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Abstract Efficient application scheduling is critical for
achieving high performance in heterogeneous computing
(HC) environments. Because of such importance, there are
many researches on this problem and various algorithms
have been proposed. Duplication-based algorithms are one
kind of well known algorithms to solve scheduling prob-
lems, which achieve high performance on minimizing the
overall completion time (makespan) of applications. How-
ever, they pursuit of the shortest makespan overly by du-
plicating some tasks redundantly, which leads to a large
amount of energy consumption and resource waste. With
the growing advocacy for green computing systems, energy
conservation has been an important issue and gained a par-
ticular interest. An existing technique to reduce energy con-
sumption of an application is dynamic voltage/frequency
scaling (DVFS), whose efficiency is affected by the over-
head of time and energy caused by voltage scaling. In this
paper, we propose a new energy-aware scheduling algo-
rithm with reduced task duplication called Energy-Aware
Scheduling by Minimizing Duplication (EAMD), which
takes the energy consumption as well as the makespan of
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an application into consideration. It adopts a subtle energy-
aware method to search and delete redundant task copies
in the schedules generated by duplication-based algorithms,
and it is easier to operate than DVFS, and produces no extra
time and energy consumption. This algorithm not only con-
sumes less energy but also maintains good performance in
terms of makespan compared with duplication-based algo-
rithms. Two kinds of DAGs, i.e., randomly generated graphs
and two real-world application graphs, are tested in our ex-
periments. Experimental results show that EAMD can save
up to 15.59 % energy consumption for HLD and HCPFD,
two classic duplication-based algorithms. Several factors af-
fecting the performance are also analyzed in the paper.

Keywords Directed acyclic graph · Duplication-based
algorithm · Energy-aware scheduling · Heterogeneous
computing system

1 Introduction

In the past decade, more and more attention has focused
on the problem of scheduling applications on heteroge-
neous computing systems. A heterogeneous computing
(HC) system is defined as a suite of distributed comput-
ing machines with different capabilities which are intercon-
nected by different high speed links and are utilized to ex-
ecuted parallel applications [1, 2]. Many task scheduling
algorithms are proposed for HC systems, and their perfor-
mance is evaluated with the only criterion, i.e., the sched-
ule length (makespan). Among those proposed algorithms,
duplication-based algorithms are a kind of efficient algo-
rithms, which assign some tasks to several processors to
reduce the communication between tasks, hence minimiz-
ing the makespan. However, redundant duplications lead
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to large overhead of energy consumption. In recent years,
with the growing advocacy for green computing systems,
energy conservation has become an important issue and
gained a particular interest. To overcome the drawbacks of
duplication-based algorithms but retain their advantages,
we present a new task scheduling algorithm on HC sys-
tems in this paper, which can decrease energy consumption
while not degrading the makespan of duplication based al-
gorithms.

There are much research focusing on the energy-aware
problem in task scheduling, and various techniques have
been developed. Two general and widely used techniques
to reduce energy consumption at system level scheduling
are dynamic power management (DPM) and dynamic volt-
age/frequency scaling (DVFS). DPM turns idle components
off to reduce power consumption, and DVFS-enabled pro-
cessors scale down their voltages and clock frequencies dur-
ing idle periods. These two techniques are efficient in some
cases. Several energy-aware algorithms are proposed based
on these two techniques, such as [3–10]. However, the high
overhead of energy and time is the drawback of the DPM
and DVFS techniques [11, 12], which would degrade the
performance in terms of makespan to certain extent. Hence,
we adopt a different mechanism instead of DPM and DVFS
to reduce energy consumption in this paper.

In our paper, we assume that all information of an ap-
plication including task execution times, the sizes of data
communicated between tasks, and task dependencies are
known a priori for static scheduling. Static task schedul-
ing takes place during compile time before task execution.
Once the schedule is determined, the tasks can be executed
following the orders and assignments. Task scheduling is
to map tasks of an application to processors, so that prece-
dence requirements are satisfied and the minimal makespan
is achieved [13]; however, it is in general NP-hard [14, 15].
Therefore, heuristics can be used to obtain sub-optimal
schedules. Task scheduling has been extensively studied
and various heuristics have been proposed in the litera-
ture [16–24]. The general task scheduling algorithms can be
classified into a variety of categories, such as list scheduling
algorithms, cluster algorithms, and duplication-based algo-
rithms, and so on.

As we mentioned before, duplication-based algorithms
have the highest performance in terms of makespan com-
pared with other kinds of algorithms. The idea of duplica-
tion-based algorithms is to schedule a task graph by map-
ping some of its tasks redundantly, which reduces the
communication between tasks. However, duplication-based
algorithms improve the makespan at the cost of higher
resource waste and energy consumption. In a traditional
schedule, each task is assigned to a processor and is executed
only one time, while a schedule generated by a duplication-
based algorithm executes some tasks more than one time,

resulting in a large increase of energy consumption. Actu-
ally, the finish time of a task is mainly determined by its
important immediate parent, so it is unnecessary to finish
all of its parents as early as possible via duplication. That is
to say, some duplications can be removed from a schedule,
which does not affect the overall makespan. Those remov-
able duplications are defined as redundant copies of tasks. In
this paper, for a schedule generated by a duplication-based
algorithm, we try to explore (1) how to search for redundant
copies of tasks; (2) and how to delete them but not affect the
performance of the original schedule. The proposed meth-
ods can be applied to the output of any duplication-based
algorithms.

The main contributions of this paper are summarized as
follows.

