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Abstract—Due to the limited computing resources of both
mobile devices (MDs) and the mobile edge computing (MEC)
server, devising reasonable strategies for MD task offloading,
MEC server resource pricing, and resource allocation is crucial.
In this paper, a scenario is considered, comprising multiple
MDs and a single MEC server. Each MD has a divisible
task in each time slot, allowing for partial offloading and the
option to discard parts of the task. The MEC server contains
multiple computing units with the same computing power, and
its computing resources can be dynamically adjusted through
dynamic voltage and frequency scaling (DVFS) according to
the size of tasks offloaded by MDs. At any given time slice, a
Stackelberg game is formulated based on the strategies of the
MDs and the strategy of the MEC server. An iterative evolution
algorithm is employed to explore the optimal strategies for MDs
and the MEC server. Simulation results demonstrate that both
parties can reach an equilibrium state through the game, and
these experiments confirm that the algorithm effectively enhances
system efficiency.

Index Terms—Dynamic voltage and frequency scaling, mobile
edge computing, partial offloading, resource allocation, stackel-
berg game.

I. INTRODUCTION

THE AMOUNT of data stored at the network edge has
been rapidly increasing in recent years [1]. According

to [2], it is projected that the global total data size will reach
175ZB by the year 2025. With the rapid growth of data, MEC
has become one of the effective technologies for handling
this enormous data. In this context, pushing computational
capabilities towards the data source, namely the network edge,
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helps reduce latency, improve efficiency, and better meet the
demands of the future digital society.

This paper explores a system model with two roles: multiple
MDs, sometimes referred to as users, and a MEC server
containing multiple computing units. Each user can choose
from three task processing options: complete local processing,
complete offloading processing, or partial local and partial
offloading processing. The MEC server is located near the
base station, receiving wireless task offloading requests from
the base station. After processing the tasks, the MEC server
returns the results to the base station, which then transmits
them to the user. Users can reduce energy consumption
and alleviate execution latency pressures by offloading tasks.
Nevertheless, MEC server resources are limited, requiring
users to obtain suitable resources based on their processing
capabilities and task sizes. To better reflect real-world sce-
narios, MEC server evidently cannot unconditionally provide
services. Instead, it will implement pricing for users to
generate revenue. Currently, there is an observed phenomenon
wherein the user’s decision to offload tasks is significantly
influenced by pricing, and this pricing varies according to the
scale of offloaded tasks. Specifically, as the scale of offloaded
tasks increases, users are confronted with corresponding
price fluctuations. The challenge at hand revolves around
enabling users to make more effective decisions regarding task
offloading, while concurrently establishing a rational pricing
mechanism for the MEC server. Addressing this issue is crucial
in achieving an optimal balance between user decision-making
and the formulation of reasonable price.

To tackle this concern, we utilize Stackelberg game theory
featuring a solitary leader and numerous followers, aiming
to find equilibrium between pricing strategies and offloading
decisions. In this game, the MEC server assumes the role
of the leader, while each user acts as a follower. The leader
is responsible for formulating offloading price for followers,
and the followers make offloading decisions based on the
price. The aim of this paper is to attain a Stackelberg
equilibrium between the MEC server and users via multiple
game iterations.

In recent years, some studies have begun to explore the
application of Stackelberg games. For example, Liu and
Liu [3] modeled the interaction between edge cloud and
users as a Stackelberg game. In this game, the edge cloud
chooses to allocate limited computing resources equally to
each user, and sets the price per unit cycle of data to optimize
its income, while users reduce costs by making offloading
decisions. Noreen et al. [4] proposed a novel framework
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for device-to-device (D2D) communication power control
and employed a Stackelberg game to jointly optimize the
utility of D2D users and the cellular base station (CBS).
Chen et al. [5] introduced a stratified structure and devised a
discrete Stackelberg game with multiple leaders and followers
to minimize energy consumption. The aforementioned studies
employed game theory to rationally adjust resource allocation
between MEC servers and users, yet they did not take into
account the frequency adjustment of MEC server. Whether it
is the user or the MEC server, when dealing with a smaller
number of tasks, although utilizing the full computational
resources can shorten the task completion time, it also incurs
significant energy consumption. In this study, our primary
concern is to ensure that tasks are completed within the
specified deadline. Since the benefits of both users and MEC
server in this paper are associated with energy consumption,
optimizing energy consumption while meeting deadlines will
enhance the mutual benefits. DVFS is adopted in our study.
By integrating DVFS, we are able to adjust the voltage and
frequency of the processor based on actual load conditions at
runtime to strike a balance between energy consumption and
performance. This enables MDs and MEC server to manage
energy more intelligently to achieve better performance and
energy efficiency under different load conditions. Although
the introduction of DVFS can effectively optimize energy
consumption, the simultaneous consideration of pricing and
frequency adjustments adds complexity to the problem. Due
to the limited resources of the MEC server, it must strike a
balance between pricing and frequency to ensure that all tasks
can be executed effectively within the available resource limits.
This presents a new challenge for the optimization of pricing
strategy and resource allocation. Therefore, our algorithm aims
to address this challenge by formulating reasonable pricing
and resource allocation to optimize the utility of the MEC
server and users.

The primary contributions of this research entail:
• Fixed computation frequencies can lead to inefficient

resource allocation and higher energy consumption.
Implementing a dynamic frequency adjustment mech-
anism based on user task offloading decisions and
deadlines allows the MEC system to better optimize
resource utilization and reduce energy consumption.

• By employing a Stackelberg game, we jointly optimize
task offloading decisions, resource allocation, and
resource pricing, allowing both users and the MEC server
to dynamically adjust their strategies.

• We utilize the spy-adjust dynamic iterative search
algorithm to iteratively update the price, computation
frequencies, and offloading decisions during the gaming
process. This approach aims to dynamically adjust these
parameters to achieve suboptimal solutions that closely
approximate the global optimum, thereby optimizing the
utility of the MEC server and users.

