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Throughput-Aware Dynamic Task Offloading
Under Resource Constant for MEC

With Energy Harvesting Devices
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Abstract—With the explosive increase of Internet of Things
(IoT) devices, an increasing number of computation-intensive
applications are emerging in IoT system. However, most IoT
devices are limited by size and location, equipped with low-
performance CPUs and low-capacity batteries, which cannot
go well with computation-intensive applications. Mobile edge
computing (MEC) is considered as a promising solution to pro-
vide computation-intensive and latency-sensitive services in IoT
system, but it is still challenging to improve the throughput and
extend the battery life of IoT devices under communication con-
straints. This paper focuses on the task offloading problem for an
MEC system with multiple energy harvesting (EH) devices. To
accommodate the system dynamics and ensure the system stabil-
ity in terms of task queue and battery level, we apply Lyapunov
optimization theory, and design a computation tasks maximum
offloading algorithm to maximize the system throughput. The
algorithm can determine the offloading decision in real-time with-
out knowing any statistical information about the system. We first
give a series of mathematical analysis to verify the system stabil-
ity and discuss the performance of the algorithm. In addition, a
number of simulation experiments are conducted to present the
efficiency of the algorithm.

Index Terms—Energy harvesting, Lyapunov optimization,
mobile edge computing, task offloading.

I. INTRODUCTION

W ITH the explosive increase of Internet of Things (IoT)
devices, e.g., mobile phones, laptops, smart termi-

nals, and various sensors, it becomes a general trend to
migrate computation-intensive applications to IoT devices [1],
[2]. Processing such applications always requires powerful
computing capacity. However, constrained by size and loca-
tion, most IoT devices are equipped with low-performance
CPU and low-capacity battery, which limits the computing
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capacity of IoT devices severely. Consequently, they cannot deal
with computation-intensive applications effectively. A feasible
method to address this problem is to offload such computation-
intensive applications to other servers for execution. Mobile
edge computing (MEC) provides such a technology that deploys
offloading nodes at the margin of the network [3]. Via task
offloading, both the computing capacity and the battery lifetime
of IoT devices can be enhanced effectively.

Although task offloading can effectively extend the battery
life and improve the computing capacity of IoT devices, it
still faces several obstacles. First, for the tasks created by
the devices, local execution and remote offloading to MEC
(partially or fully) are two common ways to handle these
tasks [4]. The energy consumption of IoT devices to pro-
cess tasks locally or offload tasks remotely is different and
it is affected by different factors. Energy consumption from
local processing correlates with CPU frequency, while energy
consumption of offloading tasks to MEC is extremely depen-
dent on the channel state. To make task offloading optimal,
we need to consider how to properly assign the tasks of
each device under a stochastic channel state. Second, there
is always competition for the limited computation and com-
munication resources when a great deal of devices connect
to the MEC server and begin to offload tasks at once [5].
Thus, it is a challenge to properly allocate the limited resources
for each device such that the objective performance is maxi-
mized. Third, due to the system dynamics, e.g., channel state,
task arrival rate, and energy harvesting efficiency, the system
processing capability is changing over time. To achieve a long-
term objective optimal while maintaining the system stability,
the task offloading decision should be determined in real-time.
This results in the problem being much more complicated.

In the majority of research, the task offloading decisions are
based on the assumption that the task arrival rate, channel state,
and other parameters were known in advance and remained
unchanged, or could be precisely forecasted from the histori-
cal information. However, the task arrival rates of the different
devices dynamically change over time. Estimating the task
arrival rates necessitates a large amount of statistical work, and
its status is difficult to anticipate precisely. Furthermore, the
quality of the radio channel changes dynamically over time as
well. It is impacted by a variety of parameters, such as device
location and the degree of network congestion [6]. Exactly
predicting the time-varying channel state is nearly impossible.

To address the aforementioned difficulties, this article uti-
lizes Lyapunov optimization method and solves the dynamic
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Fig. 1. System Architecture.

task offloading problem for the multi-IoT devices MEC system
in a different scenario from the existing studies. In the sce-
nario, each IoT device has an energy harvesting module. To
keep the system running for a long time, the battery of each
device keeps above a minimum charge. Thus, we set a value
as the battery power threshold for each device. The system
architecture as shown in Fig. 1. This study is similar to [7],
but there are several differences as follows.

• The application scenarios are different. In [7], the IoT
devices are not equipped with energy harvesting mod-
ules and the tasks are not assigned to execute locally.
Thus, the devices cannot utilize renewable energy and
only handle the tasks by remote offloading. In our work,
IoT devices with energy harvesting modules and com-
puting abilities are considered. Therefore, IoT devices
can utilize renewable energy to provide a portion of the
power. The tasks not only can be processed locally but
also can be offloaded to MEC.

• The optimization objectives are different. Reference [7] is
to minimize the IoT device’s transmission energy while
maintaining the system stability. In our work, the goal
is to maximize the system throughput while keeping the
battery level of each device above the threshold and main-
taining the maintain stability of the task queue of each
device.

To accommodate the system dynamics and maintain the
system stability, we apply Lyapunov optimization theory to
deal with this problem. The major contributions are summa-
rized as follows:

• We consider the task offloading problem for a multi-
IoT devices single-MEC scenario. In this scenario, each
device is equipped with an energy harvesting module,
which allows the user to use externally captured energy
to process tasks. They are heterogeneous in terms of
computing capacity, power consumption, and computa-
tion requirements. In our problem, the tasks, the network
state, and the energy harvested in each time slot are
dynamically changing and stochastic.

• We define the task offloading problem as a dynamic
optimization problem that is conducted to maximize the
system throughput while maintaining the system stability
of the task queue and battery level in long-term scales.
Meanwhile, setting a battery level threshold for each
device can effectively extend the life of the device bat-
tery. Applying Lyapunov optimization theory, the original
optimization problem which depends on further unknown
information is transferred into a new problem that only

depends on current system information. To address the
this problem, we exploit a Computation Tasks Maximum
Offloading Algorithm (CTMOA).

• We present a rigorous mathematical analysis on the
performance of CTMOA, proving the task queue exists an
upper bound. Specifically, we demonstrate that the battery
constraint is fulfilled by the power management scheme
generated by CTMOA. We also conduct many experi-
ments to certify the effectiveness of CTMOA, observing
the number of tasks processed by the CTMOA algorithm
and the changing trend of the task queue and battery level
under different parameters.

