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Abstract—As an effective and efficient way to provide computing resources and services to customers on demand, cloud computing

has become more and more popular. From cloud service providers’ perspective, profit is one of the most important considerations,

and it is mainly determined by the configuration of a cloud service platform under given market demand. However, a single long-term

renting scheme is usually adopted to configure a cloud platform, which cannot guarantee the service quality but leads to serious

resource waste. In this paper, a double resource renting scheme is designed firstly in which short-term renting and long-term renting

are combined aiming at the existing issues. This double renting scheme can effectively guarantee the quality of service of all requests

and reduce the resource waste greatly. Secondly, a service system is considered as anM/M/m+D queuing model and the performance

indicators that affect the profit of our double renting scheme are analyzed, e.g., the average charge, the ratio of requests that need

temporary servers, and so forth. Thirdly, a profit maximization problem is formulated for the double renting scheme and the optimized

configuration of a cloud platform is obtained by solving the profit maximization problem. Finally, a series of calculations are conducted

to compare the profit of our proposed scheme with that of the single renting scheme. The results show that our scheme can not only

guarantee the service quality of all requests, but also obtain more profit than the latter.

Index Terms—Cloud computing, guaranteed service quality, multiserver system, profit maximization, queuing model, service-level

agreement, waiting time

Ç

1 INTRODUCTION

AS an effective and efficient way to consolidate comput-
ing resources and computing services, clouding com-

puting has become more and more popular [1]. Cloud
computing centralizes management of resources and serv-
ices, and delivers hosted services over the Internet. The
hardware, software, databases, information, and all resour-
ces are concentrated and provided to consumers on-
demand [2]. Cloud computing turns information technology
into ordinary commodities and utilities by the the pay-per-
use pricing model [3], [4], [5]. In a cloud computing environ-
ment, there are always three tiers, i.e., infrastructure pro-
viders, services providers, and customers (see Fig. 1 and its
elaboration in Section 3.1). An infrastructure provider main-
tains the basic hardware and software facilities. A service
provider rents resources from the infrastructure providers
and provides services to customers. A customer submits its
request to a service provider and pays for it based on the
amount and the quality of the provided service [6]. In this
paper, we aim at researching the multiserver configuration
of a service provider such that its profit is maximized.

Like all business, the profit of a service provider in cloud
computing is related to two parts, which are the cost and
the revenue. For a service provider, the cost is the renting
cost paid to the infrastructure providers plus the electricity
cost caused by energy consumption, and the revenue is the
service charge to customers. In general, a service provider
rents a certain number of servers from the infrastructure
providers and builds different multiserver systems for dif-
ferent application domains. Each multiserver system is to
execute a special type of service requests and applications.
Hence, the renting cost is proportional to the number of
servers in a multiserver system [2]. The power consumption
of a multiserver system is linearly proportional to the num-
ber of servers and the server utilization, and to the square of
execution speed [7], [8]. The revenue of a service provider is
related to the amount of service and the quality of service.
To summarize, the profit of a service provider is mainly
determined by the configuration of its service platform.

To configure a cloud service platform, a service provider
usually adopts a single renting scheme. That’s to say, the
servers in the service system are all long-term rented.
Because of the limited number of servers, some of the
incoming service requests cannot be processed immedi-
ately. So they are first inserted into a queue until they can
handled by any available server. However, the waiting time
of the service requests cannot be too long. In order to satisfy
quality-of-service requirements, the waiting time of each
incoming service request should be limited within a certain
range, which is determined by a service-level agreement
(SLA). If the quality of service is guaranteed, the service is
fully charged, otherwise, the service provider serves the
request for free as a penalty of low quality. To obtain higher
revenue, a service provider should rent more servers from
the infrastructure providers or scale up the server execution
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speed to ensure that more service requests are processed
with high service quality. However, doing this would lead
to sharp increase of the renting cost or the electricity cost.
Such increased cost may counterweight the gain from pen-
alty reduction. In conclusion, the single renting scheme is
not a good scheme for service providers. In this paper, we
propose a novel renting scheme for service providers, which
not only can satisfy quality-of-service requirements, but also
can obtain more profit. Our contributions in this paper can
be summarized as follows.

� A novel double renting scheme is proposed for ser-
vice providers. It combines long-term renting with
short-term renting, which can not only satisfy qual-
ity-of-service requirements under the varying sys-
tem workload, but also reduce the resource waste
greatly.

� A multiserver system adopted in our paper is mod-
eled as an M/M/m+D queuing model and the perfor-
mance indicators are analyzed such as the average
service charge, the ratio of requests that need short-
term servers, and so forth.

� The optimal configuration problem of service pro-
viders for profit maximization is formulated and two
kinds of optimal solutions, i.e., the ideal solutions
and the actual solutions, are obtained respectively.

� A series of comparisons are given to verify the per-
formance of our scheme. The results show that the
proposed double-quality-guaranteed (DQG) renting
scheme can achieve more profit than the compared
single-quality-unguaranteed (SQU) renting scheme
in the premise of guaranteeing the service quality
completely.

The rest of the paper is organized as follows. Section 2
reviews the related work on profit aware problem in cloud
computing. Section 3 presents the used models, including the
three-tier cloud computing model, the multiserver system
model, the revenue and cost models. Section 4 proposes our
DQG renting scheme and formulates the profit optimization
problem. Section 5 introduces themethods of finding the opti-
mal solutions for the profit optimization problem in two sce-
narios. Section 6 demonstrates the performance of the
proposed scheme through comparison with the traditional
SQU renting scheme. Finally, Section 7 concludes thework.

2 RELATED WORK

In this section, we review recent works relevant to the profit
of cloud service providers. Profit of service providers is
related with many factors such as the price, the market

demand, the system configuration, the customer satisfaction
and so forth. Service providers naturally wish to set a higher
price to get a higher profit margin; but doing so would
decrease the customer satisfaction, which leads to a risk of
discouraging demand in the future. Hence, selecting a rea-
sonable pricing strategy is important for service providers.

The pricing strategies are divided into two categories,
i.e., static pricing and dynamic pricing. Static pricing means
that the price of a service request is fixed and known in
advance, and it does not change with the conditions. With
dynamic pricing a service provider delays the pricing deci-
sion until after the customer demand is revealed, so that the
service provider can adjust prices accordingly [9]. Static
pricing is the dominant strategy which is widely used in
real world and in research [2], [10], [11]. Ghamkhari and
Mohsenian-Rad [11] adopted a flat-rate pricing strategy and
set a fixed price for all requests, but Odlyzko in [12] argued
that the predominant flat-rate pricing encourages waste and
is incompatible with service differentiation. Another kind of
static pricing strategies are usage-based pricing. For exam-
ple, the price of a service request is proportional to the ser-
vice time and task execution requirement (measured by the
number of instructions to be executed) in [10] and [2],
respectively. Usage-based pricing reveals that one can use
resources more efficiently [13], [14].