Following this introduction, the subsequent sections of this
paper are structured as follows. Section II offers an elaborate
discussion on the pertinent research explored within this study.
Section III defines the system model. Section IV presents
the studied optimization problem and models the relationship

between users and MEC server as a Stackelberg game.
Section V analyzes the decision-making process between
users and MEC server. Section VI introduces the spy-adjust
dynamic iterative search algorithm. Section VII experimentally
validates the algorithm’s performance. Section VIII provides
a conclusion of the paper’s contents. The final section shows
the acknowledgments.

II. THE RELATED WORK

Numerous studies have delved into the task offloading
conundrum, primarily from the user’s standpoint. Various
algorithms are proposed to assist users in devising optimal
strategies for both task offloading and resource allocation.

Chen et al. [6] conducted a study on the energy-efficient
dynamic offloading challenge within the framework of MEC
in the Internet of things (IoT). Starting from the users’
perspective, they proposed the objective of minimizing mean
transmission energy expenditure while ensuring devices’
efficiency. Yang et al. [7] developed a distributed task node-
to-helper node pairing and offloading mechanism that only
leveraged local information, with the objective of minimizing
the delay for each task. Fang et al. [8] investigated the
problem of computation task migration among numerous
users with intensive computational needs. They introduced an
enhanced response-based distributed multi-user computation
task offloading algorithm, denoted as BR-DMCTO, to tackle
this optimization challenge.

The research in literature [6], [7], [8] all focused on opti-
mizing the offloading problem on the user side, they did
not fully consider the benefits of the MEC server side.
Many studies in recent years have included the benefits of
MEC servers into the consideration of system performance.
Chen et al. [9] introduced a framework utilizing Stackelberg
games, where users and MEC servers assume the roles of
followers and leaders, respectively. The objective of this
framework is to derive a solution at Stackelberg equilibrium.
Yao et al. [10] explored the resource management and pricing
between cloud provider and miners, framing their interaction
as a Stackelberg game. Zeng et al. [11] proposed a volunteer
task assignment algorithm aimed at maximizing the reward
for volunteer vehicles. Most of the aforementioned literature
incorporates the benefits of both users and MEC servers
into the consideration of system performance. Liu et al. [12]
addressed the partial offloading challenge from vehicles tasked
with computing-intensive and delay-sensitive operations to
the vehicular edge computing (VEC) server, enhancing vehi-
cle services. They introduced a distributed algorithm based
on a multi-leader and multi-follower Stackelberg game to
optimize vehicle and VEC server utilities while adhering to
latency constraints. Li et al. [13] introduced a computation
offloading mechanism utilizing a two-stage Stackelberg game,
which determines the appropriate price for the computation
resource of the edge clouds to maximize their profit, and the
computational needs of IIoT devices to enhance their utility
through the incorporation of social interaction information
from prospective IIoT devices. Zhou et al. [14] explored the
collaborative dynamics between cloud servers (CS) and edge
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servers (ESs), where CS offloads computation tasks to ECs
possessing unused computational resources, thereby mitigating
its own cost and pressure. In order to maximize the utility
of both sides, the interaction between the CS and ESs is
modeled as a Stackelberg game. Zhou et al. [15] investigated
the computation offloading problem of a UAV-aided MEC
network, including one UAV-MEC server, one BS-MEC server,
and several MUs. The two servers are managed by the edge
service provider (ESP) and provide the idle resources to MUs
to make a profit. A Stackelberg game is employed to represent
the interaction between the ESP and MUs with the aim of
maximizing their utility. Tao [16] investigated the resources
pricing strategy for single MEC server and task offloading
strategy for multi-users. A Stackelberg game is established to
result in the win-win situation.

Above studies apply the Stackelberg game to address the
task offloading and resource pricing strategies for different
application scenarios, however, these studies presume that
MEC server ability is fixed, and the resource pricing is the
only factor to be optimized for the MEC server. Hence, these
studies are predominantly single-objective optimizations for
MEC servers, primarily focusing on price optimization, while
neglecting the optimization on the computation resources.
Considering that adjustable frequency can impact the energy
consumption of MEC servers, the CPU frequency can be
dynamically adjusted according to the computation require-
ment of users to enhance the resource utilization efficiency
of MEC servers and reduce the energy consumption effec-
tively, so its inclusion in the consideration is of paramount
significance. Hence, in this research, we consider the joint
optimization of task offloading for users, and CPU frequency
scaling and resource pricing for the MEC server to improve
the benefit of both parties on the premise of win-win.

III. THE MODELS

In the section, some models related to this problem are
introduced firstly. Based on the models, the pricing and
offloading problem can be established and analyzed strictly.

A. System Model

This paper investigates an MEC system featuring a single
antenna and accommodating multiple users, alongside a single
base station (BS), as illustrated in Fig. 1. An MEC server,
enabled with DVFS, deployed at the BS, offers services to the
users. The MEC server can adjust the frequency dynamically
according to the system load for energy saving. Let N =
{1, 2, . . . ,N } denote the N users within the coverage of the
BS, which compete for the communication resources and
the MEC computation resources. Because of the system’s
dynamic nature, we segment time into a series of equal-length
time slices τ . The system state is assumed to be pseudo-
static during each time slice. Each user generates a new
computational task during each time slice, and the generated
tasks would be processed at the following time slice. Due to
the size of user devices is limited, each user device is equipped
with a small capacity battery and an energy harvesting model
which can harvest energy from the outside world.

Fig. 1. MEC system model.

Let {Cn ,Dn} denote the task generated by user n where
Cn (in bits) presents the task amount and Dn (in cycles/bit) is
a pre-defined constant representing the number of CPU cycles
required to process one bit of task for user n. The task can be
split into two components, allowing for concurrent execution
locally and offloading to MEC.

