceed the MTTF (mean time to failure) when the
system performance sits between the petascale and
exascale levels. Moreover, the rollback recovery is
complicated because message induces inter-process

dependencies. Once a processor fails, all the proces-
sors should recover to a consistent global checkpoint.
Hence, checkpointing is not a good mechanism for
peta/exascale supercomputers and distributed systems.

In this paper, we introduce a fault-tolerant schedul-
ing algorithm which is based on dynamic reschedule
strategy, called Fault-Tolerant Dynamic Reschedul-
ing (FTDR) algorithm. FTDR is a dynamic event-
driven scheduling algorithm. It keeps listening and
responses to five kinds of events, including application
submission event, task start event, task completion
event, processor failure event, and processor recov-
ery event. Once a processor failure is detected, the
scheduler reassigns new processors for the tasks which
are located on the failure processor. Because FTDR
reschedules tasks interrupted by failures, it can tol-
erate an arbitrary number of failures. Experimental
results demonstrate that the proposed algorithm FTDR
does neither sacrifice makespan nor waste resource
compared with its direct competitors, FTSA [22] and
MaxRe [23].

The paper is organized as follows. Section 2
presents a brief review of the literatures focusing on
fault-tolerant scheduling. Section 4 gives an example
to illustrate the motivation of the paper. In Section 3,
the models used are presented. And then the proposed
algorithm FTDR (Fault-Tolerant Dynamic Reschedul-
ing algorithm) is described in detail in Section 5.
Section 6 presents the experimental results of FTDR
compared with the other three algorithms and the
detailed analysis is given. Finally, Section 7 concludes
the work.

2 Related Work

In past decade, there is a lot of research focusing
on fault-tolerant scheduling problem, only with dif-
ferent emphasis. In the earlier studies, the concept of
system reliability was proposed. System reliability is
defined as the probability that the system can run an
entire task successfully. Many scheduling algorithms
are addressed based on reliability analysis [24–32].
Shatz et al. [24] designed an algorithm that maxi-
mizes the system reliability. In its model, failures from
processors and communication links are considered
time-dependent and treated evenly, and an explicit cost
function is provided to measure system reliability. Qin



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 509

and Jiang [25] designed a reliability-driven schedul-
ing algorithm for parallel real-time tasks which aims
at meeting the respective deadlines of all the subtasks
while maximizing reliability. Dongarra et al. [26] pre-
sented two algorithms that optimize both makespan
and reliability. The first algorithm in [26] is to maxi-
mize the reliability subject to makespan minimization.
And the second one is to trade off between reliability
maximization and makespan minimization based on
the product failure rate × unitary instruction execu-
tion time. In [33], a weighted bi-objective list schedul-
ing algorithm (BSA) is proposed. BSA firstly sorts the
tasks in non-increasing order of their priority, and then
chooses the processor that minimizes a weighted inte-
grated cost function. In the objective function, both
of makespan and reliability are normalized by their
maximum values. Girault et al. [28] proposed an algo-
rithm which also takes into account both of makespan
and reliability. The algorithm is allowed to produce
several trade-off solutions, among which the user can
chose the solution that best fits the requirements. The
reliability-driven scheduling algorithm proposed by
Tang et al. in [29] introduced reliability priority rank
to estimate the task’s priority by considering reliabil-
ity overheads. Jeannot et al. [31] first showed that the
two objectives, minimizing makespan and maximiz-
ing reliability, are contradictory, and then designed a
(1+ε,1)-approximation algorithm of the Pareto-front.
Obviously, the reliability achieved by these algorithms
is limited. And to achieve higher reliability, special
schemes such as active replication are necessary.

The primary and backup scheduling algorithm can
tolerate one failure in the systems. It is first pro-
posed to solve the fault-tolerance scheduling problem
of independent tasks in real-time systems, but then
many literatures apply the strategy to solve the fault-
tolerance scheduling problem of tasks with prece-
dence constraints [34–36]. Qin and Jiang [34] pro-
posed the eFRD algorithm. In [34], the emphasis is
to analyze the necessary conditions for tasks’ backup
copies to safely overlap in time with each other. Zheng
and Veeravalli proposed three primary and backup
scheduling algorithms in [35]. First two algorithms
are designed to minimize response time and replica-
tion cost respectively. The third one is to minimize
replication cost while not affecting response time. In
[36], Zheng et al. performed the further research on
primary-backup approach. It is concluded that two

important constraints must be satisfied when schedul-
ing the backup copies. Based on the conclusion, two
algorithms, MRC-ECT and MRC-LRC, are proposed
to schedule backups of independent tasks and depen-
dent jobs, respectively. These works introduced above
only can tolerate one failure, which is far from enough
for scheduling problem.

Considering crash failures, the active replication
scheme is incorporated into the scheduling algorithms
[22, 23, 37]. The FTSA algorithm proposed in [22]
is an extended version of the classic HEFT algorithm
[2]. It allocates ε + 1 copies of each task to different
processors to tolerate an arbitrary number ε of fail-
silent processor failures. Zhao et al. pointed out in
[23] that FTSA leads to significant resource consump-
tion, hence they proposed the MaxRe algorithm in
which the reliability analysis is incorporated into the
active replication scheme to exploit a dynamic num-
ber of replicas for different tasks. In [37], Benoit et al.
took the contention into account and put more empha-
sis on the practical one-port communication model.
However, these algorithms waste a great of resource
and sacrifice the makespan. What’s more, they cannot
guarantee the execution success of applications.

3 Models

The scheduling system model discussed in this paper
consists of a target computing platform and an appli-
cation. In this section, we first introduce the comput-
ing system model in detail. And then, we describe
the model of parallel application with precedence con-
straints. Lastly, we outline the architecture of the
fault-driven scheduling.

3.1 Computing System Model

This paper researches the scheduling problem of
applications on heterogeneous computing systems.
Homogenous computing system is a special situation
of heterogeneous ones. Let P = {pi |0≤i≤m−1} be
a set of m processors with different capacities. The
capacity of a processor processing tasks depends on
how well the processor architecture matches tasks’
processing requirements. A task scheduled on its best-
suited processor will spend shorter execution time
than on a less-suited processor. The best processor



510 J. Mei et al.

for one task may be the worst one for another task.
This type of model is described by [38] and used in
[2, 6, 12, 39]. The computers in the system are con-
nected by a shared bus with unlimited channels, hence,
the communication contention and the end-point con-
tention are not taken into account here. Every channel
has independent buffer to store the data and initiates
the communication from that buffer when it finishes
the ongoing communication [40]. The communication
model adopted in this paper is broadcast communi-
cation model. In this model, a channel carrying a
communication delivers the data to all the processors
[40].

Processors are subject to failures during the execu-
tion of the tasks that are assigned to them. There are
two main categories of failures which may occur dur-
ing the execution of a task on a processor: transient
failure and permanent failure, which are introduced in
[22]. In a nutshell, transient failures invalidate only the
execution of the current task. The processors subject
to that failures will be able to recovery after a period of
time and execute the subsequent tasks assigned to it.
On the contrary, permanent failures are unrecoverable.
Once the failure occurs, the corresponding processors
is down until the end of the whole execution. Based
on the common exponential distribution assumption
in the reliability research [41, 42], for each processor
pi ∈ P , the arrival of failures following a Poisson
distribution with λi . λi is a positive real number, and
equals to the expected number of occurrence of fail-
ures in unit time t . The processors failure distribution
in unit time t can be represented as:

f (k, λi) = λie
−λi t

k! , (1)

where k is the number of occurrences of failures in
unit of time. The reliability of processors is defined as
the probability that no failure occurs in unit of time t

which is calculated as

f (k = 0, λi) = e−λi t . (2)

Suppose the expected numbers of failures in unit
time for all processors are � = {λi |0 ≤ i ≤ m − 1},
and different processor failures are always supposed
to be independent.