Dynamic pricing emerges as an attractive alternative to
better cope with unpredictable customer demand [15].
Mac�ıas and Guitart [16] used a genetic algorithm to itera-
tively optimize the pricing policy. Amazon EC2 [17], [18]
has introduced a ”spot pricing” feature, where the spot
price for a virtual instance is dynamically updated to match
supply and demand. However, consumers dislike prices to
change, especially if they perceive the changes to be
”unfair” [19], [20]. After comparison, we select the usage-
based pricing strategy in this paper since it agrees with the
concept of cloud computing mostly.

The second factor affecting the profit of service providers
is customer satisfaction which is determined by the quality
of service and the charge. In order to improve the customer
satisfaction level, there is a service-level agreement between
a service provider and the customers. The SLA adopts a
price compensation mechanism for the customers with low
service quality. The mechanism is to guarantee the service
quality and the customer satisfaction so that more custom-
ers are attracted. In previous research, different SLAs are
adopted. Ghamkhari and Mohsenian-Rad [11] adopted a
stepwise charge function with two stages. If a service
request is handled before its deadline, it is normally
charged; but if a service request is not handled before its
deadline, it is dropped and the provider pays for it due to
penalty. In [2], [10], [21], charge is decreased continuously
with the increasing waiting time until the charge is free. In
this paper, we use a two-step charge function, where the
service requests served with high quality are normally
charged, otherwise, are served for free.

Since profit is an important concern to cloud service pro-
viders, many works have been done on how to boost their
profit. A large body of works have recently focused on
reducing the energy cost to increase profit of service pro-
viders [22], [23], [24], [25], and the idle server turning off
strategy and dynamic CPU clock frequency scaling are adopted

Fig. 1. The three-tier cloud structure.
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to reduce energy cost. However, only reducing energy cost
cannot obtain profit maximization. Many researchers inves-
tigated the trade-off between minimizing cost and maximiz-
ing revenue to optimize profit. Both [11] and [26] adjusted
the number of switched on servers periodically using differ-
ent strategies and different profit maximization models
were built to get the number of switched on servers. How-
ever, these works did not consider the cost of resource
configuration.

Chiang and Ouyang [27] considered a cloud server sys-
tem as an M/M/R/K queuing system where all service
requests that exceed its maximum capacity are rejected. A
profit maximization function is defined to find an optimal
combination of the server size R and the queue capacity K
such that the profit is maximized. However, this strategy
has further implications other than just losing the revenue
from some services, because it also implies loss of reputa-
tion and therefore loss of future customers [3]. In [2], Cao
et al. treated a cloud service platform as an M/M/m model,
and the problem of optimal multiserver configuration for
profit maximization was formulated and solved. This work
is the most relevant work to ours, but it adopts a single rent-
ing scheme to configure a multiserver system, which cannot
adapt to the varying market demand and leads to low ser-
vice quality and great resource waste. To overcome this
weakness, another resource management strategy is used in
[28], [29], [30], [31], which is cloud federation. Using federa-
tion, different providers running services that have comple-
mentary resource requirements over time can mutually
collaborate to share their respective resources in order to
fulfill each one’s demand [30]. However, providers should
make an intelligent decision about utilization of the federa-
tion (either as a contributor or as a consumer of resources)
depending on different conditions that they might face,
which is a complicated problem.

In this paper, to overcome the shortcomings mentioned
above, a double renting scheme is designed to configure a
cloud service platform, which can guarantee the service
quality of all requests and reduce the resource waste
greatly. Moreover, a profit maximization problem is formu-
lated and solved to get the optimal multiserver configura-
tion which can product more profit than the optimal
configuration in [2].

3 THE MODELS

In this section, we first describe the three-tier cloud comput-
ing structure. Then, we introduce the related models used
in this paper, including a multiserver system model, a reve-
nue model, and a cost model.

3.1 A Cloud System Model

The cloud structure (see Fig. 1) consists of three typical
parties, i.e., infrastructure providers, service providers and
customers. This three-tier structure is used commonly in
existing literatures [2], [6], [10].

In the three-tier structure, an infrastructure provider the
basic hardware and software facilities. A service provider
rents resources from infrastructure providers and prepares
a set of services in the form of virtual machine (VM). Infra-
structure providers provide two kinds of resource renting

schemes, e.g., long-term renting and short-term renting. In
general, the rental price of long-term renting is much
cheaper than that of short-term renting. A customer submits
a service request to a service provider which delivers serv-
ices on demand. The customer receives the desired result
from the service provider with certain service-level agree-
ment, and pays for the service based on the amount of the
service and the service quality. Service providers pay infra-
structure providers for renting their physical resources, and
charge customers for processing their service requests,
which generates cost and revenue, respectively. The profit
is generated from the gap between the revenue and the cost.

3.2 A Multiserver Model

In this paper, we consider the cloud service platform as a
multiserver system with a service request queue. Fig. 2
gives the schematic diagram of cloud computing [32].

In an actual cloud computing platform such as Amazon
EC2, IBM blue cloud, and private clouds, there are many
work nodes managed by the cloud managers such as Euca-
lyptus, OpenNebula, and Nimbus. The clouds provide
resources for jobs in the form of virtual machine. In addi-
tion, the users submit their jobs to the cloud in which a job
queuing system such as SGE, PBS, or Condor is used. All
jobs are scheduled by the job scheduler and assigned to dif-
ferent VMs in a centralized way. Hence, we can consider it
as a service request queue. For example, Condor is a special-
ized workload management system for compute-intensive
jobs and it provides a job queueing mechanism, scheduling
policy, priority scheme, resource monitoring, and resource
management. Users submit their jobs to Condor, and Con-
dor places them into a queue, chooses when and where to
run them based upon a policy [33], [34]. Hence, it is reason-
able to abstract a cloud service platform as a multiserver
model with a service request queue, and the model is
widely adopted in existing literature [2], [11], [35], [36], [37].