− We propose a subtle energy-aware method, which not
only is easier to operate than both DPM and DVFS, but
also produces no overhead of time and energy. In addi-
tion, the performance in terms of makespan is not de-
graded compared with the duplication-based algorithms.

− Experiments are given to verify that the proposed algo-
rithm can reduce a large amount of energy consumption
compared with the duplication-based algorithms while
not sacrificing the performance of makespan.

− The factors affecting the performance of our algorithm
are analyzed.

The remainder of this paper is organized as follows.
In Sect. 2, some related work are reviewed, which in-
clude different scheduling heuristics on heterogeneous sys-
tems, power reduction techniques, and several energy-aware
scheduling algorithms. In Sect. 3, we define the problem and
present the related models. In Sect. 4, we give a detailed de-
scription of the EAMD algorithm and an analysis of its time
complexity. An example is also provided in this section to
explain our algorithm better. The experimental results are
presented and some analysis is given in Sect. 5. Section 6
concludes the work of our paper and provides an overview
of future research.

2 Related work

The existing task scheduling algorithms can be classified to
a variety of categories, such as list scheduling algorithms,
cluster algorithms, duplication-based algorithms, and some
other algorithms [25]. The list scheduling algorithms pro-
vide good quality of schedules and their performance is
comparable with other categories at lower time complex-
ity. Some examples are dynamic critical-path (DCP) [26],
heterogeneous earliest finish time (HEFT) [20], critical path
on a processor (CPOP) [20], and the longest dynamic crit-
ical path (LDCP) [18]. The cluster algorithms merge tasks
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in a graph to an unlimited number of clusters, and tasks in a
cluster are scheduled on the same processor. Some examples
in this category are clustering for heterogeneous processors
(CHP) [27], clustering and scheduling system(CASS) [28],
and objective-flexible clustering algorithm (OFCA) [29].
The idea of duplication-based algorithms is to schedule a
task graph by mapping some tasks redundantly, which re-
duces the interprocessor communication overhead. There
are many duplication-based algorithms, for examples, se-
lective duplication (SD) [24], heterogeneous limited dupli-
cation (HLD) [19], heterogeneous critical parents with fast
duplicator (HCPFD) [22], and heterogeneous earliest finish
with duplication (HEFD) [30]. This kind of algorithms can
reduce the makespan effectively, but they do not take energy
efficiency into consideration.

Energy efficiency has become an important issue to be
considered in the field of high-performance computing.
There are some energy-aware scheduling algorithms pro-
posed recently. Two typical techniques usually adopted to
reduce energy consumption at system level scheduling are
dynamic power management (DPM) and dynamic volt-
age/frequency scaling (DVFS), respectively. DPM turns idle
components off to reduce the power consumption. How-
ever, a large amount of energy and time overheads will be
produced when the components are rebooted; hence, DPM
is working only when the idle times are long enough. The
DPM technique is mostly applied to laptops and PDAs. For
the scheduling of an application, the idle time between two
task execution is little, and DPM is not suitable.

Another technique, DVFS, has been proven to be a
very promising technique with its demonstrated capabil-
ity for energy savings [3–10]. With the growing advocacy
for green computing systems, many DVFS-enabled proces-
sors are manufactured to cater to the requirements, such as
Transmeta’s Crusoe [31], Intel Speed Step [32], and AMD
K6 [33], etc. DVFS-enabled processors are to scale down
their voltages and clock frequencies when the peak perfor-
mance is unnecessary, further reducing power consumption
and heat generation. The power consumption by a CPU is
proportional to voltage quadratically, and voltage and fre-
quency can vary considerably. So a decrease of voltage can
lead to a significant decrease of power consumption. There-
fore, the DVFS technique can reduce energy dissipation ef-
ficiently. Whereas, DVFS has its disadvantages as DPM.
One particular disadvantage is the energy and time over-
heads. Generally speaking, when processors are scaled be-
tween two different voltages, the energy overhead and time
delay are related to the difference of voltages, and the over-
heads, especially the time delay, could affect the overall per-
formance in terms of makespan, hence cannot be neglected.
The calculation equations of the overheads of energy and
time can be found in [11].

In this paper, we take both energy efficiency and make-
span into consideration. A new method is adopted instead

of DVFS and DPM, which can reduce energy consump-
tion efficiently but not degrade the performance in terms of
makespan compared with the existing duplication-based al-
gorithms. As we said before, duplication-based algorithms
obtain better performance in terms of makespan at the cost
of significant increase of energy consumption. Through
the analysis of the duplication-based algorithms, we find
that some copies of tasks can be deleted without affecting
the task precedence constraint, which are called redundant
copies. Deleting redundant copies can reduce resource waste
and energy consumption. Therefore, the proposed algorithm
is to search and delete the redundant copies of tasks in the
schedules generated by duplication-based algorithms. The
precondition is that the performance of an original schedule
is not worsen. The proposed algorithm can be applied to the
output of any duplication-based algorithms.

3 Models

A scheduling system consists of a target computing environ-
ment, an application, and performance criteria of schedul-
ing. In the following subsections, we introduce the comput-
ing system model, the application model, and performance
criteria adopted in the paper.

3.1 Computing system model

A computing system considered in this paper is heteroge-
neous. The heterogeneous systems can be classified into two
categories [19], i.e.,

− mixed heterogeneity computing system model (MHM);
− fixed heterogeneity computing system model (FHM).

