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Abstract—Cloud computing is becoming more and more popular and has received considerable attention recently. As a new kind of
Information Technology (IT) commercial model, understanding the economics of cloud computing becomes critically important. From
the cloud service providers’ perspective, profit maximization is the top issue for them. Because a multi-server system is devoted to
serving one type of service requests and application, service providers should build multiple multi-server systems to satisfy the market
requirements of different application domains. Because available funding for a service provider is generally limited, it cannot afford to
invest in all application domains. Hence, how to select appropriate application domains for investment and allocate funding such that
the total profit is maximized are important issues for service providers. To address this problem, a fund-constrained profit maximization
model is proposed. However, the exact solution of this optimization model is very difficult to formulate due to its complexity. Hence, this
paper presents a heuristic strategy to search for a high quality solution. In our strategy, the optimization problem is solved in four
stages, and the solution is optimized gradually. Through the proposed heuristic investment strategy, an appropriate investment scheme
can be developed that synthesizes the market requirement, the fund constraint, the service level agreement, and so forth. A series of
numerical calculations is executed to assess the performance of the proposed strategy. Then, six other investment strategies are
compared to our strategy. Our results show that the investment scheme designed using our strategy can produce much more profit
than these six other strategies.

Index Terms—Cloud computing, deadline, fund allocation, multi-server system, profit maximization, queuing model, service-level
agreement, waiting time.

F

1 INTRODUCTION

C Loud computing is becoming more and more popu-
lar and has received considerable attention recently.

A new kind of IT commercial model, cloud computing
centrally manages the resources and offers resources and
services over the Internet to customers on demand [1].This
can reduce the requirement for large capital outlays for
the hardware to deploy service and the human expense
to operate it [2]. Of course, the services provisioned by
cloud computing are not free. The cloud service providers
support the operation of cloud computing and earn profits
by charging the customers who enjoy the services according
to various pricing models [3, 4, 5].

In a cloud computing environment, there are always
three tiers of participants: the infrastructure providers, the
services providers, and the customers (see Fig. 1 and it-
s further elaboration in Section 3.1). The infrastructure
providers maintain the basic hardware and software facili-
ties. The service providers rent resources from infrastructure
providers and provide services to customers. The customers
submit their service requests to the service providers and
are charged based on the quantity and the quality of the
provided services [6]. In this paper, we focus on the research
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of service providers. For most businesses, profit is the most
important concern. Hence, how to maximize profit is the
top issue for service providers. Profit maximization is an
optimization problem that is a classical issue in cluster
computing and grid computing [7, 8, 9, 10, 11]. With the
development of cloud computing, understanding the eco-
nomics of cloud computing becomes critically important.
In [12, 13], cloud computing economics is introduced as a
significant, new research topic in computer science.

There are many factors that affect the profit of the service
providers such as market demand, capital input, configu-
ration of the cloud service platform, pricing model, and
so forth. For an application domain with a known market
demand, the cloud service system must be configured ap-
propriately to achieve profit maximization. If the capacity of
the service system is configured to satisfy the peak demand,
over-provisioning can occur because the available resources
may exceed the actual demand most of the time; hence, a
significant quantity of resources would be wasted. If the
service system is configured with a lower capacity, under-
provisioning can occur as the available resources are unable
to fully meet the fluctuating demand, which also leads
to profit loss. It is important for the service providers to
trade off between the two extremes to maximize the profit.
To achieve this goal, Cao et al. [1] proposed an optimal
configuration strategy for the service system. However, the
authors focused only on the profit maximization problem of
a single domain and did not consider the funding constraint.

In this paper, we study a different issue from that dis-
cussed in the existing researches. In practice, many service
providers want to configure their own cloud serving plat-
forms by renting resources from infrastructure providers,
but their available funding is limited. There are so many ser-
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vice domains from the end-users that the available funding
is not sufficient to support all serving domains. Hence, how
to utilize the limited funding to obtain a maximum profit
is an important and interesting problem. To serve diverse
service requests from different application domains, service
providers should build multiple service sub-platforms such
that different types of server requests can be sent to different
sub-platforms. Configuring a service sub-platform for an
application domain incurs upfront costs, such as the renting
of resources and cost of electricity. The electricity is a specific
commodity, similar to natural gas, which can be used before
paid for or be paid for before use. In this paper, we consider
the electricity as an upfront cost. Since configuring of cloud
service platforms incurs upfront costs and the available
funding of service providers may be constrained, how to
select the best application domains for investment and how
to allocate the limited funding are two key problems. If
the funding allocated to an application domain increases,
then funding allocated to another domain will decrease. In
addition, the amount of funding allocated to an application
domain affects the profit obtained in this domain, and then
affects the total profit of the cloud service providers. Hence,
funding allocation is an important concern of cloud service
providers. This paper addresses this problem and seeks an
optimal funding allocation scheme as well as the optimal
configuration scheme for each application domain.

When considering multiple multi-server systems and
funding constraint, profit maximization becomes much
more complicated. In general, if the available funding is
sufficient, investing in all the application domains with
the optimal configurations can achieve the maximal profit.
However, if the budgets of the service providers are limited,
they cannot afford to invest all application domains. So, an
appropriate investment scheme should be found such that
the total profit is maximized. This problem is complicated
and consists of three sub problems: the first relates to the
nature of the invested application domains; the second is
the funding level allocated to each domain; the last is how
to configure the multi-server system with the allocated
funding. In this paper, we first build a fund-constrained
profit maximization model for this problem. According to
the analysis, the problem cannot be solved using techniques
in optimization theory due to the complexity of the model.
Hence, in this paper, a heuristic algorithm is developed to
find an effective asymptotic solution. This heuristic algo-
rithm is applied in three phases. First, an initial investment
scheme is determined. Second, slight adjustment is done
to find a better scheme with more total profit. Third, the
remaining funding is allocated to further increase the profit.
Throughout the whole process, the 0-1 knapsack problem
is an important sub problem which should be solved many
times. It is a classical NP-hard problem [14]. The methodol-
ogy contributions of this work include:

• Define a fund-constrained profit maximization prob-
lem from the perspective of service providers.

• Analyze the revenues and costs of a service provider
and build a fund-constrained profit maximization
model.

• Develop a heuristic algorithm to solve the opti-
mization problem, which can determine the invested
application domains, the funding allocated to each

application domain, and the configuration of each
multi-server system in a flexible way.

• Conduct a series of numerical calculations to demon-
strate the performance of our strategy, and compare
our strategy with six other strategies to verify the
superiority of our strategy.

The rest of the paper is organized as follows. Section 2
reviews the related work on profit maximization in cloud
computing. Section 3 presents the models used in this
paper, including the three-tier cloud computing model, the
multiple multi-server systems model, the revenue and cost
models. The problem is also described in detail in the
section. Section 4 proposes our heuristic algorithm to find
the sub-optimal investment scheme. Section 5 analyzes the
performance of our investment strategy and demonstrates
the performance of the proposed scheme through compari-
son with six other investment strategies. Section 6 presents
the conclusions of this work.