In the three-tier structure, a cloud service provider serves
customers’ service requests by using a multiserver system
which is rented from an infrastructure provider. Assume
that the multiserver system consists of m long-term rented
identical servers, and it can be scaled up by temporarily

Fig. 2. The schematic diagram of cloud computing.
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renting short-term servers from infrastructure providers.
The servers in the system have identical execution speed s
(Unit: billion instructions per second). In this paper, a multi-
server system excluding the short-term servers is modeled
as an M/M/m queuing system as follows (see Fig. 3). There
is a Poisson stream of service requests with arrival rate �,
i.e., the interarrival times are independent and identically
distributed (i.i.d.) exponential random variables with mean
1=�. A multiserver system maintains a queue with infinite
capacity. When the incoming service requests cannot be
processed immediately after they arrive, they are firstly
placed in the queue until they can be handled by any avail-
able server. The first-come-first-served (FCFS) queuing
discipline is adopted. The task execution requirements
(measured by the number of instructions) are independent
and identically distributed exponential random variables r
with mean r (Unit: billion instructions). Therefore, the exe-
cution times of tasks on the multiserver system are also i.i.d.
exponential random variables x ¼ r=s with mean x ¼ r=s
(Unit: second). The average service rate of each server is cal-
culated as m ¼ 1=x ¼ s=r, and the system utilization is
defined as r ¼ �=mm ¼ �=m� r=s.

Because the fixed computing capacity of the service sys-
tem is limited, some requests would wait for a long time
before they are served. According to the queuing theory, we
have the following theorem about the waiting time in an M/
M/m queuing system.

Theorem 3.1. The cumulative distribution function (cdf) of the
waiting timeW of a service request is

FW ðtÞ ¼ 1� pm

1� r
e�mmð1�rÞt; (1)

where

pm ¼ ðmrÞm
m!

Xm�1
k¼0

ðmrÞk
k!
þ ðmrÞm
m!ð1� rÞ

" #�1
:

Proof. We have known that the probability distribution
function (pdf) of the waiting timeW of a service request is

fW ðtÞ ¼ ð1� PqÞuðtÞ þmmpme
�ð1�rÞmmt;

where Pq ¼ pm=ð1� rÞ and uðtÞ is a unit impulse func-
tion [2], [38]. Then, FW ðtÞ can be obtained by straightfor-
ward calculation. tu

3.3 Revenue Modeling

The revenue model is determined by the pricing strategy
and the server-level agreement (SLA). In this paper,
the usage-based pricing strategy is adopted, since cloud

computing provides services to customers and charges them
on demand. The SLA is a negotiation between service pro-
viders and customers on the service quality and the price.
Because of the limited servers, the service requests that can-
not be handled immediately after entering the system must
wait in the queue until any server is available. However, to
satisfy the quality-of-service requirements, the waiting time
of each service request should be limited within a certain
range which is determined by the SLA. The SLA is widely
used bymany types of businesses, and it adopts a price com-
pensation mechanism to guarantee service quality and cus-
tomer satisfaction. For example, China Post gives a service
time commitment for domestic express mails. It promises
that if a domestic express mail does not arrive within a dead-
line, the mailing charge will be refunded. The SLA is also
adopted by many real world cloud service providers such as
Rackspace [39], Joyent [40], Microsoft Azure [41], and so on.
Taking Joyent as an example, the customers order Smart
Machines, Smart Appliances, and/or virtual machines from
Joyent, and if the availability of a customer’s services is less
than 100 percent, Joyent will credit the customer 5 percent
of the monthly fee for each 30 minutes of downtime up to
100 percent of the customer’s monthly fee for the affected
server. The only difference is that its performance metric is
availability and ours is waiting time.

In this paper, the service level is reflected by the waiting
time of requests. Hence, we define D as the maximum wait-
ing time here that the service requests can tolerate, in other
words, D is their deadline. The service charge of each task
is related to the amount of a service and the service-level
agreement. We define the service charge function for a ser-
vice request with execution requirement r and waiting time
W in Eq. (2),

Rðr;W Þ ¼ ar; 0 �W � D;
0; W > D;

�
(2)

where a is a constant, which indicates the price per one bil-
lion instructions (Unit: cents per one billion instructions).
When a service request starts its execution before waiting a
fixed time D (Unit: second), a service provider considers
that the service request is processed with high quality-of-
service and charges a customer ar. If the waiting time of a
service request exceeds deadline D, a service provider must
serve it for free. Similar revenue models have been used in
many existing research such as [2], [11], [42].

According to Theorem 1, it is easy to know that the prob-
ability that the waiting time of a service request exceeds its
deadlineD is

P ðW � DÞ ¼ 1� FW ðDÞ ¼ pm

1� r
e�mmð1�rÞD: (3)

3.4 Cost Modeling

The cost of a service provider consists of two major parts,
i.e., the rental cost of physical resources and the utility cost
of energy consumption. Many existing research such as
[11], [43], [44] only consider the power consumption cost.
As a major difference between their models and ours, the
resource rental cost is considered in this paper as well, since
it is a major part which affects the profit of service

Fig. 3. The multiserver system model, where service requests are first
placed in a queue before they are processed by any servers.
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providers. A similar cost model is adopted in [2]. The
resources can be rented in two ways, long-term renting and
short-term renting, and the rental price of long-term renting
is much cheaper than that of short-term renting. This is rea-
sonable and common in the real life. In this paper, we
assume that the long-term rental price of one server for unit
of time is b (Unit: cents per second) and the short-term
rental price of one server for unit of time is g (Unit: cents
per second), where b < g.

The cost of energy consumption is determined by the
electricity price and the amount of energy consumption. In
this paper, we adopt the following dynamic power model,
which is adopted in the literature such as [2], [7], [45], [46]:

Pd ¼ NswCLV
2f; (4)

where Nsw is the average gate switching factor at each clock
cycle, CL is the loading capacitance, V is the supply voltage,
and f is the clock frequency [45]. In the ideal case, the rela-
tionship between the clock frequency f and the supply volt-

age V is V / ff for some constant f > 0 [46]. The server
execution speed s is linearly proportional to the clock fre-
quency f , namely, s / f . Hence, the power consumption is

Pd / NswCLs
2fþ1. For ease of discussion, we assume that

Pd ¼ bNswCLs
2fþ1 ¼ �sa where � ¼ bNswCL and a ¼ 2fþ 1.

In this paper, we set NswCL ¼ 7:0, b ¼ 1:3456 and f ¼ 0:5.
Hence, a ¼ 2:0 and � ¼ 9:4192. The value of power con-
sumption calculated by Pd ¼ �sa is close to the value of the
Intel Pentium M processor [47]. It is reasonable that a server
still consumes some amount of static power [8], denoted as
P � (Unit: Watt), when it is idle. For a busy server, the aver-
age amount of energy consumption per unit of time is
P ¼ �sa þ P � (Unit: Watt). Assume that the price of energy
is d (Unit: cents per Watt).