B. Local Computation Model

For the n-th user, the local task size is represented by αnCn ,
where αn ∈ [0, 1]. The CPU frequency of user n is denoted as
fn , which can be adjusted during the range of [0, fmax]. Then,
the time expenditure of user n for local computation can be
expressed as

Tn =
αnCnDn

fn
.

Since the task should be completed before the end of a time
slot, it should satisfy

αnCnDn

fn
≤ τ.

Let Pn be the power consumed for computation (in Watts)
of user n. Generally, Pn depends on the chip architecture
of the user, and it is proportional to CPU frequency, which
is Pn = ξn f

3
n where ξn is a coefficient that relies on chip

architecture [17], [18], [19]. The energy expenditure of user n
for local computation is

E loc
n = PnTn = ξn f

2
n αnCnDn .

C. Remote Offloading Model

Let βnCn be the size of the task offloaded to MEC, where
βn ∈ [0, 1]. The task offloading consists of two phases: task
transmission and remote computation.

Task Transmission. Let P tra
n be the transmit power (in

Watts) of user n. The achievable data rate (in bits/s) of user n
is

Rn = Bn log2

(
1 +

P tra
n hn
σ2

)
,

where Bn denotes the bandwidth that the n-th user occupies,
hn is the channel power gain [20], and σ2 is the noise
power spectral density [21], [22], [23]. This paper assumes
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equal bandwidth allocation among all users, so Bn = B/N ,
where B is the total bandwidth of the wireless communication
resources.

For the n-th user, the transmit delay is

T tra
n =

βnCn

Rn
,

and the transmit energy consumption is

E tra
n = P tra

n T tra
n =

P tra
n βnCn

Rn
.

Due to the limited battery capacity, each user’s energy
expenditure during a time slice must not exceed its residual
energy, that is,

E loc
n + E tra

n ≤ E res
n ,

where E res
n denotes the rest energy of user n.

Remote Computation. After the users delegate the tasks
to the MEC server, MEC should allocate enough computation
resource to each user to guarantee that all tasks are completed
in current time slice. Let fmec

n be the CPU frequency that
MEC allocates to the n-th user. Then, the remote computation
delay of user n is

Tmec
n =

βnCnDn

f mec
n

.

This study examines the MEC server equipped with multiple
computing units of equal processing power. The number of
units is specified as m and the frequency of each unit is
specified as funit which can be adjusted during [0,Fmax].
Hence, the total computation capacity of the MEC server is
mfunit, and the sum computation capacity of MEC allocated
to all users should satisfy

N∑
n=1

f mec
n = mfunit.

The energy consumption Emec generated by the MEC server
in processing all user offload tasks is as follows:

Emec = mPmecτ,

where Pmec = ξf 3unit and ξ is a coefficient depending on chip
architecture of the MEC server.

According to the delay constraint, the sum delay of the two
phases should satisfy

T tra
n + Tmec

n ≤ τ,∀n ∈ N .

IV. PROBLEM FORMULATION AS A STACKELBERG GAME

In this problem, the users and the MEC server make their
own decisions, respectively. The users make the task offloading
decisions and the corresponding frequencies from their own
interests based on the resource pricing given by the MEC
server. For the MEC server, it provides computation resources
to serve the users to earn income. To maximize the profit, the
resource pricing and frequency should be adjusted based on
the task offloading decisions of all users. Since the decision
making of the users and the MEC server are interdependent,
we formulate the problem as the Stackelberg’s leadership
model [24], in which the MEC server and the users are
regarded as leader and follower, respectively.

A. Utility of Users

The utility function of the users in a Stackelberg game
reflects the satisfaction level of them with the current game.
The satisfaction level is always related to the processed task
amount, the energy consumption, and the charge paid to the
MEC server.

As mentioned before, the local executed task amount of
user n is αnCn , the offloaded task amount is βnCn , and it is
satisfied that αn+βn ≤ 1. In this paper, not all tasks have to be
handled, that is, the users can discard part of the computation
tasks to achieve the maximum benefit. The revenue gain of
user n in terms of the computation task amount is measured
using a logarithmic function [21] as

Sn = ωn ln(1 + (αn + βn )Cn ),

where ωn denotes as the satisfaction factor for the user.
For user n, it offloads βnCn bits of task to the MEC server,

and pays it the corresponding fee. Let p be the resource pricing
(in cent/cycle) given by MEC, the total fee that user n should
pay to MEC is pβnCnDn [1]. Hence, the utility function of
user n is specified as

Un(fn , αn , βn ) = γn (ωn ln(1 + (αn + βn )Cn ))

−γnpβnCnDn ,

where γn is the trade-off factor between the revenue and the
cost, and γn = 1− γn . In this paper, γn is set as 0.5.

B. Utility of MEC

For the MEC server, it provides computation resources to
the users to obtain profit. The revenue of the MEC server is
calculated as

Rmec = p

N∑
n=1

βnCnDn ,

where p is the unit price that MEC charges each user.
As mentioned before, the MEC server generates energy

consumption to maintain its operation, which is its main cost.
Let η be the electricity price (in cents/J), the electricity cost
per time slice is calculated as

Cmec = ηEmec = mξf 3unitτη.

Hence, the utility function of MEC is formulated as

Umec(p, funit) = p

N∑
n=1

βnCnDn −mξf 3unitτη. (1)

C. Utility Optimization Problem Formulation

1) Follower Level:

(P1) max
fn ,αn ,βn

γn (ωn ln(1 + (αn + βn )Cn ))

−γnpβnCnDn ,

s.t.
αnCnDn

fn
≤ τ, (2a)

βnCn

Rn
+

βnCnDn

f mec
n

≤ τ, (2b)
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αn + βn ≤ 1, (2c)

0 ≤ fn ≤ fmax, (2d)

ξn f
2
n αnCnDn +

P tra
n βnCn

Rn
≤ E res

n , (2e)

αn ≥ 0, βn ≥ 0. (2f)

The objective of the follower level problem is to maximize
the utility of the users which reflects the satisfaction level
of task execution and the service charge. The optimization
variables are αn , βn and fn which denote the offloading
strategy and the resource management strategy of user n. In
constraint (2a) and (2b), the time consumption for processing
tasks locally and executing tasks remotely are respectively
constrained. Constraint (2c) limits the total amount of task
to be processed. Constraint (2d) is the value range of the
frequency that the users can be adjusted. In Eq. (2e), the
combined energy usage for local computation and task trans-
mission must not surpass the remaining energy.