In the MHM, the target system consists of a mixed suite
P = {pk : k = 0,1, . . . , n − 1} of n processors, each is best
suited to process a particular type of program code. There-
fore, the execution time of a task vi on processor pk will
depend on how well the architecture of pk matches vi ’s pro-
cessing requirement. A task scheduled on its best suited pro-
cessor will spend less execution time than on a less suited
processor. The best processor for one task may be the worst
processor for another task. This type of model is described
in [34] and used in [16, 20–22].

In the FHM, the target system also consists of n pro-
cessors P = {pk : k = 0,1, . . . , n − 1}. For one processor,
it executes tasks with the same processing rate no matter
what types they are. For different processors, however, their
processing rates are different from each other. For exam-
ple, given two tasks vi and vj , their execution times on two
processors pk and p′

k are wi,k,wi,k′ and wj,k,wj,k′ respec-
tively, where wi,k �= wi,k′,wj,k �= wj,k′ , but wi,k/wi,k′ =
wj,k/wj,k′ (where wi,k refers to the execution time of a task
vi on processor pk). This type of model is used in [30, 35].
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Fig. 1 A simple DAG representing an application graph with prece-
dence constraint

The computing system adopted in this paper is based on
the MHM, as it is used more commonly than the FHM, and
algorithms are compared based on the MHM. In addition, al-
gorithms designed for the MHM are applicable to the FHM
as well, since the FHM is a special case of the MHM.

3.2 Application model

An application is represented as a directed acyclic graph
(DAG) with both node and edge weights, denoted by
G(V,E, [wi,k], c). A set of nodes V = {vi | 0 ≤ i ≤ m − 1}
represent the tasks in the application, and a set of directed
edges E represent dependencies among tasks. [wi,k] is an
m × n matrix of computation times, where wi,k represents
the computation time of task vi when it is assigned to pro-
cessor pk , for 0 ≤ i ≤ m−1 and 0 ≤ k ≤ n−1. The average
computation cost of task vi is defined as

wi = 1

n

n−1∑

k=0

wi,k. (1)

Let ci,j be the weight associated with edge ei,j , which rep-
resents the required communication time to send data from
vi to vj , where vi is called a parent of vj , and vj is called a
child of vi .

Figure 1 gives the DAG of an application, and Table 1
lists the computation time matrix [wi,k].

A task having no parent is called an entry task, such as
task v0 in Fig. 1. A task having no child is called an exit task,
such as v7. In this paper, we only discuss the scheduling
of DAGs with single-entry and single-exit tasks. For those
DAGs with multi-entry and multi-exit tasks, we can trans-
form them by adding zero-cost pseudo entry/exit tasks with
zero-cost edges, which do not affect the schedule.

Table 1 Computation cost matrix [wi,k]

Task node p0 p1 p2 p3 wi ranku

v0 1 1 2 1 1.25 32.00

v1 3 2 4 2 2.75 19.75

v2 5 6 3 4 4.50 20.50

v3 2 4 4 2 3.00 26.75

v4 4 8 7 8 6.75 28.50

v5 3 3 1 2 2.25 9.00

v6 5 5 5 5 5.00 13.75

v7 1 2 2 2 1.75 1.75

3.3 Performance criteria

3.3.1 Makespan

The objective of task scheduling is to find an assignment of
the tasks onto the processors of the target system, which re-
sults in the fastest possible execution, while respecting the
precedence constraints expressed by the edges. It is natural
that the makespan is selected as the main criterion to mea-
sure the performance of scheduling algorithms. In a given
schedule, st (vi,pk) and f t (vi,pk) represent the start time
and finish time of task vi on pk , respectively. Because pre-
emptive execution is not allowed, f t (vi,pk) = st (vi,pk) +
wi,k . Makespan is the overall finish time of the whole appli-
cation, which is denoted as

makespan = f t (vexit). (2)

3.3.2 Energy consumption

The second objective of the proposed algorithm in this paper
is to reduce energy consumption of a valid schedule gener-
ated by a duplication-based algorithm without degrading its
makespan. Thus, we introduce the energy consumption as
the second performance criterion in this paper. Energy con-
sumption of a computing system equals to the product of
the power consumption and the execution time of proces-
sors. Power consumption is related to the design technology
of a processor and it is different according to the state of the
processor. A processor has two states. One is the busy state,
in which some tasks are being executed by the processor;
the other is the idle state, in which the processor is idle and
no task is executed. The power consumption of a processor
in the busy state is much different from that in the idle state.
Table 2 presents the power consumption parameters of In-
tel XScale PXA270 processor [36], which is also the power
model used in our paper.

PXA270 processor is a kind of processor with the mech-
anism of dynamic voltage/frequency scaling (DVFS). It has
six frequency levels. The frequency of 624 MHz listed in
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Table 2 Power consumption of PXA270 [36]

Frequency Idle power Busy power

624 MHz 260 mW 925 mW

Fig. 2 A schedule of the DAG in Fig. 1

Table 2 is the maximum frequency of PXA270. Because our
algorithm does not adopt the mechanism of DVFS, we as-
sume that all processors are running at a fixed frequency
of 624 MHz. According to the data sheet of Intel XScale
PXA270 processor [36], the power consumption of a pro-
cessor in the idle state Pidle is 260 mW and that in the busy
state Pbusy is 925 mW. The power consumption in the busy
state is much greater than that in the idle state. The energy
consumption of a processor is calculated by:

Etotal = Pbusytbusy + Pidletidle, (3)

where tbusy and tidle are the periods of a processor in the busy
and the idle states, respectively. From Eq. (3) we can see
that the energy consumption of a given computing system
is mainly determined by execution times of processors since
the power consumption is fixed.

