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Abstract—Cloud computing and big data technologies have gained great popularity in recent years. MapReduce is still one of the most

efficient and well-adopted computing paradigms for providing big data services. MapReduce applications need to be executed on cloud

platform where failures are inevitable. Hadoop is the de facto implementation of MapReduce, but it deploys a coarse grained and

unsatisfactory fault tolerant services. The failed tasks are rescheduled from scratch to re-execute from the very beginning, which

apparently brings amount of overload for failure recovery, and the whole job would be heavily delayed as failures happen. In this paper,

we propose a novel multi-trigger checkpointing approach for fast recovery of MapReduce tasks, named a Multi-trigger Checkpointing

Tactic for fAst TAsk Recovery (McTAR). As a finer-grained and better fault tolerance tactic, our McTAR employs multi-trigger

checkpoint generation, push-pull combined intermediate data distribution and optimized failure task prediction techniques together to

make the recovery task attempt be able to start at a specific progress according to the valid checkpoint for intermediate data. In this

way, McTAR could effectively speed up the recovery process of MapReduce jobs and highly reduce the task recovery delay.

Index Terms—Checkpoint, failure prediction, fault tolerance, Hadoop MapReduce, task recovery

Ç

1 INTRODUCTION

1.1 Motivation

WITH the rapid development of cloud computing and big
data processing technologies, more and more services

are provided over cloud computing platforms. In reality,
MapReduce is still one of the most efficient and well-adopted
computing paradigms to develop big data related services,
which always utilizes many computing nodes over the
clouds. Hadoop is the de facto implementation of MapRe-
duce. However, they always cannot to fulfill their reliability
requirements, because failures are no longer exceptions in
cloud computing environments [1]. Besides those common
hardware failures, software aging and design errors, such as
data inconsistence or missing values, bring more vulnerabil-
ities to the whole services quality [2]. Thus, it makes MapRe-
duce suffer from poor performance and service incontinuity
under failures. The essential reason is that in the Hadoop
MapReduce, a basic and coarse grained fault tolerant service
is deployed, that is, the failed tasks are rescheduled from
scratch to re-execute from the very beginning. It apparently
brings amount of overload for failure recovery, and the whole
job was heavily delayed [3]. To better cope with such
dilemma, optimizing current fault tolerant service in Hadoop

to make it have stronger fault tolerant capability and impr-
oved service availability is indispensable and significant.

There are two major fault tolerance tactics in cloud
services environment, namely replication and checkpoint
[4]. As for the replication, no matter replicating hardware
nodes or software components, the same back-ups are nec-
essary. No matter whether the back-ups run in parallel or
keep standby until the primary one fails over, the resource
will be doubled to meet the requirement of fault tolerance.
Thus, replication is not an ideal solution for the data-
intensive application scenario. Another solution is to
checkpoint the state of current running process onto a sta-
ble storage and resume the process based on the latest
checkpoint in failure recovery. In the Hadoop MapReduce
workflow, the important data worthy of checkpointing are
intermediate results generated continuously during the
Map phase. They help to re-execute the failed task from
the last checkpoint, which skips all successfully finished
range. However, some error-prone design aspects accom-
panying should be considered carefully. First, saving all
these data significantly increases computing overloads.
Then, storing intermediate results on stable storage also
results in intensive network bandwidth usage, which inter-
feres computing nodes to exchange data in time. At last,
the checkpoint files to be fetched would also create heavy
workload on both bandwidth and I/O. Thus, taking the
snapshot of all the running processes as checkpoints
directly is not a suitable choice either. That is, a better fault
tolerance solution for Hadoop MapReduce based on check-
point technology needs more intensive optimization.

1.2 Our Contributions

In this paper, we propose a novel multi-trigger checkpoint-
ing approach for fast recovery towards MapReduce tasks,
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named a Multi-trigger Checkpointing Tactic for fAst TAsk
Recovery (McTAR), an enhanced version of our previous
work [5]. McTAR makes minor revisions to the original
MapReduce framework, which achieves better fault tolerant
service capabilities to handle task or node failures with opti-
mized checkpoint tactics. Major contributions of this paper
are listed as follows:

� The McTAR framework: McTAR composes of a bunch
of specific tactics which help to speed up the recov-
ery of MapReduce jobs, such as multi-trigger check-
point generation, push-pull combined intermediate
data distribution and optimized failure task predic-
tion. The fundamental idea of our McTAR is to
divide spills into groups instead of merging them
into one single file. Such spills are generated as tem-
porary output when buffer overflows in the Map
phase. In this way, the intermediate data could be
duplicated in time so that the recovery task attempt
is able to start at a specific progress according to the
valid checkpoint generated along with spills. It could
reduce the task recovery delay caused by failures.

� Multi-trigger checkpointing policy: McTAR introduces
two kinds of checkpoints of intermediate results in
theMap phase, named as space-triggered checkpoint
and time-triggered checkpoint. The former is gener-
ated along with the spilling process, which is more
proactive, and the latter is created periodically. The
costs of space-triggered checkpoint tend to be negli-
gible compared with time-triggered checkpoint, but
time-triggered checkpoint is more steady and capa-
ble of dealing node failures. Thus, this multi-trigger
checkpointing tactic enables failed tasks to resume
from certain progress instead of starting over.

� Push-pull combined intermediate data distribution: In the
original Hadoop, intermediate data are pulled in a

single file by the Reduce phase when it receives the
completion event of the Map phase. Beyond that, in
our McTAR, the intermediate data could be pushed to
the corresponding Reduce nodes at a certain interval
of time. Combining these two modes of data transmis-
sion, McTAR makes it possible to replicate intermedi-
ate data in time without too much cost, and the
completeness of intermediate data is ensured.

� Optimized failure task prediction: For better fault toler-
ance performance, we propose a fault prediction
method based on monitoring specific running indica-
tors of cluster nodes. McTAR does not need towait for
timing out to detect a node failure, so that the recovery
task can be scheduled in advance,whichhelps to accel-
erate the recovery processwhen node failures happen.