2) Leader Level:

(P2) max
p,funit

Umec = p

N∑
n=1

βnCnDn −mξf 3unitτη,

s.t.
N∑

n=1

f mec
n = mfunit, (3a)

0 ≤ funit ≤ Fmax. (3b)

In the leader level problem, the objective is to maximize
the profit of the MEC server through reasonable pricing
and frequency setting. Constraint (3a) denotes the resources
allocated to all users cannot surpass the computation ability of
MEC. Constraint (3b) shows that the MEC server should adjust
the computing unit frequency during the reasonable range.

V. STRATEGIES ANALYSIS

In the Stackelberg game, the anticipants know the fully
information about each others. The leader first announces
its initial strategies in terms of resource pricing and unit
frequency setting. The followers then observe the leader’s
strategy and make optimal decisions regarding task offloading
and frequency setting. By predicting the response of the
followers, the leader can adjust its strategies, correspondingly.
After several rounds of games, the formulated problem can
be solved by finding a Stackelberg equilibrium [11], which is
defined as follows:

Definition 1: Let (f ∗n , α∗
n , β

∗
n ) be the optimal strategy of

the n-th follower, and (p∗, f ∗unit) be the optimal strategy
of the leader. The optimal solution (f ∗n , α∗

n , β
∗
n , p

∗, f ∗unit) is
the Stackelberg equilibrium, if the following conditions are
satisfied:

Un (f
∗
n , α

∗
n , β

∗
n , p

∗, f ∗unit) ≥ Un (fn , αn , βn , p
∗, f ∗unit), ∀n,

Umec(f
∗
n , α

∗
n , β

∗
n , p

∗, f ∗unit) ≥ Umec(f
∗
n , α

∗
n , β

∗
n , p, funit).

A. Strategies at the Follower Level

To solve the follower level problem, the strategy of the
leader should be known. Let p be the resource pricing given

by MEC. In order to solve problem (P1), we first simplify the
problem by some deformation as follows:

• According to constraint (2d), the user frequency can be
adjusted between 0 and fmax, hence, the task executed
locally cannot exceed the maximal computation capacity
of the users, that is,

0 ≤ αn ≤ τ fmax

CiDi
.

• Once αi is determined, the optimal frequency of the n-th
user fn can be calculated as αnCnDn/τ . Substituting
fn = αnCnDn/τ into constraint (2e), it can be rewritten
as

α3
n
ξnC

3
nD

3
n

τ2
+ βn

P tra
n Cn

Rn
≤ E res

n .

• Analyzing constraint (2b), to make the remote offloading
delay satisfy the time constraint, it must satisfy that
βnCn/Rn ≤ τ . Combining with constraint (2f), we have

0 ≤ βn ≤ τRn

Cn
.

In this premise, the MEC server should allocate sufficient
computation resources to complete the task before the
deadline τ . This is ensured by the server’s price dynamic
adjustment strategy (in Alg. 3 and Alg. 4). If the MEC
server’s resources are insufficient to complete the tasks by
the deadline, the server will increase price to reduce the
task offloading, thereby ensuring that tasks are completed
within the deadline. The required computation resources
are given by:

f mec
n =

Dn
τ

βnCn
− 1

Rn

. (4)

According to the preceding analysis, the original problem
(P1) can be rewritten as

(P3) max
αn ,βn

γn (ωn ln(1 + (αn + βn )Cn ))

−γnpβnCnDn ,

s.t. 0 ≤ αn ≤ τ fmax

CiDi
, (5a)

0 ≤ βn ≤ τRn

Cn
, (5b)

α3
n
ξnC

3
nD

3
n

τ2
+ βn

P tra
n Cn

Rn
≤ E res

n , (5c)

αn + βn ≤ 1. (5d)

Theorem 1: Problem (P3) is a convex optimization
problem.

Proof: The first-order partial derivative of the utility func-
tion Un with respect to αn is

∂Un(αn , βn )

∂αn
=

γnωnCn

1 + (αn + βn )Cn
,

and the second-order partial derivative of Un with respect to
αn is

∂2Un(αn , βn )

∂α2
n

= − γnωnC
2
n

(1 + (αn + βn )Cn )
2
.
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Similarly, taking the first-order and second-order partial
derivatives of Un with respect to βn , we have

∂Un (αn , βn )

∂βn
=

γnωnCn

1 + (αn + βn )Cn
− γnpCnDn ,

and

∂2Un (αn , βn )

∂β2n
= − γnωnC

2
n

(1 + (αn + βn )Cn )
2
.

Next, we calculate the mixed partial derivatives of αn and
βn .

∂2Un(αn , βn )

∂αnβn
= − γnωnC

2
n

((1 + (αn + βn )Cn )
2
,

∂2Un(αn , βn )

∂βnαn
= − γnωnC

2
n

((1 + (αn + βn )Cn )
2
.

By combining the second-order partial derivatives into the
Hessian matrix and calculating the eigenvalues, it can be easily
verified that the matrix is negative semi-definite (due to space
limitations, the specific process of solving the Hessian matrix
is not presented in this paper). Since the objective function is
jointly concave, maximizing the concave function is equivalent
to minimizing its negative value, which is a convex function.
Therefore, problem (P3) is a convex optimization problem.

According to Theorem 1, problem (P3) is a convex
optimization problem. We use CVX, the convex optimization
tool in MATLAB, to solve it, and the optimal task offloading
scheme (αn , βn ) under the given price p can be obtained for
each user.

