o~
L]

a .
— “‘J future internet

Article

TDLearning: Trusted Distributed Collaborative Learning Based
on Blockchain Smart Contracts

Jing Liu 1*0, Xuesong Hai ! and Keqin Li 2*

check for
updates

Citation: Liu, J.; Hai, X;; Li, K.
TDLearning: Trusted Distributed
Collaborative Learning Based on
Blockchain Smart Contracts. Future
Internet 2024, 16, 6. https://
doi.org/10.3390/£i16010006

Academic Editor: Ashutosh Dhar
Dwivedi

Received: 22 November 2023
Revised: 17 December 2023

Accepted: 21 December 2023
Published: 25 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

College of Computer Science, Inner Mongolia University, Hohhot 010021, China; 32009008@mail.imu.edu.cn
2 Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
* Correspondence: liujing@imu.edu.cn (J.L.); lik@newpaltz.edu (K.L.)

Abstract: Massive amounts of data drive the performance of deep learning models, but in practice,
data resources are often highly dispersed and bound by data privacy and security concerns, making
it difficult for multiple data sources to share their local data directly. Data resources are difficult to
aggregate effectively, resulting in a lack of support for model training. How to collaborate between
data sources in order to aggregate the value of data resources is therefore an important research ques-
tion. However, existing distributed-collaborative-learning architectures still face serious challenges in
collaborating between nodes that lack mutual trust, with security and trust issues seriously affecting
the confidence and willingness of data sources to participate in collaboration. Blockchain technology
provides trusted distributed storage and computing, and combining it with collaboration between
data sources to build trusted distributed-collaborative-learning architectures is an extremely valuable
research direction for application. We propose a trusted distributed-collaborative-learning mecha-
nism based on blockchain smart contracts. Firstly, the mechanism uses blockchain smart contracts
to define and encapsulate collaborative behaviours, relationships and norms between distributed
collaborative nodes. Secondly, we propose a model-fusion method based on feature fusion, which
replaces the direct sharing of local data resources with distributed-model collaborative training and
organises distributed data resources for distributed collaboration to improve model performance.
Finally, in order to verify the trustworthiness and usability of the proposed mechanism, on the one
hand, we implement formal modelling and verification of the smart contract by using Coloured Petri
Net and prove that the mechanism satisfies the expected trustworthiness properties by verifying
the formal model of the smart contract associated with the mechanism. On the other hand, the
model-fusion method based on feature fusion is evaluated in different datasets and collaboration
scenarios, while a typical collaborative-learning case is implemented for a comprehensive analysis
and validation of the mechanism. The experimental results show that the proposed mechanism can
provide a trusted and fair collaboration infrastructure for distributed-collaboration nodes that lack
mutual trust and organise decentralised data resources for collaborative model training to develop
effective global models.

Keywords: distributed collaborative learning; smart contract; model fusion; formal verification

1. Introduction

Data are important catalysts for the development of Artificial Intelligence (Al), and the
quantity and quality of data determines the upper limit of the performance of Al models [1].
The combination of blockchain and federated learning is a highly promising research field,
especially in addressing issues related to data privacy, security and trustworthiness [2,3].
Yang et al. [4] proposed an explainable federated learning architecture and a blockchain-
based credit-scoring system (EFCS). This method uses an improved federated learning
mechanism that enhances its explainability while increasing the reliability of training
results and employs credit-qualification proof and credit-evaluation proof to further verify
the correctness of the training results. Our research differs from that of Yang et al. in

Future Internet 2024, 16, 6. https:/ /doi.org/10.3390/£i16010006

https:/ /www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16010006
https://doi.org/10.3390/fi16010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-4641-1326
https://orcid.org/0000-0001-5224-4048
https://doi.org/10.3390/fi16010006
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16010006?type=check_update&version=1