4 A QUALITY-GUARANTEED SCHEME

The traditional single resource renting scheme cannot guaran-
tee the quality of all requests but wastes a great amount of
resources due to the uncertainty of systemworkload. To over-
come the weakness, we propose a double renting scheme as
follows, which not only can guarantee the quality of service
completely but also can reduce the resourcewaste greatly.

4.1 The Proposed Scheme

In this section, we first propose the double-quality-
guaranteed resource renting scheme which combines long-
term renting with short-term renting. The main computing
capacity is provided by the long-term rented servers due to
their low price. The short-term rented servers provide the
extra capacity in peak period. The detail of the scheme is
shown in Algorithm 1.

The proposed DQG scheme adopts the traditional FCFS
queueing discipline. For each service request entering the
system, the system records its waiting time. The requests
are assigned and executed on the long-term rented servers
in the order of arrival times. Once the waiting time of a
request reaches D, a temporary server is rented from infra-
structure providers to process the request. We consider the
novel service model as an M/M/m+D queuing model [48],
[49], [50]. The M/M/m+D model is a special M/M/m queuing

model with impatient customers. In an M/M/m+D model,
the requests are impatient and they have a maximal tolera-
ble waiting time. If the waiting time exceeds the tolerable
waiting time, they lose patience and leave the system. In
our scheme, the impatient requests do not leave the system
but are assigned to temporary rented servers.

Algorithm 1. Double-Quality-Guaranteed Scheme

1: A multiserver system with m servers is running and wait-
ing for the events as follows

2: A queue Q is initialized as empty
3: Event – A service request arrives
4: Search if any server is available
5: if true then
6: Assign the service request to one available server
7: else
8: Put it at the end of queue Q and record its waiting time
9: end if
10: End Event
11: Event—A server becomes idle
12: Search if the queue Q is empty
13: if true then
14: Wait for a new service request
15: else
16: Take the first service request from queue Q and assign it

to the idle server
17: end if
18: End Event
19: Event – The deadline of a request is achieved
20: Rent a temporary server to execute the request and release

the temporary server when the request is completed
21: End Event

Since the requests with waiting timeD are all assigned to
temporary servers, it is apparent that all service requests can
guarantee their deadline and are charged based on the work-
load according to the SLA. Hence, the revenue of the service
provider increases. However, the cost increases as well due
to the temporarily rented servers. Moreover, the amount of
cost spent in renting temporary servers is determined by the
computing capacity of the long-term rented multiserver sys-
tem. Since the revenue has been maximized using our
scheme, minimizing the cost is the key issue for profit maxi-
mization. Next, the tradeoff between the long-term rental
cost and the short-term rental cost is considered, and an opti-
mal problem is formulated in the following to get the optimal
long-term configuration such that the profit is maximized.

4.2 The Profit Optimization Problem

Assume that a cloud service platform consists of m long-
term rented servers. It is known that part of requests need
temporary servers to serve, so that their quality can be
guaranteed. Denoted by pextðDÞ the steady-state probability
that a request is assigned to a temporary server, or put dif-
ferently, pextðDÞ is the long-run fraction of requests whose
waiting times exceed the deadline D. pextðDÞ is different
from FW ðDÞ. In calculating FW ðDÞ, all service requests,
whether exceed the deadline, will be waiting in the queue.
However, in calculating pextðDÞ, the requests whose waiting
times are equal to the deadline will be assigned to the tem-
porary servers, which will reduce the waiting time of the
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following requests. In general, pextðDÞ is much less than
FW ðDÞ. Refer to [50], we can known that pextðDÞ is:

pextðDÞ ¼ ð1� rÞð1� FW ðDÞÞ
1� rð1� FW ðDÞÞ : (5)

That is to say, there are about �pextðDÞ service requests in
one unit of time which need short-term rented servers.
Fig. 4 gives the probability versus different deadline where
� ¼ 5:99, r ¼ 1, m ¼ 6 and s ¼ 1. Hence, the cost on short-
term rented servers in one unit of time is calculated as:

Cshort ¼ �pextðDÞ r
s
ðg þ dP Þ; (6)

where r
s is the average execution time of each request.

Among the requests entering the service system, about
pextðDÞ percentage requests are not executed by the m long-
term rented servers. Hence, the system utilization of the m
servers is rð1� pextðDÞÞ. Since the power for speed s is �sa,
the average amount of energy consumed by a long-term
rented server in one unit of time is Plong ¼ rð1� pext
ðDÞÞ�sa þ P �. Hence, the cost of the long-term rented serv-
ers in one unit of time is calculated as:

Clong ¼ mðbþ dPlongÞ: (7)

The following theorem gives the expected charge to a ser-
vice request.

Theorem 4.1. The expected charge to a service request is ar.

Proof. Because the waiting timeW of each request is less than
or equal toD, the expected charge to a service request with
execution requirement r is ar according to the SLA. Since r
is a random variable, ar is also random variable. It is
known that r is an exponential random variable withmean

r, so its probability distribution function is frðzÞ ¼ 1
r e
�z=r:

The expected charge to a service request isZ 1

0

frðzÞRðr; zÞdz ¼
Z 1

0

1

r
e�z=razdz

¼ a

r

Z 1

0

e�z=rzdz ¼ �a
Z 1

0

zde�z=r

¼ �a ze�z=r
���1
0
�
Z 1

0

e�z=rdz
� �

¼ �a ze�z=r
���1
0
þ re�z=r

���1
0

h i

¼ ar:

(8)

The theorem is proven. tu

The profit of a service provider in one unit of time is
obtained as

Profit ¼ Revenue� Clong � Cshort; (9)

where Revenue ¼ �ar;

Clong ¼ mðbþ dðrð1� pextðDÞÞ�sa þ P �ÞÞ;
and

Cshort ¼ �pextðDÞ r
s
ðg þ dð�sa þ P �ÞÞ:

We aim to choose the optimal number of fixed servers m
and the optimal execution speed s to maximize the profit:

Profitðm; sÞ ¼ �ar� �pextðDÞ r
s
ðg þ dð�sa þ P �ÞÞ

�mðbþ dðrð1� pextðDÞÞ�sa þ P �ÞÞ:
(10)

Fig. 5 gives the graph of function Profitðm; sÞ where
� ¼ 5:99, r ¼ 1, D ¼ 5, a ¼ 15, P � ¼ 3, a ¼ 2:0, � ¼ 9:4192,
b ¼ 1:5, g ¼ 3, and d ¼ 0:3.