The rest of this article is organized as follows. In Section II,
we present the related work in MEC. In Section III, we
describe the system model in detail, and formulate the
optimization problem rigorously. In Section IV, we apply
Lyapunov optimization, and design a computation tasks max-
imum offloading algorithm called CTMOA to tackle with this
problem. In Section V, we discuss the CTMOA algorithm
performance by mathematical analysis. In Section VI, we esti-
mate the CTMOA algorithm performance by several groups of
experiments. In Section VII, we conclude this paper.

II. RELATED WORK

There are extensive studies on the task offloading issue
in MEC. In the single-device single-MEC application sce-
nario, Liu et al. [8] investigated the two-timescale stochastic
optimization problem. That is, in long time scales, the tasks are
executed locally or offloaded to MEC via wireless channels,
and in short time scales, the allocation of floading strategy
is determined by the channel state. By quoting the Markov
decision process, they proposed the dynamic task offload-
ing strategy to address this problem. Unlike the application
scenarios in [8], Dinh et al. [9] deployed a single mobile
device (MD) which connected a group of edge servers sce-
nario. For both fixed and flexible CPU frequencies, a series of
optimization approaches were designed to improve the capa-
bility of MD and reduce the power consumption of MD.
Different from the commonly studied resource management
strategies [10], [11], Bi and Zhang [12] studied a multi-devices
single MEC network model. All the devices are equipped with
energy harvesting modules based on wireless power transfer
(WPT). They goal is to maximize the computation rate of each
device. To achieve this goal, a binary offloading strategy was
proposed. Recently, Artificial Intelligence/Machine Learning
(AI/ML) has made great progress [13]. Numerous algo-
rithms [14], [16], [17], [18] have been developed. Du et al. [13]
introduced a lot of state-of-the-art techniques based on AI/ML
to support ultra-reliable and low-latency communications
(URLLC) in future networks and illustrated intelligent tera-
hertz techniques, such as AI/ML enabled terahertz channel
estimation and spectrum management, which are considered
revolutionary, to achieve an ultra-broadband transmission.
Zhang et al. [14] used AI/ML technology to minimize latency
costs and energy consumption. Zhou et al. [19] investigated the
task offloading problem for a single MEC system that incor-
porates multiple antennas. Avoiding the device battery energy

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 08,2024 at 11:37:51 UTC from IEEE Xplore.  Restrictions apply. 



3462 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 3, SEPTEMBER 2023

from falling below a predetermined threshold, and minimizing
energy consumption and execution latency are their objectives.
They convert the objective issue into a nonconvex problem
quoting the Lyapunov optimization method, and then develop
a dynamic offloading strategy to solve it. In an approximate
cloud computing environment, Lyu et al. [20] took into account
the computation offloading problem. A heuristic algorithm was
proposed to speed up the task completion time and cut down
on the energy consumption of MD. The rigorous mathematical
analysis demonstrated that the optimization issue is NP-hard.
Dai et al. [21] designed a particle swarm optimization algo-
rithm to tackle the online task offloading problem on the
Internet of Vehicles (IoV). The goal is to heighten resource
utilization. According to simulation experiment results, the
algorithm improves the global resource utilization from 71.8
to 94.5 percent. Overall, nearly all the studies listed above sup-
pose that the channel states or task arrival rates are known or
can be accurately predicted according to system information.
The task arrival rates in MEC are stochastic, and channel con-
ditions are affected by a series of parameters. Therefore, it is
difficult to achieve accurate predictions.

To address this challenge, many studies have been done in
recent years to avoid the prediction of dynamic parameters by
applying stochastic optimization methods. Among the stochas-
tic optimization methods, the Lyapunov optimization method
is the most universal one [7], [18], [19], [22], [23], [24],
[25], [26], [27], [28]. Applying the Lyapunov optimization
method, Chen et al. [7] used backpack theory to design an
online offloading algorithm to address dynamic task offload-
ing problem in MEC system. Minimizing energy consumption
is their goal, but they only considered remote offloading, not
local processing. Deep reinforcement learning (DRL) was used
by [15], [16], [17], [18] to address the task offloading problem
in MEC. Zhang et al. [15] presented two DRL based algo-
rithms, i.e., hybrid decision-based actor-critic learning and
multi-device hybrid decision-based actor-critic learning, to
address the two challenges of MEC system with EH devices:
continuous-discrete hybrid action spaces, and coordination
among devices. Using a Markov decision process (MDP),
Shi et al. [16] constructed the task offloading issue with the
goal of maximizing the mean latency-aware utility of tasks in
a period. Bi et al. [18] dedicated to improving the task pro-
cessing capability in MEC network, and proposed an online
strategy to maximize task offloading rate based on DRL.
They formulated the maximizing the task offloading rates into
a non-linear programming problem. Quoting the Lyapunov
optimization method and DRL, a new online resource alloca-
tion algorithm was proposed to address this problem. Although
this study discussed local processing, it did not consider energy
harvesting. Mao et al. [22] exploited an online resource allo-
cation approach in a multi-devices MEC system, using Gauss-
Seidel theory to analyze the best transmit power, but this
study also did not consider energy harvesting. Xia et al. [23]
studied an EH-enabled MEC offloading system. According
to perturbed Lyapunov methods and buyer/seller game the-
ory, an online distributed algorithm was designed to optimize
computing resources and battery energy and improve task
offloading efficiency. Du et al. [29] designed an evolutionary

Fig. 2. The System Model.

game based service selection model for users, and proposes a
Stackelberg differential game based cloud computing resource
sharing mechanism to facilitate resource transactions among
resource providers. However, they did not consider the bat-
tery energy threshold constraints of the devices, which do not
effectively extend the battery life. Zhao et al. [24] investi-
gated the dynamic offloading problem for a three-layer MEC
network model. Compared to the EEDOA algorithm in [7],
Zhao et al. further designed a dynamic offloading algorithm
to optimize resource allocation and reduce power consump-
tion. In this paper, the EH module is deployed in a base
station (BS), which allows for the most efficient use of exter-
nal energy. However, they also did not consider the battery
energy threshold constraints.

