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Energy-Efficient Heuristic Computation Offloading
With Delay Constraints in Mobile Edge Computing
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Abstract—By offloading computation-intensive tasks to the edge
cloud, mobile edge computing (MEC) has been regarded as an
effective technology for enhancing computational capacity and
extending the battery lifetime of mobile devices (MDs). However,
due to the limitation of bandwidth and computing resources in
MEC, unreasonable task offloading might lead to intensive resource
competition, which recedes the performance gains benefit from
offloading. When the tasks are latency-sensitive, a proper task of-
floading strategy is more important. Considering the heterogeneous
delay constraints and resource competition comprehensively, we
aim at minimizing the energy consumption of MDs subject to the
individual delay constraints of tasks by jointly optimizing the task
offloading and resource allocation in terms of wireless channel
and remote computation capacity in a multi-MD MEC system
in this paper. Due to the complexity of the primal optimization
problem, a heuristic algorithm is devised. In the algorithm, a
subset of tasks to be offloaded is incrementally constructed, and the
corresponding offloading sub-problem is then repeatedly solved for
this task subset using a two-stage algorithm until the total energy
consumption can no longer be further reduced. The first stage of
solving the sub-problem is to find the optimal full offloading scheme
for the to-offload tasks, which is proved to be a convex optimization
problem. For the task subset without a full offloading solution,
an effective iterative algorithm is employed in the second stage
where the channel allocation and computing resource allocation
are optimized alternately. A great number of experiments are given
to verify the performance of the proposed algorithm. We observe
that the heuristic algorithm shows different performance when
adopting different task ordering schemes. The proposed heuristic
algorithm is evaluated against three reference schemes, and the
results show that it can save up to 14.20% of energy consumption
while guaranteeing the delay requirements of all tasks.
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I. INTRODUCTION

A LONG with the fast development of 5G and Internet of
Things (IoT) technology, billions of mobiles capable of

computation and communication, e.g., mobile devices, sensors
and wearable devices, are connected to the Internet via cellular
networks. Due to the device size limitation, an IoT device
often carries a capacity-limited battery and an energy-saving
processor which is always of low performance. The low compu-
tation capacity cannot satisfy the high-performance computation
requirement of many applications, e.g., augmented reality and
image processing [1], [2], Additionally, the battery life of these
devices is notably short and unsatisfactory. To tackle the two
intrinsic shortages of IoT devices, one promising solution is to
leverage mobile edge computing (MEC). MEC enables devices
to offload computation-intensive tasks to nearby clouds located
at the edge of a radio access network, such as a Wi-Fi access
point (AP) or cellular base station. [3]. In this way, a mobile
device (MD) can deal with tasks with high computation capac-
ity requirements but consume less energy. Hence, computation
offloading is an effective method to enhance computing power
and lengthen the battery durability of MDs.

Although computation offloading can break the bottlenecks
encountered by MDs effectively, not all tasks can benefit from
task offloading, especially when numerous tasks are offloading
to an MEC server simultaneously. In an MEC system, both the
computation and communication resources are limited. When
several devices request to offload tasks simultaneously, they
compete for the channel resource and MEC computing resource.
On the one hand, channel competition could result in network
congestion, which affects the communication quality inevitably.
As network congestion intensifies, the delay of offloading tasks
to MEC increases, and could even exceed local execution delay.
On the other hand, the devices tend to consume significantly
higher amounts of energy for communication under a poor
communication environment, potentially surpassing the energy
consumption of local execution. Moreover, when the tasks have
strict requirements in terms of execution delay, the problem
caused by resource competition becomes more serious. Due
to such reasons, a proper computation offloading strategy is
crucial to exploit limited resources to handle more tasks while
satisfying their specific requirements for delay and energy con-
sumption [4].
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Fig. 1. Application scenario.

Computation offloading optimization has been studied from
different perspectives in recent years. In this paper, we study the
problem for a different application scenario, as depicted in Fig. 1.
In the scenario, multiple mobile devices (MDs) request to offload
their tasks to the nearby MEC server via the access point (AP).
The MDs are heterogeneous in terms of computing and commu-
nication capabilities, power consumption, etc. Each MD owns
a task to be processed which is of strict delay requirement and
should be completed before its predefined deadline. The tasks
considered in this paper are divisible, which can be offloaded to
MEC and executed locally in parallel. The MDs compete for the
limited channel bandwidth and MEC computing capacity, and
the time-division multiple access (TDMA) model is considered
in this paper. Our problem is to determine the partial offloading
strategy by jointly optimizing the offloading decision and the
resource allocation scheme for each MD such that all tasks can
be completed before their respective deadlines while the sum of
energy consumption is minimized.

Compared with the existing works, our novelty mainly lies
in the following two aspects. First, we consider the delay-
sensitive tasks which are characterized by their specific delay
requirements. To guarantee the strict delay constraints, we adopt
partial offloading in our framework, which makes the problem
more challenging than that with binary offloading. Second, a
TDMA-based MEC system with limited channel and computing
resources is considered in this paper, hence, we optimize the
channel allocation and MEC computing resource allocation
jointly. Finding the optimal resource allocation scheme is also
challenging since it depends on the task offloading ratio which
needs to be determined as well.

We formulate our partial offloading problem as an energy
minimization problem with delay and resource constraints. The
solution to the offloading problem consists of two parts: task
offloading decision which determines the ratio of tasks offloaded
to MEC, and resource allocation decision which determines how
much resources are allocated to each task. To achieve global opti-
mization, the task offloading decision and the resource allocation
decision should be optimized simultaneously. Since the optimal
task offloading decision is unknown in advance, the objective
function and the delay constraint involve a divide-by-zero error,
which makes the problem much more complicated to tackle. To
solve this problem, we propose an iterative heuristic algorithm.
In the outer loop, the to-offload task set is determined and
updated by adding new tasks according to a proposed discipline.
In the inner loop, the offloading sub-problem is formulated to
determine the optimal offloading strategy for the given to-offload
task set such that the energy consumption is minimized. With the

update of the to-offload task set, the whole process is repeated
until the energy consumption cannot be reduced. A two-stage
algorithm is also proposed to solve the offloading sub-problem.
The first stage is to find the full offloading scheme for the
to-offload tasks, which is proved to be convex optimization. For
the task subset without a full offloading solution, an effective
iterative binary search algorithm is employed in the second
stage. This algorithm optimizes the allocation of channels and
computing resources in an alternating manner.

The contributions of the paper is summarized as follows:
� The partial offloading problem is studied for a TDMA-

based MEC system to minimize the total energy consump-
tion of MDs while guaranteeing the delay constraints of
all tasks. The task offloading ratio, the channel allocation,
and the MEC computing resource allocation are optimized
jointly. The improvement in the model makes the problem
more realistic compared with the existing studies.