� Comprehensive evaluation: We use WordCount, the
most typical application of MapReduce, to evaluate
the cost and performance of McTAR under task fail-
ures and node failures in several scenarios. The exe-
cution time at different failure rate helps to verify
the effectiveness of our McTAR approach, and real-
istic data are adopted in our evaluation to better
understand both pros and cons of McTAR.

It should be noted that our previous work [5] just presents
preliminary ideas and simple numeric analysis. However in
this paper, we improve the details of checkpointing tactics,
add failure predictionmethod, andwhat is more, we demon-
strate sufficient practical experiments to evaluate the effec-
tiveness of our McTAR. As McTAR introduces several fault
tolerant capabilities into the original version of Hadoop
MapReduce, we first address the execution flow and design
flaws in failure recovery of current MapReduce and discuss
default fault tolerance strategies in Section 2. Then, the
design architecture and implementation details of McTAR
are proposed in Section 3. The performance evaluation of
McTAR is shown in Section 4 under different failure scenar-
ios. At last, we discuss related work in Section 5 and con-
clude the paper in last section.

2 FAULT TOLERANCE IN MAPREDUCE

2.1 Workflow of Hadoop MapReduce

MapReduce was introduced by Google in 2004 [6]. Currently,
Hadoop is still the de facto implementation of MapReduce [7].
Our work is based on Hadoop 2.7.3 version, which has been
adopted as a new generation of MapReduce with YARN
framework [8], [9]. Intuitively speaking, MapReduce process-
ing consists of three phases, Map phase, Shuffle phase and
Reduce phase. Large-scale input data are split into independent
chunks to make analysis process run in parallel. Two user-
defined functions, Map : ðk1; v1Þ ! listðk2; v2Þ and Reduce :
ðk2; listðv2ÞÞ ! ðk3; v3Þ, are key programming aspects to pro-
cess data structured in ðkey; valueÞ pairs. At first, the original
data have to be transformed into ðkey; valueÞ pairs so that the
Map function could be applied. During theMap phase, a num-
ber of intermediate data will be generated. Then we have the
Map Output Files (MOF), which will be shuffled and sorted,
and finally sent to theReduce phase. The returns of theReduce
function are collected as the desired results.

The workflow of MapReduce in Hadoop is presented in
Fig. 1. For better understanding, we show the workflowwith

Fig. 1. The workflow of the original Hadoop MapReduce.
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four computing nodes as a representative. Node 1 and node 2
run theMap tasks, named asMappers, while node 3 and node
4 are responsible for theReduce tasks, named as Reducers. For
performance reasons, the number of Reducers should be less
than that of Mappers, and each of Reducers is responsible for
specific keys assigned to it. The original data are stored on the
HDFS. When a specific job is launched, the input file will be
divided into several small logical units which are called split,
each of which is assigned to aMap task. For different types of
input data, implementation of InputFormatter function varies
a lot. Given a specific split, RecordReader is performed to gen-
erate the initial ðk; vÞ pairs which are the input of aMap func-
tion corresponding to the ðk1; v1Þ mentioned before. During
the Map phase, the returns could be too large to maintain in
memory. In that case, the buffer will be flushed and a spill is
created. If the application is data-intensive, the spill process
can be executed for a couple of times; otherwise, there might
be no spill for a long period of time.

After the spill process, intermediate data are divided into
several parts according to the hash value of keys. The num-
ber of parts is relevant to the number of Reducers, which can
be set in the configuration file. Right before the intermediate
data partition, there is an optional process called combiner.
We could simply understand it as pre-reduce, which oper-
ates only on data generated by a single machine. After these
operations, MOFs are ready to be fetched in a form like
listðk2; v2Þ. The fetcher threads running on Reducers copy
the MOFs as input to Reduce function, which is called shuf-
fle phase. Shuffle accounts for the most proportion of net-
work traffic in MapReduce. An optimization for shuffle
could bring acceleration of job execution. The retrieved
MOFs should be merged if they are large enough. Shuffle
produces data as ðk2; listðv2ÞÞ. Finally, the Reduce function
will work after the shuffle phase finishes, which means the
sooner the shuffle ends, the faster a job completes. Then, the
OutputFormatter function takes the returns of Reduce func-
tion as input, i.e., ðk3; v3Þ, and write the results to HDFS.

2.2 Fault Tolerance in Hadoop MapReduce

In cloud computing systems, three types of faults are mainly
considered, that is, byzantine faults, fail-stop faults and fail-
stutter faults [7]. Hadoop MapReduce can tolerate the fail-
stop faults and the fail-stutter faults. Treatments to byzantine
faults are beyond the original design target of MapReduce.
Fail-stop faults in MapReduce typically include node failures

and task failures. Hadoop MapReduce often contains one
node called the master and other nodes called workers. The
master takes charge of scheduling tasks, and workers are
responsible for executing Map function or Reduce function.
That is, a worker could be a Mapper or a Reducer or both of
them. Deploying a back-upmaster is quite effective to tolerate
the fail-stop faults. However, as for workers failures or task
failures, Hadoop implements a simple fault tolerant technol-
ogy, where the failed tasks are rescheduled from scratch to re-
execute from the very beginning. Fail-stutter faults inHadoop
MapReduce are recognized as a kind of slow tasks. When
they are detected, a speculative task attempt, processing the
same input data as the slow task, is performed exactly in hope
that this speculative attempt will finish sooner. In a word,
fault tolerance tactics in the original MapReduce are elemen-
tary because of re-execution approach and may cause long
delaywhen node or task failures happen.