Figure 2 gives a schedule of the application given in
Fig. 1. The makespan is 20 ms. Assume that the proces-
sors without tasks are turned off and consume no energy.
The power consumption of processors in the busy state and
the idle state are 925 mW and 260 mW, respectively. The
periods of processors in the busy state and the idle state
are 19 ms and 20 ms, respectively. Therefore, the total en-
ergy consumed by the schedule is 19 × 925 + 20 × 260 =
22.775 mJ.

4 The proposed algorithm

The proposed algorithm, named Energy-Aware scheduling
algorithm by Minimizing Duplication (EAMD for short), is
described in detail in this section. EAMD is essentially an
improved algorithm for an existing duplication-based algo-
rithm. The schedule generated by a duplication-based algo-
rithm is the input of the EAMD algorithm. The objective

of EAMD is to reduce the energy consumption of an in-
put schedule without degrading the original performance in
terms of makespan.

The input schedule is denoted by S, which consists of
a series of mapping information (vi,pk, sti,k, f ti,k), where
(vi,pk, sti,k, f ti,k) represents that task vi is assigned onto
processor pk , and sti,k and f ti,k are the start and finish times
of vi on pk , respectively. In a valid input schedule S, a task,
except the exit task, would be assigned onto more than one
processor due to duplication.

A duplication-based algorithm is always greedy. It as-
signs a task to the processor on which the task finishes at the
earliest time. The greedy feature leads to a common draw-
back of duplication-based algorithms. That is, they only con-
sider to optimize the execution of the current task, but ne-
glect its effect on the execution of its children. When con-
sidering the children, the best processor for the current task
is no longer the best. In order to optimize the execution of
the children, a duplication mechanism is adopted and a par-
ent task is duplicated on the objective processors of children.
Therefore, the original assignment of the parent might be-
come useless, which is defined as a redundant copy. Those
redundant copies can be removed from schedule S. In addi-
tion, those deleted copies might rely on the duplication of
their own parents further, and their relied duplication copies
can be deleted as well.

Before giving the detailed description to our algorithm, it
is necessary to introduce some definitions, which can help
us to understand the algorithm precisely.

Definition 1 A schedule S of an application is feasible if
and only if all tasks of the application are assigned to pro-
cessors and all precedence constraints between tasks are sat-
isfied.

To delete redundant copies from a feasible schedule but
maintain its feasibility, first and foremost, it must be known
which kind of task copies are the latent redundancies. Ac-
cording to the first condition of Definition 1, each task must
be assigned to one processor. Hence, tasks which are sched-
uled one time in a schedule cannot be deleted undoubtedly.
For a given schedule S, the tasks are divided into three cate-
gories according to the number of task copies:

− Single-copy task: A task that is scheduled one time in S;
− Dual-copy task: A task that is scheduled two times in S;
− Multi-copy task: A task that is scheduled more than two

times in S.

According to Definition 1, only dual-copy tasks and
multi-copy tasks have opportunity to be redundant and
deleted. In the following, we discuss how to search redun-
dant copies for these two kinds of tasks, respectively.

For a task assigned to several processors, the assignment
of each copy has its particular objective. In general, the copy
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of a task that is assigned first is always the one that fin-
ishes the earliest among all copies, which is to ensure that
the task is executed at the optimal time. The other copies
are assigned to reduce the communication with its children.
A definition is given in the following to distinguish the two
kinds of copies.

Definition 2 In a schedule, the copy with the earliest fin-
ish time is called its original copy, and the others are called
duplicated copies.

We list all copies of task vi in the nondecreasing order of
finish times, denoted by S(vi) = {v1

i , . . . , v
j
i , . . . , vl

i}, where

v
j
i represents the j th earliest copy of task vi . According to

Definition 2, v1
i is the original copy, and the others are du-

plicated copies. Assume that v
j
i is a copy assigned to pro-

cessor pk , and there exists a child vc which is executed on
the same processor pk and receives data from v

j
i on pk . In

this case, we say that v
j
i is the local parent of vc, denoted by

parel(vc,pk) = v
j
i , and vc is the local child of v

j
i , denoted

by childl(v
j
i ,pk) = vc.

To determine if a copy of task vi can be deleted, the key is
to decide if the precedence constraints with all children are
guaranteed, that is, if the other copies of vi can afford data
to all its children. The determination methods used for the
dual-copy tasks and the multi-copy tasks are different and
will be discussed separately in the following.

If vi is a dual-copy task, it has two copies, i.e., the orig-
inal copy and a duplicated copy. That means, there is only
one of its children executed in advance due to the duplica-
tion of vi , and the aim of the duplicated copy is to provide
data for its local child. Hence, the duplicated copy cannot be
deleted. Whether the original copy can be deleted depends
on whether the duplicated copy can afford the data needed
by its other children. The original copy can be deleted if the
duplicated copy v2

i satisfies the following condition:

f t
(
v2
i , pk

) + ci,j ≤ st (vj ,pl),

∀vj ∈ child(vi), pl ∈ P, (4)

where f t (v2
i , pk) represents the finish time of the duplicated

copy of task vi assigned onto processor pk , and child(vi)

is the set of children of vi . If pk = pl , ci,j = 0. When the
duplicated copy of task vi can provide the data of all children
and does not violate the precedence constraints, the original
copy can be deleted.