In most of the studies mentioned above, the devices with
energy harvesting modules were not considered [6], [7], [8],
[9], [18], [20], [21], [30], [31]. In [12], [16], [23], [24], [27],
[29], the battery level constraints of the devices are not guar-
anteed, which makes the battery life significantly reduced. To
address this situation, we propose an optimization framework
for task offloading maximization problems with energy har-
vesting modules, while ensuring the system stability in terms
of task queue and battery level.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

One generic MEC system with one BS is explored in this
study. Task offloading has two types offline offloading and
online offloading. This article belongs to online task offload-
ing. In general, the future information of the system cannot be
predicted precisely. Within the coverage of the BS, there are
k devices generating tasks dynamically. Local execution and
remote offloading to MEC (partially or fully) are two common
ways to handle these tasks. Let K = {1, 2, . . . , k} represent
the index set of the k IoT devices inside the BS’s coverage.
As shown in Fig. 2, each IoT device owns a rechargeable bat-
tery of limited capacity and is equipped with an EH circuit
component which can harvest external energy to power its
operation [32]. Due to the dynamic nature of the system, the
amount of harvested energy per unit time is stochastic. Thus,
we divide time into a series of time slots T = {0, 1, 2, . . .}
and each time slot has the same length τ .
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B. Task and Queuing Model

In per time slot τ , each device generates new computation
tasks and the number of tasks is denoted by Ai (t) (in bits).
Each device maintains a queue buffer to store the generated
tasks which wait to be processed. The first-come-first-served
(FCFS) discipline is applied to the tasks to be processed in the
queue. The total amount of tasks processed in slot t is denoted
by Wi (t). For device i, Gi (t) denotes the queue length in
current time slot t, and then the queue length in next slot is

Gi (t + 1) = max{Gi (t)−Wi (t) + Ai (t), 0}, (1)

where Gi (0) = 0. It is certain that each device cannot process
more tasks than what it has, so

Wi (t) ≤ Gi (t) +Ai (t) (2)

holds always.
According to the definition of stability in [33], all the tasks

satisfy

lim
T→∞

1

T

T−1∑

t=0

E{Gi (t)} ≤ ∞. (3)

The task queue is stable.

C. Computation and Energy Model

Local computation: For device i, ci denotes the required
CPU cycles to process one bit of data, fi ,l denotes the CPU
cycle frequency, and Wi ,l (t) denotes the amount of tasks
executed locally. Then, the time required to process Wi ,l (t)
bits tasks in device i is Ti ,l (t) = ciWi ,l (t)/fi ,l . Since the
tasks should be processed within current time slot, that is,
Ti ,l (t) ≤ τ , we have

Wi ,l (t) ≤
τ fi ,l
ci

. (4)

Let Ei ,l (t) denote the energy consumption for local execu-
tion of device i and then Ei ,l (t) is calculated as

Ei ,l (t) =
ciPi ,lWi ,l (t)

fi ,l
, (5)

where Pi ,l = ξi (fi ,l )
3 is the computing power consumption

(in watts). ξi represents the effective switched capacitance of
the CPU, which is determined by the chip structure of device
i [24], [34].

Task Transmission: In slot t, the transmit power and chan-
nel power gain of each IoT device i are indicated by Pi ,o and
hi (t), respectively. Since the channel state is stochastic, chan-
nel power gain is dynamically changing over time. Therefore,
we denote the achievable tasks communication speed as Ri (t)
(in bits/s), which is,

Ri (t) = B log2

(
1 +

Pi ,ohi (t)

BN0

)
,

where B is the channel’s bandwidth and N0 is the noise power
spectral density [7].

Let S(t) denote the number of available up-link channels.
Based on realistic scenarios, S(t) is considered to dynamically

vary over different time periods in this study. Similar to [35],
the Time Division Multiple Access (TDMA) channel model is
used in this study, which means that various devices can access
a channel in TDMA at different times during a time slot. To
improve the system performance, channel resources should be
appropriately allocated to different devices. Then, the channel
allocation decision is defined as π(t) = {π1(t), . . . , πk (t)},
where πi (t) represents the duration allocated to device i. The
offloading tasks amount during slot t is denoted by

Wi ,o(t) = Ri (t)πi (t). (6)

It is obvious that a device cannot offload more tasks in a time
slot than that it has. Hence, πi (t) should satisfy

πi (t) ≤
Gi (t) + Ai (t)

Ri (t)
. (7)

Based on the same assumption with [35], each device can only
access a channel in TDMA at a time slot. So we have

0 ≤ πi (t) ≤ τ,∀i ∈ K . (8)

According to (7) and (8), we have (9).

0 ≤ πi (t) ≤ min

{
Gi (t) + Ai (t)

Ri (t)
, τ

}
. (9)

Besides, the communication duration of all channels is not
shorter than the total length of the channel resources allocated
to all devices, which is,

k∑

i=0

πi (t) ≤ S (t)τ. (10)

Let Ei ,o(t) denotes energy consumed by device i for task
transmission, which can be calculated by

Ei ,o(t) = Pi ,o
Wi ,o(t)

Ri (t)
= Pi ,oπi (t), (11)

where Pi ,o is transmission power of device i.
According to the above definitions, the energy consumption

of device i is defined as

νi (t) =
ciPi ,lWi ,l (t)

fi ,l
+

Pi ,oWi ,o(t)

Ri (t)
+ Pcτ, (12)

where Pc denotes the constant circuit power consumption [36],
which is the lowest power consumption to maintain the basic
operation of the IoT device.

The total amount of tasks that device i can process in slot
t is

Wi (t) = Wi ,o(t) +Wi ,l (t).

D. Battery and EH Model

In this study, we presume that the energy used by IoT
devices for offloading tasks only comes from the battery and
the harvested energy in the current time slot can only be used
in the next time slot. This model is adopted widely in existing
studies [23], [25], [27]. Ji (t) denotes the battery energy of
device i. Consequently, Ji (t + 1) is defined as

Ji (t + 1) = min{Ji (t)− νi (t) + EHi (t), Jmax}, (13)
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where EHi (t) is the energy harvested in time slot t, Jmax is
the battery capacity, and νi (t) satisfies

0 ≤ νi (t) ≤ Ji (t), (14)

which indicates that device i cannot consume more energy
than Ji (t) in time slot t. To keep the system running for a
long time, the battery power should be kept above a minimum
level. Hence, we set a threshold for the battery power of each
device, which is,

lim
T→∞

1

T

T−1∑

t=0

E{Ji (t)} ≥ σ, (15)

where σ is a predefined energy level threshold.

E. Problem Formulation

In this study, we are conducted to maximize the system
throughput, maintain of the task queue of each device, and
keep each device battery level above the threshold at the
same time. This can be realized by jointly optimizing the task
offloading decisions and resource allocation schemes.