Next, we give more detailed explanation to fault tolerance
mechanism used in HadoopMapReduce. As shown in Fig. 2,
a job submitted by a client consists ofmultiple tasks including
Map tasks and Reduce tasks. When a job is submitted from a
client, an Application Master (AM) is launched to schedule
tasks. Task runs in the container which is collection of physi-
cal resource allocated by Resource Manager (RM). RM is the
scheduler in YARN. Node Manager (NM) takes care of the
individual compute node in Hadoop cluster. Since Hadoop
0.21, checkpoint is provided on the task level, that is, the basic
unit during recovery is a container with a task running in. All
tasks are separated into two parts: finished and unfinished.
When the job crashed, the processes do not have to start all
over, because the finished tasks will be skipped, which saves
a lot of time when failure happens. As for the tasks running
in progress when the last attempt crashed, Hadoop will
restart the task just like the unfinished ones regardless of the
progress. Apart from that, if the AM is running without fail-
ure, the failed tasks will be rescheduled and restarted from
the beginning, which means the execution time will be dou-
bled if the task fails to handle the last record assigned to it.
Since tasks cannot continue after failures happen in Hadoop,
we propose a fine-grained checkpointing tactic to make it
possible for failed tasks to keep going after recovery process,
whichwould be able to save a lot of time.

3 DESIGN AND IMPLEMENTATION OF MCTAR

We present a multi-trigger checkpointing strategy for Map-
Reduce application, which brings negligible extra cost and
helps a specific task that needs recovery from failures to
start from a specific progress. In this way, the delay penalty
in case of failures could be reduced.

3.1 Architecture of McTAR

Task is the minimal unit of scheduling in the original version
of Hadoop, which makes it impossible for rescheduled task
to resume from where the failure happened. Furthermore,
the only provided fault tolerant approach is to execute the
whole task all over again, so that the data generated byMap-
pers could remain completed. The main goal of McTAR is to
make full use of such completed parts generated before the
failure happens. By preserving the necessary progress

Fig. 2. Basic components in Hadoop MapReduce.

LIU ET AL.: MCTAR: A MULTI-TRIGGER CHECKPOINTING TACTIC FOR FAST TASK RECOVERY IN MAPREDUCE 1897



information and key location information, McTAR makes it
possible for tasks to achieve faster recovery.

Fig. 3 shows the regular workflow of our approach. From
the process perspective, the difference between McTAR and
the original version of Hadoop MapReduce is mainly from
two parts. First, in the original version of Hadoop, the detec-
tion of failure is based on the heartbeat between NMs and
AM. Once a node failure happens, the AM has to wait until
timeout. However, in our McTAR we present an proactive
failure prediction where hardware running indicators data
are transmitted via heartbeat messages and AM calculates
the number of tasks to be rescheduled according to the
resource usages. That is, tasks running on a node which is
likely to be suffering from performance degradation will be
rescheduled as speculative tasks. Second, the procedures
after spilling process are different. Taking the efficiency of
execution without failure into consideration, we choose to
serialize the meta data as checkpoints only at the moment
that spills are generated. Otherwise, the extra cost of keep-
ing tracking of each single record may slow down the whole
job. Mappers take splits as input just like the way that
Hadoop originally does. With the generation of a spill, a
space-triggered checkpoint is created.

Since the buffer will reach to a bounded limit, the spilling
process is going to launch an asynchronous thread to persis-
tence the intermediate data produced by Map function. We
choose to create a space-triggered checkpoint at this very
moment to decrease impacts of interfering the normal execu-
tion. The checkpoint file and the spilled files share the same
directory, so that the cleaning process inHadoop could delete
them simultaneously. Thus, the spilled files and the check-
point file are able to remain consistency in this way.

Instead of merging the spilled files until the Map task is
finished, McTAR merges the files when the time-triggered

checkpoint interval arrives. For a certain period of time, the
time-triggered checkpoint thread would be launched. It per-
forms the spill process by force, no matter the output buffer
reaches to the limit or not. Along with the creation of time-
triggered checkpoint, the spills that generated since the last
time-triggered checkpoint was created would be merged
into one single file and sent to the corresponding Reducers.
As shown in Fig. 3, those intermediate data belonging to a
sending process are marked with same letter, such as “spill
1 A” and “spill 2 A”, and the spills marked with ‘C’ have
not been sent yet.

The architecture of McTAR requires the Reducers being
launched as soon as the job is submitted, so that the inter-
mediate data sent by Mappers can be received in time. As
the time-triggered checkpoints are being created one by
one, the Reducers would get all the corresponding data in
group. Since the output files from Mapper have to arrive to
Reducer one way or the other, our approach does not bring
too much cost in network aspect compared with the original
version of Hadoop MapReduce.

3.2 Push-Pull Combined Intermediate Data
Distribution

In McTAR, there are two ways for transmitting data from
Mappers to Reduces. The first one is the sending process men-
tioned in Section 3.1, which is named as proactively-push,
and the other one is called pull-on-demand. Combining these
two ways of data transportation together, we could ensure
the data integrity in McTAR.

For the most situation, we perform proactively-push to
transmit the intermediate data more timely. Mappers invoke
proactively-push along with time-triggered checkpoint. On
one hand, these data are required by Reducers. On the other
hand, it provides a replication for these data, which makes
it possible to avoid recomputation after node failure hap-
pens. The last proactively-push would be performed when
the progress of the Map task reaches to 100 percent. After
that its output file will be completely transmitted to all cor-
responding Reducers. By the way, the combiner comes into
effect if the number of spills about to be merged is greater
than three by default. Comparing to sending replication
whenever a spill is generated, it takes the advantage of com-
biner and decreases the extra cost in network furthermore,
especially for the data-intensive applications.

When a Reducer is recovered from a node failure, it
would have lost the corresponding map output files. In this
case, pull-on-demand is more effective. It transmits data just
like the way that the original version of Hadoop does,
except for that the Reducer becomes the initiator. The Reducer
performs the pull-on-demand based on the relevant events in
message queue, and the fetch threads are going to assemble
all the missing parts of map output files required by this
Reducer. After executing pull-on-demand, the failed Reduce
tasks will continue as normal.

In summary, proactively-push is used as the primary way
of data transportation in McTAR for a better fault tolerant
capability, and pull-on-demand is an alternative scheme for
Reducer when node failure happens. With this push-pull
combined intermediate data distribution, the output files of
Map tasks are replicated in time without involving much
cost and do not require for recomputation in most cases.