Fig. 1 A simple DAG representing precedence-constraint
application graph

3.2 Application Model

A parallel application with precedence constraints can
be represented by a Directed Acyclic Graph (DAG)
G(V, E,W, C), which consists of a set of nodes V =
{vi |0 ≤ i ≤ n − 1} representing the tasks of the
application and a set of directed edges E representing
dependencies between tasks. An edge eij ∈ E from
node vi to vj (vi, vj ∈ V ) represents vj receiving data
from vi , where vi is called a parent of vj and vj is a
child of vi . The positive weight w(vi, pk) ∈ W repre-
sents the computation time of task vi on processor pk

for 0 ≤ i ≤ n−1 and 0 ≤ k ≤ m−1. The nonnegative
weight data(eij ) associated with edge eij ∈ E repre-
sents the volume of data transferred from vi to vj . Let
μ be the data transfer rate between processors and Lm

be the communication startup time. Thus, the commu-
nication time from task vi to task vj is calculated as
follows:

c(eij ) = Lm + data(eij )

μ
(3)

In our paper, we set μ = 1 and Lm = 0 for conve-
nience, so c(eij ) = data(eij ) and the output data of
tasks can be transferred to the cache in the channels
without delay.

Table 1 Computation cost matrix W

Task node p0 p1 p2 wi

v0 6 5 7 6

v1 11 9 8 9.33

v2 8 12 8 9.33

v3 3 4 3 3.33



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 511

We show a simple DAG in Fig. 1 which consists
of seven nodes, and Table 1 lists the computation cost
matrix W of three processors. The average computa-

tion cost of task vi is defined as wi =
∑m−1

k=0 w(vi ,pk)

m
.

The cost model has been adopted in many works [1–
3, 6, 7]. The computation and communication costs
are the priori knowledge required to generate a proper
schedule. Commonly, these costs are measured in time
and they are obtained by instruction analysis or esti-
mation. In our paper, we assume that these costs can
be measured accurately. When considering the inac-
curate priori knowledge, the fault-tolerant scheduling
problem is much more complicated, hence, we do not
consider this situation.

For task vi , all its direct parent nodes are denoted
as Pare(vi) and all its direct child nodes are denoted
as Child(vi). A task vi ∈ V having no parents,
Pare(vi) = φ, is called entry task, such as task v0
in Fig. 1. A task having no children, Child(vi) = φ,
is called an exit task, such as v3. A DAG may have
multiple entry tasks and multiple exit tasks.

3.3 Fault-driven Scheduling Architecture

Figure 2 depicts the fault-driven scheduling architec-
ture in a heterogeneous distributed environment. In
the architecture, the global scheduler works with the
processor supervisor cooperatively.

In the scheduler, all subtasks of an application
and the corresponding information are submitted to
the master processor by a special user who is of
the authority. The global scheduler in the master

schedules the subtasks. A priority queue (PQ) for
the arriving application is determined by the sched-
uler according to the submitted information. For each
task in the queue, the global scheduler determines a
proper assignment scheme, including which proces-
sor it is assigned to and when the execution starts
and so on. The schedule information is stored in the
schedule queue (SQ). The status of each processor is
supervised by the processor supervisor. In this archi-
tecture, the heartbeat mechanism can be adopted to
detect the processor failures. Each processor sends
“heartbeat” periodically to the processor supervisor in
the master node. If the supervisor doesn’t receive the
“heartbeat” signal from a processor for three periods,
the processor is considered to be failed. When a fail-
ure is detected, the processor supervisor notices the
scheduler to respond for it.

4 A Motivational Example

To illustrate the motivation of this research, we first
present an example in this section. Figure 3 gives two
schedules of the application shown in Fig. 1, which
are generated by the HEFT and MaxRe algorithms,
respectively.

Figure 3a is the schedule generated by the HEFT
algorithm. HEFT is a classical static list scheduling
algorithm, which is famous for its low complexity.
According to the generated schedule, tasks v0 and v1
are assigned to processor p1, and tasks v2 and v3 to
processor p0. Both of v1 and v2 receive data from v0

Fig. 2 The fault-driven
scheduler model for
dynamic scheduling of
parallel application in
heterogeneous environment



512 J. Mei et al.

(a)

(b)

(c)

Fig. 3 A motivational example: a HEFT with a failure; b
Application is executed successfully using MaxRe when a fail-
ure occurs; c Application fails using MaxRe when a failure
occurs. The cross represents a failure occurs at the instant and
the shaded tasks represent that the tasks fail

and v3 receives data from v1 and v2. The makespan of
HEFT is 23.

However, as a static scheduling algorithm, HEFT
cannot tolerate fault. A failure occurring during the
execution of a task will lead to the failure of the whole
application. Figure 3a shows a scenario that a failure
occurs on processor p1 at time seven. The task v1 fails
due to the failure. Consequently, its child v3 cannot be
executed. Therefore, the schedule generated by HEFT
is unavailable under one failure.

Figure 3b and c give the schedules generated by the
MaxRe algorithm. MaxRe is a fault-tolerant schedul-
ing algorithm based on the reliability analysis. It
schedules multiple replicas for each task to improve
the system reliability. From Fig. 3b, we can see that

each task has two replicas in the schedule and the
application can be executed successfully using MaxRe
when a failure occurs at the same time as Fig. 3a.

However, the schedule generated by MaxRe cannot
completely guarantee the success execution of appli-
cations. Figure 3c is a scenario that a failure leads
to the application’s failure. When a failure occurs at
instance four on processor p1, the replica of v0 on p1

fails. According to the MaxRe algorithm, two repli-
cas of v1 on p1 and p2 should receive data from the
paused replica of v0, so they cannot be executed due to
the failure. Consequently, the whole application fails.

From above example, we know that, static schedul-
ing algorithms have poor adaptivity for fault-
tolerance. Even though the replication strategy can
improve the reliability greatly, it still cannot com-
pletely guarantee the successful execution of applica-
tion. Moreover, it degrades the performance in terms
of makespan and leads to a great amount of resource
waste at the same time. To overcome the drawbacks
of static scheduling algorithm, we propose a fault-
tolerant dynamic rescheduling algorithm in the study.

5 The Proposed Algorithm

In this section, the fault-tolerant dynamic rescheduling
algorithms, FTDR for short, are presented for het-
erogeneous computing systems. Before describing the
FTDR algorithm in detail, we first introduce some
basic notations.

5.1 Some Basic Notations

A schedule of an application associates a processor
and a starting time with each task within the appli-
cation DAG. In a generated schedule, if processor pk

is assigned to execute task vi , we say that pk is the
expected assigned processor of vi , denote by ap(vi) =
pk . The expected start time of vi is denoted by st (vi).
The scheduler dispatches tasks to the corresponding
processors according to the generated schedule. For
a static scheduling algorithm, the expected assigned
processor of task vi must be its executed proces-
sor. However, considering the processor failures, the
executed processor of vi is not always the expected
assigned processor. We define the executed proces-
sor of vi as its actual executed processor, denoted as
aep(vi).