From the figure, we can see that the profit of a service
provider is varying with different server size and different
execution speed. Therefore, we have the problem of select-
ing the optimal server size and/or server speed so that the
profit is maximized. In the following section, the solutions
to this problem are proposed.

5 OPTIMAL SOLUTION

In this section, we first develop an analytical method to
solve our optimization problem. Using the analytical
method, the ideal optimal solutions are obtained. Because
the server size and the server speed are limited and discrete,
we give an algorithmic method to get the actual solutions
based on the ideal optimal ones.

5.1 An Analytical Method for Ideal Solutions

We firstly solve our optimization problem analytically,
assuming that m and s are continuous variables. To this
end, a closed-form expression of pextðDÞ is needed. In this
paper, we use the same closed-form expression as [2], which

is
Pm�1

k¼0
ðmrÞk
k! � emr. This expression is very accurate when

m is not too small and r is not too large [2]. Since Stirling’s

approximation of m! is
ffiffiffiffiffiffiffiffiffiffi
2pm
p ðme Þm, one closed-form expres-

sion of pm is

Fig. 4. The probability of waiting time exceedingD. Fig. 5. The function Profitðm; sÞ.
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pm � 1�rffiffiffiffiffiffiffiffiffiffi
2pm
p ð1�rÞðererÞmþ1

;

and

pextðDÞ � ð1� rÞe�mmð1�rÞD

1þ ffiffiffiffiffiffiffiffiffiffi
2pm
p ð1�rÞðererÞm�re�mmð1�rÞD :

For convenience, we rewrite pextðDÞ � ð1�rÞK1
K2�rK1

, where

K1 ¼ e�mmð1�rÞD; and K2 ¼ 1þ ffiffiffiffiffiffiffiffiffiffi
2pm
p ð1� rÞF; where F ¼

ðer=erÞm:
In the following, we solve our optimization problems

based on above closed-form expression of pextðDÞ.

5.1.1 Optimal Size

Given �, r, a, P �, a, b, g, d, �,D, and s, our objective is to find
m such that Profit is maximized. To maximize Profit, m
must be found such that

@Profit

@m
¼ � @Clong

@m
� @Cshort

@m
¼ 0;

where

@Clong

@m
¼ bþ dP � � d�r�sa�1

@pextðDÞ
@m

;

and

@Cshort

@m
¼ �ðg þ dP �Þ r

s

@pextðDÞ
@m

þ �rd�sa�1
@pextðDÞ

@m
:

Since

lnF ¼ m lnðer=erÞ ¼ mðr� ln r� 1Þ;
and

@r

@m
¼ � �r

m2s
¼ � r

m
;

we have

1

F

@F

@m
¼ ðr� ln r� 1Þ þm 1� 1

r

� �
@r

@m
¼ � ln r;

and

@F

@m
¼ �F ln r:

Then, we get

@K1

@m
¼ �mDK1;

and

@K2

@m
¼

ffiffiffiffiffiffiffiffiffiffi
2pm
p

F
1

2m
ð1þ rÞ � ln rð1� rÞ

� �
:

Furthermore, we have

@pextðDÞ
@m

¼ 1

ðK2�rK1Þ2
h r

m
K1ðK2�K1Þ

þ ðr�1ÞmDK1K2�ð1þrÞK1

2m
ðK2�1Þ

þ ð1�rÞK1ðln rÞðK2�1Þ
i
:

We cannot get a closed-form solution to m, but we can
get the numerical solution to m. Since @Profit=@m is not an
increasing or decreasing function of m, we need to find the
decreasing region of m, and then use the standard bisection
method. If there are more than one maximal values, they
are compared and the maximum is selected. When using
the bisection method to find the extreme point, the iteration

accuracy is set as a unified value 10�10.
In Fig. 6, we demonstrate the net profit in one unit of

time as a function of m and � where s ¼ 1, r ¼ 1, and the
other parameters are same as with those in Fig. 5.
We notice that there is an optimal choice of m such that
the net profit is maximized. Using the analytical method,
the optimal value of m such that @Profit=@m ¼ 0 is
4.8582, 5.8587, 6.8590, 7.8592 for � ¼ 4.99, 5.99, 6.99, 7.99,
respectively. When the number of servers m is less than
the optimal value, the service provider needs to rent
more temporary servers to execute the requests whose
waiting times are equal to the deadline; hence, the extra
cost increases, even surpassing the gained revenue. As m
increases, the waiting times are significantly reduced, but
the cost on fixed servers increases greatly, which also
surpasses the gained revenue too. Hence, there is an opti-
mal choice of m which maximizes the profit.

In Fig. 7, we demonstrate the optimal size and maxi-
mal profit in one unit of time as a function of s and �. It
means, for each combination of s and �, we find the opti-
mal number of servers and the maximal profit. The
parameters are same as those in Fig. 6. From the figures
we can see that a higher speed leads to a less number of
servers needed for each �, and different � values have dif-
ferent optimal combinations of speed and size. In addi-
tion, the greater the � is, the more the maximal profit can
be obtained.

5.1.2 Optimal Speed

Given �, r, a, P �, a, b, g, d, �, D, and m, our objective is to
find s such that Profit is maximized. To maximize Profit, s
must be found such that

@Profit

@s
¼ � @Clong

@s
� @Cshort

@s
¼ 0;

where

@Clong

@s
¼ d��rsa�2

�
ða� 1Þð1� pextðDÞÞ � s

@pextðDÞ
@s

�
;

Fig. 6. Net profit versusm and �.
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and

@Cshort

@s
¼ r�ðg þ dP �Þ

s2

�
s
@pextðDÞ

@s
� pextðDÞ

�

þ �rd�sa�2
�
s
@pextðDÞ

@s
þ ða� 1ÞpextðDÞ

�
:

Since

@r

@s
¼ � �r

ms2
¼ � r

s
;

and

1

F

@F

@s
¼ m 1� 1

r

� �
@r

@s
;

we have

@F

@s
¼ m

s
ð1� rÞF:

Now, we get

@K1

@s
¼ �DK1

m

r
;

and

@K2

@s
¼

ffiffiffiffiffiffiffiffiffiffi
2pm
p

ðrþmð1� rÞ2ÞF
s
:

Furthermore, we have

@pextðDÞ
@s

¼ 1

ðK2 � rK1Þ2
h r
s
K1ðK2 �K1Þ

þ ðr� 1ÞK1

ffiffiffiffiffiffiffiffiffiffi
2pm
p

ðrþmð1� rÞ2ÞF
s

þ ðr� 1ÞDK1K2
m

r

i
:

Similarly, we cannot get the closed-form expression of s,
so we can use the same method to find the numerical solu-
tion of s. In Fig. 8, we demonstrate the net profit in one unit
of time as a function of s and �, wherem ¼ 6. The rest param-
eters are the same as that in Figs. 6 and 7.We notice that there
is an optimal choice of s such that the net profit ismaximized.
Using the analytical method, the optimal value of s such that
respectively. When the servers run at a slower speed than
the optimal speed, the waiting times of service requests will
be long and exceed the deadline. So, the revenue is small and
the profit is not optimal. When s increases, the energy con-
sumption as well as the electricity cost increases. Hence, the
increased revenue is much less than the increased cost. As a
result, the profit is reduced. Therefore, there is an optimal
choice of s such that the net profit is maximized.

In Fig. 9, we demonstrate the optimal speed and maximal
profit in one unit of time as a function of m and �. The
parameters are same as that in Figs. 6, 7, and 8. From the fig-
ures we can see that if the number of fixed servers is great,
the servers must run at a lower speed, which can lead to an
optimal profit. In addition, the optimal speed of servers is
not faster than 1.2, that is because the increased electricity
cost surpasses the increased cost that rents extra servers.
The figure also shows us that different � values have differ-
ent optimal combinations of speed and size.

5.1.3 Optimal Size and Speed

Given �, r, a, P �, a, b, g, d, �, D, our third problem is to find
m and s such that Profit is maximized. Hence, we need to
find m and s such that @Profit=@m ¼ 0 and @Profit=@s ¼ 0,
where @Profit=@m and @Profit=@s have been derived in the
last two sections. The two equations are solved by using the
same method as [2]. In Fig. 10, we demonstrate the net profit
in one unit of time as a function of m and s. Here � is 5.99,
and r ¼ 1. The optimal value is m ¼ 6:2418 and s ¼ 0:9386,
which result in the maximal profit 58.0150. In Fig. 11, we
demonstrate the maximal profit in one unit of time in differ-
ent combinations of � and r. The figure shows that the

Fig. 7. Optimal size and maximal profit versus s and �.

Fig. 8. Net profit versus s and �.
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service providers can obtain more profit when the service
requests are with greater � and r.

5.2 An Algorithmic Method for Actual Solutions

In above subsection, the optimal solutions find using the
analytical method are ideal solutions. Since the number of
rented servers must be integer and the server speed levels
are discrete and limited in real system, we need to find the
optimal solutions for the discrete scenarios. Assume that
S ¼ fsij1 � i � ng is a discrete set of n speed levels with
increasing order. Next, different situations are discussed
and the corresponding methods are given as follows.

5.2.1 Optimal Size

Assume that all servers run at a given execution speed s.
Given �, r, a, P �, a, b, g, d, �, and D, the first problem is

to find the number of long-term rented servers m such
that the profit is maximized. The method is shown in
Algorithm 2.

Algorithm 2. Finding the Optimal Size

Input: s, �, r, a, P �, a, b, g, d, �, andD
Output: the optimal number Opt size of fixed servers
1: Profit max 0
2: find the server size m using the analytical method in

Section 5.1.1
3: m�l  bmc,m�u  dme
4: Profitl  Profitðm�l ; sÞ, Profitu  Profitðm�u; sÞ
5: if Profitl > Profitu then
6: Profit max Profitl
7: Opt size m�l
8: else
9: Profit max Profitu
10: Opt size m�u
11: end if

5.2.2 Optimal Speed

Assume that the service provider rents m servers. Given �,
r, a, P �, a, b, g, d, �, and D, the second problem is to find the
optimal execution speed of all servers such that the profit is
maximized. The method is shown in Algorithm 3.

Algorithm 3. Finding the Optimal Speed

Input:m, �, r, a, P �, a, b, g, d, �, andD
Output: the optimal server speed Opt speed
1: Profit max 0
2: find the server speed s using the analytical method in

Section 5.1.2
3: s�l  si, s

�
u  siþ1 if si < s � siþ1

4: Profitl  Profitðm; s�l Þ, Profitu  Profitðm; s�uÞ
5: if Profitl > Profitu then
6: Profit max Profitl
7: Opt speed s�l
8: else
9: Profit max Profitu
10: Opt speed s�u
11: end if

5.2.3 Optimal Size and Speed

In this subsection, we solve the third problem, which is to
find the optimal combination of m and s such that the profit

Fig. 9. Optimal speed and maximal profit versusm and �.

Fig. 10. Net profit versusm and s.

Fig. 11. Maximal profit versus � and r.
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is maximized. Given �, r, a, P �, a, b, g, d, �, and D, the
method is shown in Algorithm 4.

Algorithm 4. Finding the Optimal Size and Speed

Input: �, r, a, P �, a, b, g, d, �, andD
Output: the optimal number Opt size of fixed servers and the

optimal execution speed Opt speed of servers
1: Profit max 0
2: find the server size m and speed s using the analytical

method in Section 5.1.3
3: m�l  bmc,m�u  dme
4: find the optimal speed s�l and s�u using Algorithm 3 with

server sizem�l andm�u, respectively

5: Profitl  Profitðm�l ; s�l Þ, Profitu  Profitðm�u; s�uÞ
6: if Profitl � Profitu then

7: Profit max Profitu

8: Opt size m�u , Opt speed s�u
9: else
10: Profit max Profitl
11: Opt size m�l , Opt speed s�l
12: end if

5.3 Comparison of Two Kinds of Solutions

In Tables 1, 2, and 3, the ideal optimal solutions and the
actual optimal solutions are compared for three different
cases. Table 1 compares the ideal optimal size and the
actual optimal size under the given server speed. Table 2
compares the ideal optimal speed and the actual optimal
speed under the given server size. In Table 3, two kinds
of solutions are compared for different combinations of �
and r. Here, m can be any positive integer, and the avail-
able speed levels are S ¼ f0:2; 0:4; . . . ; 2:0g. According to
the comparisons we can see that the ideal maximal profit
is greater than the actual maximal profit. In the tables,
we also list the relative difference (RD) between the ideal
optimal profit and the actual optimal profit, which is cal-
culated as

RD ¼ Idep �Actp
Actp

;

where Idep and Actp are the maximal profit in ideal and
actual scenarios. From the results we know that the rela-
tive difference is always small except some cases in
Table 2. That is because a small difference of speed
would lead to a big difference of profit when the server
size is large.