If vi is a multi-copy task, the analysis is more complex
than that of a dual-copy task. Assume that vi has a copy
on processor pk , and it can offer data of all its children if
Eq. (4) is satisfied, the other copies of vi can be deleted.
However, only one copy cannot supply the needed data of all
children in most cases. It is more possible that there exists

a combination of several copies of vi which can provide all
data needed by its children, and the other copies excluding
the combination can be deleted. Let S(vi) = {v1

i , v
2
i , . . . , v

l
i}

be l copies of task vi in a schedule. There exists an available
combination CS ⊆ S(vi) if it satisfies:

∀vj ∈ child(vi), where vj is assigned to pl ∈ P,

∃v∗
i ∈ CS, where v∗

i is assigned to pk ∈ P,

such that f t
(
v∗
i , pk

) + ci,j ≤ st (vj ,pl).

(5)

If there exists this combination, we delete all other copies
of vi except the combination; otherwise, we turn to deal with
the next task. Whereas, how to find the available combina-
tion is a complex issue to be solved, and it is inadvisable to
traverse all combinations of vi ’s copies. We give two steps
as follows to find an available combination of vi .

Steps of finding redundancy for multi-copy tasks:

1. If childl (v
1
i ), the set of local children of the original copy

v1
i , is empty, set all copies except v1

i as a combination,
denoted by CS = {v2

i , . . . , v
l
i}. Find out the task copy

which finishes the earliest among CS, saying vr
i , and de-

termine if it can afford communication requests of all its
children which have no local copy of vi (if Eq. (4) is sat-
isfied). If true, delete v1

i .
2. If childl (v

l
i ) is not empty, find out the local children for

each copy v
j
i (1 ≤ j ≤ l), denoted by childl(v

j
i ). For each

copy v
j
i , determine if the original copy v1

i can afford

all data needed by its local children childl(v
j
i ). If true,

delete v
j
i .

While deleting the redundant copies of tasks, we traverse
tasks in the nondecreasing order of upward ranks of tasks to
make sure that all children have been processed when deal-
ing with a parent. The upward rank ranku is computed by
traversing a DAG upward starting from the exit task, which
is recursively defined by

ranku(vi) = wi + max
vj ∈child(vi )

(
ci,j + ranku(vj )

)
, (6)

where child(vi) is the set of immediate children of task vi in
the DAG. For the exit task vexit, the upward rank is

ranku(vexit) = wexit. (7)

A complete description of the EAMD algorithm is given
in Algorithm 1.

The EAMD algorithm is given as Algorithm 1. Its input is
a schedule S generated by any duplication-based algorithm.
For each input S, all tasks are traversed in a nondecreasing
order of ranku (line 1). If task vi has two copies, its redun-
dancy is searched following the steps shown in lines 3–6. If
task vi is assigned to more than two processors, its process
is shown in line 9.
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Algorithm 1 EAMD algorithm
Require: A schedule S produced by a duplication-based algorithm.
Ensure: Schedule S after deleting the redundant copies.

1: for each task vi in nondecreasing order of ranku do
2: if vi is a dual-copy task then
3: order all copies of vi in nondecreasing f t , denoted by L = {v1

i , v
2
i }

4: if the duplicated copy v2
i of vi satisfies Eq. (4) then

5: delete the original copy v1
i from S, so do its relied duplicated copies on the same processor

6: end if
7: else
8: if vi is a multi-copy task then
9: follow the steps of finding redundancy for multi-copy tasks introduced above, and delete all found redundant

copies from S

10: end if
11: end if
12: end for

Assume that v1
i is the original copy of task vi , and it is

removed from a schedule by our algorithm. Due to the dupli-
cation mechanism adopted by duplication-based algorithms,
when assigning vi for the first time, which is the original
copy, it is possible that its parents are duplicated to bring
forward its finish time. If the original copy is removed from
a schedule, those duplicated copies of its parents become
redundant and can be removed from the schedule as well.

4.1 Time-complexity analysis

The time complexity of a task scheduling algorithm is usu-
ally expressed in terms of the number of tasks |V |, the num-
ber of edges |E|, and the number of processors |P |. The time
complexity of EAMD is analyzed as follows.

Before optimizing the input schedule, a priority queue is
determined first, which can be done in O(|V | log |V |) time.
All tasks are considered to search redundant copies. For a
dual-copy task, all its children are calculated to decide if
the original copy can be deleted. For a multi-copy task, all
its children are calculated to decide if the original copy can
afford the data that they need. The time complexity of the
decision phase is O(|E|). Since |E| is bounded by O(|V |2),
the overall time complexity of EAMD is O(|V |2).

4.2 An illustrative example

Figure 3 gives schedules of the application in Fig. 1 using
the HLD algorithm and the EAMD algorithm. Compared
with HLD, EAMD deletes the redundant copies of tasks so
that the energy consumption is reduced. The detailed pro-
cess is described as follows.

The schedule generated by HLD is the input of the
EAMD algorithm, shown in Fig. 3(a). First, a priority queue
L is constructed in the nondecreasing order of upward ranks.

Fig. 3 Comparison between HLD and EAMD algorithms

For the given example, L = {v7, v5, v6, v1, v2, v3, v4, v0}.
Second, we select tasks from L one by one, and determine
if deletion operation can be done for each task. The first se-
lected task is v7, and it does not rely on duplication of any
task. The second task is v5. From Fig. 3(a) we can see that it
relies on the duplicated copy v1

1 of v1. Task v1 has two chil-
dren v5 and v6. From Fig. 3(a), task v1

1 is completed at t = 9
and v6 starts at t = 7, and the precedence constraint is vio-
lated if v1 is deleted, so we do not delete v1. The search con-
tinues. For task v6, its relied duplication v3 has two children,
v5 and v6. Obviously, the precedence constraint between v3

and v6 is satisfied when v3 is deleted. The finish time of v1
3
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on processor p0 is 7, and the communication time between
v3 and v5 is 2. If v5 receives data from v1

3 , the data ready
time of v5 is 7 + 2 = 9, which is equal to the start time of
v5 on p2. Therefore, task v3 can be deleted. The schedule
result is shown as Fig. 3(b).