2 RELATED WORK

In this section, we review recent works relevant to the eco-
nomic problem in cloud computing. As a new commercial
model, profit is one of the most important issues in cloud
computing, especially for the cloud service providers. The
profit obtained by the service providers is determined by
two parts: the revenues and the costs. Hence, increasing
revenues and reducing costs are two ways of increasing
profit. Because the costs of service providers consist of the
resource rental and the electricity cost, there are two ways
to reduce the costs: improve the system utilization to reduce
the number of servers to be rented and/or reduce the energy
consumption to reduce the electricity cost.

In Hu et al. [15], an autonomic resource management
algorithm is proposed based on the response time distribu-
tion, which is used to select an appropriate resource alloca-
tion strategy between Shared Allocation (SA) and Dedicated
Allocation (DA) which requires the smallest number of
servers while meeting the Service-Level Agreements (SLAs).
Mazzucco et al. [16] addressed the problem of maximiz-
ing the profit of cloud providers by trimming down their
electricity cost. The idea is to improve server utilization
based on the dynamical estimation of user demand and
the system behaviors. Beloglazov et al. [17] introduced a
resource provisioning and allocation algorithm which not
only achieves energy efficiency but also satisfies the negoti-
ated SLAs. Its basic idea is to reduce energy consumption
by reducing the number of hosts. Cao et al. [18] studied
the request dispatching problem of multiple multi-server
systems with the objectives of energy optimization and load
balancing. Two load distribution methods are presented
based on power constraints and performance constraints,
respectively. The above research aims at increasing profit
but not achieving profit maximization.

There is some research focusing on the profit maximiza-
tion problem for service providers. Chaisiri et al. [19] took
into consideration the uncertainty of customer demand, and
proposed a stochastic programming model with two-stage
recourse to solve the profit maximization problem for the
service providers. Cao et al. [1] proposed an optimal multi-
server configuration strategy. Through the optimal strategy,
the optimal configuration of a multi-server system, i.e., the
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server size and the server speed can be determined such
that the profit of a multi-server system is maximized. How-
ever, these papers look at solving the profit maximization
problem of single multi-server system and do not consider
the fund constraint.

Some papers consider the profit issue in different cloud
computing environments. For example, Liu et al. [20] con-
sidered a cloud service provider operating geographically
distributed data centers in a multi-electricity-market envi-
ronment, and proposed an energy-efficient, profit- and cost-
aware request dispatch, and resource allocation algorithm
to maximize a service provider’s net profit. In this work,
service requests are not distinguished and they can be
dispatched to any data center.

Due to the randomness of task arrivals, service providers
always face two situations: customer loss or resource waste.
If the service provider deploys a cloud computing environ-
ment with high capacity to reduce the loss of customers, a
great quantity of resource would be wasted; and conversely,
if the service provider wants to increase the utilization of
resource, many customers would be lost. Both of the situ-
ations reduce the profits of the service providers. To avoid
the contradiction, the cloud federation strategy developed
which allows server providers, mutually collaborating, to
share their respective resources to fulfill each one’s demand.
Many researches adopted cloud federation to improve the
profit [21, 22, 23, 24, 25, 26, 27, 28]. In [21], an analyti-
cal model that characterizes cloud federation is presented,
which can be used to derive a provider’s decisions about
resource outsourcing, insourcing, and node shutdown. Fo-
cusing on the issue that resource sharing between multiple
tenants leads to the decrease of the quality of service (Qos),
Lee et al. [29] proposed a scheduling algorithm which can
maximize the profit on the premise of guaranteeing the
quality requirements of the service providers. However, the
services discussed in the paper are interdependent - which
is different from our paper.

Many researches discussed the economical problem from
the perspective of the cloud customers. In the paper by [30],
it is assumed that cloud providers offer cloud customers two
provisioning plans for computing resources with different
prices, namely reservation and on-demand plans. Based on
the analysis of the two kinds of plans, a resource provision-
ing strategy is designed for cloud customers such that their
total payment is minimized. In [31], many cloud service
providers offer service with different QoS and price points.
This paper develops a cloud resource procurement approach
to automatically select appropriate cloud providers accord-
ing to the requirements of the cloud customers.

In this paper, we study a profit maximization problem
for the cloud server providers with multiple multi-server
systems when the available funding is limited. To the best
of our knowledge, such a fund-constrained profit maximiza-
tion problem has not been studied in the existing literature.

Our focus is on finding an optimal investment portfolio
from multiple application domains, and an optimal fund al-
location and multi-server configuration scheme. This prob-
lem looks like the knapsack problem; however, it is much
different. First, the weights and the values of all objectives
are known in the knapsack problem, while the investment
and the profit of each application domain in this paper are
unknown. Second, the ratio of the value and the weight of

Fig. 1: The Three-Tier Cloud Structure

an object is fixed while the profit of an application domain is
not proportional to the investment. When the fund invested
in an application domain changes, its profit margin will
change correspondingly - which might be positive, zero, or
even negative. Due to so many differences, solving our prob-
lem is much more complicated than solving the knapsack
problem and a precise optimal solution cannot be found.
Hence, we have to design a heuristic algorithm to solve
the problem in our paper. There are many existing works
which focus on the variations of the knapsack problem,
for example, multi-objective knapsack problem [32], multi-
dimensional knapsack problem [33], and so forth. However,
their problems are different from ours, so their solutions do
not apply to solving our problem.

3 THE MODELS

In this section, we first describe the three-tier cloud comput-
ing structure. Then, we introduce the related models used
in this paper, including a multi-server queuing model, a
revenue model, and a cost model.

3.1 Cloud Computing Structure
The cloud structure (see Fig. 1) consists of three typical
parts, i.e., infrastructure providers, service providers, and
customers. Here, we focus on the profit maximization prob-
lem of the service providers. This three-tier structure is used
commonly in current cloud computing environments.

In the three-tier structure, an infrastructure provider
owns and operates a cloud computing system which con-
sists of a set of physical resources (server computers). We
assume that the resources are homogeneous in terms of
their computing capacity and capability. Being deployed for
different applications, they can execute different service re-
quests from different applications. Moreover, the resources
are Dynamic Voltage Scaling (DVS)-enabled and can be run
with different speeds.

service providers rent resources from infrastructure
providers and provide services for customers. To serve
different kinds of application requests, a cloud comput-
ing platform consisting of multiple multi-server systems is
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configured. The configuration of each multi-server system
varies - including the server size and the server speed - and
is determined by the market requirement of the objective
application. In a multi-server system, the servers are ho-
mogenous and execute at the same speed.

A customer submits a service request to a service
provider which delivers services on demand. The customer
receives the desired result from the service provider under a
specified Service-Level Agreement and pays for the service
based on the amount of the service and the quality of the
service.