Future Internet 2024, 16, 6

2 0f 33

that we focus more on the definition of collaborative behaviours, relationships and norms
among distributed cooperative nodes through blockchain smart contracts. Based on this
definition and transfer learning, we propose a feature-fusion-based model-fusion method.
Similarly to their approach, we replace the direct sharing of local data resources with
distributed-model collaboration training to organise scattered data resources for distributed
cooperation, thereby improving model performance. However, our work does not involve
an improvement in federated learning, and smart contracts play a more significant role
in the collaboration process. However, in practical application scenarios, data resources
are often highly dispersed. In addition, due to data privacy and security constraints, it
is difficult for multiple data sources to share their local data directly. It is difficult to
effectively aggregate data resources, which will lead to a lack of support for model training.
This problem restricts the further improvement in the model performance. To address
these challenges, distributed-collaborative-learning architectures based on dispersed data
have emerged. For example, the federated learning (FL) proposed by Google [5], which
implements an efficient distributed-collaboration model based on decentralised data and
computing power. Although existing distributed-collaborative-learning architectures have
made a lot of efforts in privacy protection [6], incentive mechanisms [7] and protection
against malicious attacks [8], they still assume that the collaboration is mainly performed
between trusted environments and mutually trusted collaboration nodes and rely to some
extent on third-party platforms. Security and mutual distrust have seriously affected the
confidence and willingness of data owners to collaborate. Therefore, how to ensure the
credibility and fairness of the collaboration process has become the core issue of distributed
collaboration based on decentralised data.

The development of blockchain technology [9] has filled a gap in many fields and also
brought development opportunities for distributed-collaborative-learning architecture.
As a decentralised infrastructure, blockchain provides trusted distributed storage with
good features such as the immutability, traceability and security of stored content. The ap-
plication of smart contracts [10] has greatly enhanced the scalability of the blockchain
platform, giving it Turing-complete programming capabilities and providing trusted dis-
tributed computing.

Locating the problem of scattered data resources and the low trustworthiness of
existing distributed-collaborative-learning architectures, we propose a trusted distributed-
collaborative-learning mechanism based on blockchain smart contracts. The mechanism
uses the blockchain as a distributed collaborative execution environment, and the coopera-
tive behaviour and specifications are defined and encapsulated by smart contracts. At the
same time, a model-fusion method based on feature fusion is proposed to realise model col-
laborative training to improve the model performance. The mechanism strives to provide a
trusted and fair distributed-collaboration infrastructure, enabling all collaboration parties
to perform trusted distributed collaboration in the absence of mutual trust and third-party
intermediary dependence.

The innovations and contributions of this paper are as follows:

* We use smart contracts to define and encapsulate collaborative behaviours, relation-
ships and specifications between distributed-collaboration nodes.

* Based on the idea of smart contract collaboration architecture and transfer learning,
we propose a model-fusion approach based on feature fusion to replace the direct
sharing of local data resources with distributed-model collaboration training.

The remainder of this paper is organised as follows. Section 2 summarises the work
involved. Section 3 details the architecture and design details of the collaborative-learning
mechanism. In Section 4, we implement a formal verification of the mechanism to prove its
trustworthiness. In Section 5, the usability of the mechanism is demonstrated by means of
experiments and a case study. The conclusion is presented in Section 6.

Future Internet 2024, 16, 6

3 0f 33

2. Related Work

At present, many researchers are committed to combining blockchain technology
with distributed-collaborative-learning architecture. Flexible consensus protocols, effec-
tive incentives, privacy protection, data and model management, smart contract appli-
cations and the scalability of distributed architectures are the key directions of current
research [2,11-13].

2.1. Replacing the Central Server in Distributed Learning

Traditional distributed-collaborative-learning architectures rely on a single central
parameter aggregation servet, so the architecture faces single points of failure and server
trust issues. Kim et al. [14] proposed using blockchain instead of parameter servers in
federated learning. It treats each collaboration client as a blockchain node, and the client
uploads parameters to the blockchain after completing local training. The miner records
and completes the model-parameter verification, generates a new block through the proof-
of-work (POW) consensus mechanism and then each client obtains the parameter update
from the blockchain and completes the global model update locally. Qu et al. [15] made
improvements in privacy protection, the client’s local-model parameters are encrypted and
uploaded to the blockchain and the global model parameters need to be codecrypted by the
collaborative client from the block to prevent information leakage. While using differential
privacy techniques to protect data privacy, Wang et al. [16] designed reinforcement-learning-
based incentive mechanisms to improve the usability of blockchain-based federated learn-
ing frameworks. Lu et al. [17] noted that applying POW to model-parameter sharing can
cause long delays. Therefore, this paper proposes to replace POW with a proof-of-quality
(POQ) consensus mechanism to reduce the cost of communication and reduce the impact
of low-quality models on collaboration.