The system throughput is measured by the amount of tasks
processed by all devices in unit time. Due to the dynamics of
system, we define the system throughput as the time-average
amount of processed tasks of all devices, which is

max
π(t),Wi,l (t)

W = lim
T→∞

1

T

T−1∑

t=0

E{W (t)},

s. t. (2), (3), (9), (10), (14) and (15), (16)

where

W (t) =
k∑

i=1

{
Wi ,l (t) +Wi ,o(t)

}
.

According to (12), Wi ,l (t) can be rewriten as

Wi ,l (t) =

(
νi (t)− Pi ,oπi (t)− Pcτ

)
fi ,l

ciPi ,l
. (17)

Combining (6) with (17), constraint (2) can be transformed
into
(
νi (t)− Pi,oπi (t)− Pcτ

)
fi,l

ciPi,l
+ Ri (t)πi (t) ≤ Gi (t) + Ai (t).

(18)

Letting ζ(t) = −W (t), (16) can be redefined as

min
π(t),νi (t)

lim
T→∞

1

T

T−1∑

t=0

E{ζ(t)},

s. t. (3), (9), (10), (14), (15) and (18), (19)

where

ζ(t) =

k∑

i=1

((
Pi ,oπi (t)− νi (t)

)
fi ,l

ciPi ,l
− Ri (t)πi (t)

)
.

IV. COMPUTATION TASKS MAXIMUM

OFFLOADING ALGORITHM

Since (19) depends on the information from time 1 to T,
we first quote Lyapunov’s drift plus penalty method [33] to
transform (19) into a problem which only relies on the message
about the current time. Then, a Computation Tasks Maximum
Offloading Algorithm (CTMOA) is designed to solve it.

To transform our problem, a virtual queue M is constructed
firstly for the battery energy level constraint (15), which is
shown as

Mi (t + 1) = max{Mi (t) + σ − Ji (t + 1), 0}, (20)

where Mi (t) is the virtual queue backlog in slot t. Noticed that
M is different from J, since J is the battery energy of devices,
while M is a virtual queue. The virtual queue backlog Mi (t)
reflects the degree that Ji is below the threshold σ by the end
of time slot t, and Mi (0) = 0 for all devices. When the energy
level of J is less than the threshold σ at t, the queue backlog of
M increases, and vice verse. Hence, the energy level threshold
constraint of J (15) is transformed into a stability constraint of
the queue backlog of M. Until that, the Lyapunov optimization
theory can be utilized to solve this problem.

A. Problem Transformation

To jointly control the task and energy queues, we define

Θ(t) � {G1(t), . . . ,Gk (t),M1(t), . . . ,Mk (t)}

as the queue backlog vector. Thus, the Lyapunov function can
be denoted as

L(Θ(t)) =
1

2

k∑

i=1

(
G2
i (t) + αM 2

i (t)
)
, (21)

where α is the trade-off factor. According to [33], we can see
that L(Θ(t)) being “small” implies that both queue backlogs
are “small” and L(Θ(t)) being “large” implies that at least
one queue backlog is “large”. In this study, the average length
of all the task queues is around 107, while the average length
of all the virtual queues is around 10. Therefore, we set the
trade-off factor α to 106.

In this study, Ai (t) and EHi (t) can be deemed as two
groups of random variables in time slot t. Gi (t+1), Ji (t+1)
and ζ(t) are function values of random variables. Accordingly,
the expectation operation is introduced when we use the
Lyapunov optimization method. The conditional Lyapunov
drift Δ(Θ(t)) is calculated as

Δ(Θ(t)) = E{L(Θ(t + 1))− L(Θ(t))|Θ(t)}. (22)

The drift plus penalty can be written as

Δ(Θ(t)) + VE{ζ(t)|Θ(t)}, (23)

where V ≥ 0 is penalty weight, which reflects the trade-off
between the queue backlog and the optimization objective. In
this study, the goal is to maximize the system throughput.
According to the Lyapunov optimization theory [33], (19) can
be redefined as
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min
π(t),ν(t)

Δ(Θ(t)) + VE{ζ(t)|Θ(t)},

s. t. (9), (10), (16) and (19), (24)

where ν(t) = {ν1(t), . . . , νk (t)}. We have Theorem 1 for an
upper bound of (23).

Theorem 1: If Ai (t),Wi (t) and EHi (t) are respectively
upper bounded by Amax

i ,Wmax
i and EHmax

i over time
slots, the drift-plus-penalty value under any task offloading
algorithm satisfies

Δ(Θ(t)) + VE{ζ(t)} ≤ C1 + C2 + C3

+ α

k∑

i=1

(1
2
ν2i (t) + (Mi (t) + σ − Ji (t)− EHi (t))νi (t)

)

−
k∑

i=1

Wi (t)(Gi (t) + Ai (t)) + VE{ζ(t)}, (25)

where

C1 =
1

2

k∑

i=1

(
(Amax

i )2 + (Wmax
i )2 + 2Gi (t)A

max
i

)
,

C2 =
α

2

k∑

i=1

(
σ2 + Jmax + (EHmax

i )2 + 2(Jmax )
2EHmax

i

)
,

and

C3 = α

k∑

i=1

(σ − Ji (t))Mi (t).

Proof: Taking square on (1) and (20) and exploiting(
max{x , 0}

)2 ≤ x2, we have

G2
i (t + 1)−G2

i (t)

= (max{Gi (t)−Wi (t) + Ai (t), 0})2 −G2
i (t)

≤ 2Gi (t)(Ai (t)−Wi (t)) + (Ai (t)−Wi (t))
2

≤ A2
i (t) +W 2

i (t) + 2Gi (t)Ai (t)− 2Wi (t)Ai (t)

− 2Gi (t)Wi (t)

≤ (Amax
i )2 + (Wmax

i )2 + 2Gi (t)A
max
i

− 2Wi (t)(Ai (t) +Gi (t)), (26)

and

M 2
i (t + 1)−M 2

i (t)

= (max{Mi (t) + σ − Ji (t + 1), 0})2 −M 2
i (t)

≤ 2Mi (t)(σ − Ji (t + 1)) + (σ − Ji (t + 1))2

≤ 2Mi (t)σ + σ2 + (min{Ji (t)− νi (t) + EHi (t), Jmax})2
− 2(Mi (t) + σ)min{Ji (t)− νi (t) + EHi (t), Jmax}

≤ 2Mi (t)σ + σ2 − 2(Mi (t) + σ)(Ji (t)− νi (t))

+ (Ji (t)− νi (t) + EHi (t))
2

≤ 2Mi (t)σ + σ2 − 2Mi (t)Ji (t) + 2Mi (t)νi (t)

− 2σJi (t) + 2σνi (t) + (Ji (t)− νi (t) + EHi (t))
2

≤ 2(Mi (t) + σ − Ji (t)− EHi (t))νi (t) + 2(σ − Ji (t))Mi (t)

+ ν2i (t) + σ2 + (Jmax )
2 +

(
EHmax

i

)2
+ 2JmaxEH

max
i .