3.2 Modeling Multiple Multi-server Systems
Cloud service providers configure cloud computing plat-
forms as multiple multi-server systems and each multi-
server system is deployed with special software and is de-
voted to serve one type of service requests and applications.
A cloud computing platform consists of n heterogenous
multi-server systems S1, S2, ..., Sn with sizes m1, m2, ...,
mn and speeds s1, s2, ..., sn is shown in Fig. 2. Assume that
a multi-server system Si has mi identical servers with speed
si and it serves specific service requests Ai. Each multi-
server system can be treated as an M/M/m queuing system
which is elaborated as follows.

�
λ

�
λ

�
λ

Fig. 2: A Group of n Heterogenous Multi-server Systems

For each type of application domain Ai, there is a Pois-
son stream with arrival rate λi (measured by the number
of requests per unit of time), i.e., the inter arrival times are
independent and identically distributed (i.i.d.) exponential
random variables with mean 1/λi. Each multi-server sys-
tem maintains an independent waiting queue with infinite
capacity. When the incoming service requests cannot be
processed immediately after they arrive, they are placed in
the queue until they can be handled by any available server
of system Si. The first-come-first-served (FCFS) queuing
discipline is adopted. The task execution requirements, mea-
sured by the number of instructions, are i.i.d exponential
random variables ri with mean ri. The mi servers of system
Si have identical speed si. Therefore, the execution times
of tasks on the multi-server system are also i.i.d. exponen-
tial random variables ti = ri/si with mean ti = ri/si.
The average service rate of each system is calculated as

µi = 1/ti = si/ri, and the server utilization is defined as
ρi = λi/miµi = λi/mi×ri/si. Let πi

k be the probability that
there are k service requests (waiting or being processed) in
the M/M/m queuing system of Si. Then, we have

πi
k =


πi
0

(miρi)
k

k!
, k ≤ mi;

πi
0

mmi
i ρki
k!

, k > mi,

(1)

where

πi
0 =

(
mi−1∑
k=0

(miρi)
k

k!
+

(miρi)
mi

mi!

1

1− ρi

)−1

,

and Eq. (1) is right only when 0 < ρi < 1.
For service providers, how to configure their cloud

service platforms is an important issue because it greatly
affects profits. Configuration includes two aspects. The first
is determining in which application domains to invest and
how many multi-server systems to construct. The second is
determining how many servers need to be rented for each
multi-server system, how fast the servers need to execute,
and how much funding is allocated for each multi-server
system. When taking into consideration funding constraints,
the configuration problem for profit maximization becomes
more complicated. In this paper, we try to solve this op-
timization problem. Since the profit is determined by the
revenues and the costs, we present the revenue model and
cost model in the following.

3.3 Cost Modeling

The costs to service providers consist of two major parts, i.e.,
the cost of infrastructure renting and the utility cost of ener-
gy consumption. Cloud service providers rent servers from
infrastructure providers and pay them the corresponding
rents. Assuming that the rental price of one server for a unit
of time is β, the server rental price to build a multi-server
system Si with mi servers is miβ.

The cost of energy consumed per unit of time is deter-
mined by the price of electricity and the power consumed.
Power dissipation and circuit delay in digital CMOS circuits
can be accurately modeled by simple equations, even for
complex microprocessors circuits, as described by Cao et
al. [1, 18]. The power consumption of CMOS circuits consists
of dynamic power, short-circuit power, and leakage pow-
er [34]. Dynamic power consumption is the dominant com-
ponent in a well-designed circuit. In this paper, we adopt
the following dynamic power model, which is adopted by
many researchers [1, 34, 35]:

Pd = NswCLV
2f. (2)

Here, Nsw is the average gate switching factor at each clock
cycle, CL is the loading capacitance, V is the supply voltage,
and f is the clock frequency [35]. In the ideal case, the
relationship between the clock frequency f and the supply
voltage V is V ∝ fϕ for some constant 0 < ϕ ≤ 1 [18, 36].
The server execution speed s is linearly proportional to the
clock frequency f , namely, s ∝ f . Hence, the power con-
sumption is Pd ∝ NswCLs

2ϕ+1. For ease of discussion, we
assume that Pd = bNswCLs

2ϕ+1 = ξsα where ξ = bNswCL

and α = 2ϕ + 1. In this paper, we set NswCL = 7.0,
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b = 1.3456, and ϕ = 0.5. Hence, α = 2.0 and ξ = 9.4192.
The value of power consumption calculated by Pd = ξsα is
close to the value of the Intel Pentium M processor [37]. It
is reasonable that a server still consumes some amount of
static power [38], denoted as P ∗, when it is idle. For a fully
utilized server, the average amount of energy consumption
per unit of time is P = ξsα + P ∗.

However, the servers are not always fully utilized. For
the multi-server system Si with speed si, its utilization is
ρi = λi/mi×ri/si. Hence, the dynamic energy consumption
of a server in one unit of time is ρiξs

α
i . Assuming that

the price of energy is δ per Watt, then the cost of energy
consumed by a server of system Si per unit of time is
δ(ρiξs

α
i + P ∗). Based on the analysis above, the cost of

system Si with mi servers and a speed si per unit of time is
Ci = mi(β + δ(ρiξs

α
i + P ∗)).

3.4 Revenue Modeling
Because of limited computing capacity, the service requests
that cannot be handled immediately after entering the sys-
tems must wait in their respective queues until any server
of the corresponding system is available. To guarantee the
Quality of Service (QoS), there is a Service-Level Agreement
(SLA) negotiated between the customers and the service
provider. The SLA clearly outlines the QoS (measured by the
waiting time) and the corresponding charge. We define the
service charge function for a service request with execution
requirement r and waiting time ω in Eq. (3),

E(r, ω) =
{
air, 0 ≤ ω ≤ d;

0, ω > d,
(3)

where ai is a constant, which indicates the price of ap-
plication domain Ai when serving requests of one billion
instructions and d indicates the maximum waiting time that
a service request can tolerate. According to the SLA, if the
requests are handled before deadline d, the customers pay
ar to the service provider. Otherwise, the provider serves
the requests for free as a penalty. In this paper, we assume
that the service provider will not change the pricing scheme
once it is determined.

The following theorem gives the expected charge to a
service request of Ai.
Theorem 3.1. The expected charge to a service request of Ai

is
Ei = airi

(
1−Πi

qe
−(1−ρi)miµid

)
,

where Πi
q = πi

mi
/(1− ρi).

Proof 3.1. The proof is given in the supplementary file.

Hence, the total revenue obtained by serving service
requests of Ai during unit of time can be calculated as:

Ri = λiEi = λiairi
(
1−Πi

qe
−(1−ρi)miµid

)
. (4)

3.5 Problem Description
Cloud service providers rent servers from the infrastructure
providers to construct multiple multi-server systems, and
provide service to customers with different requests. For
cloud service providers with limited budgets, how to invest
the funds such that the profit is maximized is a critical issue.

Our fund-constrained profit optimization problem for mul-
tiple heterogenous multi-server systems can be specified as
follows: given the budget per unit of time F , the task arrival
rates of n kinds of different applications λ1, λ2, ..., λn, the
average task execution requirement r1, r2, ..., rn, and the
base power supply P ∗, find the funds C1, C2, ..., Cn invest-
ed to different multi-server systems, and their configura-
tions, including the numbers of the servers m1,m2, ...,mn

and the server speeds s1, s2, ..., sn, such that the profit is
maximized, subject to the constraint

∑n
i=1 Ci ≤ F , where

Ci = mi(β + δ(ρiξs
α
i + P ∗)) and 0 < ρi < 1.