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 513

In order to determine the expected assigned proces-
sor and the expected starting time for each task of a
given application, it is necessary to define est and ef t

firstly. est (vi, pk) and ef t (vi, pk) denote the earliest
execution start time and the earliest execution finish
time of task vi on processor pk , respectively. For the
entry task ventry ,

est (ventry, pk) = 0. (4)

For the other tasks, the est values are calculated
recursively. In order to calculate the est of a task vi , its
all immediate parent tasks must have been scheduled.

Definition 5.1 The data arrive time (dat) of task vi

on processor pk , denoted by dat (vi, pk), is the instant
that vi has received data from all of its parent tasks
when it is assigned to pk .

Let Child(vi) be the child task set of vi . For each
vj ∈ Child(vi), let af t (vj ) be the actual finish time
of vj . Then, the data arrive time of vi is calculated by

dat (vi, pk) = max
vj ∈Pare(vi )

{af t (vj ) + c(eji)[aep(vj )

�= pk]}, (5)

where [aep(vj ) �= pk] is equal to 1 if aep(vj ) �= pk ,
otherwise 0. Apart from the dat , the est of vi also
depends on the status of pk . If there are tasks assigned
to pk , vi must wait until pk becomes idle. Hence, the
est of task vi on pk is obtained by

est (vi, pk) = max{dat (vi, pk), avail(pk)}, (6)

where avail(pk) is the instant that processor pk

becomes idle.
Hence, the ef t of task vi on pk is obtained by

ef t (vi, pk) = est (vi, pk) + w(vi, pk). (7)

When determining the assignment for each task,
different scheduling algorithms have their different
methods to select the assigned processor. In this paper,
task is assigned to the processor which leads to a
minimal ef t , which means,

ap(vi) =pk, where ef t (vi, pk) = min
pj ∈P

{ef t (vi, pj )}.
(8)

The expected start time of task vi on ap(vi) is
obtained by

st (vi) = est (vi, ap(vi)). (9)

The expected finish time f t (vi) of task vi on
ap(vi) is calculated by

f t (vi) = ef t (vi, ap(vi)). (10)

Further, the schedule length, also the makespan of
the application is obtained by

makespan = max
vi∈V

{f t (vi, aep(vi))}. (11)

The notations used in this paper are summarized in
Table 2.

5.2 Task Priority

To ensure that the generated schedule satisfies
the precedence constraints between tasks, tasks are
attached with scheduling priorities which are based
on upward ranking. The upward rank of task vi is
recursively calculated as follow:

ranku(vi) = wi + max
vj ∈Child(vi )

{c(eij ) + ranku(vj )}.
(12)

where Child(vi) is the set of immediate child tasks of
vi , c(eij ) is the communication cost of edge eij , and
wi is the computation cost of task vi . The upward rank
value of the exit tasks vexit is equal to

ranku(vexit ) = wexit . (13)

Table 3 gives the upward rank of each task of DAG
in Fig. 1. The task priorities mentioned above are only
related to their schedule order rather than their actual
execution order. These two kinds of order are differ-
ent. The task which is scheduled later may be executed
earlier by making use of idle period. In our algorithm,
a schedule queue SQ is constructed in which all ready
tasks are listed in the nonincreasing order of priori-
ties. The schedule of each task in the ready queue is
determined by the scheduler. At the right instance, the
scheduler starts the communications and dispatches
the tasks to the allocated processors.

Definition 5.2 A ready task is defined as the task
whose parent tasks have completed their executions.

At the beginning, the schedule queue SQ consists
of the entry tasks because they have no parent tasks.
They are executed according to the generated sched-
ule. When a task vi is completed, SQ is updated by
removing vi from SQ and inserting new ready tasks



514 J. Mei et al.

Table 2 Definitions of the notations

Notation Definition

V A set of n weighted tasks in the application

vi vi ∈ V representing the ith task in the application

E A set of directed edges representing the constraint among tasks in V

eij The constraint between tasks vi to vj

c(eij ) The communication cost between tasks vi and vj

P A set of m heterogenous processors

pk The kth processor

PQ The priority queue consisting of all tasks in increasing order of ranku.

SQ The schedule queue, which records the schedule of the ready tasks.

Pare(vi) The set of immediate parents of task vi

Child(vi) The set of immediate children of task vi

ap(vi) The expected processor which vi is allocated

st (vi) The expected start time of task vi on processor ap(vi)

dat (vi , pk) The time that the data required by task vi arrives at processor pk .

f t (vi) The expected finish time of task vi on processor ap(vi)

est (vi , pk) The earliest start time of task vi on processor pk

ef t (vi , pk) The earliest finish time of task vi on processor pk

rest (vi , pk) The earliest start time of task vi on processor pk when vi is rescheduled to pk

ref t (vi , pk) The earliest finish time of task vi on processor pk when vi is rescheduled to pk

to SQ. The children’s allocated processors and start
times are calculated in the order of their priorities.

5.3 Global Scheduler Algorithm

A global scheduler is adopted in this scheduling algo-
rithm. Since the algorithm is to deal with unexpected
processor failures when tasks are executing, the global
scheduler must make dynamic schedule when failures
occur. The global scheduler is notified by some spe-
cial events, and its functionality can be modeled by the
following events.

1) Application submission event. When an applica-
tion is submitted to the system, an application
submission event is generated. At this event, the
global scheduler initiates a priority queue and
schedule queue. The ready tasks are scheduled

Table 3 The upward rank of tasks

Task node v1 v2 v3 v4

ranku 29.333 18.666 17.666 3.333

and all the schedule information is stored in the
schedule queue.

2) Task start event. According to the generated
schedule, task start event will be generated at the
start time of each task. At this event, the global
scheduler dispatches the task to its allocated pro-
cessor.

3) Task completion event. When a processor com-
pletes execution of the assigned tasks on it, it
generates a task completion event. At this event,
the global scheduler starts the outgoing commu-
nication of the finished task. The output data is
transferred to the destination processors where
the child tasks are assigned. Besides, the data is
transferred to the master and stored as a backup.

4) Processor failure event. A processor failure event
is generated when a failure occurs. At this
event, the information of available processors is
updated. The global scheduler reschedules the
tasks interrupted by the failure, and the tasks as
well as the backup data are reassigned to new
processors.

5) Processor recovery event. A processor recovery
event is generated when a failure processor is



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 515

recovery. At this event, the information of avail-
able processors is updated.

The global scheduler keeps listening to the five
events during the period of applications execution. At
the beginning, when an application is submitted to
the system, the global scheduler initiates the priority
queue PQ and generates an assignment for each ready
task. The generated assignments are stored in a sched-
ule queue SQ. According to the schedule, respond-
ing to each task start event, the scheduler dispatches
the tasks to their allocated processors and the tasks
start execution. When a task completes its execution,
the scheduler schedules the required communications
to appropriate processors. Meanwhile, the schedule
queue SQ is updated by inserting new ready tasks and
the scheduler generates schedule for each ready task in
SQ. When a processor failure occurs during the task
execution, the scheduler reallocates new processor for
the paused task. During the following period, the fail-
ure processor cannot be allocated to execute any tasks
until it is recovery. When a failure processor is recov-
ery, the scheduler will consider the processor when
scheduling the following tasks.

In the process, the scheduler starts the communi-
cation once a task is completed. The output data is
transferred to all processors where its child tasks are
assigned and the master as a backup. Once the child
tasks have received the required data from all par-
ents and the assigned processors are ready, the child
tasks can start executing. Whereas, if a processor fails,
the current task certainly cannot be completed on
schedule. In order to ensure the execution success of
applications, it is necessary to allocate new proces-
sor to the paused task. The event handling details are
described in Algorithm 1.