Comparing the two schedules, the makespan is the same,
but their energy consumption is different. In Fig. 3(a), the
total busy time of four processors is 27 ms, and the total
idle time is 5 ms. In Fig. 3(b), the total busy time and idle
time are 24 ms and 5 ms, respectively. According to Table 2,
the power consumption of busy period and idle period are
925 mW and 260 mW. Therefore, the energy consumption
of the two schedules are 26.275 mJ and 23.5 mJ. The EAMD
algorithm reduces 10.56 % of the energy consumption of
HLD in this example.

5 Experimental results and analysis

In this section, we apply the EAMD algorithm proposed
in this paper to two classic duplication-based algorithms
HLD and HCPFD. Both HLD and HCPFD algorithms are
well known duplication-based algorithms with good perfor-
mance in terms of makespan, but they are energy “uncon-
scious”. In this paper, we combine the EAMD algorithm
with HLD and HCPFD, and label them as HLD+EAMD
and HCPFD+EAMD for short. This comparison between
HLD and HLD+EAMD, HCPFD and HCPFD+EAMD
clearly demonstrates the energy saving capability of our pro-
posed algorithm. The two compared algorithms, i.e., HLD
and HCPFD, are briefly described as follows.

− The HLD algorithm is proposed by S. Bansal et al. [19],
which is to improve the performance of the list-based
heuristics with addition of limited duplication. The al-
gorithm schedules the tasks strictly in the order of their
global priority, and restricts duplications to the most cru-
cial immediate parents so as to avoid redundant replica-
tions.

− The HCPFD algorithm [22] introduces a simple list-
scheduling mechanism instead of the classical priori-
tization phase and a low complexity duplication-based
mechanism for the machine assignment phase. This al-
gorithm assigns higher priority values to the tasks on the
critical path. In the machine assignment phase, it consid-
ers duplicating not only the first critical parent but also
the second one. This mechanism improves the perfor-
mance in terms of makespan.

The performance of the EAMD algorithm is evaluated
with two kinds of applications, i.e., randomly generated ap-
plications and real-world applications. The two real-world
parallel applications used for our experiments are the Gaus-
sian elimination algorithm [37, 38] and a molecular dy-
namic code algorithm [39]. Typically, the makespan is usu-
ally adopted as the main performance criterion. Whereas,

our algorithm is proposed on the basis of duplication-based
algorithms and does not change the original makespan, so
we do not compare their makespan in our experiments. The
main performance metric chosen for comparison is energy
consumption. Since the energy consumption of applications
vary with the numbers of tasks inside a large variation range,
it is necessary to normalize the energy consumption. Here
we define a parameter energy-ratio ER as the energy metric:

ER = E

EHCPFD
, (8)

where E is the energy consumption of a compared algo-
rithm, and EHCPFD is the energy consumption of algorithm
HCPFD.

5.1 Randomly generated applications

5.1.1 Application graphs random generation

The randomly generated graphs are commonly used to com-
pare the performance of scheduling algorithms, and the gen-
erating method is described in [18, 20, 23, 24, 30]. Three
fundamental characteristics in this paper are considered:

− DAG size n: The number of tasks in a DAG.
− Communication to computation cost ratio CCR: The av-

erage communication cost divided by the average com-
putation cost of an application DAG.

− Parallelism factor λ: The number of levels in a DAG is
generated randomly using a uniform distribution with a

mean value of
√

n
λ

and rounded up to the nearest integer.
The width of a DAG is generated randomly using a uni-
form distribution with a mean value of λ

√
n and rounded

up to the nearest integer. A small λ leads to a DAG with
low parallelism degree.

In our experiments, graphs are generated based on the pa-
rameters introduced above. The number of nodes in a DAG
ranges from 20 to 640. To generate a DAG with a given size,
the number of levels is determined by the parallelism fac-
tor λ (0.2, 0.5, 1.0, 2.0, 5.0) firstly, and then the number of
tasks on each level is determined. Edges are only generated
between the nodes in adjacent levels, obeying a 0-1 distri-
bution. To obtain the desired CCR for a graph, computation
costs are taken randomly from a uniform distribution. The
communication costs are also randomly selected from a uni-
form distribution, whose mean depends on the product of
CCR (0.1, 0.5, 1.0, 2.0, 5.0) and the average computation
cost. 500 random graphs are generated for each set of above
parameters in order to avoid scattering effects. The experi-
mental results are the average of the data obtained for these
graphs.
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Fig. 4 Average energy saving
of random DAGs

5.1.2 Random applications performance analysis

The energy consumption of algorithms is compared with re-
spect to various graph characteristics. The overall experi-
mental results are presented in Fig. 4 and Table 3. Figure 4
gives an intuitive presentation that both HLD and HCPFD
obtain obvious improvement on energy consumption when
combining with EAMD. Table 3 clearly shows the extent of
improvement of our algorithm on HLD and HCPFD algo-
rithms in terms of energy efficiency.