Let xi denote the 0-1 variable indicating whether the
service provider invests in application domain Ai. If so,
xi = 1; otherwise, xi = 0. Let Ci be the fund allocated to
the ith application domain Ai and Ri be the revenue from
serving Ai. The optimization problem can be formulated as
follows, i.e., maximizing

Pro =
n∑

i=1

(Ri − Ci)xi

=
n∑

i=1

λiairi
(
1−Πi

qe
−(1−ρi)miµid

)
xi

−
n∑

i=1

(
mi(β + δP ∗) + δξλiris

α−1
i

)
xi,

(5)

subject to
n∑

i=1

(
mi(β + δP ∗) + δξλiris

α−1
i

)
xi ≤ F,

0 < ρi < 1, ∀i = 1, 2, ..., n.

(6)

This optimization problem has 3n variables, which are
m1, ...,mn, s1, ..., sn, x1, ..., xn, and it is a combination of
discrete optimization and continuous optimization prob-
lems. Hence, there is absolutely no closed-form solution.
This problem seems like a knapsack problem, but it is much
more complicated than knapsack problems. In a traditional
knapsack problem, the weight and the value of all objects
are known and the objects are divisible. In addition, the
value of an object after divided is proportional to its weight.
However, in this study, the fund allocating problem cannot
be classified as this kind of knapsack problem because the
profit obtained in each domain is not proportional to the
fund invested to that domain. Similarly, the fund allocating
problem does not belong to 0-1 knapsack problem because
each domain can be invested with arbitrary fund. To solve
the optimization problem, this paper contributes to develop
a heuristic algorithm to solve the problem by translating it
into a series of 0-1 knapsack problems.

In Table 1, we summarize all the notations used in the
paper to improve the readability.

4 A HEURISTIC ALGORITHM

In this section, a heuristic algorithm is developed to solve
the fund-constrained profit optimization problem. This algo-
rithm consists of four phases. First, the relationship be-
tween the investment amount and the optimal profit is
analyzed for each multi-server system. Given an arbitrary
invested fund, the partial derivative is adopted to get the
optimal multi-server configuration and the optimal profit.
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TABLE 1: Notations used in this paper.

Notation Description
Ai the ith application domain
Si the multiserver system configured for application

Ai

mi the server size of system Si

si the server speed of system Si

λi task arrival rate of Ai

ri task execution requirements with mean ri
µi average service rate of system Si

ρi the server utilization of Si

πi
k the probability that k requests are in the system Si

F the total budget
Ci the investment amount allocated to system Si

ω the waiting time of requests
ai the price per one billion instructions of application

domain Ai

d the maximum waiting time of requests
E(r, ω) the service charge of a request with r billion

instructions and waiting time ω
Ei the expected charge to a service request of Ai

Proi the profit of Si

Pro the total profit
β the rental price of single server
δ the electricity price

Second, a simple greedy algorithm attempting to maximize
the profit is designed to determine the initial investment
scheme. Third, we adjust the number of invested application
domains, the investment amount allocated to each domain,
and the configuration of each multi-server system. Last, we
allocate the remaining fund to increase profit further. In
the following subsections, the four phases are presented in
detail.

4.1 Profit Maximization of Single Domain

To analyze the relationship between the investment amount
and the optimal profit, we build a profit maximization mod-
el aiming at the multi-server system Si. The profit of system
Si, denoted as Proi, is affected mainly by the investment
amount Ci and the server configuration (the server size mi

and the speed si), which is calculated as:

Proi = λiairi
(
1−Πi

qe
−(1−ρi)miµid

)
−Ci, (7)

where
Ci = mi(β + δP ∗) + δξλiris

α−1
i . (8)

In order to simplify the following deduction, we use
the following closed-form approximation

∑mi−1
k=0

(miρi)
k

k! ≈
emiρi and mi!≈

√
2πmi(

mi

e )mi [1, 39]. Therefore, we get the
following closed-form expression of Πi

q :

Πi
q =

(√
2πmi(1−ρi)

(
eρi

eρi

)mi

+1

)−1

.

The profit is represented as:

Proi = λiairi−
λiairie

−(1−ρi)miµid

√
2πmi(1−ρi)

(
eρi
eρi

)mi

+1
−Ci. (9)

According to Eq. (8), we know that the speed si can be
determined by the investment amount Ci and the server

size mi, which is formulated as

si =
α−1

√
Ci−mi(β+δP ∗)

δξλiri
. (10)

Substituting Eq. (10) to Eq. (9), the profit can be formu-
lated as a function of Ci and mi as:

Proi = λiairi−
λiairiD1√

2πmiD2D3+1
−Ci, (11)

where

D1 = e
(
λi− α−1

√
Ci−mi(β+δP∗)

δξλiri

mi
ri

)
d
,

D2 = 1− λiri
α−1

√
Ci−mi(β+δP∗)

δξλiri
mi

,

D3 =

 e
λiri

α−1
√

δξλiri
α−1
√

Ci−mi(β+δP∗)mi

e λiri
α−1
√
δξλiri

α−1
√

Ci−mi(β+δP∗)mi


mi

.

4.1.1 Optimal Size of Single Domain

Given α, β, γ, ξ, P ∗, λi, ri, and the investment amount
Ci, the problem is to find mi such that the profit Proi is
maximized. Because 0 < ρi < 1, the changing interval of mi

must satisfy the following equation:

mi > 0;

si =
α−1

√
Ci−mi(β+δP ∗)

δξλiri
> 0;

ρi =
λiri

mi
α−1

√
Ci−mi(β+δP∗)

δξλiri

< 1.

(12)

Simplifying Eq. (12), we can get the equation of mi as
follows, {

0 < mi < Ci/(β + δP ∗); (13a)
mα

i (β+δP ∗)−mα−1
i Ci+δξ(λiri)

α < 0. (13b)

In order to solve Eq. (13b), we use Matlab to solve
equation

∆ = mα
i (β+δP ∗)−mα−1

i Ci+δξ(λiri)
α = 0,

and then find the solution interval [mmin,mmax] such that
∆

′
(mmin) < 0 and ∆

′
(mmax) > 0, where

∆
′
(mi) = α(β+δP ∗)mα−1

i − Ci(α− 1)mα−2
i .

Combined with Eq. (13a), the effective interval of m is
[max{0,mmin},min{mmax, Ci/(β + δP ∗)}]. For example,
let β = 1.5, δ = 0.1, P ∗ = 2, Ci = 26.5, λi = 10, ri = 1,
ai = 20, and d = 5, the solution intervals of Eq. (13a) and
Eq. (13b) are [0,15.5852] and [5.4830,10.1052], respectively.
Then, the effective interval of mi is [5.4830,10.1052].