� An iterative heuristic approach is proposed to solve the
primal optimization problem, which is transformed into a
series of offloading sub-problems where the offload tasks
are fixed and updated incrementally until the optimal of-
floading task set is found. Further, a two-stage algorithm
is designed to solve the offloading sub-problem repeatedly
for the expanding to-offload task set until the sum energy
consumption cannot be optimized anymore.

� In the experiments, the performance of our algorithm un-
der seven different task updating methods is compared
first, which verifies the superiority of the adopted strategy.
Besides, we compare our scheme with three offloading
schemes, and the results show that the proposed offloading
strategy can significantly reduce energy consumption.

The rest of the paper is organized as follows. In Section II, we
provide a comprehensive description of the models used in this
paper, including the system model, local computing model, and
remote offloading model. Furthermore, we present a rigorous
definition of our energy minimization problem. In Section III,
we give a detailed analysis of our method and introduce our
heuristic algorithm. In Section IV, we present the experimental
data to evaluate the performance of the proposed algorithm and
give some analysis and explanations. Section V concludes the
work finally.

II. MODELS

In the following section, we will introduce the models adopted
in this paper. Based on the models, the computation offloading
optimization problem can be specified and studied rigorously.

A. System Model

In this paper, we consider a MEC system as depicted in
Fig. 2. In the system, a cloudlet-enabled AP is considered.
Within the radio access network (RAN), n MDs indexed by
N ={1, 2, . . . , n} request to offload tasks to MEC. Assume that
each MD only generates one task within a time slot, the task set
is denoted as J = {J1, J2, . . . , Jn} where Ji is submitted by
MDi.Ji is described by a tuple (Di, Ci, Ti), whereTi is the delay
requirement, Di is the input data size, and Ci is the load-input
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Fig. 2. System model.

data ratio (LDR) which is a constant and describes the number
of CPU cycles required to process one bit of input data. Ci

varies from different applications and can be obtained through
offline measurement [5]. Hence, the execution requirement of
Ji is DiCi. In the existing research, it is usually assumed that
the execution requirements of tasks are known in advance [6].

The tasks considered in this paper are divisible, and each task
can be executed on its host MD or offloaded to MEC fully or
partially. Let αi be the ratio of Ji executed locally and then
1− αi be the ratio of Ji offloaded to MEC. Specifically, when
Ji is executed locally and not offloaded to MEC, the value of
αi is 1. Conversely, when Ji is fully offloaded to MEC, αi is 0.
If the value of αi falls between 0 and 1, it indicates that Ji is
partially offloaded to MEC and partially executed locally. When
multiple tasks are concurrently offloaded to MEC, they compete
for the limited wireless channel resources. We employ a TDMA
technique for the channel access. Let βi be the ratio of the time
slot allocated to MDi, it has

0 ≤ βi ≤ 1,

n∑
i=1

βi ≤ 1.

In addition, due to the finite computing capacity of MEC, the
tasks also compete for computing resources. Let γi be the ratio
of computing resources of MEC allocated to Ji, it has

0 ≤ γi ≤ 1,

n∑
i=1

γi ≤ 1.

The decision regarding task offloading and resource allocation
is made by the edge cloud manager which is capable of gathering
the necessary information such as the parameters of MDs, task
characteristics, and resource state [7].

B. Local Computing Model

The computation power consumption P i
comp (in Watts) of

MDi consists of two components, which are dynamic power
consumptionP i

d and static power consumptionP i
s . The dynamic

power consumption is represented as P i
d = κiS

λi
i , where Si is

the computation speed (in GHz) of MDi, and κi and λi are
technology-dependent constants. The static power consumption
P i
s is also a constant. Therefore, we have P i

comp = κiS
λi
i + P i

s .
The power model is adopted widely in many studies [3], [8], [9].

The local execution time (in seconds) of Ji on its host MD is

T i
local =

αiDiCi

Si
,

and the energy consumption for the local computation (in Joules)
of Ji is

Ei
local = P i

compT
i
local =

(κiS
λi
i +P i

s)αiDiCi

Si
. (1)

C. Remote Offloading Model

The process of offloading tasks to MEC consists of two stages:
data transmission and remote computation.

Data Transmission: Let P i
tra be the transmission power (in

Watts) of MDi. When MDi occupies the wireless channel ex-
clusively, the communication rate Si

tra is

Si
tra = B log2

(
1 +

P i
tragi
ωi

)
,

whereB presents the channel bandwidth, gi denotes the channel
gain between MDi and MEC, andωi = gi/(Ii + σ2

i )where Ii is
the interference on the communication channel caused by other
devices that transmit data to the same MEC, and σ2

i denotes the
power spectrum density of additive white Gaussian noise [10],
[11], [12].

As mentioned before, when multiple MDs offload tasks to
MEC simultaneously, they occupy the wireless channel in turn,
which affects the communication rate greatly. Considering the
TDMA channel system for an arbitrary time slot and the ratio βi

of the time slot allocated to MDi, the achievable communication
rate between MDi and MEC is

ritra = βiS
i
tra.

Then, the communication time of delivering data from MDi

to the MEC server is

T i
tra =

(1− αi)Di

ritra
=

(1− αi)Di

βiSi
tra

,

and the transmission energy consumption is

Ei
tra = T i

traP
i
tra =

(1−αi)DiP
i
tra

βiSi
tra

.

Remote Computation: Similarly, when multiple tasks are
offloaded to MEC for execution simultaneously, computing
resources in MEC are also being competed for. Since γi is the
ratio of computing resource of MEC allocated to execute task
Ji, the remote computation time of Ji on MEC is

T i
MEC =

(1− αi)DiCi

γiSMEC
.

Our objective is to minimize energy consumption of MDs, so it
is unnecessary to consider the computation energy consumption
of Ji on MEC.

According to the above analysis, the total execution time of
Ji for remote offloading is

T i
remote = T i

tra + T i
MEC =

(1−αi)Di

βiSi
tra

+
(1−αi)DiCi

γiSMEC
,
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and the total energy consumption of Ji for remote offloading is

Ei
remote = Ei

tra =
(1−αi)DiP

i
tra

βiSi
tra

.

Because the size of the output data of a task is much smaller
than the input data, we ignore the transmission time and energy
consumption of the computation results returned from MEC to
MDs in this paper. The communication and computation models
are adopted widely by many researchers [13], [14].