Fig. 3. The workflow of McTAR.
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3.3 Multi-Trigger Checkpointing Policy

We present a multi-trigger checkpointing policy, including
space-triggered checkpoint and time-triggered checkpoint.
The former is designed to deal with task failures and the lat-
ter is saved on HDFS, which makes it possible to preserve
meta data after node failure.

3.3.1 Space-Triggered Checkpoint

Space-Triggered checkpoint is stored on the local storage
with the spills, and it saves the runtime information of a sin-
gle task. Since no network cost is involved by space-triggered
checkpoint, we choose to generate one for each spill, which
provides a finer-grained progress. Thus, the priority of space-
triggered checkpoint is higher compared with time-triggered
checkpoint. The space-triggered checkpoint is saved as a tri-
ple, containing task ID, offset and spill ID. The task ID is the
identifier of a single task, which remains immutable while
failure happens. The spill ID represents the specific spill seri-
alized along with current space-triggered checkpoint. The
offset is the most important part, which saves the progress of
a running task.

Fig. 4 shows the generation details of space-triggered
checkpoint. Given the InputFormatter and split, we can get
the binary file belongs to this Map task. The RecordReader
wrapped by TrackedRecordReader is used to generate the
input key value pairs, the only acceptable input for Map
function, according to the given binary file. Multiple imple-
mentations of RecordReader are provided by Hadoop. Taking
LineRecordReader as an example, the input keys are the line
number of the original file and the input values are the con-
tent of each lines. The core function of a RecordReader is next-
KeyValue, and the implementations of this function should
move the cursor to the position where the next key value
pair locates on the binary file. A variable named pos is used
to represent this cursor, which can be saved as offset for
checkpointing. With the pos, we can directly locate the
unfinished part of the split. Thus, we provide an interface
for theMap task to get the current pos in RecordReader.

The output buffer in a Mapper keeps collecting the inter-
mediate data, which are the output of Map function, until
the buffer verges to overflow. At that moment, a spill is cre-
ated along with corresponding space-triggered checkpoint,
which saves the spill ID, current pos as offset and the ID of
this task. Those spills share the same directory with the
checkpoint file, so that the space-triggered checkpoint is dis-
abled when relevant spills is no longer accessible. Or else
the recovery task would skip the finished ranges at last time
but lose corresponding intermediated data.

3.3.2 Time-Triggered Checkpoint

Along with the intermediate data being sent, relevant meta
data will be sent to stable storage, i.e., HDFS in our case, as
time-triggered checkpoint. Based on time-triggered check-
point, our McTAR makes the Mapper resume from the last
checkpoint, and the Reducer fetch the relevant map output
files when node failure happens. According to meta data,
the execution of recomputation process can be accelerated.

The time-triggered checkpoint backups the checkpoint
file to a remote node through network, and the intermediate
data created before this time-triggered checkpoint have to
be sent to Reducers to maintain the completeness of data
after recovery. Thus, the increase of network traffic must be
acceptable. To minimize the overload, we choose to send
the replication of the spills to the Reducers that will consume
them. This process is completed by proactively-pushwe men-
tion in last section.

The time-triggered checkpoint is designed to be created at
every interval for two reasons. On one hand, the spills in the
compute-intensive applications could hardly be created
because the computation lasts for most of the time, and the
outputmay not be so large enough to trigger the spill process.
In that case, making a checkpoint at the cost of interruption a
task could save a great deal of time for computing if failure
happens. On the other hand, when it comes to data-intensive
applications, repeated data are very common. Taking Word-
Count as an example, the frequency of some words could be
very high. To take the advantage of the combiner, we make
time-triggered checkpoint for a certain period of time, so that
the amount of data through the network can be smaller.

Different from the triple definition of space-triggered
checkpoint, we use a variable called merge-times in the time-
triggered checkpoint. It is a number increased by 1 each
time a time-triggered checkpoint is made. For the nth time-
triggered checkpoint, the spills created between the (n� 1)
th time-triggered checkpoint and this one would be merged
into a single map output file named after merge-times n.
After that, a data-sending event is pushed to the message
handling queue, then the Reducers launch fetching process
to copy data from Mapper according to the given file name
as receiving the data-sending event.

Considering the space-triggered checkpoint is controlled
by spill process and the time-triggered checkpoint is con-
trolled by the time cycle called merge-period, there is a
chance that time-triggered checkpoint would start right
after another one. It causes a spill process being launched
with no data in the buffer. To avoid this, we propose
another parameter named merge-threshold. We keep track of
the time stamp of last spill thread, and make sure that the
time-triggered checkpoint starts the spill thread only if the
subtraction result of current time stamp and the time stamp
of last spill is greater than merge-threshold.

Anothermeta data sent toHDFS alongwith time-triggered
checkpoint is a list shown in Fig. 5, we call it Map Info List
(MIL). The size of MIL is the number of Reducers. Each ele-
ment in that list is a set contains the offsets corresponding to a
certain Reducer. As we known, the split is turned into key-
value pairs before it applies to theMap function, then it takes
each of those key-value pairs as input and returns a group of
intermediate data, which will be sent to the Reducer. When
there are multiple Reducers, a strategy, typically a hash

Fig. 4. Process for creating space-triggered checkpoint.
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function on the key, is needed to decide which Reducer the
intermediate data belong to. Saving the offsets of these keys
as metadata is designed for recomputing the corresponding
intermediate data for a particular Reducer. As it is shown in
Fig. 5, ifMapper2 is required for recomputing the data sent to
Reducer2 before, the second element in MIL indicates only
data at pos1 and pos2 would generate intermediate data for
Reducer2. Thus the range from pos0 to pos1 could be skipped
withoutworrying about losing any data.