According to our calculation using Eq. (11), we observe
that the profit is a convex function of mi within the effective
interval, which is shown in Fig. 3. Therefore, there must be
an optimal mi such that the profit is maximized.
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Fig. 3: The profit versus the server size under given budget.

To maximize Proi, we need to find mi such that

∂Proi
∂mi

=

√
2πmiλiairiD1

(
∂D2

∂mi
D3 +

∂D3

∂mi
D2

)
(
√
2πmiD2D3 + 1)2

−
λiairi

∂D1

∂mi√
2πmiD2D3 + 1

=0,

(14)

where
∂D1

∂mi
=
dD1

ri
α−1

√
Ci−mi(β+δP∗)

δξλiri

(
mi(β+δP ∗)

(α−1)(Ci−mi(β+δP ∗))
−1

)
,

∂D2

∂mi
=
λiri
m2

i

α−1

√
δξλiri

Ci−mi(β+δP∗)

(
1− mi(β + δP ∗)

(α−1)(Ci−mi(β+δP ∗))

)
,

∂D3

∂mi
=

(
β+δP ∗

(α−1)(Ci−mi(β+δP ∗))

(
λiri

α−1

√
λiriδξ

Ci−mi(β+δP ∗)

−mi

)
− ln

(
(λiri)

α−1
√
λiriδξ

α−1
√
Ci−mi(β+δP ∗)mi

))
D3.

It is apparent that there is no closed-form solution
to mi, so we use the standard bisection method to
find mi numerically [40]. The algorithm is shown as
Alg. 1, and the decreasing interval [lm, um] is set as
[max{0,mmin},min{mmax, Ci/(β+δP ∗)}]. It should be no-
ticed that the solution of Eq. (13) might be null, which means
that the budget is too low to configure enough capacity for
market demand. In this case, the profit must be negative,
and it is unnecessary to find the optimal configuration.

4.1.2 Optimal Fund of Single Domain

Given α, β, γ, ξ, P ∗, λi, ri, and mi, the problem is to find
Ci such that the profit Proi is maximized.

Given mi, the effective interval of Ci must satisfy the
following equation:

Ci > 0;

si =
α−1

√
Ci−mi(β+δP ∗)

δξλiri
> 0;

ρi =
λiri

mi
α−1

√
Ci−mi(β+δP∗)

δξλiri

< 1.

(15)

Algorithm 1 Optimal Server Size under Given Budget

Input: Ci, λi, ri.
Output: mi, Proi.

1: Find the decreasing interval [lm, um] of ∂Proi/∂mi such
that ∂Proi(lm)/∂mi > 0 and Proi(um)/∂mi < 0;

2: while um− lm > ε do
3: mid← (lm+ um)/2;
4: if ∂Proi(mid)/∂mi > 0 then
5: lm← mid;
6: else
7: if ∂Proi(mid)/∂mi < 0 then
8: um← mid;
9: end if

10: else
11: mi ← mid;
12: break;
13: end if
14: end while
15: mi ← (lm+ um)/2;
16: Proi ← Calculated using Eq. (11).

Simplifying Eq. (15), we can get the following inequality
of Ci: 

Ci > 0; (16a)
Ci > mi(β + δP ∗); (16b)

Ci > mi(β + δP ∗) +
δξ(λiri)

α

mi
α−1

. (16c)

Through Eq. (16), the effective interval of Ci can be
solved as [mi(β+δP ∗)+ δξ(λiri)

α

mi
α−1 ,+∞]. Let mi = 8, and

other parameters are the same as those in Fig. 3. The effec-
tive interval of Ci is [25.3740, +∞], and the changing trend
of profit with increasing Ci is shown in Fig. 4. It is obvious
that the optimal profit can be obtained in the extremal point.
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Fig. 4: The profit versus the budget under given server size.

To maximize Proi under given mi, we need to find Ci

such that ∂Proi/∂Ci = 0, where ∂Proi/∂Ci is derived as
follows:

∂Proi
∂Ci

=

√
2πmiλiairiD1

(
∂D2

∂Ci
D3 +

∂D3

∂Ci
D2

)
(
√
2πmiD2D3 + 1)2

−
λiairi

∂D1

∂Ci√
2πmiD2D3 + 1

−1

=0,

(17)
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where

∂D1

∂Ci
=

−midD1

ri(α−1)(Ci−mi(β+δP ∗))
α−1

√
Ci−mi(β+δP ∗)

δξλiri
,

∂D2

∂Ci
=

λiri
(α−1)mi(Ci−mi(β+δP ∗))

α−1

√
δξλiri

Ci−mi(β+δP ∗)
,

∂D3

∂Ci
=

D3

(α−1)(Ci−mi(β+δP ∗))

(
mi−

λiri
α−1

√
δξλiri

Ci−mi(β+δP ∗)

)
.

We can use the bisection method to find the optimal Ci,
too.

4.1.3 Optimal Fund and Size of Single Domain
To find the optimal C∗

i and m∗
i , we solve Eq. (14) and

Eq. (17) by a nested bisection search procedure which is
used in [1]. The algorithm is given as Alg. 2.

Algorithm 2 Optimal Budget of Single Domain

Input: λi, ri.
Output: C∗

i , m∗
i , Pro∗i .

1: Observe and find the interval of budget [lC, uC] in which
the optimal profit is obtained;

2: while uC − lC > ε do
3: Cmid = (lC + uC)/2;
4: Call Alg. 1 to calculate the optimal mopt under budget

Cmid;
5: if ∂Proi(Cmid,mopt)/∂Ci > 0 then
6: lC ← Cmid;
7: else
8: uC ← Cmid;
9: end if

10: end while
11: C∗

i = (lC + uC)/2;
12: Call Alg. 1 to calculate the optimal m∗

i under budget C∗
i ;

13: Pro∗i ← Calculated using Eq. (11).

In Tab. 2, we demonstrate the optimal profit and the
optimal configuration of different market demand. Here,
assuming that ai = 20 cents per one billion instructions,
d = 10 seconds, β = 1.5 cents per second, δ = 0.1 cents per
Watt, and P ∗ = 2 Watts. For λ = 5, 10, 15, 20, 25, and r = 1,
we display the optimal profit Pro∗ and the corresponding
investment and configuration.

TABLE 2: The optimal investment, configuration, and profit
versus λ.

λ m∗ s∗ C∗ Pro∗ ROI
5 4.1271 1.4770 13.9721 85.8178 6.1421
10 7.9081 1.4214 26.8324 172.9453 6.4454
15 11.6642 1.3998 39.6066 260.1655 6.5687
20 15.4102 1.3880 52.3454 347.4234 6.6371
25 19.1505 1.3805 65.0648 434.7017 6.6811

4.2 Initial Investment Scheme
After the optimal investment amount C∗

i and the server
configuration for each multi-server system Si are calculated,
the following work is to select multiple initial investment

domains. Once the investment and the corresponding profit
of all domains are known, the domain selecting problem is
actually a 0-1 knapsack problem which can be solved by any
existing algorithm. In this paper, we choose two existing
methods – the greedy strategy and dynamic programming
– to solve the 0-1 knapsack problem, respectively. Greedy
strategy mostly fails to find the global optimal solution,
but it is quick to think up and has low time complexity.
In contrast, dynamic programming can achieve the global
optimal solution but its time complexity is O(2n). The
algorithm determining the initial investment scheme is
given as Alg. 3 and the methods solving 0-1 knapsack
problem are shown as Alg. 4 and Alg. 5.