When the application is submitted to the system,
the global scheduler generates the initial assignments
of all entry tasks (5-16). The generated assignments
are recorded in the schedule queue SQ, which consists
of the allocated processor, the start time and the finish
time of each ready task. The assignments of tasks are
inserted into the schedule queue S (line 13).

When the start time of a task arrives, the global
scheduler is triggered by a task start event, and dis-
patches the task to its allocated processor. When a task
starts executing, its schedule information is removed
from SQ (lines 18-21). When a task, see vi , is com-
pleted, the new ready tasks are scheduled and the

Algorithm 1 Global scheduler for broadcast commu-
nication model
1: Initialize a priority queue PQ and insert all tasks into

PQ in the nonincreasing order of ranku

2: Initialize a schedule queue SQ as empty
3: Initialize an available processor set Pa , Pa = P

4:
5: Event-Application submitted and task completed
6: for all ready tasks in PQ do
7: vi ←the first ready task in PQ

8: for each processor pj in Pa do
9: Calculate est (vi , pj ) and ef t (vi , pj )

10: end for
11: ap(vi) ←the processor pk with minimal ef t of vi

12: st (vi) ← est (vi , ap(vi)), f t (vi) ←
ef t (vi , ap(vi))

13: Insert the schedule 〈vi, ap(vi), st (vi), f t (vi)〉 to
SQ

14: Remove vi from PQ

15: end for
16: End Event
17:
18: Event-Task start event {The start time of task vi arrives}
19: vi is dispatched to its allocated processor ap(vi) and

starts executing
20: Remove the schedule of vi from SQ

21: End Event
22:
23: Event-Processor failure event {A processor pk fails and

the paused task is vi}
24: for each available processor pj in Pa do
25: Calculate rest (vi , pj ) and ref t (vi , pj )

26: end for
27: ap(vi) ←the processor pj that minimizes ref t of vi

28: st (vi) ← rest (vi , ap(vi)), f t (vi) ← ref t (vi , ap(vi))

29: Update the schedule information of vi in SQ

30: End Event
31:
32: Event-Processor recovery event {Processor pk is recov-

ered}
33: Update the available processor set Pa

34: End Event

schedule information is recorded in SQ, too (lines 5-
16). Meanwhile, once the task is completed, its output
data is transferred to the destination processors and
the master. When a processor failure occurs, the global
scheduler makes a dynamic rescheduling strategy to
deal with the failure (lines 23-30). First, the sched-
uler records the paused task due to the failure. And
then, the scheduler selects a new processor for the
paused tasks (lines 25-29). Once the schedule is deter-
mined, the scheduler notifies the destination processor



516 J. Mei et al.

to fetch the required data from the master. In this algo-
rithm, we use rest and ref t to denote the reschedule
earliest start and finish time, respectively. Assumed
that the failure time of processor pk is Tf , for the entry
tasks, the rest is calculated as

rest (ventry, pk) = max{Tf , avail(pk)}, (14)

For the other tasks, their required data must be fetched
from the master, so its rest is calculated as

rest (vi, pk) = max{Tf +
∑

vj ∈Pare(vi )

c(eji), avail(pk)}.

(15)

The key of FTDR is the failure detecting. In our
paper, the supervisor keeps listening the “heartbeat”
signals which are sent from each processor and ana-
lyzes the states of them. Hence, the resource overhead
of the supervisor is considerable. Whereas, this part
of overhead does not affect the function of the sched-
uler and the performance of application execution.
Moreover, the processors send “heartbeat” signals
to the supervisor, which consumes a small part of
resources. However, compared with the resource over-
head generated by the existing algorithms adopting
the replication strategy, e.g. MaxRe and FTSA, the
resource overhead generated by sending signals is
much smaller and negligible.

Of course, there are many other possible events. For
example, the application properly executes but does
not produce any results (files). This kind of events
can be easily handled without consuming much time,
and the response to these events such as the success-
ful writing to files should be a part of work included
in each subtask.

5.4 Illustrated Examples

In Fig. 4, we give two examples to illustrate the FTDR
algorithm. Figure 4a and b show the schedules gen-
erated by FTDR when a fault occurs at time 4 and
7 whose recovery time is 5 and 9, respectively. In
Fig. 4a, the schedule of the entry task v0 is gener-
ated first and it is allocated to processor p1. During
its execution, a fault occurs at time 4. When the fault
is checked by the processor supervisor, the supervisor
notices the scheduler to reschedule v0 and its new allo-
cated processor is p0. After v0 is completed at time 10,
the two new ready tasks v1 and v2 are scheduled, and
they are allocated to p0 and p2, respectively. During

(a)

(b)

Fig. 4 a A schedule generated by FTDR when a failure occurs
at time 4 and b A schedule generated by FTDR when a failure
occurs at time 7

their execution, no fault occurs. When v1 and v2 are
all finished, v3 is allocated to p2 and completed suc-
cessfully at time 29. Figure 4b gives another schedule
when a fault occurs at time 7. When v0 completes its
execution, tasks v1 and v2 become ready and their allo-
cated processors are p1 and p2, respectively. When v1
is executing at p1, it is paused due to a fault at time
7. Hence, v1 is reallocated to p2 and the rest tasks are
executed successfully. From above examples we can
see that the FTDR algorithm can schedule application
flexibly under arbitrary faults.

5.5 Complexity and Overhead

The time complexity of FTDR is expressed in terms
of the number of nodes |V |, the number of edges |E|,
the number of processors |P |, the number of failures
ε, and the maximum in degree and out degree of tasks
Din and Dout .

First, task priority is calculated for each task.
Because the calculation of a task’s priority relies on
the priority values of all its children, its complex-
ity is O(Dout ). Since the summation of the Dout of
all nodes is

∑
Dout = |E|, the total complexity of

task priority calculating phase is O(|E|). In prior-
ity queue generating phase, quick sort algorithm is



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 517

adopted and the complexity is O(|V | log |V |). Hence,
the total complexity is O(|E| + |V | log |V |).

When an application is submitted or its subtasks are
completed, the scheduler responds to application sub-
mission event or task completion event to generate the
schedule of new ready tasks. The est and ef t values of
each task on all processors are calculated and the cal-
culation of est and ef t relies on the dat of all parents.
Hence, the complexity is O(|P ||V |Din). In addition,
each generated schedule is inserted into the schedule
queue in order and the complexity is O(|V |2).

The scheduler responds to task start event for |V |
times. At each task start event, the first task is dis-
patched to its allocated processor. It is removed from
the ready queue, and its schedule is removed from
the schedule queue. The complexity of this stage is
O(|V |).

Due to the failures, some tasks need to be resched-
uled. Assumed the number of failures is ε. At each
processor failure event, all tasks (at most |V |) assigned
to the failure processor must be rescheduled, the com-
plexity is O(ε|v||P |). At each processor recovery
event, the information of the available processors is
updated. The complexity is O(1).

In conclusion, the total algorithm complexity is
O(|P ||V |(Din + ε) + |V |2).

6 Experimental Results and Analysis

To evaluate the performance of the proposed algo-
rithm FTDR, we conduct series of simulations. In this
section, we first present experiment parameters and
performance metrics. And then, experimental results
are presented and we give detailed analysis for each
figure.

6.1 Experiment Parameters

In our experiments, we use randomly generated
graphes, whose parameters are consistent with those
used in [2, 7, 43]. The generated parameters of the
random graphs are listed as follows.

• DAG size, |V |: The number of tasks in the appli-
cation DAG.