D. Problem Formulation

Given that the local execution and remote offloading of a task
occur simultaneously, the execution delay of Ji is calculated as

Ti = max{T i
local, T

i
remote},

and it cannot exceed the delay constraint Ti, that is,

max

{
αiDiCi

Si
, (1−αi)

(
Di

βiSi
tra

+
DiCi

γiSMEC

)}
≤ Ti, ∀i ∈ N .

(2)

The total energy consumption of all MDs is

E =

n∑
i=1

Ei =

n∑
i=1

(Ei
local + Ei

remote)

=

n∑
i=1

(
αiDiCi(κiS

λi
i +P i

s)

Si
+

(1−αi)DiP
i
tra

βiSi
tra

)
. (3)

Problem Formulation: Given a MEC system denoted by MEC
� (SMEC , B) andnMDs indexed byN = {1, 2, . . . , n}where
MDi � (Si, κi, λi, P

i
s , P

i
tra). Each MD generates a divisible

task Ji per time slot and Ji � (Di, Ci, Ti). All MDs request to
offload tasks to MEC. Our computation offloading problem is to
find an offloading decision {(αi, βi, γi) | 1 ≤ i ≤ n} such that
the total energy consumption of all MDs is minimized while
the delay constraints of all tasks are satisfied, which can be
formulated as an energy optimization problem with delay and
resource constraints as follows:

(P1) min
α,β,γ

n∑
i=1

(
αiDiCi(κiS

λi
i +P i

s)

Si
+
(1−αi)DiP

i
tra

βiSi
tra

)

s.t.
αiDiCi

Si
≤ Ti, ∀i ∈ N , (4a)

(1−αi)

(
Di

βiSi
tra

+
DiCi

γiSMEC

)
≤ Ti, ∀i ∈ N ,

(4b)

n∑
i=1

βi ≤ 1, 0 ≤ βi ≤ 1, ∀i ∈ N , (4c)

n∑
i=1

γi ≤ 1, 0 ≤ γi ≤ 1, ∀i ∈ N , (4d)

0 ≤ αi ≤ 1, ∀i ∈ N , (4e)

where α = {α1, α2, . . . , αn}, β = {β1, β2, . . . , βn}, and γ =
{γ1, γ2, . . . , γn}.

In problem (P1), constraints (4a) and (4b) denote the delay
requirement of task Ji (1 ≤ i ≤ n). Constraints (4c) and (4d)
denote the resource constraints. Constraint (4e) is the offloading
indicator constraint.

This problem has 3n variables, which are αi, βi, γi (1≤
i≤n). It is a continuous optimization problem and there is
absolutely no closed-form solution. Hence, we design a heuristic
method to solve it in the next section.

III. HEURISTIC ALGORITHMS

In this section, a heuristic method is introduced to solve
the energy minimization problem. To make the algorithm more
understandable, we first give an algorithm framework, and then
introduce the details step by step.

A. The Algorithm Framework

Analyzing problem (P1), its solution consists of three parts:
the task division scheme α, the channel resource allocation
scheme β, and the MEC computing resource allocation scheme
γ. The three parts are affected mutually, which makes the
problem complicated to solve. To find the optimal solution of
(P1), we transform it into a series of optimization sub-problems.

In the primal problem, the range of αi is [0,1] for all tasks. If
αi = 1, the entire task of Ji is executed on its host MD, and it
is unnecessary to allocate resources for it, that is, βi and γi are
equal to 0, which triggers the divide-by-zero error. To avoid that,
we first determine the tasks which are bound to be offloaded to
MEC, and then find the offloading decision for these tasks.

Let S be the to-offload task set. Once S is fixed, the solution
space of α becomes {αi |0≤αi<1, i∈S;αi=1, i /∈S}, and
the resource allocation vectors become β={βi |0<βi≤1, i∈
S;βi=0, i /∈S} and γ = {γi | 0 < γi ≤ 1, i ∈ S; γi = 0, i /∈
S}. That means, we just need to consider the offloading strategy
for S , and the sub-problem (P2) is constructed as

(P2) min
αS ,βS ,γS

∑
i∈S

(
αiDiCi(κiS

λi
i +P i

s)

Si
+
(1−αi)DiP

i
tra

βiSi
tra

)

s.t.
αiDiCi

Si
≤ Ti, ∀i ∈ S, (5a)

(1−αi)

(
Di

βiSi
tra

+
DiCi

γiSMEC

)
≤ Ti, ∀i ∈ S,

(5b)∑
i∈S

βi ≤ 1,
∑
i∈S

γi ≤ 1, (5c)

0 < βi ≤ 1, 0 < γi ≤ 1, ∀i ∈ S, (5d)

0 ≤ αi < 1, ∀i ∈ S, (5e)

where αS = {αi | i ∈ S}, βS = {βi | i ∈ S} and γS = {γi |
i ∈ S}.

Solving problem (P2) is significantly less challenging com-
pared to problem (P1). Whereas, how to determine the optimal
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S becomes a key issue. To determine it, we first construct an
initialS which contains all tasks that cannot be processed locally.
Then, S is updated by adding new tasks based on specific
principles. After each update, the sub-problem (P2) is solved
to calculate the sum of energy consumption under the updated
S . This process is repeated until the total energy consumption
is not reduced anymore. Next, we will discuss the process of
initializing and updating S as outlined below.
� Initialization of S: If the computing capacity of a MD is

sufficient to guarantee the latency constraint of a task, i.e.,
DiCi>TiSi, then the task can be assigned to be executed
locally, otherwise, it must be offloaded to MEC partially or
fully. Therefore, the set S is initialized as the tasks which
cannot be executed locally.

� Update of S: In order to determine the method of updating
S , it is necessary to establish a priority for each task. Let

Xi =
DiCi(κiS

λi
i +P i

s)

Si
, Yi =

DiP
i
tra

Si
tra

,

the energy consumption of Ji can be simplified as

Ei = αiXi +
Yi

βi
(1− αi) =

(
Xi −

Yi

βi

)
αi +

Yi

βi
. (6)

Offloading tasks with a higher Xi − Yi/βi value can result
in a greater reduction in energy consumption compared to
offloading tasks with a lower Xi − Yi/βi value. Since the
βi value is not predetermined, the priority of task Ji is
defined as the value of Xi/Yi. In each iteration, the task
with the highest priority, denoted as Jk, is selected and
added to the set S , that is, S is updated as S ∪ Jk.

The algorithm frame is described as Algorithm 1.