6 PERFORMANCE COMPARISON

Using our resource renting scheme, temporary servers are
rented for all requests whose waiting time are equal to the
deadline, which can guarantee that all requests are served
with high service quality. Hence, our scheme is superior to
the traditional resource renting scheme in terms of the ser-
vice quality. Next, we conduct a series of calculations to
compare the profit of our renting scheme and the renting
scheme in [2]. In order to distinguish the proposed scheme
and the compared scheme, the proposed scheme is renamed
as Double-Quality-Guaranteed renting scheme and the
compared scheme is renamed as single-quality-unguaran-
teed renting scheme in this paper.

6.1 The Compared Scheme

Firstly, the average charge of the using the SQU renting
scheme is analyzed.

Theorem 6.1. The expected charge to a service request using the
SQU renting scheme is

arð1� Pqe
�ð1�rÞmmDÞ:

Proof. Recall that the probability distribution function of the
waiting timeW of a service request is

fW ðtÞ ¼ ð1� PqÞuðtÞ þmmpme
�ð1�rÞmmt:

TABLE 1
Comparison of the Two Methods for Finding the Optimal Size

Given Speed 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Ideal
Solution

Optimal Size 29.1996 14.6300 9.7599 7.3222 5.8587 4.8827 4.1854 3.6624 3.2555 2.9300
Maximal Profit 11.5546 45.5262 54.6278 57.5070 57.8645 56.9842 55.3996 53.3498 51.0143 48.4578

Actual
Solution

Optimal Size 29 15 10 7 6 5 4 4 3 3
Maximal Profit 11.5268 45.4824 54.6014 57.3751 57.8503 56.9727 55.3259 53.0521 50.8526 48.4513

Relative Difference 0.2411% 0.0964% 0.0483% 0.2299% 0.0246% 0.0202% 0.1332% 0.5612% 0.3180% 0.01325%

TABLE 2
Comparison of the Two Methods for Finding the Optimal Speed

Given Size 5 7 9 11 13 15 17 19 21 23

Ideal
Solution

Optimal Speed 1.1051 0.8528 0.6840 0.5705 0.4895 0.4288 0.3817 0.3440 0.3132 0.2875
Maximal Profit 57.3742 57.7613 56.0783 53.3337 49.9896 46.2754 42.3167 38.1881 33.9366 29.5933

Actual
Solution

Optimal Speed 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.4 0.4 0.4
Maximal Profit 57.0479 57.3751 54.7031 53.1753 48.4939 45.4824 42.2165 37.4785 32.6795 27.8795

Relative Difference 0.5721% 0.6732% 2.5140% 0.2979% 3.0843% 1.7435% 0.2373% 1.8934% 3.8470% 6.1474%
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Since W is a random variable, so Rðr;WÞ is also a ran-
dom variable. The expected charge to a service request
with execution requirement r is

RðrÞ ¼ Rðr;WÞ
¼

Z 1

0

fW ðtÞRðr; tÞdt

¼
Z D

0

ð1� PqÞuðtÞ þmmpme
�ð1�rÞmmt

h i
ardt

¼ ð1� PqÞarþmmpmar
1� e�ð1�rÞmmD

ð1� rÞmm

¼ arð1� Pqe
�ð1�rÞmmDÞ:

Therefore, the expected charge to a service request is
the expected value of RðrÞ:

RðrÞ ¼
Z 1

0

frðzÞRðzÞdz

¼
Z 1

0

1

r
e�z=razð1� Pqe

�ð1�rÞmmDÞdz

¼ a

r
ð1� Pqe

�ð1�rÞmmDÞ
Z 1

0

e�z=rzdz

¼ arð1� Pqe
�ð1�rÞmmDÞ:

The theorem is proven. tu
By the above theorem, the profit in one unit of time using

the SQU renting scheme is calculated as:

�arð1� Pqe
�ð1�rÞmmDÞ �mðbþ dðr�sa þ P �ÞÞ: (11)

Using the SQU renting scheme, a service provider must
rent more servers or scale up the server speed to maintain a
high quality-guaranteed ratio. Assumed that the required
quality-guaranteed ratio of a service provider is c and the
deadline of service requests isD. By solving equation

FW ðDÞ ¼ 1� pm

1� r
e�mmð1�rÞD � c

with givenm or s, we can get the corresponding s orm such
that the required quality-guaranteed ratio is achieved.

6.2 Profit Comparison under Different
Quality-Guaranteed Ratio

Let � be 5.99 and the other parameters be the same as those
in Section 5. In the first example, for a given number of serv-
ers, we compare the profit using the SQU renting scheme
with quality-guaranteed ratio 100, 99, 92, 85 percent and
the optimal profit using our DQG renting scheme. Because
the quality-guaranteed ratio 100 percent cannot be
achieved using the SQU renting scheme, hence, we set
99:999999% � 100%. The results are shown in Fig. 12. From
the figure, we can see that the profit obtained using the pro-
posed scheme is always greater than that using the SQU
renting scheme, and the five curves reach the peak at differ-
ent sizes. In addition, the profit obtained by a service pro-
vider increases when the qualtiy-guaranteed ratio increases
from 85 to 99 percent, but decreases when the ratio is
greater than 99 percent. That is because more service
requests are charged with the increasing ratio from 85 to
99 percent; but once the ratio is greater than 99 percent, the
cost to expand the server size is greater than the revenue
obtained from the extra qualtiy-guaranteed requests, hence,
the total profit is reduced.