(27)

Let

C1 =
1

2

k∑

i=1

((Amax
i )

2
+ (Wmax

i )
2
+ 2Gi (t)A

max
i ),

C2 =
α

2

k∑

i=1

(
σ2 + (Jmax )

2 +
(
EHmax

i

)2
+ 2JmaxEH

max
i

)
,

and

C3 = α

k∑

i=1

(σ − Ji (t))Mi (t).

Summing over all the IoT devices on (26) and (27), and
taking conditional expectation, it has

Δ(Θ(t)) +VE{ζ(t)} ≤ C1 + C2 + C3 +VE{ζ(t)}

+ α

k∑

i=1

(
1

2
ν2i (t) + (Mi (t) + σ − Ji (t)− EHi (t))νi (t)

)

−
k∑

i=1

(
(νi (t)− Pi,oπi (t))fi,l

ciPi,l
+ Ri (t)πi (t)

)
(Ai (t) +Gi (t)).

The lemma is proven.
Following Theorem 1, we can see that C1 and C2 are con-

stants during all time slots, and C3 is also a constant in a
specific time. Thus, in the objective function, C1, C2 and C3

minimization operation is not required. The optimal problem
is reformulated as

P: min
π(t),ν(t)

k∑

i=1

ϕi (t)πi (t) +

k∑

i=1

(α
2
ν2i (t) + ψi (t)νi (t)

)
,

s. t. 0 ≤ πi (t) ≤ min

{
Gi (t) + Ai (t)

Ri (t)
, τ

}
,

k∑

i=0

πi (t) ≤ S (t)τ,

(
νi (t)− Pi ,oπi (t)− Pcτ

)
fi ,l

ciPi ,l
+ Ri (t)πi (t)

≤ Gi (t) + Ai (t). (28)

Here,

ϕi (t) = (Gi (t) +Ai (t) + V )

(
Pi ,o fi ,l
ciPi ,l

− Ri (t)

)

and

ψi (t) = α(Mi (t) + σ − Ji (t)− EHi (t))

−
(Gi (t) + Ai (t) + V )fi ,l

ciPi ,l
.

B. Computation Tasks Maximum Offloading Algorithm

Analyzing the above problem, π(t) and ν(t) are the
optimization variables in the optimization problem. Since P
exists the dynamic coupling between the energy consumed by
IoT device and the offloading duration of IoT device, find-
ing the optimal values of decision variables is actual difficult.
Thus, a Computation Tasks Maximum Offloading Algorithm
(CTMOA) is proposed.

This algorithm can minimizes the drift plus penalty‘s upper
bound. Through the observation of P, we find that the value of
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νi (t) hinges on the range of πi (t). Thus, two sub-problems
can be separated out of the objective optimization problem
and each can be addressed separately. Next, we notice that
the portion of P associated with the variable πi (t). Thus, the
problem P is transformed into SP1, and we apply the knapsack
theory to find a sub-optimal solution of π(t) in SP1. After
solving the problem SP1, the problem P is equal to SP2.

Offloading Strategy Allocation: Similar to [7], problem
SP1 can be treated as the divisible knapsack problem, which
can be expressed as

SP1: min
π(t)

k∑

i=1

ϕi (t)πi (t),

s. t. 0 ≤ πi (t) ≤ min

{
Gi (t) + Ai (t)

Ri (t)
, τ

}
,

k∑

i=0

πi (t) ≤ S (t)τ, (29)

where

ϕi (t) = (Gi (t) + Ai (t) +V )

(
Pi ,o fi ,l
ciPi ,l

− Ri (t)

)
,

and S (t)τ is the knapsack capacity. From the constraints it
is clear that min{τ, (Gi (t) + Ai (t))/Ri (t)} is the size and
ϕi (t) is the unit value of each item in the knapsack problem.
The solving process of SP1 is shown in Lines 5-16 in Alg. 1.

Local Computation Allocation: After determining the
optimal π(t) in SP1, the value ranges of νi (t) can be fixed.
Then, we formulate SP2.

SP2: min
ν(t)

k∑

i=1

(α
2
ν2i (t) + ψi (t)νi (t)

)
,

s. t. πi (t)Pi ,o + Pcτ ≤ νi (t) ≤ min

{
Ji (t), πi (t)Pi ,o

+ Pcτ +
(Gi (t) + Ai (t)− Ri (t)πi (t))ciPi ,l

fi ,l

}
,

πi (t)Pi ,o + Pcτ ≤ νi (t) ≤ πi (t)Pi ,o + Pi ,lτ + Pcτ

(30)

where

ψi (t) = α(Mi (t) + σ − Ji (t)− EHi (t))

−
(Gi (t) + Ai (t) + V )fi ,l

ciPi ,l
.

Objective function in SP2 is a quadratic function. According to
the quadratic function theorem, we can obtain the theoretical
optimum, which is νi (t) = − 1

αψi (t). Considering that the
value range of νi (t) is limited as s.t., the actual optimum of
νi (t) is discussed as Lines 17 through 25 in the Alg. 1.

In this section, this study first construct a “drift plus
penalty” function to integrate the long-term queue stability
constraint and the long-term energy power constraint into the
optimization objective. The original problem is transformed
into a new optimization problem which only depends on the
information of current time slot and next time slot. And then,
to further eliminate the dependence on the information of next

Algorithm 1 Computation Tasks Maximum Offloading
Algorithm (CTMOA)

Input: S (t)τ,Ai (t), Ji (t),Gi (t),Pc ,Pi ,o ,Pi ,l , fi ,l , α, ci ;
Output: optimal solution π∗(t), ν∗(t);
1: for all i ∈ K do
2: Calculate Ri (t), ϕi (t) and ψi (t);
3: π∗i (t)← 0;
4: end for
5: ϕi (t)← Sort all devices in the ascending order of ϕi (t);
6: C← S (t)τ ;
7: while C > 0 do
8: for all i ∈ K do
9: if ϕi (t) < 0 then

10: π∗i (t)← min
{
C,

Ji (t)−Pcτ
Pi,o

,
Gi (t)+Ai (t)