B. Solution for the Offloading Sub-Problem

In Algorithm 1, the key issue is to solve the problem (P2)
to find the optimal offloading for S (see line 7). However,
the complexity of this problem renders it impractical to derive
a closed-form solution. Hence, we try to find the numerical
solutions through two distinct stages:
� First, the feasibility of completely offloading the tasks in
S to MEC is assessed. If the statement is true, it is nec-
essary to determine the most efficient resource allocation
scheme and its corresponding energy consumption. (Full
offloading stage)

� Second, if the tasks in S cannot be completely offloaded
to MEC, an iterative binary search approach is employed
to determine a partial offloading scheme for these tasks.
(Partial offloading stage)

The details of the two stages are introduced in Sections III-B1
and III-B2, respectively.

1) Full Offloading Stage: To judge ifS can be fully offloaded
to MEC, it is crucial to ascertain the existence of a resource
allocation scheme when α = {αi | αi = 0, i ∈ S;αi = 1, i /∈
S}. In this scenario, the problem (P2) can be reformulated as

(P3) min
βS ,γS

∑
i∈S

DiP
i
tra

βiSi
tra

Algorithm 1: Main Algorithm.

Input: Task set J = (J1, J2, . . . , Jn);
Output: αopt, βopt, γopt, and Eopt;
1: Calculate the priority for all tasks;
2: Initial the to-offload task set S and let L← J − S;
3: Eopt ←∞;
4: while L is not null do
5: αL ← {αi = 1 | Ji ∈ L},

βL ← {βi = 0 | Ji ∈ L}, γL ← {γi = 0 | Ji ∈ L};
6: EL ← the total energy consumption of tasks in L

calculated by (1);
7: Solve the problem (P2), and obtain the optimal

offloading scheme (αS ,βS ,γS) and the
corresponding optimal energy consumption ES for
S;

8: if ES + EL < Eopt then
9: Eopt ← ES + EL;

10: (αopt,βopt,γopt)←(αL∪αS ,βL∪βS ,γL∪γS);
11: else
12: break;
13: end if
14: Jcur ← the task with the highest priority in L;
15: S ← S ∪ Jcur, L← J − S;
16: end while

s.t.
Di

βiSi
tra

+
DiCi

γiSMEC
≤ Ti, ∀i ∈ S, (7a)∑

i∈S
βi ≤ 1,

∑
i∈S

γi ≤ 1, (7b)

0 < βi ≤ 1, 0 < γi ≤ 1, ∀i ∈ S. (7c)

Theorem 3.1: Problem (P3) is a convex optimization prob-
lem.

Proof: The proof is given in the supplementary material. �
Given that problem (P3) is a convex optimization problem,

we can use CVX, the convex optimization tool in Matlab, to
solve it. CVX is a Matlab-based modeling system for con-
vex optimization [15], which can find the optimal solution for
problem (P3) if it is solvable, which includes determining
the resource allocation scheme (βS ,γS) and the corresponding
energy consumption Eopt. If it is unsolvable, the process enters
the partial offloading stage.

2) Partial Offloading Stage: If the computing capacity of
MEC is insufficient, a feasible solution for problem (P3) cannot
be found. Hence, some tasks in S can only be partially offloaded
to MEC. Excepting (βS ,γS), the task partial offloading scheme
αS should be determined for S as well. Because αS , βS , and
γS are affected mutually, finding the optimal combination of
(αS ,βS ,γS) is complicated. In this stage, we design an iterative
binary search method to determine the sub-optimal solution step
by step, and the algorithm framework is given in Algorithm 2.
The detailed analysis and the solution process for each step is
introduced later.
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Algorithm 2: Main Algorithm for Partial Offloading Solu-
tion.

Input: The to-offload task set S;
Output: αopt

S ,βopt
S ,γopt

S and Eopt
S of S;

1: Initialize γS ;
2: Eopt

S ← ∞;
3: while true do
4: Find the optimal βS under the given γS by

Algorithm 3; (Section III-B2-b))
5: Calculate αS under βS and γS ; (Section III-B2-a))
6: Calculate the energy consumption ES under αS , βS

and γS using (3);
7: if ES < Eopt

S then
8: αopt

S ← αS , βopt
S ← βS , γopt

S ← γS ,
Eopt
S ← ES ;

9: Update γS based on βS by Algorithm 6;
(Section III-B2-b))

10: else
11: break;
12: end if
13: end while

a) Determination of optimal αS : First, we analyze how
αi is affected by βi and γi, and give the calculation of optimal
αi under a given combination of βi and γi.

According to (6), it can be easily observed that the energy
consumption of MDi is a monotonic function in terms of αi

once βi is fixed. Assume that the value range of αi is expressed
as

αi
˜

≤ αi ≤ α̃i,

where αi
˜

and α̃i are the lower and upper boundaries of αi,

respectively. Then, the optimal value of αi can be discussed as
follows:
� If Xi < Yi/βi, that is, βi < Yi/Xi, then Ei is a decreasing

function of αi, the optimal αi is α̃i;
� IfXi > Yi/βi, that is,βi > Yi/Xi, thenEi is an increasing

function of αi, the optimal αi is αi
˜

;

� If Xi = Yi/βi, that is, βi = Yi/Xi, then Ei is a constant.
The task Ji is executed locally in priority, so the optimal
αi is α̃i.

Combining constraints (5a), (5b), and (5e) of problem (P2),
the solution space of αi is updated as

max

{
0, 1− Ti

Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1}
≤ αi ≤ min

{
TiSi

DiCi
, 1

}
.

Since the value range of αi is varying with different βi and
γi, the optimal value of αi can be discussed in more detail as
follows:

Case 1: TiSi/(DiCi) > 1.

� When βi ≤ Yi/Xi, the optimal value of αi is equal to 1,
denoted as α∗i = 1, since

max

{
0, 1− Ti

Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1}
≤ 1

holds always.
� When βi > Yi/Xi and

1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
≤ 0,

that is,

1

βiSi
tra

+
Ci

γiSMEC
≤ Ti

Di
,

the optimal α∗i is α∗i = 0.
� When βi > Yi/Xi and

0 < 1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
≤ 1,

that is,

Ti
Di

<
1

βiSi
tra

+
Ci

γiSMEC
,

the optimal value α∗i is

α∗i = 1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
.

Case 2: TiSi/(DiCi) ≤ 1.
� When βi ≤ Yi/Xi and

max

{
0, 1− Ti

Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1}
≤ TiSi

DiCi
,

that is,

1

βiSi
tra

+
Ci

γiSMEC
≤ TiCi

DiCi − TiSi
,

the optimal value α∗i is

α∗i =
TiSi

DiCi
.

� When βi > Yi/Xi and

1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
≤ 0,

that is,

1

βiSi
tra

+
Ci

γiSMEC
≤ Ti

Di
,

the optimal value α∗i is α∗i = 0.
� When βi > Yi/Xi and

0 < 1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
≤ TiSi

DiCi
,

that is,

Ti
Di

<
1

βiSi
tra

+
Ci

γiSMEC
≤ TiCi

DiCi − TiSi
,
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the optimal value α∗i is

α∗i = 1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
.