Algorithm 3 Initial Investment Scheme

Input: F , n, Pro∗1:n, C∗
1:n, m∗

1:n. // m∗
1:n ⇔ {m∗

1,m
∗
2, ...,m

∗
n}

Output: The initial investment and configuration scheme, in-
cluding x1:n, C1:n, m1:n, Pro1:n, totalFund, and totalPro.

1: [x1:n, totalPro]← knapsack problem(Pro∗1:n, C∗
1:n, F );

2: for i = 1 : n do
3: Ci = xi · C∗

i , Proi = xi · Pro∗i , mi = xi ·m∗
i ;

4: end for
5: totalFund =

∑n
i=1 Ci.

Algorithm 4 knapsack problem (Greedy Strategy)

Input: Pro1:n, C1:n, F .
Output: x1:n, totalPro.

1: Initialize xi = 0 for ∀i;
2: totalFund = 0, totalPro = 0;
3: Rank the n application domains in the non-increasing order

of the Pro values;
4: Set i = 1;
5: while i ≤ n do
6: curr← the index of the application domain with maximal

Pro;
7: if totalFund + Ccurr ≤ F then
8: xcurr ← 1;
9: totalPro← totalPro + Procurr;

10: totalFund← totalFund + Ccurr;
11: end if
12: Delete the curr-th application;
13: i++;
14: end while

In Alg. 4, greedy strategy is adopted to solve 0-1 knap-
sack problem. We first rank the applications in the non-
increasing order of the optimal profit values Pro∗ (line 3).
Then, the application domain with the maximal optimal
profit is considered (line 6). If the remaining funding can
afford the cost, invest it (lines 8-9); otherwise, consider the
next application domain with a smaller Pro∗.

In Alg. 5, dynamic programming is adopted to solve
the 0-1 knapsack problem. The optimal solution can be
calculated recursively by:

f(i, F )=

{
max{f(i+1, F ), f(i+1, F−Ci)+Proi}, F≥Ci;

f(i+1, F ), F≤Ci;
(18)

and

f(n, F )=

{
Pron, F≥Cn;

0, F≤Cn;
(19)
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Algorithm 5 knapsack problem (Dynamic Programming)

Input: Ci:n, Proi:n, F .
Output: xi:n, totalPro.

1: if i < n then
2: if F ≥ Ci then
3: [xi:n, totalPro]=max{knapsack problem(Ci+1:n,Proi+1:n,
4: F ), knapsack problem(Ci+1:n,Proi+1:n, F−Ci)
5: +Proi};
6: else
7: [xi:n, totalPro] = knapsack problem(Ci+1:n,Proi+1:n, F );
8: end if
9: else

10: if i == n then
11: if F ≥ Cn then
12: totalPro = Pron, xn = 1;
13: else
14: totalPro = 0, xn = 0;
15: end if
16: end if
17: end if

where f(i, F ) denotes the maximal profit when the total
funding is F and the selectable domains are from i to n.

After the first phase, the generated initial investment
scheme is an available and good solution.

4.3 Adjustment of Investment Domains

After the initial investment scheme is determined by Alg. 3,
we further find if there is a scheme which produces more
profit than the initial one. In the initial investment scheme,
each application domain is invested with enough funding
to guarantee its maximal profit. Obviously, there is a lot of
funding left but not enough to invest in another application
domain. So, can we spare a little funding from the selected
domains and exploit another investment domain with the
remaining funding? Doing so can probably increase the total
profit. Based on the idea, we try to find a better investment
scheme by slightly adjusting the investment in each domain
in the second phase. The process is described as Alg. 6.

In line 1 of Alg. 6, two important parameters Step and
ℵ are set. Step represents the ratio of the reduced funding
in each loop and the optimal investment, and ℵ is the
number of loops which is related with Step. The smaller
the Step is, the greater the ℵ should be set; hence, more
accurate solutions can be obtained. In each loop, the funding
invested to each multi-server system is reduced (line 4)
and the optimal profit is calculated based on the reduced
investment (line 5). After the optimal profits of all systems
are calculated under the reduced investments, Alg. 3 is
called to select the invested applications, and the total profit
of the new investment scheme is calculated (line 7). Then,
the profit of the initial investment scheme is compared with
that of the new investment scheme after adjustment (line 8).
If the latter is greater than the former, replace the initial
investment scheme with the new one. Other parameters
such as the profit and the server size are updated corre-
spondingly (lines 9-11).

In this phase, the funding invested to each domain is
gradually reduced on the basis of the optimal investment.
Hence, the searching direction is certain and single, which
makes searching much easier. Moreover, the searching times
and the accuracy can be controlled by parameter Step and ℵ,

Algorithm 6 Adjustment of Investment Domains

Input: F , n, C∗
1:n, λ1:n, r1:n, totalFund, and totalPro.

Output: The investment and configuration scheme after ad-
justment, including x1:n, C1:n, m1:n, Pro1:n, totalFund, and
totalPro.

1: Set Step and ℵ;
2: for i = 1 : ℵ do
3: for j = 1 : n do
4: C

′
j = C∗

j − C∗
j · Step · i;

5: Call Alg. 1 with parameters (C
′
j , λj , rj) to get m

′
j and

Pro
′
j ;

6: end for
7: [x

′
1:n, totalPro

′
]← knapsack problem(F,Pro

′
1:n, C

′
1:n);

8: if totalPro < totalPro
′

then
9: totalPro← totalPro

′
;

10: xi ← x
′
i, Ci ← xi ·C

′
i , mi ← xi ·m

′
i, Proi ← xi ·Pro

′
i for

∀i;
11: totalFund =

∑n
i=1 Ci.

12: end if
13: end for

hence the algorithm can be finished quickly whether a better
solution can be found.

4.4 Final Fund Allocation
After the third phase in Alg. 6, the final invested application-
s are determined. However, there is still some unallocated
funding. The following phase is to allocate the remaining
funding to increase profit further, which is shown as Alg. 7.

First, the n application domains are ranked in the non-
increasing order of Ci values (line 1). That means that
the remaining funding is first invested in the application
domain with larger Ci value. The reason is explained as
follows: According to Alg. 6, we know that the application
domain with the maximal Ci reduces the most investment
amount, hence, leads to the greatest loss of profit among
all fields. Investing funding in this application domain can
obtain the maximal profit growth. Of course, the funding
allocated to an application domain cannot exceed its optimal
investment; otherwise, the profit would be decreased. If the
remaining funding can be invested to the current applica-
tion domain and does not exceed its optimal investment,
allocate it all to the application domain and update its con-
figuration parameters (lines 7-11). If the remaining funding
exceeds the investment demand of the current application
domain, allocate the required fund to it and turn to next
application domain (lines 13-18).