In the second example, we compare the profit of the
above five scenarios under the given server speed. The
results are given in Fig. 13. The figure shows the trend of
profit when the server speed is increasing from 0.1 to 2.9.
From the figure, we can see that the curves increase firstly

TABLE 3
Comparison of the Two Methods for Finding the Optimal Size and the Optimal Speed

r 0.50 0.75 1.00 1.25 1.50 1.75 2.00

� ¼ 4:99

Ideal
Solution

Optimal Size 2.5763 3.8680 5.1608 6.4542 7.7480 9.0420 10.3362
Optimal Speed 0.9432 0.9422 0.9413 0.9406 0.9399 0.9394 0.9388
Maximal Profit 24.0605 36.0947 48.1539 60.1926 72.2317 84.3121 96.3528

Actual
Solution

Optimal Size 3 4 5 6 7 9 10
Optimal Speed 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Maximal Profit 23.8770 35.7921 48.0850 60.1452 72.0928 83.9968 96.2230

Relative Difference 0.7695% 0.8454% 0.14355% 0.0789% 0.1927% 0.3754% 0.1349%

� ¼ 5:99

Ideal
Solution

Optimal Size 3.1166 4.6787 6.2418 7.8056 9.3600 10.9346 12.4995
Optimal Speed 0.9401 0.9393 0.9386 0.9380 0.9375 0.9370 0.9366
Maximal Profit 28.9587 43.4364 57.9339 72.4121 86.9180 101.3958 115.9086

Actual
Solution

Optimal Size 3 4 6 7 9 10 12
Optimal Speed 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Maximal Profit 28.9158 43.1208 57.8503 72.2208 86.7961 101.2557 115.7505

Relative Difference 0.1484% 0.7317% 0.1445% 0.2649% 0.1405% 0.1384% 0.1365%

Fig. 12. Profit versusm and different quality-guaranteed ratios.
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and reach the peak at certain speed, and then decrease along
with the increasing speed on the whole. The figure verifies
that our proposed scheme can obtain more profit than the
SQU renting scheme. Noticed that the changing trends of
the curves of the SQU renting scheme with 100, 99, 92, and
85 percent quality-guaranteed ratio are interesting. They
show an increasing trend at the beginning and then
decrease during a small range of speed repeatedly. The
reason is analyzed as follows. When the server speed is
changing within a small speed range, in order to satisfy the
required deadline-guaranteed ratio, the number of servers
rented by a service provider keeps unchanged. At the begin-
ning, the added revenue is more than the added cost, so the
profit is increasing. However, when the speed becomes
greater, the energy consumption increases, leading to the
total increased cost surpassing the increased revenue,
hence, the profit decreases.

In the third example, we explore the changing trend of
the profit with different D, and the results are shown as
Fig. 14. Fig. 14a gives the numerical results when the server
speed is fixed at 0:7, and Fig. 14b shows the numerical
results when the number of servers is fixed at 5. We analyze
the results as follows.

From Fig. 14a, we can see that the profit obtained using
the SQU renting scheme increases slightly with the incre-
ment of D. That is because the service charge keeps con-
stant but the extra cost is reduced when D is greater. As a
consequence, the profit increases. The second phenome-
non from the figure is that the curves of SQU 92 percent
and SQU 85 percent have sharp drop at some points and
then ascend gradually and smoothly. The reasons are
explained as follows. When the server speed is fixed,
enough servers are needed to satisfy the given quality-
guaranteed ratio. By calculating, we know that the num-
ber of required servers is the same for all D values in a
certain interval. For example, [5,7] and [8,25] are two
intervals of D for the curve of SQU 92 percent, and the
required servers are 10 and 9, respectively. For all D
within the same interval, their costs are the same with
each other. Whereas, their actual quality-guaranteed
ratios are different which get greater with the increasing
D. Hence, during the same interval, the revenue gets
greater as well as the profit. However, if the deadline
increases and enters a different interval, the quality-
guaranteed ratio sharply drops due to the reduced serv-
ers, and the lost revenue surpasses the reduced cost,
hence, the profit sharply drops as well. Moreover, we can

also see that the profit of SQU 100 percent is much less
than the other scenarios. That is because when the qual-
ity-guaranteed ratio is great enough, adding a small reve-
nue leads to a much high cost.

From Fig. 14b, we can see that the curves of SQU
92 percent and SQU 85 percent descend and ascend
repeatedly. The reasons are same as that of Fig. 14a. The
deadlines within the same interval share the same mini-
mal speed, hence, the cost keeps constant. At the same
time, the revenue increases due to the increasing quality-
guaranteed ratio. As a consequence, the profit increases.
At each break point, the minimal speed satisfying the
required quality-guaranteed ratio gets smaller, which
leads to a sharp drop of the actual quality-guaranteed
ratio. Hence, the revenue as well as the profit drops.

6.3 Comparison of Optimal Profit

In order to further verify the superiority of our proposed
scheme in terms of profit, we conduct the following compar-
ison between the optimal profit achieved by our DQG rent-
ing scheme and that of the SQU renting scheme in [2]. In
this group of comparisons, � is set as 6.99, D is 5, r is vary-
ing from 0.75 to 2.00 in step of 0.25, and the other parame-
ters are the same as Section 5. In Fig. 15, the optimal profit
and the corresponding configuration of two renting
schemes are presented. From Fig. 15a we can see that the
optimal profit obtained using our scheme is always greater
than that using the SQU renting scheme. According to the
calculation, our scheme can obtain 4.17 percent more profit
on the average than the SQU renting scheme. This shows

Fig. 13. Profit versus s and different quality-guaranteed ratios.

Fig. 14. Profit versusD and different quality-guaranteed ratios.
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that our scheme outperforms the SQU renting scheme in
terms of both of quality of service and profit. Figs. 15b and
15c compare the server size and speed of the two schemes.
The figures show that using our renting scheme the capacity
provided by the long-term rented servers is much less than
the capacity using the SQU renting scheme. That is because
a lot of requests are assigned to the temporary servers using
our scheme, and less servers and slower server speed are
configured to reduce the waste of resources in idle period.
In conclusion, our scheme can not only guarantee the ser-
vice quality of all requests, but also achieve more profit
than the compared one.

7 CONCLUSIONS

In order to guarantee the quality of service requests and
maximize the profit of service providers, this paper has pro-
posed a novel Double-Quality-Guaranteed renting scheme
for service providers. This scheme combines short-term
renting with long-term renting, which can reduce the
resource waste greatly and adapt to the dynamical demand
of computing capacity. An M/M/m+D queueing model is
build for our multiserver system with varying system size.
And then, an optimal configuration problem of profit maxi-
mization is formulated in which many factors are taken into
considerations, such as the market demand, the workload
of requests, the server-level agreement, the rental cost of
servers, the cost of energy consumption, and so forth. The
optimal solutions are solved for two different situations,
which are the ideal optimal solutions and the actual optimal
solutions. In addition, a series of calculations are conducted
to compare the profit obtained by the DQG renting scheme
with the single-quality-unguaranteed renting scheme. The
results show that our scheme outperforms the SQU scheme
in terms of both of service quality and profit.

In this paper, we only consider the profit maximization
problem in a homogeneous cloud environment, because the
analysis of a heterogenous environment is much more com-
plicated than that of a homogenous environment. However,
we will extend our study to a heterogenous environment in
the future.
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