The calculation of the optimal α∗i under different cases is
summarized as the following equations.

Case 1: When TiSi/(DiCi) > 1,

α∗i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if βi≤ Yi

Xi
;

1− TiDi

(
1

βiSi
tra

+ Ci

γiSMEC

)−1
,

if βi>
Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
> Ti

Di
;

0, if βi>
Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
≤ Ti

Di
;

no solution, otherwise,
(8)

and the corresponding energy consumption of MDi is

Ei(βi, γi)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xi, if βi≤ Yi

Xi
;

(Xi− Yi

βi
)

[
1− TiDi

(
1

βiSi
tra

+ Ci

γiSMEC

)−1 ]
+ Yi

βi
,

if βi>
Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
> Ti

Di
;

Yi

βi
, if βi>

Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
≤ Ti

Di
;

∞, otherwise.
(9)

Case 2: When TiSi/(DiCi) ≤ 1,

α∗i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

TiSi

DiCi
, if βi≤ Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
≤ TiCi

DiCi−TiSi
;

1− TiDi

(
1

βiSi
tra

+ Ci

γiSMEC

)−1
,

if βi>
Yi

Xi
, TiDi

< 1
βiSi

tra
+ Ci

γiSMEC
≤ TiCi

DiCi−TiSi
;

0, if βi>
Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
≤ Ti

Di
;

no solution, otherwise,
(10)

and the corresponding energy consumption of MDi is

Ei(βi, γi)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Xi− Yi

βi
) TiSi

DiCi
+ Yi

βi
,

if βi≤ Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
≤ TiCi

DiCi−TiSi
;

(Xi− Yi

βi
)

[
1− TiDi

(
1

βiSi
tra

+ Ci

γiSMEC

)−1]
+ Yi

βi
,

if βi>
Yi

Xi
, TiDi

< 1
βiSi

tra
+ Ci

γiSMEC
≤ TiCi

DiCi−TiSi
;

Yi

βi
, if βi>

Yi

Xi
, 1
βiSi

tra
+ Ci

γiSMEC
≤ Ti

Di
;

∞, otherwise.
(11)

Based on (8) and (10), the optimal αi can be calculated directly
under a given βi and γi for all i ∈ S . Till now, the key to solving
the optimization problem becomes to find the optimal βi and γi
for all tasks, and problem (P2) can be simplified as

(P4) min
βS ,γS

E =
∑
i∈S

Ei(βi, γi)

s.t.
∑
i∈S

βi ≤ 1,
∑
i∈S

γi ≤ 1, (12a)

Fig. 3. The function curve of Ei in term of βi.
Range 1: βi ≤ Yi/Xi;
Range 2: βi > Yi/Xi and Ti

Di
< 1

βiS
i
tra

+ Ci
γiSMEC

≤ TiSi
DiCi

;

Range 3: βi > Yi/Xi and 1
βiS

i
tra

+ Ci
γiSMEC

≤ Ti
Di

.

0 < βi ≤ 1, 0 < γi ≤ 1, ∀i ∈ S. (12b)

The subsequent section presents an iterative binary search
approach for addressing problem (P4), wherein the βS and γS
parameters are progressively optimized until no further improve-
ment in energy consumption can be achieved.

b) Determination of optimal βS under a given γS : In the
section, we introduce how to determine the optimal βS under a
given γS . Under a given γS , problem (P4) is simplified as:

2(P5) min
βS

E =
∑
i∈S

Ei(βi)

s.t.
∑
i∈S

βi ≤ 1, 0 < βi ≤ 1, ∀i ∈ S.

Before solving this problem, some analyses are given.
Theorem 3.2: Ei is a piece-wise function and decreases

monotonically with respect to βi. In each continuous interval,
∂Ei/∂βi ≤ 0 and ∂2Ei/∂β

2
i ≥ 0.

Proof: The proof is given in the supplementary material, and
the function curve of Ei(βi) is shown as Fig. 3. �

Theorem 3.3: Given an optimization problem

min
x

F =

m∑
i=1

fi(xi),

s.t.
m∑
i=1

xi ≤ L, xi > 0, ∀i,

where fi(xi) is a continuous function which ∂fi/∂xi ≤ 0 and
∂2fi/∂x

2
i ≥ 0, for 1 ≤ i ≤ m, then the optimal solution must

satisfy

m∑
i=1

xi = L,

and

∂fi
∂xi

=
∂fj
∂xj

, for any 1 ≤ i < j ≤ m.

Proof: The proof is given in the supplementary material. �
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Algorithm 3: Finding β∗S such that
∑

i∈S βi = 1.

Input: γS , Bmin and Bmax;
Output: The optimal β∗S ;
1: ξleft ← Bmin, ξright ← Bmax,
2: Calculate βleft and βright by Algorithm 4 with inputs

ξleft and ξright, respectively;
3: if sum(βright) < 1 then
4: βopt ← βright;
5: else
6: if sum(βleft) > 1 then
7: βopt ← 
;
8: else
9: while ξright − ξleft > error do

10: ξmiddle ← ξleft + ξright;
11: Calculate βmiddle by Algorithm 4 with

input ξmiddle;
12: if sum(βmiddle) < 1 then
13: ξleft ← ξmiddle;
14: else
15: ξright ← ξmiddle;
16: end if
17: end while
18: βopt ← βright;
19: end if
20: end if
21: β∗S ← βopt;

Combining Theorems 3.2 and 3.3, it can be concluded that,
to find the optimal βS for problem (P5), the key is to find the
optimal ξ such that ∂Ei/∂βi = ξ for all i ∈ S and

∑
i∈S βi = 1.