• Communication to computation cost ratio, CCR:
The average communication cost divided by the
average computation cost of the application DAG.

• Parallelism factor, λ: The number of levels of
the application DAG is generated randomly, using
a uniform distribution with a mean value of√|V |

λ
, and then rounding it up to the nearest

integer. The width is generated using a uniform
distribution with a mean value of λ

√|V |, and
then rounding it up to the nearest integer. A
low λ leads to a DAG with a low parallelism
degree [7].

In each experiment, the values of these parameters
are assigned from the corresponding sets given below.
A parameter should be assigned by all values given in
its set in a single experiment.

• SETV = {500, 1000, 1500, 2000, 2500}
• SETCCR = {0.2, 0.5, 1, 2, 5}
• SETλ = {0.2, 0.5, 1, 2, 5}

To generate a DAG with a given number of tasks,
parallelism factor λ and CCR, the number of lev-
els is determined by λ firstly, and then the num-
ber of tasks at each level is determined. Edges
are only generated between the nodes in the adja-
cent levels, obeying 0-1 distribution. The computa-
tion time of each task is selected randomly from an
uniform distribution with range [10, 50]. To obtain
the desired CCR for a graph, the communication
time of each task is also randomly selected from
an uniform distribution, whose mean depends on the
product of CCR value and the average computation
time.

Moreover, the number of processors and the failure
percentage are two important factors which be dis-
cussed in our experiments. The two parameters are
described as follows.

• System size, |P |: The number of processors in
the heterogenous computing system, and the set is
{8,16,32,64,128}.

• Failure ratio, �: The expected number of occur-
rence of failures in unit of time, which are
{0.00001,0.00002,0.00003,0.00004,0.00005}.

Combining with the DAG types, there are 2500
experiment cases, among which we select 100 cases.
For each case, 50 random DAGs are generated and
tested to avoid scattering effects. The results are aver-
aged over the 50 tested values for each case. Exper-
iments based on diverse DAG types prevent biasing
toward a particular scheduling algorithm.



518 J. Mei et al.

500 1000 1500 2000 2500
0.5

1

1.5

2

2.5

The Number of Tasks

N
or

m
al

iz
ed

 S
ch

ed
ul

e 
Le

ng
th

 

 
HEFT
FTDR
FTSA
MaxRe

(a)

500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

The Number of Tasks

N
or

m
al

iz
ed

 R
es

ou
rc

e 
C

on
su

m
pt

io
n

 

 
HEFT
FTDR
FTCS
MaxRe

(b)

Fig. 5 a Average NSL and b average NRC versus graph size for different algorithms (|P |=64, CCR=1.0, λ=1.0, � = 0.00003)

6.2 Performance Metrics

The proposed algorithm FTDR is compared with
three other scheduling algorithm, including HEFT [2],
FTSA [22], and MaxRe [23], respectively. We have
modified the three algorithms to adapt the schedul-
ing problem discussed in this paper. The comparisons
of the algorithms are based on the following three
metrics:

• Normalized Schedule Length (NSL). The main
performance measure of a scheduling algorithm
on a graph is the schedule length (makespan) of its

output schedule. Since a large set of task graphs
with different properties are used, it is neces-
sary to normalize the schedule length to a bound,
which is called the Normalized Schedule Length
(NSL). The NSL value of an algorithm on a graph
is defined by

NSL = makespan

the length of CPmax

(16)

For an unscheduled DAG, if the computation cost
of each task vi is set with the maximum value,
then the critical path will be based on maxi-
mum computation costs, which is represented as

8 16 32 64 128
0

2

4

6

8

10

12

The Number of Processsors

N
or

m
al

iz
ed

 S
ch

ed
ul

e 
Le

ng
th

 

 
HEFT
FTDR
FTSA
MaxRe

(a)

8 16 32 64 128
0

2

4

6

8

10

12

The Number of Processors

N
or

m
al

iz
ed

 R
es

ou
rc

e 
co

ns
um

pt
io

n

 

 
HEFT
FTDR
FTSA
MaxRe

(b)

Fig. 6 a Average NSL and b average NRC versus system size for different algorithms (|V |=1500, CCR=1.0, λ=1.0, � = 0.00003)



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 519

0.2 0.5 1 2 5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Parallelism Factor

N
or

m
al

iz
ed

 S
ch

ed
ul

e 
Le

ng
th

HEFT
FTDR
FTSA
MaxRe

(a)

0.2 0.5 1 2 5
0

2

4

6

8

10

12

Parallelism Factor

N
or

m
al

iz
ed

 R
es

ou
rc

e 
C

on
su

m
pt

io
n

HEFT
FTDR
FTSA
MaxRe

(b)

Fig. 7 a Average NSL and b average NRC versus parallelism factor for different algorithms (|P |=64, |V |=1500, CCR=1.0, � =
0.00003)

CPmax . The denominator is the length of CPmax ,
including the computation costs and the commi-
nation costs. The NSL of a graph can be less
than one when the graph width is less than the
number of processors, also, it can be greater
than one when the graph width is greater than
the number of processors. Average NSL val-
ues over several task graphs are used in our
experiments.

• Normalized Resource Consumption (NRC).
The resource consumption is another metric to
measure the performance of scheduling algo-
rithms since the compared algorithms, except

HEFT, aim at achieving a high success rate by
using the active replication strategy. Similarly,
it is necessary to normalize the resource con-
sumption to a bound, which is called the Nor-
malized Resource Consumption (NRC). The NRC
value of an algorithm on a graph is defined
by

NRC = resource consumption
∑

vi∈V minpj ∈P {wi,j } (17)

The denominator is the summation of the mini-
mum resource consumption of all tasks. Average

0.2 0.5 1 2 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CCR

N
o
rm

a
liz

e
d
 S

ch
e
d
u
le

 L
e
n
g
th

 

 

HEFT

FTDR

FTSA

MaxRe

(a)

0.2 0.5 1 2 5
0

2

4

6

8

10

12

14

16

18

CCR

N
o
rm

a
liz

e
d
 R

e
so

u
rc

e
 C

o
n
su

m
p
tio

n

 

 

HEFT

FTDR

FTSA

MaxRe

(b)

Fig. 8 a Average NSL and b average NRC versus CCR for different algorithms (|P |=64, |V |=1500, λ=1.0, � = 0.00003)



520 J. Mei et al.

Table 4 Failure rate versus the number of tasks (|P |=64, CCR=1.0, λ=1.0, � = 0.00003)

|V | 500 1000 1500 2000 2500

HEFT 34.8 % 62.2‘% 72 % 83 % 87.2 %

FTDR 0 % 0 % 0 % 0 % 0 %

FTSA 25.4 % 22 % 17.4 % 16 % 14.6 %

MaxRe 48.4 % 59.6 % 63 % 66.8 % 69.4 %

NRC values over several task graphs are used in
our experiments.

• Application Failure Percentage (AFP). The
application failure percentage is to measure the
probability that an application fails when it
is scheduled using different algorithms. In our
paper, it is defined as the ratio of the times that
applications fail to the total times.

6.3 A Brief Description of the Compared Algorithms

In order to compare our algorithm to HEFT, FTSA,
and MaxRe, we give here a brief description of those
algorithms, using the original notations of [2, 22] and
[23], respectively.

• HEFT (Heterogeneous Earliest-Finish-Time) [2]
is a classical static list scheduling algorithm. It
does not take the processor failure into consid-
eration. However, it is a good refer to test the
performance of FTDR.