B. Strategies at the Leader Level

When the users determine their offloading schemes, the
MEC server should adjust its decision on the resource pricing
and the frequency scaling to maximize its utility.

Since all offloaded tasks should be completed before the
given deadline, the computation resources that the MEC server
should allocate to each user can be calculated according to
Eq. (4). Hence, to satisfy the delay requirements of all users,
the computing unit frequency of the MEC server should be
adjusted to

funit =
1

m

N∑
n=1

f mec
n =

1

m

N∑
n=1

βnCnDnRn

τRn − βnCn
, (6)

where m is the number of computing units.
However, the maximal frequency that the unit can be

adjusted to is Fmax. If the objective frequency funit is higher
than the maximal frequency Fmax, i.e., funit > Fmax, the
system load exceeds the maximal computation capacity. In the
case, the only choice for the MEC server is to raise pricing
to reduce the offloading requirements of users. The price is
updated as

p = p + ρΔ, (7)

where ρ denotes the price update step, and Δ denotes the price
update direction (1 and −1), and Δ = 1 here.

If funit ≤ Fmax, substituting Eq. (6) into Eq. (1), the utility
function of MEC can be updated as

Umec(p) = p

N∑
n=1

βnCnDn

−ξτη

m2

(
N∑

n=1

βnCnDnRn

τRn − βnCn

)3

. (8)

The problem (P2) can be rewritten as

(P4) max
p

p
N∑

n=1

βnCnDn − ξτη

m2

(
N∑

n=1

βnCnDnRn

τRn − βnCn

)3

,

s.t. 0 ≤ 1

m

N∑
n=1

βnCnDnRn

τRn − βnCn
≤ Fmax. (9a)

After problem deformation, the utility of MEC is related
with the offloading decisions of users {β1, . . . , βN }, and the
offloading decisions of users are further relying on the resource
pricing p, so the utility of MEC only depends on the resource
pricing p indirectly.

To find the suboptimal pricing, we adopt a spy-adjust
strategy. Firstly, the MEC server gives an initial pricing, the
users determine their optimal offloading decisions under the
pricing. And then, the MEC server makes the corresponding
adjustment on the pricing and the frequency to improve its
utility based on the decisions of users. After that, the users
update their decisions again based on the updated pricing. This
process is repeated until the decisions of both parties are no
longer changing, that is, the Stackelberg equilibrium is found.

C. Stackelberg Equilibrium Analysis

In order to verify whether a joint optimal solution exists for
the utility optimization problems of users and MEC server,
this section employs Stackelberg equilibrium for the proof.
Since Section V-A shows that the distribution of fn and f mec

n
depends on αn and βn respectively, we only need to consider
whether there is a Stackelberg equilibrium between (αn , βn )
and p.

Theorem 2: If the resource price p of MEC server is
fixed, then the user’s utility function Un(αn , βn ) reaches the
maximum value at (α∗

n , β
∗
n ).

Proof: According to Theorem 1, the optimal solution
(α∗

n , β
∗
n ) can be solved through the convex optimization

toolkit to maximize Un (αn , βn ).
Theorem 3: Let α = (α1, α2, . . . , αn , . . . , αN ), β =

(β1, β2, . . . , βn , . . . , βN ). If users’ offloading decisions (α, β)
are determined, then the utility function Umec(p) of the MEC
server is maximized at resource pricing p∗.

Proof: According to Alg. 1 and Alg. 3, the range of unit
price of MEC server resources (plow , pup) is determined. Let
s represent the traversal step size and i ∈ {0, 1, 2, . . . , (pup −
plow )/s}. By traversing (plow + s× i) within the price range,
the MEC server calculates utilities based on user offloading
decisions. As shown in Fig. 2, the MEC server can determine
the optimal resource price to maximize the Umec(p).

According to Theorem 2 and Theorem 3, we know that
when the MEC server prices resources as p∗, users will make
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Fig. 2. Variation in MEC server utility with changing resource prices.

Algorithm 1: Price Upper Bound Solution
Input: ε;
Output: the price up bound pup;

1 Initialize the price range [pleft, pright] where
Umec(pleft) �= 0 and Umec(pright) = 0 by Alg. 2;

2 while pright − pleft > ε do
3 pmid ← (pleft + pright)/2;
4 if Umec(pmid) = 0 then
5 pright ← pmid;
6 else
7 pleft ← pmid;
8 end
9 end

10 pup ← pleft;

offloading decisions (α∗, β∗) to achieve optimal utilities. In
this case, neither the MEC server nor users can obtain better
benefit by adjusting the strategies, which is consistent with
Definition 1. Therefore, there is a Stackelberg equilibrium
between the MEC server and users.

VI. SPY-ADJUST DYNAMIC ITERATIVE SEARCH

ALGORITHM

In this section, a Dynamic Iterative Search Algorithm based
on a Spy-Adjust Strategy is proposed to get the unique
Stackelberg equilibrium. Before introducing the algorithm, we
firstly introduce two sub-algorithms Alg. 1 and Alg. 3. In the
two algorithms, the binary search strategy is adopted to find
the price up bound and price low bound, respectively.

Alg. 1 introduces the binary search method to find the up
bound of the resource pricing. The price up bound means,
once the resource pricing exceeds the up bound, the users no
longer offload any tasks to MEC, hence, the utility of the MEC
server declines to 0 and remains unchanged. In the algorithm,
the utility of MEC is calculated by calling Alg. 2 (in lines 1
and 3).