The details are introduced as follows.
Calculation Of Search Range: Let [β1

i,l, β
1
i,r], [β

2
i,l, β

2
i,r] and

[β3
i,l, β

3
i,r] be three sub-intervals of βi in the ascending order,

which can be calculated based on the segmentation condition in
(9) or (11), and let [BL1

i , BU1
i ], [BL2

i , BU2
i ], and [BL3

i , BU3
i ]

be the corresponding sub-intervals of ∂Ei/∂βi shown in Fig. 3,
and the calculation of ∂Ei/∂βi is given in the supplemen-
tary material. Let Bmin = min{BL1

1, . . . , BL1
|S|} and Bmax =

max{BU3
1, . . . , BU3

|S|}, then [Bmin, Bmax] is the effective
search range. The search process is decomposed into three
sub-algorithms Algorithms 3, 4 and 5:

Algorithms 4 and 5 are to find βS for a given ξ such that
∂Ei/∂βi = ξ for all i ∈ S as much as possible;

Algorithm 3 is to search ξ during [Bmin, Bmax] using a bi-
nary search method such that

∑
i∈S βi = 1 where βi(i ∈ S) is

determined by Algorithm 4.
In Algorithm 3, ξleft and ξright are initialized as the lower

boundary and upper boundary of ∂Ei/∂βi (i ∈ S) first. The
β value is found by Algorithm 4 for ξleft and ξright, de-
noted as βleft and βright, respectively (line 2). If the sum
of βright is less than 1, that means the channel resource is
enough to achieve the maximal marginal benefit, so βright

is the optimal βopt (lines 3 to 4). If the sum of βleft is
greater than 1, this means no available offloading scheme can

Algorithm 4: Finding βS Such That ∂Ei/∂βi = ξ(i ∈ S).
Input: The given ξ; [β1

i,l, β
1
i,r], [β

2
i,l, β

2
i,r], [β

3
i,l, β

3
i,r];

[BL1
i , BU1

i ], [BL2
i , BU2

i ], [BL3
i , BU3

i ] for all i ∈ S;
Output: βS = {βi | i ∈ S|} where
∂Ei(βi)/∂βi = ξ(i ∈ S);

1: for each i ∈ S do
2: switch (ξ)
3: case ξ > BU3

i :
4: βi ← β3

i,r;
5: case BL3

i < ξ ≤ BU3
i :

6: Set Ei = Yi/βi;
7: Calculate βi by Algorithm 5 with input

(ξ, β3
i,l, β

3
i,r);

8: case BU2
i < ξ ≤ BL3

i :
9: βi ← β3

i,l;
10: case BL2

i ≤ ξ ≤ BU2
i :

11: Set Ei =
(Xi− Yi

βi
)[1− TiDi

( 1
βiSi

tra
+ Ci

γiSMEC
)−1]+ Yi

βi
;

12: Calculate βi by Algorithm 5 with input
(ξ, β2

i,l, β
2
i,r);

13: case BU1
i < ξ < BL2

i and TiSi/(DiCi) ≤ 1:
14: βi ← β2

i,l;

15: case BL1
i < ξ < BU1

i and TiSi/(DiCi) ≤ 1:
16: Set Ei = (Xi− Yi

βi
) TiSi

DiCi
+ Yi

βi
;

17: Calculate βi by Algorithm 5 with input
(ξ, β1

i,l, β
1
i,r);

18: case ξ < BL1
i and TiSi/(DiCi) ≤ 1:

19: βi ← β1
i,l;

20: default:
21: βi ← 0;
22: end switch
23: end for

be found to satisfy the predefined constraints under the given λ

(lines 6 to 7). Otherwise, there ought to be a partial derivative
value ξ making the sum of βS equal to 1, and the binary
search method is adopted to find the right ξ and the corre-
sponding βS is the optimal solution to problem (P5) (lines 9
to 17).

Algorithms 4 and 5 are to find the βS value under a given ξ
which satisfies∂Ei/∂βi=ξ for all i ∈ S . SinceEi and∂Ei/∂βi

are piece-wise functions of βi, the search range of βi should
be determined first in Algorithm 4, by doing so we can deter-
mine the right Ei function. After function Ei is determined,
Algorithm 5 is called to find the βi such that ∂Ei/∂βi = ξ
(lines 7, 12 and 17). The method adopted in Algorithm 5 is also
a binary search method since ∂Ei/∂βi is a monotonic function
in each sub-interval of βi.

c) Update of γS under a given βS : The optimal value of
βS can be determined for a given γS . While the optimal βS
depends on the initial value of γS , it is necessary to iteratively
improve γS based on the solved βS .
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Algorithm 5: Finding βi Under a Given Ei(βi) Function.

Input: ξ, the search range [βleft, βright];
Output: βi that makes ∂Ei/∂βi = ξ;
1: while βright − βleft > error do
2: βmiddle ← (βleft + βright)/2;
3: Dermiddle ← ∂Ei(βmiddle)/∂βi;
4: if Dermiddle < ξ then
5: βleft ← βmiddle;
6: else
7: if Dermiddle > ξ then
8: βright ← βmiddle;
9: else

10: βi ← βmiddle;
11: end if
12: end if
13: end while
14: βi ← (βleft + βright)/2;

Under a given βS , the optimal γS can also be determined
using a similar method of finding optimal βS under a given γS .
The detailed analyses are given as follows.

Case 1: If βi ≤ Yi/Xi and TiSi/(DiCi) ≥ 1, we have α∗i =
1. Hence,

γi = 0. (14)

Case 2: If βi ≤ Yi/Xi and TiSi/(DiCi) < 1, we have αi =
TiSi/(DiCi) and Ei is not dependent on γi. Hence, the value
of γi is determined in order to satisfy constraint (4b), and it is
obtained by calculating

1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
=
TiSi

DiCi
. (15)

Case 3: If βi > Yi/Xi and

1

βiSi
tra

+
Ci

γiSMEC
≤ Ti

Di
,

it hasα∗i = 0 andEi = Yi/βi which is independent ofγi. Hence,
γi is set as small as possible in the case, that is

1

βiSi
tra

+
Ci

γiSMEC
=
Ti
Di

. (16)

Case 4: If βi > Yi/Xi and

1

βiSi
tra

+
Ci

γiSMEC
>
Ti
Di

,

it has

α∗i = 1− Ti
Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1
,

and

Ei =

(
Xi −

Yi

βi

)[
1− Ti

Di

(
1

βiSi
tra

+
Ci

γiSMEC

)−1]
+

Yi

βi
,

which is a function of γi, and it is easy to derive the formulas
∂Ei/∂γi < 0 and ∂2Ei/∂γ

2
i > 0.