• FTSA (Fault-Tolerant Scheduling Algorithm)
[22] is an extended version of the classic HEFT
algorithm. It allocates ε + 1 copies of each task
to different processors to tolerate an arbitrary
number ε of fail-silent processor failures.

• MaxRe [23] incorporates the reliability analysis
into the active replication scheme, and exploits a
dynamic number of replicas for different tasks.

Given the processor reliability, MaxRe calcu-
lates different number of replicas for different
tasks to meet the user’s reliability requirement.
In our algorithm, the processor reliability is set
as {0.99999,0.99998,0.99997,0.99996,0.99995}
according to (2) and the failure ratio, and user’s
reliability requirement is 0.9999.

6.4 Performance Results

The results are organized in three parts. The first part
presents results on makespan and resource consump-
tion. The second part presents results on the execution
failure rate. The last part presents results with respect
to the processor failure percentage. A detailed analysis
is given for each set of experiments.

6.4.1 Makespan and Resource Consumption

The performance of the four algorithms are compared
with respect to various graph characteristics. In the
first set of experiments, we compare the performance
in terms of makespan and resource consumption of the
algorithms with respect to various graph size (see Fig.
5). From Fig. 5a we can see that, the NSL-based per-
formance ranking of the algorithms is {HEFT, FTDR,
FTSA,MaxRe}. (Each ranking in this paper starts with
the best algorithm and ends with the worst one with
respect to the given comparison metric.) The HEFT

Table 5 Failure rate versus the number of processors (|V |=1500, CCR=1.0, λ=1.0, � = 0.00003)

|P | 8 16 32 64 128

HEFT 67.4 % 66.8 % 74.2 % 70.8 % 76 %

FTDR 0 % 0 % 0 % 0 % 0 %

FTSA 11.8 % 15.2 % 19.6 % 21.8 % 17.6 %

MaxRe 0.6 % 8.8 % 29.2 % 63.2 % 81.8 %



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 521

Table 6 Failure rate versus λ (|P |=64, |V |=1500, CCR=1.0, � = 1.0)

λ 0.2 0.5 1 2 5

HEFT 73.6 % 72.4 % 73 % 70 % 76.2 %

FTDR 0 % 0 % 0 % 0 % 0 %

FTSA 23 % 21.6 % 20.6 % 15.8 % 9.8 %

MaxRe 88.2 % 76.2 % 62.6 % 50.6 % 39.2 %

algorithm achieves the lowest makespan value. The
makespan value of the proposed algorithm FTDR is
very close to that of HEFT and FTDR only lose about
1.44 % performance in terms of makespan to guaran-
tee the success of applications execution. In contrast,
both of FTSA and MaxRe sacrifice a large amount of
makespan compared with HEFT and FTDR, aiming
at achieving a higher reliability by allocating multi-
ple copies of each task to different processors. The
experimental results show that the average NSL val-
ues of FTSA and MaxRe are worse than FTDR by
161.03 % and 240.65 %, respectively. Increasing the
number of tasks affects the NSL values of HEFT and
FTDR slightly, but greatly for FTSA, this is because
an increasing number of tasks lead to a significant
increasing of replicas, hence leading to a more seri-
ous latency. The figure shows that the performance
of MaxRe falls in between FTSA and the other two,
because the number of replicas generated by MaxRe is
much less than FTSA but more than HEFT and FTDR.
The varying trend of makespan is same with that of
resource consumption.

Figure 5b gives the comparison of the NRC-based
performance of the algorithms, and their ranking
on resource consumption is {HEFT, FTDR, FTSA,
MaxRe} which is consistent with the NSL-based per-
formance. FTDR only reschedules those tasks that are
suspended due to failure, which do not lead to much
extra resource consumption. However, FTSA and
MaxRe, allocate multiple copies of each task to dif-
ferent processors no matter that the failures affect its

execution, which leads to a large amount of resource
overheads. Increasing the number of tasks affect
the NRC value of FTSA and MaxRe, and the rea-
sons for the two algorithms are different. For FTSA,
more tasks leads to longer makespan, hence, more
failures occur during the execution, which leads to
more replicas as well as resource consumption for
each task. While for MaxRe, more tasks lead to longer
makespan as well and the reliability of a task replica
decreases with the increasing execution time. In order
to satisfy the demand reliability, more replicas are
generated. Hence the resource consumption increases
with the increasing number of tasks.

In the second set of experiments, we explore the
relationship between the system size and the perfor-
mance of the algorithms. The experimental results
in Fig. 6 show that, the performance of HEFT and
FTDR are very close to each other. As a fault-tolerant
scheduling algorithm, FTDR performs much better
than the compared algorithms FTSA and MaxRe not
only in makespan but also in resource consumption.
Along with the increasing number of processors, the
degree of parallelism gets higher, so the NSL values
of four algorithms descend. However, MaxRe shows
a quicker downward trend than the other three algo-
rithms. When the number of processors in the system
is less than 16, the NSL value of MaxRe is greater than
that of FTSA, while when the number of processors
gets greater, it becomes smaller than that of FTSA.
That is because the number of replicas of each task is
determined by the number of failures using FTSA but

Table 7 Failure rate versus CCR (|P |=64, |V |=1500, λ =1.0, � = 0.00003)

CCR 0.2 0.5 1 2 5

HEFT 70.6 % 71.6 % 72.4 % 73.4 % 74.4 %

FTDR 0 % 0 % 0 % 0 % 0 %

FTSA 19.8 % 21.2 % 19.6 % 15.2 % 14 %

MaxRe 45.6 % 51.6 % 66.2 % 77 % 92.6 %



522 J. Mei et al.

1 2 3 4 5

x 10

−4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Failure Precentage

N
or

m
al

iz
ed

 S
ch

ed
ul

e 
Le

ng
th

 

 
HEFT
FTDR
FTSA
MaxRe

1/10000 2/10000 3/10000 4/10000 5/10000
0

1

2

3

4

5

6

7

8

9

10

Failure Precentage

N
or

m
al

iz
ed

 R
es

ou
rc

e 
C

on
su

m
pt

io
n

 

 
HEFT
FTDR
FTSA
MaxRe

(a) (b)

Fig. 9 Performance comparison among different algorithms

the reliability using MaxRe. Hence, FTSA schedules
each task for less times than MaxRe when the num-
ber of processors is small, and more times with more
processors. From Fig 6b, the NRC values of two algo-
rithms show the opposite trends with the increasing
number of processors.

The NRC value of MaxRe is much higher than
that of FTSA firstly, and than it declines until the
NRC value of MaxRe is lower than that of FTSA.
That is because the number of replicas using MaxRe
is increasing with the increasing makespan. Using
FTSA, the number of processors is doubled but the
makespan is shortened slightly, which leads to a great
increase of execution time as well as failure times.
Hence, more replicas are needed for each tasks with
the increasing number of processors, and the NRC
value of FTSA shows an upward trend.

The next set of experiments are with respect to the
graph structure. In total, the experimental results in
Fig. 7 show that the performance ranking in terms of

makespan and resource consumption of the four algo-
rithms is {HEFT, FTDR, MaxRe,FTSA}. The NSL
values show an upward trend while the NRC values
show a downward or steady trend with the increas-
ing λ. The reasons are explained as follows. When λ

is small, the generated graph is with a low degree of
parallelism, so the length of the critical path is long.
Along with the increasing λ, the length of the critical
path of the generated graph becomes shorter. Although
the makespan is reduced, the NSL values of the algo-
rithms still show an upward trend. The NRC value
of FTSA is reduced with the the increasing λ, as the
reduced makespan leads to less failures.