Ri (t)

}
;

11: C← C− π∗i (t);
12: else
13: break
14: end if
15: end for
16: end while
17: for all i ∈ K do
18: if − 1

αψi (t) < max{π∗i (t)Pi ,o , Ji (t)− Pcτ} then
19: νi (t)← max{π∗i (t)Pi ,o ,− 1

αψi (t)};
20: else
21: νi (t)← Gi (t)+Ai (t)−Ri (t)πi (t)

fi,l
ciPi ,l + Pi ,oπi (t);

22: νi (t)←min
{
νi (t), Ji (t)− Pcτ,Pi ,lτ+Pi ,oπi (t)

}
;

23: end if
24: ν∗i (t)← νi (t) + Pcτ ;
25: end for

time slot, we find the upper bound for the “drift plus penalty”
function, and turn to minimize the upper bound instead of
minimizing the “drift plus penalty” function. By deforming
the original problem twice, we eliminate the dependence of
the original problem on future information. The algorithm
is designed to solve the optimization problem after twice
transformation, so it can determine the offloading decision in
real-time without knowing any statistical information about
the system.

V. PERFORMANCE ANALYSIS FOR CTMOA

We first validate the CTMOA’s performance by mathe-
matical analysis in this section. It is proved that CTMOA
brings the system throughput approach to the optimal value.
Also, it ensures that the virtual and task queues have upper
bounds.

For the sake of proving that the battery power satisfies
the minimum threshold constraint in long time scales, the
following Lemma 1 is deduced.

Lemma 1: The constraint

lim
T→∞

1

T

T−1∑

t=0

Ji (t) ≥ σ

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 08,2024 at 11:37:51 UTC from IEEE Xplore.  Restrictions apply. 



MEI et al.: THROUGHPUT-AWARE DYNAMIC TASK OFFLOADING UNDER RESOURCE CONSTANT FOR MEC 3467

is satisfied if the virtual queue in (20) is upper bounded.
Assume the virtual queue M has an upper constraint of M>0.

Proof: Assume the virtual queue Mi has an upper constraint
of Mmax

i > 0 for any device i ∈ K. Then, we can obtain

Mi (t)/t ≤ Mmax
i /t → 0(if t →∞). (31)

Eq. (20) can be rewritten as

Mi (t + 1) = max{Mi (t) + σ − Ji (t + 1), 0}

=

⎧
⎪⎪⎨

⎪⎪⎩

Mi (t) + σ − Ji (t + 1)
if Mi (t) ≥ Ji (t + 1)− σ;

0
if Mi (t) < Ji (t + 1)− σ;

. (32)

With (32), we have

Mi (t + 1)−Mi (t) =

⎧
⎪⎪⎨

⎪⎪⎩

σ − Ji (t + 1)
if Mi (t) ≥ Ji (t + 1)− σ

−Mi (t)
if Mi (t) < Ji (t + 1)− σ

.

= max{σ − Ji (t + 1),−Mi (t)}
≥ σ − Ji (t + 1). (33)

We average both sides of (33) over t = 0 to T − 1 and let
T converge to +∞. The following is obtained

lim
T→∞

Mi (T )

T
≥ σ − lim

T→∞

T∑

t=1

Ji (t)

T

= σ − lim
T→∞

T−1∑

t=0

Ji (t)

T
. (34)

Combining (31) with (34), we have

lim
T→∞

1

T

T−1∑

t=0

Ji (t) ≥ σ.

The lemma is proven.
On the basis of Lemma 1, we further depict Theorem 2.
Theorem 2: For the given V, the virtual queue length has

upper bound for any device i ∈ K.
Proof: According to (25), we have

Δ(Θ(t)) + VE{ζ(t)|Θ(t)} ≤ M1 + VE{ζ(t)|Θ(t)}

+ α

k∑

i=1

(1

2
ν2i (t) + (Mi (t) + σ − Ji (t)− EHi (t))νi (t)

)
,

(35)

where M1 = 1
2

∑k
i=1

(
(Amax

i )2 + (Wmax
i )2 +

2Gi (t)A
max
i

)
+ α

2

∑k
i=1

{
σ2 + Jmax + (EHmax

i )2 +

2JmaxEH
max
i

}
+ α

∑k
i=1(σ − Ji (t))Mi (t). The inequal-

ity’s R.H.S. in (35) is convex, i.e., the first order derivative is
increasing.

Let

y = α
∑

i∈K

(
1

2
ν2i (t) + (Mi (t) + σ − Ji (t)− EHi (t))νi (t)

)

+ VE{ζ(t)}.

and
∂y

∂νi (t)
= α(νi (t) +Mi (t) + σ − Ji (t)− EHi (t))

−
Vfi ,l
ciPi ,l

. (36)

Obviously, the first order derivative ∂y
∂νi (t)

is increasing. y is
convex. In the proposed system model, νi (t) denotes the total
energy consumption for local processing and remote offload-
ing of device i in time slot t. Our strategy is to determine
the communication resource allocation πi (t) for each device
firstly, and then determine the total energy consumption νi (t).
According to (12), we can see that once the optimal total
energy consumption ν∗i (t) is calculated, the local computation
energy consumption can be obtained and thus the local pro-
cessing task can be calculated. Therefore, νi (t) ≥ πi (t)Pi ,o .
Then, we evaluate the value of the first order derivative at
πi (t)Pi ,o , i.e., ∂y

∂νi (t)

∣∣∣
νi (t)=πi (t)Pi,o

.

Case 1: When ∂y
∂νi (t)

∣∣∣
νi (t)=πi (t)Pi,o

< 0, the optimal con-

sumption power ν∗i (t) > πi (t)Pi ,o and ∂y
∂νi (t)

∣∣∣
νi (t)=ν∗i (t)

≤
0. According to (36), we have

Mi (t) ≤ Ji (t) + EHi (t)− σ +
Vfi ,l
αciPi ,l

≤ Jmax + EHmax
i +

Vfi ,l
αciPi ,l

. (37)

Case 2: When ∂y
∂νi (t)

∣∣∣
νi (t)=πi (t)Pi,o

≥ 0, the optimal con-

sumption power ν∗i (t) = πi (t)Pi ,o . According to (13), we
have

Ji (t + 1) = min
{
Ji (t)− πi (t)Pi ,o + EHi (t), Jmax

}
.