5 PERFORMANCE ANALYSIS AND COMPARISON

In this section, a series of numerical calculations are con-
ducted to verify the performance of our algorithm.

5.1 Performance Analysis
5.1.1 Single Application Domain
Given an application domain, its profit is affected by task ar-
rival rate and investment. In our first group of calculations,
we aim at observing the changing trend of profit of a single
application domain with an increasing level of investment
under different task arrival rates. The parameters are the
same as those used in Table 2. For an application domain
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Algorithm 7 Final Fund Allocation

Input: F , n, C∗
1:n, λ1:n, r1:n, x1:n, C1:n, m1:n, Pro1:n, totalFund,

and totalPro.
Output: The investment and configuration scheme after bal-

ance allocation, including x1:n, C1:n, m1:n, Pro1:n, totalFund,
and totalPro.

1: Rank the n application domains in the non-increasing order
of the Ci values;

2: leftFund← F−totalFund;
3: for i = 1 : n do
4: curr← the index of the application domain with maximal

Ci;
5: if xcurr==1 then
6: if leftFund ≤ C∗

i −Ci then
7: totalFund← F ;
8: totalPro← totalPro−Procurr;
9: Ccurr ← Ccurr+leftFund;

10: Call Alg. 1 with parameters (Ccurr, λcurr, rcurr) to get
mcurr and Procurr;

11: totalPro← totalPro+Procurr;
12: else
13: totalFund← totalFund−Ccurr;
14: totalPro← totalPro−Procurr;
15: Ccurr ← C∗

curr, mcurr ← m∗
curr, Procurr ← Pro∗curr;

16: totalFund← totalFund+Ccurr;
17: totalPro← totalPro+Procurr;
18: leftFund← F−totalFund;
19: end if
20: end if
21: end for
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Fig. 5: Optimal profit versus total investment.

with r = 1 and λ = 5, 10, 15, 20, 25, we display the maximal
profit for different investment in Fig. 5. From the figure
we can see that the maximal profit obtained by a multi-
server system reaches the peak at a certain investment, and
then decreases with increasing investment. That is because
marginal profit is decreasing with the increasing investment
and even becomes a negative value, which leads to the de-
crease of total profit. Moreover, investing in an application
domain with greater market requirements can produce more
profit than investing in the small ones. When an investor has
sufficient funding and only invests in one domain, selecting
an application domain with the highest λ will lead to the
greatest profit. Of course, the investment is not the more
the better. There exists a best investment which leads to the
optimal profit, and more or less investment would lead to a
loss of profit.
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Fig. 6: Optimal profit versus λ.

In the second group of calculations, we observe how the
profit changes with the increasing workload under the given
investment. For the given investment 30, 50, 70, the maximal
profit for different λ is shown in Fig. 6. The figure shows that
the profit is increasing with the increasing λ at the beginning
and reaches the peak at a point. After the peak, the increase
of task arrival rate leads to the sharp decrease of profit,
because the maximal capacity of the system under the given
fund is limited and the waiting time of a great amount of
tasks exceeds the deadline. Another phenomenon we can
find from the figure is that the profit of F = 30 is greater
than that of F = 50 and 70 when λ is small, which reinforces
the trend observed in Fig. 5. Hence, we can conclude that for
an application domain with a given task arrival rate, adding
investment can increase the profit - but not always. Hence,
when an investor has limited funding and only invests
one domain, the application domain should be selected
according to the available funds. The λ value is not the
more the better. A higher λ would lead to less profit, even
negative profit.

5.1.2 Multiple Application Domains
Since this paper seeks to find an optimal investment port-
folio from a variety of application domains to achieve
profit maximization, we will verify the performance of the
proposed fund allocation scheme for multiple application
domains. First, given the total number of the application
domains and the total investment, we observe the changing
trend along with the increasing average workload. Here, the
number of the application domains n is set as 5, 10, and
15. The task arrival rates are set as 8 to 12 in step of 1 for
the 5-application-domain set, 5.5 to 14.5 in step of 1 for the
10-application-domain set, and 3 to 17 in step of 1 for the
15-application-domain set. The ri is set as 1 and the total
investment is increasing from 100 to 300.

In Fig. 7(a), we give the statistics on how many appli-
cation domains are invested with the increasing investment
when n is equal to 5, 10, and 15, respectively. It is apparent
that the number of invested application domains shows a
ladder like increase. In other words, when the investment
amount is in a small interval, the number of invested
domains does not change.

In Fig. 7(b), the actual consumed funding is presented.
From the figure, we can see that our investment strategy
does not require spending all the available funds. It designs
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the optimal investment scheme and calculates the corre-
sponding budget according to different market demands.
When n = 5, the optimal profit is achieved when the total
investment is 134.0808, in which investment is made in all
the five application domains and each one can achieve its
maximal profit. Hence, when the available investment is
further increased, the real consumed investment will not be
changed by our proposed investment strategy. Moreover,
even if the available investment is less than the optimal
investment, for example 125 for n = 5, there is still a portion
of surplus funds. The reasons are explained as follows.
Assuming that k (k < n) application domains are selected
as the invested domains and the optimal funds are allocated
to them such that each one can achieve the maximal profit.
There are some funds unallocated because they are not
enough to invest in one more application domain. And if
allocating them to those invested application domains, the
total profit is reduced. Hence, the best choice is to leave
this part of the funds unused. In addition, the more the
application domains there are, the closer the available in-
vestment and the real investment are. That is because more
combinations provide more flexibility when determining the
investment scheme.

Fig. 7(c) shows the changing trend of the optimal profit
that a service provider can achieve with the increasing avail-
able funds. It is shown that when the investment reaches a
critical point, any further increase of the investment will not
affect the total profit, because the extra funds are unused
by our investment strategy. Overall speaking, the changing
trends of the profit are similar to that of the consumed funds.

5.2 Performance Comparison
5.2.1 Inter Comparison
In order to verify the performance of the investmen-
t schemes generated by our algorithm, we compare our
algorithm with six other investment strategies which are
introduced as follows:

• Application selection strategy. Rank the application
domains in the non-increasing order of λiri values,
and select the first n/3, n/2, or n application domain-
s in which to invest.

• Fund allocation strategy. Allocate the funds to the
selected application domains equally or in propor-
tional to the λiri value. Equal allocation and propor-
tional allocation are two common methods which are
adopted in many aspects and are quick to think up.

Combining the above strategies, we produce six in-
vestment strategies, naming, Equ1/3, Equ1/2, Equ1/1,
Pro1/3, Pro1/2, and Pro1/1, respectively. For example,
Equ1/3 means selecting the first n/3 domains and allocat-
ing the funds equally. Because two different methods are
adopted in our algorithm to solve the 0-1 knapsack prob-
lem, we mark them as Greedy algorithm with Adjustment
(Greedy A) and Dynamic Programming with Adjustment
(DP A), respectively.