In the fourth set of experiments, the performance
with respect to CCR is compared (see Fig. 8). The per-
formance ranking in terms of makespan and resource
consumption of the algorithms is still {HEFT, FTDR,
MaxRe, FTSA}. From Fig. 8a we can see that, the
NSL values of three algorithms except MaxRe all
show upward trends along with the increasing CCR

Table 8 Execution failure rate versus processor failure percentage (|P |=64, |V |=1500, λ =1.0, CCR=1.0)

Failure Percentage 0.00001 0.00002 0.00003 0.00004 0.00005

HEFT 36.2 % 57.6 % 72.2 % 83.6 % 87.8

FTDR 0 % 0 % 0 % 0 % 0 %

FTSA 17.2 % 18.6 % 19.6 % 19 % 18 %

MaxRe 38.4 % 48.8 % 62 % 73.8 % 74.2 %



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 523

value. The explanation is as follows. When CCR
is small, the computation cost of applications dom-
inates the communication cost. The communication
cost is low, so the makespan of the generated sched-
ules is small. When CCR is great, parallelization
leads to a great amount of time overhead, which
increases the makespan. The NSL values of MaxRe
keep steady because the makespan is increasing lin-
early with the length of critical path. Figure 8b
shows that the NRC value of FTSA increases sharply
with the increasing CCR but the other three not.
That is because the number of replicas using FTSA
depends on the number of failures, which is greater
with a greater makespan. While the number of a
task’s replicas using MaxRe depends on the total
execution time before its execution. Although the
makespan is increasing, the total execution time won’t
change, hence leading to an unchange number of
replicas.

6.4.2 Execution Failure Rate

Besides above two performance metrics, application
failure percentage (AFP) is compared to measure the
quality of schedules generated by the algorithms. The
statistical data is given in Tables 4–7, respectively.

From the four tables we can see that, the AFP
value of HEFT is highest in average, as HEFT is a
scheduling algorithm without considering the proces-
sor failures. The algorithm with the second highest
AFP value is MaxRe, followed by FTSA. That is
because the number of replicas of each task using
MaxRe is less than that using FTSA. The analy-
sis indicates that for static scheduling algorithms,
the more the number of replicas is, the higher the
success rate is. Table 5 shows that the two fault-
tolerant scheduling algorithms, FTSA and MaxRe,
cannot tolerate all processor failures. In contrast, the
proposed algorithm FTDR can tolerate all processor
failures, because it is a dynamic scheduling algo-
rithm, and it can deal with failures in time once they
occur.

6.4.3 Application Failure Percentage

In above experiments, the processor failure percent-
age is set as 0.00003. Next, we explore how the failure
ratio affects the performance of the algorithms. Figure
9 presents the performance in terms of makespan and

resource consumption of the four algorithms. Accord-
ing to Fig. 9, the processor failure ratio does not affect
the makespan and resource consumption of HEFT,
FTDR, and MaxRe greatly. The reasons are explained
respectively as follows. HEFT is an algorithm with-
out taking failure into consideration, hence it is not
affected by the processor failure ratio. FTDR is to
reschedule tasks only when failures occur, which leads
to a small time overhead, hence the performance dete-
rioration is slight. MaxRe determines the number of
replicas of each task based on user’s required reli-
ability and the processor reliability. The change of
failure ratio affects slightly the processor reliability, so
the number of replicas does not increase. In contract,
because the number of replicas of FTSA is determined
by the number of failures, which is increasing linearly
with the increasing failure ratio, the makespan and
resource consumption of the schedules generated by it
grow quickly.

Table 8 presents the application failure percent-
age of the algorithms with respect to processor failure
ratio. The HEFT algorithm gives the worst perfor-
mance. The application failure percentage of FTDR
is zero since it is a dynamic rescheduling algorithm.
FTSA and MaxRe show a better performance than
HEFT, and FTSA outperforms MaxRe because the
number of replicas using FTSA is more than that using
MaxRe.

7 Conclusions

This paper presents a novel fault-tolerate dynamic
rescheduling algorithm for heterogenous computing
systems, called FTDR. It adopts a reschedule strat-
egy which is different from the active replication
scheme, and overcomes its drawbacks. FTDR keeps
listening to five kinds of events, including applica-
tion submitted event, task start event, task completed
event, processor failure event and processor recov-
ery event. Once a processor failure is detected, the
scheduler reschedules the tasks that are located on the
failure processor, and reassigns them to the objective
processors. Hence, it does not waste much resource,
but can tolerate any number of processor failures.
According to the experimental results, we have shown
that FTDR is superior to FTSA and MaxRe both
in terms of resource consumption and makespan.
We also point out that the schedules generated by



524 J. Mei et al.

FTDR can tolerate fault no matter how many failures
occur.

In this paper, we assume that the computation and
communication costs are known in advance and the
knowledge is accurate. However, in general, the priori
information is not always accurate, which affects the
performance of the scheduling problem and even the
proposed algorithm is not suitable for scheduling the
application with inaccurate knowledge. Hence, in the
future, we will further the research of this situation.

Acknowledgments The authors thank the anonymous
reviewers for their valuable comments and suggestions. The
research was partially funded by the Key Program of National
Natural Science Foundation of China (Grant Nos. 61133005,
61432005), the National Natural Science Foundation of China
(Grant Nos. 61370095, 61472124, 61173013, 61202109, and
61472126).

References

1. Kasahara, H., Narita, S.: Practical multiprocessor schedul-
ing algorithms for efficient parallel processing. IEEE Trans.
Comput. 33(11), 1023–1029 (1984)

2. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-
effective and low-complexity task scheduling for heteroge-
neous computing. IEEE Trans. Parallel Distrib. Syst. 13(3),
260–274 (2002)

3. Daoud, M.I., Kharma, N.: A high performance algorithm
for static task scheduling in heterogeneous distributed com-
puting systems. J. Parallel Distrib. Comput. 68(4), 399–409
(2008)

4. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.:
Energy-aware scheduling on multicore heterogeneous grid
computing systems. J. Grid Comput. 11(4), 653–680 (2013)

5. Arabnejad, H., Barbosa, J.: A budget constrained schedul-
ing algorithm for workflow applications. J. Grid Comput.
12(4), 665–679 (2014)

6. Ranaweera, S., Agrawal, D.: A scalable task duplication
based scheduling algorithm for heterogeneous systems. In:
Proceedings of 2000 International Conference on Parallel
Processing, pp. 383–390 (2000)

7. Bansal, S., Kumar, P., Singh, K.: An improved duplication
strategy for scheduling precedence constrained graphs in
multiprocessor systems. IEEE Trans. Parallel Distrib. Syst.
14(6), 533–544 (2003)

8. Shin, K., Cha, M., Jang, M., Jung, J., Yoon, W., Choi, S.:
Task scheduling algorithm using minimized duplications in
homogeneous systems. J. Parallel Distrib. Comput. 68(8),
1146–1156 (2008)

9. Tang, X., Li, K., Liao, G., Li, R.: List scheduling with dupli-
cation for heterogeneous computing systems. J. Parallel
Distrib. Comput. 70(4), 323–329 (2010)

10. Song, I., Yoon, W., Jang, E., Choi, S.: Task scheduling
algorithm with minimal redundant duplications in homo-
geneous multiprocessor system in Grid and Distributed
Computing, pp. 238–245. Springer (2011)