3.4 Dealing with Failures

By implementing the multi-triggered checkpointing policy,
McTAR is able to preserve the progress as meta data along
with the corresponding intermediate data. We talk about
dealing with failures based on these checkpoints next. Algo-
rithm 1 shows the pseudocode of initializing a Map task.
TaskAttemptID is greater than zero, which means that the
current task is a recovery task, so we can skip some com-
puted ranges if checkpoints could be found. Since the
space-triggered checkpoint is finer, the time-triggered
checkpoint is used only if no space-triggered checkpoint is
available. If neither of them is found, it means no check-
points have been created in the last task attempt and the
new one is scheduled to created. In this case, a task with
failures has to restart from very beginning like a new task.

Algorithm 1. Initiate Map task

Require: TaskAttemptID attemptID, JobConfigure conf
1: FileSystem fs = FileSystem.get(conf);
2: scp = new Path(getOutputFileðÞ, “checkpoint”);
3: tcp = new Path(“HDFS://master:9000”+getTaskIDðÞ);
4: if attemptID � 0 then
5: if scp.exist then
6: (TrackedRecordReader)input:setPosðscp:posÞ
7: else if tcp.exsit then
8: (TrackedRecordReader)input:setPosðtcp:posÞ
9: else
10: (TrackedRecordReader)input:setPosð0Þ
11: end if
12: else
13: (TrackedRecordReader)input:setPosð0Þ
14: end if
15: input:initializeðÞ

3.4.1 Task Failure

When a task fails, it sends a completion event with a failed
status to AM. This AM will launch a retry attempt for the
failed task. Space-triggered checkpoint is designed for task

failure, because the task failure will not bring damage to the
persistence files on the local storage. It helps the retry
attempts to skip the finished part of split, which is not feasible
in the original HadoopMapReduce. The spills are stored in a
directory name after taskID and removed after merging, so
the recovery task attempt could justmerge all the spills before
the next time-triggered checkpoint without concerning about
howmany spills belong to the next proactively-push.

Another kind of task failure is caused by fail-stutter faults
instead of fail-stop faults. In that case, McTAR launches a
speculative task and kills the one suffering from stutter,
instead of making the speculative task run in parallel. We
make this choice for two reasons. First we have to maintain
the consistency of two task attempts of a task due to time-trig-
gered checkpoint, which means more interruption of the exe-
cution process. Second, the speculative task is also benefit
from the checkpoint mechanism, so that the restarted task is
unlikely to be slower than the original one. However, the
space-triggered checkpoint is not able to cover all task fail-
ures. Time-triggered checkpoint could conduce to recovery
when the recovery task is scheduled on another node, which
is unlikely for fail-stop fault because of locality, but quite pos-
sible for fail-stutter faults.

3.4.2 Node Failure

If node failure happens only on Mapper, the recovery task
could use time-triggered checkpoint to skip the finished part
of split just like dealingwith task failure. Because the interme-
diate data have already been sent to corresponding Reducers,
and those data will only be used by them. A Reduce task
recovering from node failure will launch the pull-on-demand
to get all the missing data it needs. If theMappers did not suf-
fer node failure before, no recomputation is needed either.

The only situation that requires for recomputation is the
node failure happened on bothMapper and Reducer one after
the other. In that case, the mapper fails after proactively-push
and restarts without caring about the finished parts. It
means the pushed data existing only on the corresponding
Reducers. Once one of the Reducers runs into node failure,
part of the intermediate data will be lost. Algorithm 2 shows
the recomputation process with MIL.

Algorithm 2. Recomputation with MIL

Require: TaskStateInternal taskState, RecordReader input
1: if taskState:getStateðÞ == RECOMPUTE then
2: tcp = new Path(“HDFS://master:9000”+getTaskIDðÞ);
3: MapInfoListmil ¼ tcp:getMilðÞ;
4: posSet ¼ mil:getPosðtaskState:getReducerðÞÞ
5: for all pos in posSet do
6: input:addPosðposÞ
7: end for
8: Mapper:runðÞ
9: end if

Once a Map task is identified as a recomputation task by
internal state, it would fetch the time-triggered checkpoint
from HDFS. By searching the specified Reduce task ID, a
Map task would be able to get all offsets that generated
intermediately for this Reducer. After iterating all the corre-
sponding offsets and applying them to the Map function,
the missing data caused by node failure will be recomputed

Fig. 5. Structure of map info list.
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on purpose instead of all over again. But the fact is that the
MIL is only taking effects in extreme circumstances that
requires for recomputing.

3.5 Optimized Failure Task Prediction

By now, we introduce the way of McTAR dealing with fail-
ures, and the recovery can be accelerated a step further if fail-
ures could be detected more timely. In the original version of
Hadoop, the detection of failure is based on the heartbeat
between node manager and AM. A task sends a completion
event with status ‘killed’ or ‘failed’ when it terminates unex-
pectedly, and the AM is able to detect failure in time. But
once a node failure happens, the AM has to wait until time-
out, which delays the execution of recovered tasks.

A novel failure prediction mechanism based on software
rejuvenation [10], [11] is proposed for our McTAR. We take
the hardware running indicators into consideration. Tasks
running on a node which is likely to be suffering from per-
formance degradation are rescheduled as speculative tasks.
Fig. 6 shows the workflow such failure task prediction.

We placed an analyzer as a plug-in in the RM. For each
time the heartbeats from NMs are collected, the analyzer pro-
vides the nodemarks of eachNM,which indicates the node is
running normally or likely to fail in a short time, according to
the metrics given by heartbeat. On receiving those node
marks, the AM maintains a group of variables called suspi-
cious degree of each node. If a node is marked as suspicious
node continuously, the degree of it would be doubled and set
to zero otherwise.Wemake the aging degree decision accord-
ing to different levels of three metrics. Ci and Mi shows the
CPU usage and available memory of certain node i. EAT indi-
cates the expected time of next packet arrival at a node in reg-
ular case, and it is estimated as follows based on studies in [10]

EATkþ1 ¼ 1

n

Xk
i¼k�n�1

ðTi � DTi � iÞ
 !