Algorithm 6: Updating γS Based on a Fixed βS .
Input: The given βS and γS ;
Output: γ∗S after update;
1: γ∗S ← 0;
2: Define a task set Q and Q ← ∅;
3: for i ∈ S do
4: if βi and γi satisfy case 1, case 2, or case 3 then
5: Calculate γ∗i by solving (14), (15) or (16).
6: else
7: Insert task index into Q;
8: end if
9: end for

10: γrest ← 1−
∑

i∈S γ
∗
i ;

11: Set Ei(γi) as
(Xi − Yi

βi
)[1− Ti

Di
( 1
βiSi

tra
+ Ci

γiSMEC
)−1] + Yi

βi
;

12: Calculate the lower boundary ξleft and upper
boundary ξright of ∂Ei/∂γi (i ∈ Q);

13: Calculate γleft and γright for Q by a binary search
algorithm with inputs ξleft and ξright, respectively
(same with Algorithm 5);

14: if sum(γright) < γrest then
15: γ∗Q ← γright;
16: else
17: if sum(γleft) > γrest then
18: γ∗Q ← 
;
19: else
20: while ξright − ξleft > error do
21: ξmiddle ← ξleft + ξright;
22: Calculate γmiddle for Q by a binary search

algorithm with input ξmiddle (same with
Algorithm 5);

23: if sum(γmiddle) < γrest then
24: ξleft ← ξmiddle;
25: else
26: ξright ← ξmiddle;
27: end if
28: end while
29: γ∗Q ← γright;
30: end if
31: end if

In this case, the optimal γi can be found using the binary
search method which is similar to Algorithm 5. The overall
algorithm to update γS is given in Algorithm 6. In the algorithm,
we first calculate the new γi value directly for those tasks whose
βi and γi satisfy case 1, case 2, or case 3 (lines 3 to 9). Then, the
rest tasks share the remaining computing resource γrest which
is calculated in line 10. To make the remaining resource achieve
the optimal marginal benefit, a similar method is adopted with
Algorithm 3 to find the optimal γQ such that the sum of γQ is
equal to γrest.

C. Summary of Solution Process

The heuristic algorithm for solving the prime energy opti-
mization problem is complex since the prime problem is divided
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Fig. 4. Algorithm flow chart.

into multiple sub-problems, and the sub-algorithms for solving
the sub-problems are nested layer by layer. To enhance the
comprehensibility of the algorithm, we provide a flow chart of
the algorithm as Fig. 4.

IV. PERFORMANCE EVALUATION

In this section, a series of comparison results are presented to
evaluate the performance of the proposed algorithms.

A. Parameter Setting

The configuration of the simulation environment is listed as
follows:
� Operating System: 64-bit, Windows 10
� CPU: Intel(R) Core(TM) i5-9400F CPU @ 2.90GHz
� RAM: 8.00 GB
� Programming platform: R2016 Matlab.
In the simulations, the computing capacity of the MEC server

is set from 5 to 30 GHz which is a relatively reasonable
range, since there is a lot of technical support, for example,
multi-core/multi-CPU technology, cluster technology, etc. The
bandwidth is set between 10 and 30 MHz by referring to the
parameters of 5G network. The computation speed of MDs is
randomly generated during the range of [0.7, 1.1], which is the
average of the computing capacity of general IoT chips and
mobile intelligent terminals. The values of κi and λi are set as
10−27 and 3, respectively [3], [9]. The static power consumption
P i
s is negligible compared with the dynamic power consumption,

so we set it to a very small value between 0.02 and 0.05. The
task size Di is randomly selected during [100, 500] KB, and
the computation density Ci is randomly set during [500, 1000]
cycles/bit. ωi is randomly selected during the range of [1.5,2.5]
Watts−1 [10], [12]. The transmitting power of MDs is set during
the range of [20, 29] dbm [16]. The parameters are summarized
in Table I.

TABLE I
PARAMETER SETTING

B. Task Ordering Schemes

As introduced in Section III, the to-offload task set S is
updated according to the predefined priorities. To verify the su-
periority of our method, we compare the algorithm performance
when adopting seven different task ordering schemes. Let L be
the order of the tasks. In this paper, we consider the following
schemes for the order of L = {i1, i2, . . . , in}.
� Original Order (ORG) – Tasks are arranged in the original

order.
� Smallest Data First (SDF) – Tasks are arranged such that
di1 ≤ di2 ≤ · · · ≤ din .

� Largest Data First (LDF) – Tasks are arranged such that
di1 ≥ di2 ≥ · · · ≥ din .

� Smallest Computation Requirement First (SCRF) – Tasks
are arranged such that di1ci1 ≤ di2ci2 ≤ · · · ≤ dincin .

� Largest Computation Requirement First (LCRF) – Tasks
are arranged such that di1ci1 ≥ ri2ci2 ≥ · · · ≥ rincin .

� Largest Ratio First (LRF) – Tasks are arranged such that
Ri1 ≥ Ri2 ≥ · · · ≥ Rin where Ri = Yi/Xi.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on February 08,2024 at 14:10:21 UTC from IEEE Xplore.  Restrictions apply. 



4414 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

TABLE II
EXPERIMENTAL DATA FOR OPTIMAL COMPUTATION OFFLOADING UNDER DIFFERENT MEC SPEEDS

TABLE III
EXPERIMENTAL DATA FOR OPTIMAL COMPUTATION OFFLOADING UNDER DIFFERENT MD SIZES

TABLE IV
EXPERIMENTAL DATA FOR OPTIMAL COMPUTATION OFFLOADING UNDER DIFFERENT DELAY REQUIREMENTS

� Smallest Ratio First (SRF) – Tasks are arranged such that
Ri1 ≤ Ri2 ≤ · · · ≤ Rin where Ri = Yi/Xi.

In above task ordering schemes, SRF is the scheme we de-
signed in this paper.

C. Impact of Different Task Ordering Schemes

In Tables II–IV, the optimal total energy consumption is
listed concerning different MEC speeds, different MD sizes,
and different task delay requirements when adopting diverse
ordering schemes introduced above.
� In Table II, the bandwidth isB = 20, the number of MDs is
n = 15, the task delay requirement is randomly generated
in [1.5, 3], and the MEC speed SMEC is set from 5 to 30 in
step 5.

� In Table III, the bandwidth is B = 20, the MEC speed
is SMEC = 20, the task delay requirement is randomly
generated in [1.5, 3], and the number of MDs is set as 9 to
24 in step 3.

� In Table IV, the number of MDs is n = 15, the MEC speed
is SMEC = 20, the bandwidth is B = 20, and the task
delay requirement is randomly generated in [1,2.5], [1.5,
3], [2,3.5], and [2.5,4], respectively.

To avoid errors caused by randomness, we generate 100 sets of
simulation data for each case. For each set of simulation data, our
algorithm is applied using seven different task ordering methods:
ORG, SDF, LDF, SCRF, LCRF, LRF and SRF. The average

energy consumption of the 100 results is calculated for each
method, denoted as Eopt in the tables. Additionally, we present
the number of times that the algorithm performs best under each
task ordering method, denoted as Copt.

We have the following observations from the experimental
results.
� LCRF performs better than SCRF, and SFR performs better

than LRF. Besides, LDF mainly performs better than SDF,
while their performance might be affected by the delay
requirement.