11. Bansal, S., Kumar, P., Singh, K.: An improved duplication
strategy for scheduling precedence constrained graphs in
multiprocessor systems. IEEE Trans. Parallel Distrib. Syst.
14(6), 533–544 (2003)

12. Hagras, T., brevecek, J.J.: A high performance, low com-
plexity algorithm for compile-time task scheduling in
heterogeneous systems. Parallel Comput. 31(7), 653–670
(2005)

13. Liou, J., Palis, M.: An efficient task clustering heuris-
tic for scheduling dags on multiprocessors. In: Proceed-
ings of Parallel and Distributed Processing Symposium
(1996)

14. Fangfa, F., Yuxin, B., Xinaan, H., Jinxiang, W., Minyan,
Y., Jia, Z.: An objective-flexible clustering algorithm for
task mapping and scheduling on cluster-based noc. In:
2010 10th Russian-Chinese Symposium on Laser Physics
and Laser Technologies (RCSLPLT) and 2010 Academic
Symposium on Optoelectronics Technology (ASOT), 28
2010-aug. 1 2010, pp. 369 –373

15. Khan, M.A.: Scheduling for heterogeneous systems using
constrained critical paths. Parallel Comput. 38(4), 175–193
(2012)

16. Stearley, J.: Defining and measuring supercomputer reli-
ability, availability, and serviceability (ras). In: Pro-
ceedings of the Linux Clusters Institute Conference
(2005)

17. Rahman, R.M., Barker, K., Alhajj, R.: Replica placement
strategies in data grid. J. Grid Comput. 6(1), 103–123
(2008)

18. Yang, H., Luan, Z., Li, W., Qian, D.: Mapreduce workload
modeling with statistical approach. J. grid Comput. 10(2),
279–310 (2012)

19. Koo, R., Toueg, S.: Checkpointing and rollback-recovery
for distributed systems. IEEE Trans. Softw. Eng. 1, 23–31
(1987)

20. Chakravorty, S.: A fault tolerance protocol for fast recov-
ery. ProQuest (2008)

21. Yang, X., Wang, Z., Xue, J., Zhou, Y.: The reliability wall
for exascale supercomputing. IEEE Trans. Comput. 61(6),
767–779 (2012)

22. Benoit, A., Hakem, M., Robert, Y.: Fault tolerant schedul-
ing of precedence task graphs on heterogeneous platforms.
In: IEEE International Symposium Parallel Distributed Pro-
cessing, pp. 1–8. IEEE (2008)

23. Zhao, L., Ren, Y., Xiang, Y., Sakurai, K.: Fault-tolerant
scheduling with dynamic number of replicas in hetero-
geneous systems. In: 12th IEEE International Conference
High Performance Computing Communications, pp. 434–
441. IEEE (2010)

24. Shatz, S.M., Wang, J.-P., Goto, M.: Task allocation for max-
imizing reliability of distributed computer systems. IEEE
Trans. Comput. 41(9), 1156–1168 (1992)

25. Qin, X., Jiang, H.: A dynamic and reliability-driven
scheduling algorithm for parallel real-time jobs execut-
ing on heterogeneous clusters. J. Parallel Distrib. Comput.
65(8), 885–900 (2005)



Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems 525

26. Dongarra, J.J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective
scheduling algorithms for optimizing makespan and reli-
ability on heterogeneous systems. In: Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms
and architectures, pp. 280–288. ACM (2007)

27. Jeannot, E., Saule, E., Trystram, D.: Bi-objective approx-
imation scheme for makespan and reliability optimization
on uniform parallel machines. In: Euro-Par 2008–Parallel
Processing, pp. 877–886. Springer (2008)

28. Girault, A., Saule, E., Trystram, D.: Reliability versus
performance for critical applications. J. Parallel Distrib.
Comput. 69(3), 326–336 (2009)

29. Tang, X., Li, K., Li, R., Veeravalli, B.: Reliability-aware
scheduling strategy for heterogeneous distributed comput-
ing systems. J. Parallel Distrib. Comput. 70(9), 941–952
(2010)

30. Boeres, C., Sardiña, I.M., Drummond, L.: An effi-
cient weighted bi-objective scheduling algorithm for het-
erogeneous systems. Parallel Comput. 37(8), 349–364
(2011)

31. Jeannot, E., Saule, E., Trystram, D.: Optimizing perfor-
mance and reliability on heterogeneous parallel systems:
Approximation algorithms and heuristics. J. Parallel Dis-
trib. Comput. 72(2), 268–280 (2012)

32. Tao, Y., Jin, H., Wu, S., Shi, X., Shi, L.: Dependable grid
workflow scheduling based on resource availability. J. Grid
Comput. 11(1), 47–61 (2013)

33. Hakem, M., Butelle, F.: Reliability and scheduling on sys-
tems subject to failures. In: International Conference on
Parallel Processing, pp. 38–38. IEEE (2007)

34. Qin, X., Jiang, H.: A novel fault-tolerant scheduling algo-
rithm for precedence constrained tasks in real-time hetero-
geneous systems. Parallel Comput. 32(5), 331–356 (2006)

35. Zheng, Q., Veeravalli, B.: On the design of communication-
aware fault-tolerant scheduling algorithms for precedence
constrained tasks in grid computing systems with dedicated
communication devices. J. Parallel Distrib. Comput. 69(3),
282–294 (2009)

36. Zheng, Q., Veeravalli, B., Tham, C.-K.: On the design of
fault-tolerant scheduling strategies using primary-backup
approach for computational grids with low replication
costs. IEEE Trans. Comput. 58(3), 380–393 (2009)

37. Benoit, A., Hakem, M., Robert, Y.: Realistic models and
efficient algorithms for fault tolerant scheduling on het-
erogeneous platforms. In: 37th International Conference on
Parallel Processing, pp. 246–253. IEEE (2008)

38. Khokhar, A., Prasanna, V., Shaaban, M., Wang, C.-L.:
Heterogeneous computing: challenges and opportunities.
Computer 26(6), 18–27 (1993)

39. Radulescu, A., Van Gemund, A.: Fast and effective task
scheduling in heterogeneous systems. In: Proceedings of
9th Heterogeneous Computing Workshop, pp. 229–238
(2000)

40. Choudhury, P., Chakrabarti, P., Kumar, R.: Online schedul-
ing of dynamic task graphs with communication and con-
tention for multiprocessors, vol. 23, pp. 126–133 (2012)

41. Young, J.W.: A first order approximation to the optimum
checkpoint interval. Commun. ACM 17(9), 530–531

42. Jin, H., Sun, X.-H., Zheng, Z., Lan, Z., Xie, B.: Per-
formance under failures of dag-based parallel computing.
In: 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, pp. 236–243 (2009)

43. Daoud, M.I., Kharma, N.: A high performance algorithm
for static task scheduling in heterogeneous distributed com-
puting systems. J. Parallel Distrib. Comput. 68(4), 399–409
(2008)


	Fault-Tolerant Dynamic Rescheduling for Heterogeneous Computing Systems
	Abstract
	Introduction
	Related Work
	Models
	Computing System Model
	Application Model
	Fault-driven Scheduling Architecture

	A Motivational Example
	The Proposed Algorithm
	Some Basic Notations
	Task Priority
	Global Scheduler Algorithm
	Illustrated Examples
	Complexity and Overhead

	Experimental Results and Analysis
	Experiment Parameters
	Performance Metrics
	A Brief Description of the Compared Algorithms
	Performance Results
	Makespan and Resource Consumption
	Execution Failure Rate
	Application Failure Percentage


	Conclusions
	Acknowledgments
	References