Fig. 8 presents the profit comparison of the eight in-
vestment schemes with the increasing investment. In the
calculation, the number of application domains is set as 6,
the task arrival rates are set from 20 to 25 in step of 1, and
the task requirements are ri = 1. The total investment fund
is increasing from 100 to 400.
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Fig. 7: Optimal profit and the number of invested domains
versus total investment.

From the figure, it is easy to conclude that the investment
schemes generated adopting our investment strategy are
better than the compared schemes, because their profits are
always greater than the other six schemes. That is because
the other six investment strategies invest in a fixed num-
ber of application domains, while our investment strategy
determines the number of invested domains adaptively
according to different factors such as the available funds, the
number of application domains, the task arrival rate of each
application, and so on. Hence, our strategy can generate
more profit than the other six strategies.

The curves of Greedy A and DP A show the staircase-
like increasing trends with the increase of available funds
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Fig. 8: Optimal profit versus total investment.

and both of them reach a steady state after surpassing a
boundary. However, for the other six strategies, their profits
increase first and then decrease with the increasing available
funds. That is because the six strategies allocate all of the
available funds to the selected application domains but do
not consider if they need so much funding. Once the invest-
ment exceeds the optimal demand, increasing investment
will not generate more profit but will have the opposite
impact.

Moreover, our investment strategy has another advan-
tage compared with the six other strategies. Given an arbi-
trary number of application domains, our strategy can de-
termine the number of invested domains flexibly according
to the available funds while the other six cannot. Which
application domains are invested in is determined for the six
strategies once the number of application domains and their
task arrival rates are given. If the available funding is small,
the funds allocated to each application domain might be not
enough to generate profit; hence, the total profit would be
negative.

5.2.2 Intra Comparison

Our algorithm generates a better investment scheme by
slight adjustment based on an initial investment scheme.
In the following, we compare the profit of the final schemes
with the initial schemes to test how much profit can increase
after adjustment. Similarly, we label the two final schemes
as Greedy A and DP A, and the initial schemes Greedy and
DP.

In this group of calculations, we set the number of
application domains as 5, the λi values are set as 3, 4, 5,
6, and 7 and the price ai values are set as 20, 18, 16, 14,
and 12, respectively. The total funding is changing from 1 to
80. Fig. 9(a) gives the results and shows that our strategies
with adjustment DP A and Greedy A can produce more
profit compared with the corresponding strategies without
adjustment DP and Greedy in more than 36.29 and 30 percent
of cases, respectively, and the profit gap between them
changes periodically. For example, the profit gap between
DP and DP A is zero when the total investment is between
42 and 46, and then it becomes very large when the total
investment is between 47 and 50. When the total investment
increases further, the profit gap becomes small to zero again
at 51.
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Fig. 9: The profit: the initial investment vs. the final
investment.

The reasons are explained as follows: When the total
investment is between 42 and 46, a better investment scheme
cannot be found by adjustment. When the total investment
is greater than 47 but less than 50, one more application
domain can be invested after adjustment. Hence, the profit
of DP A is much greater than DP. When the total investment
is increasing further, DP and DP A can invest the same
number of application domains but the invested domains
are different from each other, hence, DP A produces only
slightly more profit than DP. The changing trend of Greedy
and Greedy A is similar to that of DP and DP A. We can
observe from the figure that our algorithm can produce
more profit when combined with dynamic programming
than greedy strategy.

In the second group of calculations, the other parameters
are similar with those in Fig. 9(a) except the changing trend
of the task arrival rates and they are 7, 6, 5, 4, 3, respectively.
The results are given in Fig. 9(b) which shows that DP A
and Greedy A can achieve more profit than DP and Greedy
in 30 percent of cases. Comparing the two figures, it can
be found that when the changing trend of the task arrival
rates is similar with that of the serving prices, the profit gain
adopting our approach is much lower than the opposite
situation. For example, when the total fund is 34, DP A
achieves 33.17% profit gain compared with DP in Fig. 9(a),
while only 13.12% in Fig. 9(b). In addition, Fig. 9(b) shows
that the approach adopting DP does not perform better than
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that adopting Greedy. Hence, the profit gain of our approach
is affected by the combination of the λ value and the a value.
In overall, adopting our approach can always obtain more
profit.

5.3 Quality of Solutions
Our algorithm is heuristic which can only generate approx-
imate solutions, hence, it is necessary to know how well the
solutions approximate the global optimal solution. Howev-
er, due to the complexity of our problem, we cannot get the
global optimal solution, so the error between the optimal
solution and the heuristic solutions cannot be calculated.
However, when the server size m and the server speed s
are discrete variables, the global optimal solutions can be
solved by a brutal force searching approach. Hence, we
compare our solutions with the discrete optimal solution.
In the comparison, the server size m is an integer whose
value range is from 1 to 20, and the server speed s is a
discrete variable whose value range is from 0.2 to 2.0 in
step of 0.2. Hence, we need to do some modification on the
solutions obtained by our algorithm. The process is given as
follows. Assumed that the optimal investment of server Si

is Ci and the corresponding optimal size and speed are mi

and si. Comparing the four closest configurations around
(mi, si), the configuration with the most profit is adopted
as the practical configuration of server Si if the consumed
funds do not exceed the available funds.

In the group of comparison, 5 application domains are
given and their arrival rates are set as 8, 9, 10, 11, and
12, respectively. The r̄i values are set as 1. Table 3 shows
the comparison of investment amount, server configuration,
and profit of each domain when the available investment is
107. The results show that the profit obtained by adopting
our strategy is close to the global optimal profit when the
server size and server speed are discrete variables, and the
solution adopting dynamic programming is much closer
than that adopting greedy strategy. For example, the profit
of Greedy A is 670.9269, which is 2.83% less than the global
optimal profit, but the profit of DP A is 689.4496, which is
only 0.15% less than the global optimal profit. Hence, our
algorithm is a good heuristic algorithm.

For an investor who has a limited fund, he is more in-
clined to select and invest application domains with higher
λ first because it seems to be able to make more profit.
However, according to our calculation results, that is not
always true. If a service provider wants to achieve the most
profit under a limited fund, it is better to adopt the solution
proposed in this paper, which achieves a better solution be-
cause the solution is gradually improved based on the initial
solution by adjusting fund allocated to different domains.

6 CONCLUSIONS

In this paper, we have studied the fund allocation and profit
maximization problem for the service providers with fund
constraint. A fund constrained profit maximization model
is formulated. According to the analysis, the optimization
problem is too complexity to get a global optimal solution
because it consists of three subproblems which are the
selection of invested application domains, fund allocation,
and multiserver configuration. Hence, we design a heuristic
algorithm which solve the problem in three steps. An initial

investment scheme is find firstly, and then adjustment is
done to get a better investment portfolio. Lastly, the left
fund is allocated further to get the final investment scheme.
The performance evaluation of our algorithms has been per-
formed by a series of simulations, and six other investment
strategies are adopted to compare with our strategy. From
the comparison results, our strategy can design the best
investment scheme with the maximal profit among all the
strategies.
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