(38)

Definitely existing a t0 satisfies Case 1 in long time scales,
i.e.,

Mi (t0) ≤ Ji (t0) + EHi (t0)− σ +
Vfi,l

αciPi,l
. (39)

According to (20), if Ji (t + 1) ≤ σ, we have

Mi (t) ≤ Mi (t + 1) ≤ Mi (t) + σ. (40)

When ν∗i (t) = πi (t)Pi ,o and Mi (t) satisfies (37), we know
that Ji (t + 1) ≥ σ with at most Ti time slots. Thus, ∃t > t0
and

Mi (t) ≤ Ji (t) + EHi (t)− σ +
Vfi ,l
αciPi ,l

+ Tiσ

≤ Jmax + EHmax
i +

Vfi ,l
αciPi ,l

+ Tiσ, (41)

where Ti = σ/|EHmin
i − πmin

i Pi ,o | are fixed constant.
In all, according to (37) and (41), Mi (t) is upper bounded.
This completes the proof.
Let G be the time average queue length of all the devices,

which is defined as

G = lim
T→∞

1

T

T−1∑

t=0

∑

i∈K
E{Gi (t)}.
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Lemma 2: For any request arrival rate λ ∈ Λ, Λ represents
the capacity of the MEC system. There is an optimal policy
π∗ that satisfies the following conditions.

E
{
ζπ

∗
(t)
}
= ζ∗(λ), (42)

where ζ∗(λ) represents the optimal total offloading tasks when
the tasks arrival rate is λ.

Proof: Carassiodor’s theorem can prove Lemma 2 [33].
Thus, we not describe it in detail here.

We define the upper boundary of ζ as ζ̂ and the lower
boundary of ζ as ζ̌. According to Lemma 2 and Theorem 2,
we can propose Theorem 3.

Theorem 3: If ∃ε satisfies λ+ ε ∈ Λ, G satisfies

G ≤
M2 + V

(
ζ̂ − ζ̌

)

ρ∗ , (43)

where M2 = M1 +α
∑k

i=1

(
1
2 (Ji (t))

2 +
(
Mmax

i + σ
)
Ji (t)

)

and ρ∗ =
∑

i∈K Wmin
i .

In addition, function ζ of CTMOA satisfies

ζCTMOA ≤ M2

V
+ ζ∗. (44)

Proof: Suppose that λ+ ε ∈ Λ is satisfied by the offloading
policy π′. Quoting Lemma 2, we have

E
{
ζπ

′
(t)
}
= ζ∗(λ+ ε), (45)

According to (25) and Theorem 2, we have

Δ(Θ(t)) + VE{ζ(t)} ≤ M1 + VE
{
ζπ

′
(t)

}

+ α

k∑

i=1

(1

2
ν2i (t) + (Mi (t) + σ − Ji (t)− EHi (t))νi (t)

)

−
∑

i∈K

E
{
W π′

i (t)(Ai (t) +Gi (t))|Θ(t)
}

≤ VE
{
ζπ

′
(t)

}
+ α

k∑

i=1

(1

2
(Ji (t))

2 + (Mi (t) + σ)Ji (t)
)

−
∑

i∈K

E
{
Gi (t)

(
W lπ′

i,l (t) +W tπ′
i,o (t)

)
|Θ(t)

}
+M1.

(46)

Substituting (45) to the R.H.S of (46) and letting M2 =
M1 + α

∑k
i=1

(
1
2 (Ji (t))

2 +
(
Mmax

i + σ
)
Ji (t)

)
, we have

Δ(Θ(t)) + VE{ζ(t)} ≤ M2 + V ζ∗(λ+ ε)

− ρ∗
∑

i∈K
E{Gi (t)}, (47)

where ρ∗ is minimum value of tasks processed in all time,
which is satisfied to

ρ∗ =
∑

i∈K
Wmin

i ≤
∑

i∈K

(
W lπ′

i ,l (t) +W tπ′
i ,o (t)

)
.

Moving VE{ζ(t)} to the R.H.S of (47) and sorting it out,
we have

Δ(Θ(t)) ≤ M2 + V (ζ∗(λ+ ε)− E{ζ(t)})

TABLE I
SIMULATION EXPERIMENT PARAMETERS

− ρ∗
∑

i∈K
E{Gi (t)}

≤ M2 + V
(
ζ̂ − ζ̌

)
− ρ∗

∑

i∈K
E{Gi (t)}. (48)

For generality, we suppose that the queue length of devices
are empty at initial state of the system, i.e., Gi (0) =
0, ∀i ∈ K . Thus, L(Θ(0)) = 0. Summing both sides of (48)
from slot 0 to T − 1, we have

ρ∗
T−1∑

t=0

∑

i∈K
E{Gi (t)} ≤ T

(
M2 + V

(
ζ̂ − ζ̌

))
− L(Θ(T ))

≤ T
(
M2 + V

(
ζ̂ − ζ̌

))
. (49)

Dividing both sides of (49) by Tρ∗, we can obtain (43) in
Theorem 3.

Considering that there exists a fact E{Gi (t)} ≥ 0, summing
both sides of (48) over time slots and deflating the inequality,
we have

V

T−1∑

t=0

E{ζ(t)} ≤ T (M2 + V ζ∗(λ+ ε)). (50)

Dividing both sides of (50) by VT, we have

1

T

T−1∑

t=0

E{ζ(t)} ≤ M2

V
+ ζ∗(λ+ ε). (51)

Letting T →∞, ε→ 0, we can obtain (44).
This completes the proof.

VI. SIMULATION EXPERIMENTS FOR CTMOA

In this section, we run a series of experiments to estimate
the performance of CTMOA. The efficiency of this system
is analyzed by modifying different parameters. Different task
arrival rate reflects the computation load, usually measured
by the amount of data on the task. This corresponds to the
amount of data collected for industrial manufacturing scenes.
Different energy arrival rate reflects the energy harvested by
the device, which is usually measured by the amount of energy.
We set different device numbers and device energy thresholds
to check the robustness of the system.

In each time slot, the amount of tasks that arrive at device
i is set to be uniformed distributed within [1000, 4000] bits.
The different number of IoT devices are considered, and k is
set as 60 to 120 with an increment of 10. The values of other
parameters are listed in Table I.
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Fig. 3. Average queue length and system throughput with different values
of V.