� SCRF, SDF and LRF perform even worse than ORG.
� On the whole, SRF performs best among the seven meth-

ods, LCRF and LDF follow.
In addition, we can conclude the changing trend of en-

ergy consumption with different parameters from the tables. In
Table II, the total energy consumption of MDs shows an obvious
downward trend when the computing capacity of MEC increases
from 5 to 15, and then keeps stable during 20 and 30. The reasons
are given as follows. When the MEC computing capacity is
small, increasing the computing capacity of MEC can reduce
the execution latency of tasks effectively, so more tasks can
be offloaded to MEC and energy consumption is reduced cor-
respondingly. Whereas, when the computing capacity increases
further, its affection on the execution delay becomes smaller and
channel resource becomes the key that restricts the performance
improvement. From Table III, it is easy to see that the energy
consumption of MDs increases when the number of MDs in the
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Fig. 5. Energy consumption vesus different (a) number of MDs; (b) bandwidth; (c) LDR.

Fig. 6. Number of offloaded tasks vesus different (a) number of MDs; (b) bandwidth; (c) LDR.

coverage of an MEC server increases. The results are appar-
ent since more tasks are generated when the number of MDs
increases. Table IV shows that when the delay requirements
of tasks get looser, more energy consumption can be saved.
That is explained as follows. Fewer resources are required per
MD to guarantee the looser delay requirement. For the MEC
server with the same computing capacity, it can process much
more offloaded tasks on the premise of ensuring performance
requirements. In addition, offloading tasks for remote execution
consumes less energy than executing them locally. Synthesizing
the above reasons, the energy consumption declines when the
delay requirements of tasks get looser. Analyzing the perfor-
mance indicator Copt, we also can find that our method con-
sistently outperforms others in the majority of the 100 repeated
experiments.

D. Comparison of Different Strategies

In this section, we compare our Heuristic Algorithm (HA)
with three reference schemes,1 named as
� Local computation scheme (LC), where all MDs process

their tasks locally.
� Full offloading scheme (FO), where the tasks are either

processed locally or offloaded to MEC. The offloaded tasks
are determined by the proposed method in this paper.

� Equal resource allocation scheme (ERA), where wireless
channel resource and MEC computing resource are equiv-
alently assigned to its accessed MDs.

To adapt the LC scheme, the delay requirements of tasks
should be satisfied when they are processed locally. Hence,
the generated tasks should satisfy DiCi/Si < Ti. The other
parameters are set Table I. Three groups of simulations are
conducted to compare the performance of the four schemes
under different numbers of MDs, different bandwidths, and
different LDRs, respectively. Similarly, to avoid errors caused
by randomness, we generate 100 sets of simulation data for each
case.

In Figs. 5 and 6, the energy consumption and the number
of offloaded tasks of the four schemes are compared for dif-
ferent parameters, respectively. Fig. 5(a) shows that the energy
consumption is increasing with the increase in the number of
tasks for all algorithms. Among them, LC consumes much
more energy than the other three algorithms, which proves
that task offloading can reduce energy consumption effectively.
Moreover, our proposed algorithm outperforms both of FO and
ERA in terms of energy saving, and it can reduce up to 15% of
energy consumption compared with them. Fig. 6(a) shows that
the number of offloaded tasks does not change obviously with the
increasing number of tasks. That is because the communication
and MEC computation resources are fixed, which determines
the offloading capacity. Fig. 5(b) depicts the changes of energy
consumption under different bandwidths. It is obvious that the
energy consumption of LC is not affected by the change in
bandwidth, while the energy consumption of FO, ERA, and

1Since there is no literature which investigated the same problem in the similar
scenario, we propose three reference schemes for comparison herein.
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Fig. 7. Performance comparison under different LDR.

the proposed algorithm declines when the bandwidth becomes
greater. The reason can be given by analyzing the results of
Fig. 6(b) which shows that more tasks can be offloaded with the
increase of bandwidth. In Fig. 5(c), the energy consumption un-
der different LDRs is compared for the four algorithms. From the
figure we can see that the energy consumption of LC increases
greatly with the increase of LDR, that is because a higher LDR
leads to a heavier computation requirement. In contrast, the en-
ergy consumption of FO, ERA, and the proposed algorithm does
not show obvious changes. The reason is analyzed as follows.
Under a greater LDR value, it takes more energy to process a
task of the same size locally, while the energy consumption of
offloading the task to MEC remains the same. Hence, to achieve
optimal energy consumption when LDR rises, offloading more
tasks to MEC is inevitable, which can slow down the growth of
energy consumption effectively. Fig. 6(c) verifies the change in
the number of offloaded tasks.

In the above comparison, the generated tasks are forced
to satisfy the condition of DiCi/Si < Ti to make them ex-
ecutable locally. However, in practical applications, there are
many computation-intensive delay-sensitive tasks that cannot
be processed by MDs. To verify the advantage of our proposed
algorithm in dealing with such tasks, we give another group of
simulation results in Fig. 7 which presents the energy consump-
tion and successful ratio of different computation offloading
strategies with different LDR.

The figure shows that the energy consumption of the three
schemes is increasing with the increase of LDR. Among the
three schemes, our proposed algorithm performs best in terms
of energy saving, followed by FO, and finally ERA. With the
increase of LDR, our algorithm can save more energy compared
with FO and ERA, and the energy saving is up to 10.95% and
14.20% when LDR is 750. In addition, although FO performs
better than ERA in terms fo energy saving, it has an obvious
flaw it cannot find an offloading solution sometimes and the
probability of failure becomes greater with the increase of LDR.
The reasons are explained as follows. When LDR becomes
greater, the ratio of forced-offloading tasks gets higher. Since
FO is to offload tasks fully to MEC, it is more likely to find
no solution when adopting the FO scheme. The table lists the
number of times that FO fails to find an offloading solution.

From the table, we can see that the failure ratio of FO increases
to 95% when the LDR value increases to 1000.

V. CONCLUSION

We have considered a computation partial offloading problem
for a multi-MD MEC system based on TDMA. An energy
optimization problem with delay constraint is formulated where
the resource competition for wireless channel and MEC com-
puting resources are considered. Due to the complexity of the
primal optimization problem, a heuristic algorithm is proposed
to solve the problem by dividing it into a series of offloading
sub-problems. The offloading sub-problem is to find the optimal
offloading scheme for a fixed offloaded task set which is updated
iteratively based on the proposed discipline. We first try to find
the full offloading solution for the sub-problem, which is proved
to be a convex problem. Then, an iterative binary searching is
proposed to find the optimal partial offloading solution in which
the resource allocation concerning channel resources and MEC
computing frequency are optimized cyclically. The experimental
results show that the proposed algorithm outperforms the com-
paring schemes in terms of energy savings under strict delay
requirements.
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