The first set of experiments compare the energy con-
sumption of the algorithms with respect to various graph
sizes (see Fig. 4(a)). The performance on energy saving of
the two improved algorithms, HLD+EAMD and HCPFD+
EAMD, outperforms HLD and HCPFD. According to Ta-
ble 3, the average energy consumption of HLD+EAMD is
less than HLD algorithm by 15.59 %, 14.04 %, 11.23 %,
10.24 %, and 10.20 %, for number of tasks of 20, 40, 80,
160, and 320, respectively. For HCPFD+EAMD, the cor-
responding average energy savings are 6.49 %, 5.98 %,
4.43 %, 3.84 %, and 3.56 %. Overall, EAMD performs bet-
ter on HLD than on HCPFD. The energy saving decreases
with the increasing number of tasks. The reason is as fol-
lows. When the number of tasks is small, the load on each
processor is light and there are enough idle time to dupli-

cate tasks. So more duplicated tasks can be deleted using
the EAMD algorithm, hence leading to more energy saving.

The second set of experiments compare the energy con-
sumption of the algorithms with respect to different numbers
of processors. The average energy savings of HLD+EAMD
and HCPFD+EAMD compared to HLD and HCPFD are
(9.55 %, 3.57 %), (9.78 %, 3.91 %), (10.03 %, 3.96 %),
(10.28 %, 3.88 % ), and (12.15 %, 4.47 %), for number
of processors of 4, 8, 16, 32, and 64, respectively. There-
fore, our algorithm outperforms both HLD and HCPFD al-
gorithms and along with the increasing number of proces-
sors, the performance gets better. The reason is the same as
that of the first set of experiments.

In the third set of experiments, when combined with the
EAMD algorithm, the HLD and HCPFD algorithms con-
sume much less energy than the original algorithms for all
tested CCR values. Table 3 shows that the peak performance
is achieved at CCR = 1, i.e., 10.28 % for HLD and 3.88 %
for HCPFD. The possible reasons resulting in this phe-
nomenon are explained as follows. When the CCR value is
less than 1, the applications generated in our experiments are
compute-intensive ones. Duplication is unnecessary if du-
plicating a parent spends much more time than communica-
tion. Therefore, the latent redundancy becomes less, which
leads to lower improvement of EAMD on both HLD and
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Table 3 Energy conservation
with respect to various
characteristics

Number of tasks 20 40 80 160 320

HLD+EAMD vs. HLD 15.59 % 14.04 % 11.23 % 10.24 % 10.20 %

HCPFD+EAMD vs. HCPFD 6.49 % 5.98 % 4.43 % 3.84 % 3.56 %

Number of processors 4 8 16 32 64

HLD+EAMD vs. HLD 9.55 % 9.78 % 10.03 % 10.28 % 12.15 %

HCPFD+EAMD vs. HCPFD 3.57 % 3.91 % 3.96 % 3.88 % 4.47 %

CCR 0.2 0.5 1 2 5

HLD+EAMD vs. HLD 3.27 % 7.92 % 10.28 % 10.15 % 8.62 %

HCPFD+EAMD vs. HCPFD 1.94 % 3.58 % 3.88 % 3.18 % 3.04 %

PARAFAC 0.2 0.5 1 2 5

HLD+EAMD vs. HLD 10.85 % 10.61 % 10.15 % 10.47 % 10.07 %

HCPFD+EAMD vs. HCPFD 4.04 % 4.05 % 3.92 % 3.88 % 3.98 %

Table 4 Energy conservation of
320 tasks and 8 processors with
respect to parallelism degree

PARAFAC 0.2 0.5 1 2 5

HLD+EAMD vs. HLD 7.88 % 9.00 % 7.02 % 2.89 % 0.82 %

HCPFD+EAMD vs. HCPFD 2.98 % 3.66 % 3.94 % 4.16 % 4.30 %

HCPFD. When the CCR value is greater than 1, the appli-
cations are prone to be communicate-intensive. When deter-
mining whether the original copy can be deleted, the greater
communication cost leads to greater probability that it can-
not be deleted. Therefore, the energy saving gets smaller. In
summary, only when the communication and computation
costs are equivalent, the best performance is achieved.

The last set of experiments are with respect to the graph
structure. From Table 3 we notice that the parallelism de-
gree has little impact on energy saving. After analyzing, we
find that the setting of parameters is improper, which shields
the varying tendency of energy saving. Because 32 proces-
sors are enough to execute 320 tasks in parallel no matter
how large the parallelism degree is. In order to make the
varying tendency of performance with the increasing paral-
lelism degree more apparent, we set 320 tasks and 8 pro-
cessors and do another group of experiments. The results
are shown in Table 4. When λ is equal to 0.2, the gener-
ated graphs have greater depths with low degrees of par-
allelism, and it is shown that the energy consumption of
HLD+EAMD is less than HLD by 7.88 %, and 2.98 % for
HCPFD+EAMD compared with HCPFD. With the increas-
ing of the parallelism factor λ, the performance of EAMD
degrades on HLD but upgrades on HCPFD algorithm. That
is because the priority queuing of HLD is based on upward
rank which is breadth-first while that of HCPFD is based on
the critical path which is depth-first. Therefore, the varying
tendency of performance is different for two algorithms.

5.2 Application graphs of real-world problems

In addition to randomly generated task graphs, we also con-
sider two application graphs of real-world problems, i.e., the
Gaussian elimination algorithm and a molecular dynamic
code algorithm. Because the number of tasks and graph
structure are fixed, we only consider the number of proces-
sors and CCR as the varying parameters.

5.2.1 Gaussian elimination

Gaussian elimination is used to determine the solution of lin-
ear equations [40]. In this section, we consider the schedule
of Gaussian elimination solving a 5 × 5 matrix. The DAG is
shown in Fig. 5(a).