A. Analysis on Trade-Off Parameter V

In this group of experiments, we plot the average queue
length and the system throughput under different values of V.
The system throughput and the queue stability are balanced
utilizing the parameter V. Fig. 3(a) shows the task queue and
the virtual queue length per time slot under different V. As V
becomes larger, both the two types of queues show an upward
trend. This is because the effect of the queue length on the
objective function becomes smaller compared with the system
throughput when V increases. Fig. 3(b) shows the system
throughput when the system reaches a steady state. Parameter
V is a trade-off between the queue length and the system
throughput. However, from the experimental results shown in
Fig. 3(a), we can observe that the change of V affects the
queue length obviously, yet the system throughput does not
show obvious change with the increment of V in Fig. 3(b).
That is because one goal of our problem is to maintain the
queue length stability. When the queue length reaches the
steady state, the average system throughput should be equal
to the average amount of task arriving. When the throughput
is greater or less than the average amount of task arriving at
each device for a long period of time, it will lead to unsta-
ble the task queue and battery energy level. Therefore, under
the premise of ensuring system stability, the system through-
put will eventually approach the average task amount level of
device arrival regardless of the value of V. In the actual sce-
nario, setting a moderate V can reduce the size of the queue

Fig. 4. Task queue length and residual energy level with different task arrival
rates.

backlog required by the devices on the basis of the network
congestion degree and the task arrival rates of the devices.
This phenomenon is similar to that presented in [18].

B. Analysis on Task Arrival Rate

With different task arrival rates, this set of experiments
depicts the task queue state and the residual battery energy.
The amount of arrived data Ai (t) are multiplied by a coef-
ficient γ where γ = 0.5, 0.8, 1, 1.2 and 1.5, respectively. In
Fig. 4(a), the scale axis of the curve γ = 1.5 is the right scale
axis, and this set of curves shows that the task queue length
grows as the arrival rate grows. This is because the amount
of generated tasks by the devices increases with the arrival
rate monotonically in all situations. However, when γ = 1.5,
the devices cannot handle so many tasks, which makes the
queue length unstable. This is because there are not sufficient
power, computation, and communication resource to support
the processing of these tasks. Fig. 4(b) shows that the resid-
ual battery power of the device decreases as the arrival rate
increases. The battery power level is well maintained around
the threshold. This is because the CTMOA algorithm prior
ensures the stability of the battery energy. When γ = 1.5,
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Fig. 5. Task queue length and residual energy level with different energy
harvesting rates.

owing to the numerous tasks arriving, the energy required to
offload tasks is almost inadequate and the battery is kept at a
minimum energy level.

C. Analysis on Energy Harvesting Rate

In this group of experiments, we plot the task queue length
and the residual battery energy with different energy harvest-
ing rates. EHi (t) is multiplied by a coefficient γ where γ =
0.5, 0.8, 1, 1.2 and 1.5, respectively. In Fig. 5(a), the scale
axis of the curve γ = 0.5 is the right scale axis. This set of
curves shows that the residual battery energy of the device
increases and the task queue length of the device decreases as
the energy harvesting rate increases. This is because energy
harvested by the devices increases with the harvesting rate
monotonically in all situations. The devices have enough
power to support processing these tasks so that the task queue
backlog decreases. However, when γ = 0.5, the devices do
not have sufficient power to handle these tasks, and the task
queue is unstable. Hence, the curve γ = 0.5 is only maintained
around the threshold in Fig. 5(b). In addition, the two groups
of experiments mentioned above show that CTMOA enables
the system residual energy level to converge quickly to around

Fig. 6. System throughput and average queue length with different numbers
of IoT devices.

the threshold. This demonstrates that CTMOA can dynami-
cally adjust offloading decisions and adapt to the change in
the arrival rate.

D. Analysis on the Number of IoT Devices

In this group of experiments, we plot the task queue
length and the system throughput with different number of
the devices. The IoT devices is set from 60 to 120 in step
of 10. Fig. 6(a) shows that the system throughput rises as
amount of devices rises. Fig. 6(b) shows both the two types
of queues backlog per time slot under the different num-
bers of the devices. With the number of devices increases,
both the two types of queue show an upward trend. This is
because there is no change in the system computation and
communication resources. The tasks that are not offloaded
in time are saved in the task queue, which incurs the queue
backlog increasing. As the queue buffer grows, more energy
is needed to offload these tasks, which is why the virtual
queue length grows. From Fig. 6(a) and Fig. 6(b), it is clear
that CTMOA adapts to different IoT device volumes and
allows for maximum task offloading while keeping the queue
stable.
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Fig. 7. Task queue length and residual energy level with different energy
level threshold and single IoT device.

E. Analysis on the Energy Level Threshold

In this group of experiments, we plot the changing trend
of the task queue length and the residual battery energy of
five devices whose energy level thresholds σ are set as 11, 13,
15, 17, and 19, respectively. Fig. 7(a) shows that CTMOA can
effectively stabilize the queue length of single device. After
a period of time (1000 time slots), CTMOA ensures that the
task queue stabilizes under all cases. In the ideal case that the
local processing ability, channel state, transmission power con-
sumption, and amount of tasks arriving are consistent across
devices, the task queue length of a single IoT device increases
as σ increases. This is because the energy level threshold
of the IoT device affects the consumed energy, and further
affects the number of tasks offloaded. However, in reality, all
devices are heterogeneous, the channel state is unpredictable,
and the amount of tasks arriving is random. The amount of
the offloaded tasks of each device is different. Accordingly, the
task queue of each device does not stabilize at the expected
length. Fig. 7(b) shows that the residual energy of the indi-
vidual IoT device is well maintained at different energy level
thresholds. The residual energy rapidly converges with time

and eventually reaches the energy level threshold. We also
show the box plot of the last 500 time slots, which shows that
the medium value is around the energy level threshold and
the degree of fluctuation in the residual energy of each IoT
device is very stable. From Fig. 7(a) and Fig. 7(b), we can
see that under different energy level thresholds, CTMOA can
control the residual energy level of all the devices effectively
for all cases. Therefore, CTMOA can improve the system
throughput effectively. Moreover, CTMOA enables the system
to make offloading decisions dynamically. The residual battery
energy is brought around the threshold in different threshold
situations.

VII. CONCLUSION

In this paper, we investigate the task offloading problem for
an MEC system with multiple EH devices. For the dynamic
system status and stochastic energy harvesting, we apply
Lyapunov optimization theory, and exploit a computation task
maximum offloading algorithm (CTMOA) to maximize the
system throughput while maintaining the system stability and
device battery energy level constraint in long time scales. The
CTMOA algorithm can determine the offloading decision in
real-time without knowing any statistical information about
the system. The simulation experiment results demonstrate
that CTMOA can increase the system throughput while guar-
anteeing system stability and the device battery energy level
constraint.
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