Similarly, the price low bound can be found adopting the
binary search method as well, shown as Alg. 3. If the resource
pricing is lower than the price low bound, the users tend to
offload a great amount of tasks to the MEC server, which leads

Algorithm 2: MEC Frequency and Benefit Solution
Input: the resource pricing p;
Output: the computing unit frequency funit, the utility of

MEC Umec;
1 {(αn , βn )|n ∈ (1, . . . ,N )} ← solve the follower level

problem for all users;
2 funit ← calculate the computing unit frequency by Eq. (6);
3 Umec ← calculate the MEC utility by Eq. (8);

Algorithm 3: Price Lower Bound Solution
Input: ε;
Output: the price low bound plow;

1 Initialize the price range [pleft, pright] as [0, pup];
2 funit ← calculate the objective computing unit frequency

under the price pleft by Alg. 2;
3 if funit < Fmax then
4 plow ← pleft;
5 else
6 while pright − pleft > ε do
7 pmid ← (pleft + pright)/2;
8 if funit(pmid) > Fmax then
9 pleft ← pmid;

10 else
11 pright ← pmid;
12 end
13 end
14 plow ← pright;
15 end

Fig. 3. Price update indication.

to the MEC server overload and the performance of the tasks
cannot be guaranteed.

Next, we will give a detailed introduction on the proposed
algorithm.

The price is initialized as 0 and progressively approximates
the optimal value by adjustment. In the algorithm, the price
update step ρ is randomly set, and the price update direction
is initialized to 1, that is, the MEC server raises the price by
default. Because ρ is randomly set, the updated price might
be out of the effective price range [p low, p up] (shown in
Fig. 3(a)). Under the case, the ρ value is halved iteratively
until the updated price falls within the effective range (shown
as lines 5-8).
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Fig. 4. Utility decline reason analysis.

Each time after the price is updated, the MEC utility is
calculated under the updated price p′n , denoted as U ′

mec.
If U ′

mec is greater than U mec (see Fig. 3(b)), the price
is further updated in the original direction (lines 23-30). If
U ′

mec is less than U mec, it should be discussed in two cases.
Fig. 4(a) gives the first case, that is, the price update goes

in the opposite direction. Fig. 4(b) gives the second case, that
is, the price update step is too large. To confirm the reason for
the decline in utility, a spying tactic is employed. In lines 13-
14, we update the price in the opposite direction and calculate
the utility U ′′

mec. If U ′′
mec is greater than U mec, adjust the

price update direction (in line 16). Otherwise, halve the price
update step (in lines 18-20).

Since we focus on the computation offloading problem of
the dynamic system where many parameters change over time,
our algorithm should make snap decisions on the offloading
decision and resource allocation scheme per time slot. Alg. 4
represents our final proposed algorithm. The spy-adjust algo-
rithm iteratively adjusts the step size and update direction
multiple times to optimize the pricing strategy of the MEC
server, and users can formulate reasonable offloading strategies
based on the price. Let K denote the number of game iterations
between MEC server and users, and V represent the time
complexity of solving a convex optimization problem using
the toolbox. In summary, the time complexity of our proposed
Alg. 4 is O(KNV).

VII. SIMULATION RESULTS

In the section, we give several groups of simulation exper-
iments to verify the performance of the proposed algorithms
and analyze the influence factors that affect the algorithm
performance.

A. Parameter Setting

In the simulations, several users are located within the
coverage of the MEC server. The number of the users is set in
the range of [2, 16]. The MEC server is equipped with multiple
computing units, and the number of units is set to 4. Each
unit is DVFS-enabled and its maximal adjustable frequency is
set in the range of [2, 6] GHz. The users also can adjust each
frequency during the range of [0, 2] GHz. The length of each
time slice τ is set as 1 s [25]. The size of the task generated
by the n-th user is set between 600 and 800 KB, and the
computation density is set in the range of [600, 800] cycles/bit.

Algorithm 4: Spy-Adjust Dynamic Iterative Search
Algorithm (SADISA)

Input: device parameters such as N, γn , ωn , Cn , Dn ,
P tra
n , ξn , E res

n ,fmax; channel parameters such as B,
hn , σ2; MEC parameters such as m, Fmax; price
update step ρ;

Output: the suboptimal decision (p∗, f ∗unit) for MEC, and
the optimal decision (α∗

n , β
∗
n , f

∗
n ) for each user;

1 pup ← find the up bound of the pricing by Alg. 1;
2 plow ← find the low bound of the pricing by Alg. 3;
3 p ← 0,Δ← 1, θ ← 10−10;
4 Umec ← calculate the MEC utility under p by Alg. 2;
5 p′ ← p + ρΔ;
6 while p′ > pup do
7 ρ← ρ/2;
8 p′ ← p + ρΔ;
9 end

10 U ′
mec ← calculate the MEC utility under p′ by Alg. 2;

11 while |U ′
mec − Umec| > ε do

12 if U ′
mec < Umec then

13 p′′ ← p − θΔ;
14 U ′′

mec ← calculate the MEC utility under p′′ by
Alg. 2;

15 if U ′′
mec > Umec then

16 Δ← −Δ;
17 else
18 ρ← ρ/2;
19 p′ ← p + ρΔ;
20 U ′

mec ← calculate the MEC utility under p′
by Alg. 2;

21 end
22 else
23 D = (U ′

mec − Umec)/(p
′ − p);

24 Δ← (D > 0)?1:− 1;
25 p′ ← p + ρΔ;
26 while p′ > pup||p′ < plow do
27 ρ← ρ/2;
28 p′ ← p + ρΔ;
29 end
30 U ′

mec ← calculate the MEC utility under p′ by
Alg. 2;

31 end
32 end

It is assumed that all users are equipped with the same type
of battery and the maximum battery capacity is 1337 J (e.g.,
3.7V, 1000mAh). The rest energy in each user is randomly
generated in [0, 133.7] J. The transmission power of user n is
randomly generated in the range of [150, 250] mW.

Besides, the wireless bandwidth B is set in the range of
[20, 150] MHz. The noise power σ2 is set as 10−6 W/Hz [6]
and the channel power gain hn follows an exponential dis-
tribution with mean of 1. The energy coefficient factor is set
as 10−26 [26] for the MEC server and 5 × 10−27 for each
user. The electricity price is set as 0.5× 10−6 per joule. The
satisfaction factor ωn is set as 1, and the trade-off factor γn is
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Fig. 5. The resource pricing and utility of the MEC server change versus
the number of iterations.

set as 0.5. For each setting, we run the experiments multiple
times and average the results to improve the reliability.