þ ðkþ 1ÞDti:

Without loss of generality, based on the Pareto principle
(also known as the 80-20 rule), we give an exemplified aging
degree decision method. Specifically speaking, if the packet
for computing EAT delayed a lot, Ci is beyond 80 percent,
and Mi is lower than 20 percent, we set the suspicious
degree to 3. It indicates the most serious issues, such as
node crash, are very likely to occur. If two of above three
conditions are both satisfied, we set the suspicious degree
to 2. It indicates the important issues, such as performance
degradation, may occur. Otherwise, we set the suspicious
degree to 1 to indicates that nodes are working well.

After time-triggered checkpoint is made, AM calculates
the number of tasks to be rescheduled according to suspi-
cious degree and resource usage by the following formula:

min Tn;max 0; degree� 1� Tw

Tr

� �
� 1

2

� �� �� �

Tr and Tw represent the number of tasks running and waiting
in theHadoop cluster separately. Oneminus the ratio of Tw to
Tr shows the usage of resources in cluster. The rounding of
the product of suspicious degree and the resource usage
decides howmany tasks to be rescheduled. Tn represents the
tasks of this application on a specific node, thus all of the tasks
on a node need to be rescheduled in the worst case. Once the
number of tasks to be rescheduled is calculated, the AM
needs to decide which tasks should be rescheduled first.
McTAR selects tasks like the way that original Hadoop does,
that is, it is based on the estimated runtime of each task by its
progress and time escaped. Tasks that need more time to fin-
ish have the higher priority of being rescheduled.

It is worth mentioning that most of the stutter problems
are caused by node failure. Using our optimized failure task
prediction, the potential stutter tasks on suspicious node
could be rescheduled before being detected, which acceler-
ates the failure awareness and recovery process.

3.6 Modifications Towards Original Hadoop
MapReduce

By far, the tasks can resume working after failures using
McTAR. Even if the recomputation is inevitable in the
extreme case, parts of the data processing could be skipped.
In summary, we make following revisions based on original
HadoopMapReduce to implement ourMcTAR.

� The meta data required by task recovery are pre-
served through multi-trigger checkpointing mecha-
nism. The combination of space-triggered checkpoint
and time-triggered checkpoint provides both flexibil-
ity and stability.

� The intermediate data generated by Mapper are
stored temporarily until being copied by fetching
process when time interval arrives. The output files
are distributed before finishing processing all data.

� When failure happens on Reducer, the intermediate
data distribution remains the way that Hadoop does.
The push-pull combined intermediate data distribu-
tion is constituted then.

� McTAR could perform recomputation for a particu-
lar Reducer according to MIL, which helps accelerate
the recovering process in worst case.

� An optimized failure task prediction based on soft-
ware rejuvenations theory is proposed to enhance
failure awareness and recovery.

4 EXPERIMENTS AND EVALUATION

First, experiments are designed to measure the performance
of McTAR when no failure happens. That is, we need to
confirm that our McTAR does not bring in too much execu-
tion cost. Then under different failure scenarios composed
of task failures or node failures, we do sufficient experi-
ments to evaluate the advantages brought by our McTAR.

Fig. 6. Workflow of optimized failure task prediction.
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That is, we like to verify that McTAR should spend less
duration time when task recovery is involved.

Our McTAR is implemented based on Hadoop 2.7.3. We
construct a Hadoop cluster with four nodes. Each node is a
virtual machine with configurations as shown in Table 1.
WordCount is a classic application of MapReduce frame-
work, so we used it as a representative to evaluate the per-
formance of McTAR. The input data of WordCount are
generated by the random text writer application.

Table 2 gives the appropriate parameter assignments for
our experiment. First, Parameter mapred.min.split.size
decides the size of input data for eachMap task. The smaller
this parameter is, the more tasks needs to start for a job,
which requires more resource for scheduling. With the
growth of input data for a task, Hadoop is influenced by
failures more seriously. In our experiments with Word-
Count application, we set it to an appropriate value, i.e., 256
MB. Second, the values of next three parameters are decided
according to the intrinsic design of McTAR. Specifically,
parameter reduce.slowstart.completedmaps represents how
much Map tasks need to be finished when a Reduce task
starts to launch, parameter reduce.rampup.limit represents
how much Reduce tasks could start when Map tasks com-
plete, and parameter reduce.preemption.limit represents how
much Map tasks could take over the running resources of
Reduce tasks when resource deficiency occurs. Therefore, in
order to make Reduce tasks be ready to perform at the
beginning of the job and under the situation of execution
resource deficiency in McTAR, these three parameters
should be assigned to zero, one hundred percent and zero.
Third, parameters merge-period and merge-threshold are rele-
vant to time-triggered checkpoint, which is explained in
Section 3.3.2. It should be noted that these two parameters
could be optimized according to the application and input
data scale, so in our experiments with WordCount applica-
tion, without loss of generality, we set them as 90 and 10
seconds for better performance.

4.1 Analysis of Execution Cost Without Failures

We runWordCount application onHadoop andMcTAR sep-
arately with no failure to analyze the workload brought by

McTAR. Fig. 7 shows the execution duration with different
data size that varies from 1 to 50 GB. As we can see, they stick
to each other very closely. The workload of McTAR is mainly
caused by the creation of time-triggered checkpoints. With
more time-triggered checkpoints are generated, the costs
tends to more expensive. However, for long time running
application with larger data scale, if we prolong the creation
period of time-triggered checkpointing appropriately, the
increased execution costs in McTAR could be slight conse-
quently. Another thing should be noted that the time dura-
tion of whole job execution will actually be less affected by
the input data scale if enoughMap tasks could be executed in
parallel in cloud datacenter, however, limited to our experi-
ment conditions, the parallel degree ofMap tasks are not big
enough, so in Fig. 7, the time durations are increased with the
increasing input data scale.