For the experiments of Gaussian elimination, the same
CCR values (0.2, 0.5, 1, 2, 5) are used. The number of pro-
cessors in our experiments varies from 2 to 7. Figure 6 shows
the comparison results. When combined with EAMD, the
HLD and HCPFD algorithms consume less energy. With
the increasing number of processors, EAMD can obtain
greater percentage of energy saving compared with HLD
and HCPFD. For example, when the tasks are scheduled
on two processors, the energy saving of EAMD compared
with HLD is 6.20 %, and up to 13.17 % when the num-
ber of processors is 7. Along with the increasing of CCR
values, EAMD can reduce more energy consumption com-
pared with the HLD algorithm, which is up to 17.79 % at
CCR = 5.
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Fig. 5 Directed acyclic graphs
for two real-world applications

Fig. 6 Average energy saving
for Gaussian elimination

Fig. 7 Average energy saving
for molecular dynamic code

5.2.2 Molecular Dynamic Code

Figure 5(b) gives the task graph of a molecular dynamic
code introduced in [39]. Since the number of tasks is fixed

in the graph and the structure is known, only CCR and num-
ber of processors are considered. The number of processors
in our experiments varies from 2 to 12 in step of 2, and the
same CCR values (0.2, 0.5, 1, 2, 5) are used. Figure 7 shows
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Table 5 A global comparison
of energy consumption for
Gaussian elimination

Number of
processors

HLD+EAMD vs. HLD HCPFD+EAMD vs. HCPFD

Better Equal Worse Better Equal Worse

2 71.0 % 29.0 % 0 % 45.5 % 54.6 % 0 %

3 83.2 % 16.8 % 0 % 58.5 % 41.2 % 0 %

4 88.4 % 11.6 % 0 % 63.8 % 36.2 % 0 %

5 88.7 % 11.3 % 0 % 60.8 % 39.2 % 0 %

6 89.0 % 11.0 % 0 % 62.4 % 37.6 % 0 %

7 91.0 % 9.0 % 0 % 62.6 % 37.8 % 0 %

Table 6 A global comparison
of energy consumption for
molecular dynamic code

CCR HLD+EAMD vs. HLD HCPFD+EAMD vs. HCPFD

Better Equal Worse Better Equal Worse

2 80.4 % 19.6 % 0 % 78.4 % 21.6 % 0 %

4 99.8 % 0.2 % 0 % 93.6 % 6.4 % 0 %

6 99.8 % 0.2 % 0 % 94.8 % 5.2 % 0 %

8 100.0 % 0.0 % 0 % 97.0 % 3.0 % 0 %

10 100.0 % 0.0 % 0 % 97.0 % 3.0 % 0 %

12 100.0 % 0.0 % 0 % 97.6 % 2.4 % 0 %

the experimental results. Figure 7(a) is with respect to five
different CCR values when the number of processors is set
as 8. From the figure we can see that EAMD algorithm al-
ways outperforms HLD and HCPFD. According to the ex-
perimental results, HLD+EAMD consumes 8 % less energy
than HLD on average, and HCPFD+EAMD reduces 5 % en-
ergy consumption on average compared with HCPFD. Fig-
ure 7(b) presents the experimental results with respect to
six different numbers of processors when CCR is fixed to
1. When the number of processors is 12, the energy savings
of EAMD compared with HLD and HCPFD are 11.67 %
and 6.30 %, respectively.

In Tables 5 and 6, we present the probabilities among 500
times that the EAMD algorithm performs better than, worse
than, or equal to the original algorithms on energy consump-
tion for various numbers of processors and CCR values. As
shown in the two tables, the EAMD algorithm can consume
less energy than HLD and HCPFD with great probability,
and EAMD performs better on the molecular dynamic code
than on Gaussian elimination, because the former has more
tasks than the latter. When scheduling a DAG with more
number of tasks, the probability that duplicated copies can
be deleted is more than scheduling one with less number of
tasks. In Table 5 we can also find that EAMD outperforms
the other two algorithms with increasing probability among
500 times with the increasing number of processors. That
is because there is more chance for both HLD and HCPFD
to duplicate tasks and EAMD can delete those copies with
larger probability.

6 Conclusions

In this paper, we propose a new scheduling algorithm called
EAMD scheduling algorithm. The aim of the algorithm is
to reduce the energy consumption of duplicated-based al-
gorithms, which is caused by redundant mapping of some
tasks. Two kinds of graphs are adopted in our experiments
to evaluate the performance of the proposed algorithm.
Through the experimental results, EAMD can reduce en-
ergy consumption by up to 15.59 % compared with HLD
and HCPFD algorithms. Similarly, EAMD can be combined
with all other duplication-based algorithms, which can ob-
tain good performance on energy saving as well.

The amount of energy saving is affected by many factors,
such as the number of processors, CCR, and parallelism de-
gree. For fixed number of tasks, the amount of energy sav-
ing increases with the increasing number of processors due
to the increasing idle time and duplications. When the av-
erage communication cost is almost equal to the average
computation cost, it also means when CCR is around 1, the
duplicated-based algorithms can map tasks in the most pro-
cessors, which leads to the greatest amount of energy saving
compared to other CCR values. For the parallelism of DAGs,
the percentage of energy saving decreases with the increase
of width. Overall, our algorithm EAMD can achieve good
performance compared to the duplication-based algorithms.
Future work can involve combining EAMD with the DVFS
technique to reduce more energy consumption.
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