B. The Convergence Performance

Conducting convergence experiments aims to verify whether
the system, with a single MEC server and multiple users, can
achieve an equilibrium point, providing empirical support for
the system’s gaming strategy. Fig. 5 depicts the variations in
the utility and resource pricing of the MEC server. With an
increasing number of iterations, both the utility and pricing of
the MEC server stabilize after 5 iterations. It can be discerned
from this that the user’s offloading decisions also manifest a
tendency towards stability. Consequently, it can be inferred
that a Stackelberg equilibrium exists between the strategies of
the users and the MEC server.

C. The Impact of Maximum Adjustable Frequency

In this group of experiments, we present the impact of the
MEC maximal adjustable frequency on the performance of
both parties. The number of users is set as 6, the bandwidth
is set as 100 MHz, and the MEC maximal frequency F max
is varying from 1.6 GHz to 4.8 GHz in step of 0.4.

Firstly, the impact of F max on the task offloading decision
and utility of MDs is shown in Fig. 6. To better show the
results, only three MDs are selected randomly. In Fig. 6(a),
the changing trends of the task offloading decision, i.e., the
local execution task ratio αi and the remote offloading task
ratio βi , with the increasing F max value are shown. From the
figure, we can observe that the task throughput of MD1, MD2,
and MD3 initially increases with the rise of F max and levels
off when the F max value reaches 3.2 GHz. That is because
the MEC server can provide more computation capacity under
a greater F max, and can process more offloaded tasks. The
main reason for the increase in task throughput is the increase
in the amount of offloading tasks. However, when the F max
value increases further, the actual optimal frequency of the
MEC server is not increasing correspondingly. That is because
the energy consumption is raising rapidly with the increase of
CPU frequency. If the frequency of MEC is set very high, the

resource pricing should be put up correspondingly to offset
energy costs. Under the case, the MDs would reduce the
amount of offloaded tasks to safeguard their own interests.
That is to say, further increasing the computation capacity
does not bring more benefit for the MEC server. Considering
the benefits of both sides, even the adjustable frequency gets
higher, the optimal frequency of MEC remains unchanged.

In Fig. 6(b), the changing trends of the utility are plotted
for the three MDs. It is obvious that the utility value of the
three MDs shows the same trend, that is, increasing firstly and
keeping unchanged lastly. That is because the utility of MDs
is proportional to the amount of processed tasks, and inversely
proportional to resource prices. For MD1, MD2, and MD3, the
trend in utility change is similar to the task processing volume,
both stabilizing after F max reaches 3.2 GHz. On the other
hand, the price of the MEC server gradually decreases with
the increase in F max until stabilizing after reaching 3.2 GHz.
For detailed results, please refer to Table I.

Table I gives the experimental results of MEC under differ-
ent F max value, including the suboptimal resource pricing,
the optimal frequency, and the maximal utility. The results
show that when there are fewer computing resources available,
MEC would set a higher price to avoid overloading. Along
with the increment of the F max value, MEC could set a lower
price to attract more computing requirements and generate
more profit. That is also the reason that the utility of MEC
raises when F max is increasing from 1.6 GHz to 3.2 GHz.
When F max increases further, the utility of MEC stops
growing, that is because the global optimal combination of
resource pricing and frequency setting has reached at 3.2 GHz,
and it does not change as the F max value changes.

D. The Impact of Bandwidth

Tables II and III show the results with different bandwidth.
In this group of experiments, the number of users is set as
6, the maximum main frequency of each computing unit of
the MEC server is set to 2 GHz, the bandwidth B is set as
{20, 50, 80, 100, 120, 150} MHz, respectively.

According to Table III, it can be observed that with the
increase in bandwidth, the average offloading rate βi of users
gradually rises. This is attributed to the fact that higher
bandwidth helps reduce the latency of task transmission,
enhancing user experience and making users more willing to
opt for task offloading. Furthermore, as indicated in Table II,
the pricing of resources from the MEC server exhibits a
downward trend with increasing bandwidth. This trend further
encourages users to lean towards task offloading. However,
the user’s offloading rate increases slowly, mainly due to the
limited computing resources of the MEC server. It can be
observed from Table II that the optimal usage frequency of
a single computing unit of the MEC server is almost equal
to all frequencies owned by the computing unit. The benefit
of the MEC server gradually increase, attributed to the rise
in the number of offloaded tasks by users. In Table III, the
local task processing rate for users remains relatively constant
with the increase in bandwidth. This is because users have
sufficient computing resources locally to handle a portion of
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Fig. 6. Task assignment ratio and utility of three MDs vs. MEC maximal adjustable frequency.

TABLE I
DIFFERENT PERFORMANCE INDICATORS OF MEC VS. MAXIMAL ADJUSTABLE FREQUENCY

TABLE II
DIFFERENT PERFORMANCE INDICATORS OF MEC VS. BANDWIDTH

TABLE III
DIFFERENT PERFORMANCE INDICATORS OF MDS VS. BANDWIDTH

the tasks, and the increased bandwidth does not affect the
efficiency of local task processing. The utilities for users
exhibit a rising trend, propelled by an increase in the number
of tasks processed by users and a decrease in the resource
pricing of the MEC server.

E. The Impact of User Numbers at Different Frequencies

Fig. 7 plots the results for different numbers of users
at different frequencies. In this group of experiments, the
bandwidth is set as 100 MHz, the maximum computing
frequency of a single computing unit of the MEC server is set
as {1.6, 2.4, 3.2, 4.0} GHz, the number of users N is set from
2 to 16 in step of 2.