Besides, we use HiBench, a bundle of benchmark appli-
cations for Hadoop, for a clear view of hardware running
indicators of Hadoop MapReduce and our McTAR. There
are no significant differences in CPU usage and storage
usage as shown in Figs. 8 and 9. The reasons are discussed
as follows. First, the checkpointing mechanism is imple-
mented in asynchronous threading and will not interrupt
the normal execution process. Thus, McTAR will not bring
distinct and considerable execution cost. Second, an extra
spill is made for each time-triggered checkpoint, and space-
triggered checkpoint also acquires for I/O operation to seri-
alize the meta data. They all need extra storages. However,
the whole size of required storage is pretty small and
acceptable, compared to dealing with input data.

The network throughputs show the main differences
between McTAR and Hadoop MapReduce. As we can see
in Fig. 10, the use of network is brought forward in McTAR,
which means proactively-push transmits the intermediate
data before a Map task is completed. Since proactively-push
transmits parts of the intermediate data once at a time, the
peak value of network throughputs will be decreased signif-
icantly. The amount of data go through network of McTAR
and Hadoop MapReduce stays closely to each other when
no combiner is deployed. But McTAR needs to transmit
more data when the combiner is used. Nevertheless, the
workload is totally acceptable for most cases.

TABLE 1
Node Configurations in Experiments

CPU 1 core 2.9 GHz
Memory 2 GB
Disk 200 GB
Network Gigabyte Ethernet NIC
OS Ubuntu 14.04

TABLE 2
The Basic Parameter Assignments in McTAR Experiments

Name Value

mapred.min.split.size 268435456 (256 MB)
reduce.slowstart.completedmaps 0
reduce.rampup.limit 1 (100%)
reduce.preemption.limit 0
merge-period 90 (seconds)
merge-threshold 10 (seconds)

Fig. 7. Execution duration with no failure in both Hadoop MapReduce
and McTAR.
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4.2 Analysis and Comparison of Fault Tolerance
Capability

We take different failure scenarios, i.e., no failure, task fail-
ure and node failure, into consideration, and each of them
could happen during executions of Map function or Reduce
function. Except for no failures occur on both the Mapper
and the Reducer, we get eight different combined failure sce-
narios. According to the way we deal with failures in
McTAR, we summarize them as three representative scenar-
ios, which are able to cover significant failure situations in a
MapReduce job.

1) Scenario 1: Task failure or node failure occur on the
Mapper, and no failure occur on the Reducer. As long
as there is no node failure happens on Reducer, the
intermediate data that have sent to Reducers by proac-
tively-push obviously remain available, so the Mapper
could resume working after failure without concern-
ing about the intermediate data generated before the
last space-triggered (for task failure) checkpoint or
time-triggered (for node failure) checkpoint.

2) Scenario 2: Task failure or no failure occur on the
Mapper, and node failure occur on the Reducer. In
this case, the Reducer has to launch pull-on-demand to
fetch intermediate data from all relevant Mappers,
since there will be no local data after node failure on
Reducer. If there is no node failure happens for all
Mappers, the Reducer gets the intermediate directly.

3) Scenario 3:Node failure occur on theMapper, and node
failure also occur on the Reducer. It is the only scenario
that requires for recomputing. The intermediate data

on Mapper have missed after a node failure, and the
node failure makes the specific part of the replication
for missing data on the Reducer not be accessed when
the Reduce function begins. The Mapper crashed
before it has to recompute the lost data when the
Reducer tries to fetch intermediate data from it.

We inject runtime exception by a given failure rate to
trigger task failures and simulate node failures by shut
down the VMs forcedly. We choose to run WordCount
application in McTAR and Hadoop MapReduce three times
with failures injected randomly and take the average value
of respective experiments as final results. Two groups of
experiments in the three scenarios are included, where jobs
execute under different scale of input at 2 percent failure
rate and under 20 GB input data at different failure rate.

4.2.1 Scenario 1

Fig. 11 shows that the original version of Hadoop MapRe-
duce is seriously influenced by failures. But our McTAR
could effectively handle failures even if it takes slightly
more time than the original version of Hadoop while no fail-
ure happens. With the growth of failure rate to 5 percent,
the time duration of job execution in McTAR is nearly half
of that in the original Hadoop MapReduce.

Fig. 12 is the job execution duration under different input
data scale when we inject failure at 2 percent failure rate.
We could see that the job execution durations in both
McTAR and original Hadoop are increasing with the data
scale increasing. However, our McTAR performs better
under all data scale settings, that is, the fault tolerant capa-
bility of McTAR is independent of input data size.

Fig. 8. Comparison of CPU usage in Hadoop MapReduce and McTAR. Fig. 9. Comparison of storage and I/O usages in Hadoop MapReduce
and McTAR.
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4.2.2 Scenario 2

Compared with above failure scenario, the node failure is
involved on Reducer in this scenario. Fig. 13 shows that our
McTAR could also effectively handle failures under various
failure rates, that is,with the growthof failure rate to 5 percent,
the time duration of job execution inMcTAR is also nearly half
of that in the original Hadoop MapReduce. It should be men-
tioned that ourMcTAR ismainly focus on the failure manage-
ment towards the Mapper, so when node failure happens on
Reducer, compared with experiments results in Scenario 1, the
extra improvements in reducing the task recovery time are not
so obvious.

Fig. 14 is also the job execution duration under different
input data scale when we inject failure at 2 percent failure
rate. We could also find that our McTAR performs better
under all data scale settings, that is, the fault tolerant capa-
bility of McTAR is independent of input data size when fail-
ures occur on bothMappers and Reducers.

4.2.3 Scenario 3

In this section, we need to analyze in detail the situation
where a node failure happens on Mapper first and then a
node failure happens on Reducer later, because the job exe-
cutions are seriously affected, and the recomputation of
data is unavoidable. Fig. 15 shows the compared results in
job execution duration under this representative situation.
The duration time of job execution obviously increases com-
pared with above two scenarios. However, we still find that
our McTAR could also effectively handle failures under var-
ious failure rates, that is, with the growth of failure rate to 5
percent, the time duration of job execution in McTAR is
nearly 65 percent of that in the original Hadoop MapRe-
duce. Besides, with the help of MIL, McTAR just needs to
recompute towards the failed Reducer nodes, which also
saves certain execution time compared with the original
version of Hadoop MapReduce.