From Fig. 7(a) we can observe the changes in the average
local processing task rate α and remote offloading rate β
of users as the number of users changes under the four
frequencies. Under the same frequency, as the number of users
increases, the average remote offloading task rate shows a
downward trend. This is because more users lead to a reduction
in the bandwidth obtained by each user, thereby reducing
the transmission rate and increasing latency. Under different
frequency conditions, as the number of users increases, the
average offloading task ratio of users at higher frequencies
will be higher than the average offloading task ratio at lower
frequencies. This is because, with an increasing number of
users, the low-frequency MEC server cannot handle more tasks
within the required latency, whereas the high-frequency MEC
server has sufficient computing resources.
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Fig. 7. Task offloading decisions and MEC server utility versus MDs and frequency.

Fig. 8. Performance comparison with different number of MDs.

From Fig. 7(b) we can see that as the number of users
increases, the benefits of the MEC server under the four
frequencies show an upward trend. This is because the increase
in the number of users represents a rise in the total number
of tasks, leading to more tasks being offloaded to the MEC
server, increasing the efficiency of the MEC server.

F. Performance Comparison

To further evaluate the performance of the SADISA
proposed in this paper, we compare SADISA with two baseline
algorithms.

• Constant price algorithm (CPA): The MEC server sets
the resource pricing to a fixed value pcpa . The CPU
computation frequency is variable and depends on the
users’ task offloading decisions, which are influenced by
the resource pricing and users’ existing task loads.

• Maximum frequency execution task algorithm (MFETA):
The task execution frequency of each computing unit of
the MEC server is set to the maximum value, while the
resource pricing is variable and depends on the current
resource demand and utility.

In the following numerical calculations, we set the maxi-
mum frequency of each computing unit of the MEC server to

6 GHz, while setting the price in the CPA strategy to 6.5E-
10. The remaining parameters remain consistent with previous
calculations.

Fig. 8 presents the numerical calculation results of the
three strategies with respect to the number of users. Fig. 8(a)
illustrates the user average benefits generated as the number
of users varies, where the benefits of SADISA are lower than
MFETA but higher than CPA. This is attributed to MFETA
utilizing all computing resources to assist users in computing
tasks, while CPA performs the worst in terms of benefits since
it does not encourage users to offload more tasks through price
adjustments. As the number of users changes, the average
user benefits generated by the three strategies fluctuate up
and down. This is because each group of different numbers
of user tasks is randomly generated with different task sizes.
Fig. 8(b) illustrates the impact of user quantity variations on
the MEC server benefit for three different strategies. As the
number of users increases, the benefit gradually rise, with
SADISA yielding the highest MEC server benefit due to its
comprehensive consideration of price and frequency adjust-
ments. When the user quantity is less than 12, CPA exhibits
higher MEC server benefits than MFETA. This is attributed
to the fewer tasks offloaded by users when the user quantity
is low, leading to higher energy consumption when the MEC
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Fig. 9. Performance comparison with different task arrival rate.

Fig. 10. Performance comparison with different number of computing units.

server utilizes all computing resources for task processing,
making the performance of MFETA inferior to CPA. For
user quantities of 4 and 6, MFETA generates negative MEC
server benefit, resulting from a scarcity of offloaded tasks and
high energy consumption. While MFETA can generate more
user benefits, SADISA outperforms in generating more MEC
server benefit. Overall, SADISA demonstrates optimal system
efficiency.

Fig. 9 presents the numerical calculation results of the
three strategies with respect to the task arrival rate. Fig. 9(a)
illustrates the variations in average user benefits for the three
strategies under different task arrival rates. As the task arrival
rate increases, the benefit of SADISA gradually decreases,
falling below that of MFETA but surpassing CPA. This
is attributed to MFETA making full use of all computing
resources in MEC, prompting users to offload more tasks
and consequently increasing user benefits. Fig. 9(b) depicts
the impact of the three strategies on the MEC server benefit.
SADISA yields the maximum MEC server benefit, as it
dynamically adjusts both pricing and frequency to maximize
the efficiency of the MEC server. For MFETA, MEC server
benefit are negative when the task arrival rate is less than
800KB, due to the strategy utilizing all computing resources,
resulting in excessive energy consumption. CPA fails to

generate MEC server benefit at task arrival rates of 200KB
and 400KB, as the low number of tasks allows users to rely on
their own computing resources to maximize their individual
benefits.

Fig. 10 presents the experimental results of the three strate-
gies with respect to the number of computing units. Fig. 10(a)
illustrates the impact of different numbers of computing units
on user benefits for the three strategies. User benefits show an
initial increase followed by stabilization in both SADISA and
MFETA. This trend is attributed to the constant total number
of user tasks. In the case of CPA, user benefits also exhibit
an initial increase followed by stabilization, although the
growth is relatively less pronounced on the graph. Fig. 10(b)
illustrates the impact of the three strategies on the MEC server
benefit under varying numbers of computing units. In both
SADISA and CPA, the MEC benefit shows an increasing
trend, gradually stabilizing. For SADISA, this is attributed
to having more resources, enabling it to handle a greater
number of tasks. In the case of CPA, as the number of
computing units increases, each unit bears a reduced share of
computational resources, leading to lower energy consumption
and an enhancement in MEC benefit. However, in MFETA,
MEC benefit shows a downward trend, which is due to
the increase in the number of computing units leading to
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an increase in energy consumption, thereby reducing MEC
benefit.

VIII. CONCLUSION

In this paper, we study the computation offloading problem
for a multi-device single MEC system within a time slice. Both
the MDs and the MEC can perform frequency adjustment to
effectively save energy consumption. In order to make reason-
able resource pricing, resource allocation and task offloading
decisions, Stackelberg game theory is adopted. We propose the
SADISA to find optimal policies for users and MEC server.
Simulation experiments show that by adjusting parameters,
the performance of SADISA can be changed. In comparative
experiments, SADISA can better improve system efficiency
compared to the other two methods.
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