Fig. 10. Comparison of network usage in Hadoop MapReduce and
McTAR.

Fig. 11. Job execution duration under various failure rate in Scenario 1.

Fig. 12. Job execution duration under various data scale in Scenario 1.

Fig. 13. Job execution duration under various failure rate in Scenario 2.
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Fig. 16 shows obvious advantages of McTAR as data
scale increases in this scenario. Different from the results in
Scenario 1 and 2, when the data size becomes bigger and
bigger, our McTAR will perform better and better. The rea-
son is that the increase of data scale leads to an increase in
Reduce tasks, while MIL could play a more effective role for
multiple Reduce tasks. When there is only one Reduce task,
even if MIL is enabled, it needs to perform recalculation on
all data. Therefore, as the data scale grows, the advantages
of McTAR tend to more remarkable.

5 RELATED WORK

Although Hadoop has provided a bunch of strategies to
handle failures, a single failure could still cause serious
delay of the job according to intensive related study [12].

A great progress was made in RAFT [13], which proposed
a family of checkpointing techniques including RAFT-LC,
RAFT-RC and RAFTQMC to handle different failures. Our
approach is greatly inspired by their work. In their implemen-
tation,Mappers proactively pushed data toReducers andmade
the intermediate data replicated as soon as a spill was gener-
ated. Since the operation was based on a spill, it could hardly
take the advantage of the combiner, which highly increased
the network traffic. Apart from that, the checkpoint cannot be

made if no spill was generated. To remedy defects mentioned
above, we choose to make checkpoint periodically, which is
more suitable for various kinds of applications.

In [14], an effective MapReduce checkpoint approach
named BeTL was presented, which also gives our work
much inspiration. It was proposed to send the meta data to
a master as checkpoints and come up with a solution to deal
with the instability of the generation spills. However, the
node failure could not be well handled since the intermedi-
ate data were not replicated in their implementation.

A recent study focused on the recovery of Reduce tasks
using YARN [15]. They analyzed the drawback of several
recovery methods and proposed a framework to crack
down the failure amplification through analytics logging
and migration. In [16], a Map task was separated into two
parts when the preemption was received. The finished part
was submitted, and the rest would be rescheduled as a new
task. For the Reduce task, the memory was flushed to make
a checkpoint when the preemption was received. In their
approach, the interruption of tasks may slow down the job.
Making checkpoint at a certain progress was proposed in
[17], they took advantage of the concept of the LATE algo-
rithm [18] to identify slow task. Another study concerning
selecting appropriate checkpointing interval was presented
in [19], which took the failure probability and task workload
into account to make optimal checkpointing intervals.

Besides, there were also other fault tolerant solutions for
Hadoop MapReduce. For example, in [20], [21], replication
schemes were well used in job level or task level of MapRe-
duce to tolerate arbitrary faults. But as MapReduce applica-
tions generated a great deal of intermediate data, the efforts
of replication back-up are needed to be considered seriously.
In [22], a distributed and synergetic architecture was devel-
oped to separate complexworks from originalmaster node to
specific modules running on slave nodes to get better perfor-
mance and fault tolerance capability forHadoopMapReduce.
In [23], an elastic solution using consistent hash was pro-
posed to deal with random fail-stop failures at the node or
the network level, which were caused by streamed data to
minimize theworkload about copying data betweenReducers.
In [24], BFT MapReduce was presented to mask byzantine
faults by executing each task more than once to compare
whether different outputs appeared or not. It surely has high

Fig. 14. Job execution duration under various data scale in Scenario 2.

Fig. 15. Job execution duration under various failure rate in Scenario 3.

Fig. 16. Job execution duration under various data scale in Scenario 3.
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cost from re-execution of MapReduce tasks. Docker-Hadoop
was proposed in [25], which is a container based Hadoop
platform. It could simulate several failure scenarios and used
to validate fault tolerant capability of various revisedHadoop
MapReduce. Finally, an interesting topic about fixing crash
recovery bugs was discussed in [26]. That is, faults in crash
recovery approaches in Hadoop tend to cause severe conse-
quences, thus, detailed analysis of their root causes, trigger-
ing conditions, and bug impacts would reveal several
interesting findings for construct more comprehensive fault
tolerancemechanism.

There were also studies that address failure detection
problems, such as FARMS [27]. The authors advocated eval-
uating the stability of a node by recording multiple failures
at each node. For nodes with poor stability, speculative
execution should start earlier. However, it did not mention
the handling of fail-stop faults, and the prediction based
on random fault information cannot accurately express the
status of nodes.

6 CONCLUSION

The Hadoop MapReduce paradigm is quite effective and
well-adopted for developing big data applications yet. In
Hadoop environments, though the coarse grained re-execu-
tion fault tolerant strategy works, the MapReduce perfor-
mance are still suffering from node crash or failed tasks. In
this paper, we propose a novel fault tolerant approach,
McTAR, to better resolve such dilemma. Our McTAR makes
minor revisions to the original MapReduce framework to
deals with task or node failures with optimized checkpoint
tactics and could achieve better fault tolerant capabilities.

The McTAR consists of several related specific tactics to
work together to speed up the recovery of failed MapReduce
jobs, including multi-trigger checkpoint generation, push-
pull combined intermediate data distribution and optimized
failure task prediction. In McTAR, spills are split into small
piece groups instead of merging them into one single file. In
this way, the intermediate data could be checkpointed and
duplicated in time so that the recovery task attempt would
start at a specific progress according to the valid checkpoint
generated alongwith spills. It reduces the task recovery delay
and improves the performance under failures.

We implement McTAR on the base of Hadoop 2.7.3 and
comprehensively evaluate our McTAR with the current
Hadoop MapReduce implementation. The experiment
results show that McTAR could effectively optimize the
recovery process of failed MapReduce jobs and highly
reduce the task recovery delay.
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