The above method uses the blockchain to replace the central server or increase its
credibility by integrating the parameter-interaction process into the underlying mining
mechanism of the blockchain. However, maintaining blockchain nodes requires a lot of
storage resources, and the limited resources of client devices may become a bottleneck
for collaboration. In addition, the complexity of this type of method is high, and the
modification of the consensus protocol will inevitably reduce the versatility and scalability
of the method.

2.2. Recording Distributed-Collaboration Processes

Harris et al. [18] proposed a framework for building datasets by participants, in which
data and global models are shared by all collaborators. The framework uses smart contract
hosting to continuously update the global model and gives incentives to participants based
on the improvement in the model accuracy provided by the data. Lugan et al. [19] proposed
using blockchain to record the iterative version of the global model in distributed learning,
and when the global model degraded, it could be traced back in time. Awan et al. [20]
recorded all interactions in federated learning in the blockchain, such as FL tasks, local-
model sources and global model update information. The blockchain has the traceability
and tamper-proof characteristics of stored content, which enables the central server to
safely evaluate the contribution of each collaboration client to the global model update
and motivate relevant collaboration clients. Miao et al. [21] implemented homomorphic
encryption-based federated learning, where the encrypted intermediate parameters are
stored in a blockchain in order to prevent the malicious tampering of the parameters.
Ma et al. [22] proposed a layered federated learning architecture based on blockchain,
which divides FL into a network layer, a blockchain layer and an application layer. The net-
work layer consists of peer-to-peer collaborative clients, where local-model updates and
global-parameter aggregation are performed by the collaborative clients. The blockchain
layer is responsible for the permanent storage of collaborative information in the form of
transactions, and the application layer is defined by smart contracts, which are responsible
for the publication of FL tasks and the selection of collaborative clients.

Future Internet 2024, 16, 6

40f33

The above literature uses blockchain as a distributed ledger to record distributed-
collaboration information, which enhances the security of collaboration and provides
credible evidence for incentive allocation and malicious-behaviour recovery. However, this
area of research does not typically improve the collaboration process of existing distributed-
collaboration architectures, and the recording of collaborative interactions does not fully
improve the untrustworthy collaboration environment.

2.3. Distributed-Collaborative-Learning Mechanism Based on Blockchain Smart Contracts

Bozkurt et al. [23] and Alsobeh et al. [24] are concerned about the problems of decen-
tralised collaboration in terms of its practical application and are attempting to address
them by using blockchain technology. Ramanan et al. [25] proposed using smart con-
tracts to implement model-parameter aggregation in federated learning and control global
model iteration and other steps. However, it may not be practical to completely replace a
central parameter server with smart contracts, and existing blockchain platforms such as
Ethereum cannot effectively support compute-intensive tasks. Mendis et al. [26] proposed
a blockchain-based decentralised computing paradigm and put forward the idea of using
blockchain to control distributed collaborative processes but did not address the details
of process design and the concrete implementation of smart contracts. In recent years,
distributed Al collaboration architectures based on smart contract designs have been pro-
posed, with research centred on the fair and trusted organisation of distributed computing
resources and the formation of an auditable marketplace for Al-pretrained models [27,28].
Oktian et al. [29] designed a complete protocol based on federated learning by using
smart contracts, including features such as incentives, model validation and collaborator-
reputation assessment, to address the problems of low client motivation to collaborate,
midway withdrawal and unauthorised model access in federated learning. The protocol is
functional; however, on-chain interactions will further increase the communication cost of
federated learning, and smart contracts may become a computational bottleneck.

In summary, the design of distributed-collaborative-learning mechanisms based on
blockchain smart contracts still has great research potential, and how to efficiently organise
decentralised data resources in the collaborative mechanism still needs further research.
Therefore, we aim to use blockchain as a trusted collaboration environment; give full
play to the unique advantages of smart contracts in realizing identity authentication and
authority management, trusted storage, incentive mechanism and data and model manage-
ment in distributed collaboration; and design a trusted distributed-collaborative-learning
mechanism based on decentralised data resources.

3. Method

This section first introduces the overall architecture of TDLearning, followed by a
detailed description of the smart contract design and key algorithms, and finally proposes
and analyses a model-fusion approach based on feature fusion.

3.1. Architecture of TDLearning

Effective collaboration based on decentralised data resources and the use of smart con-
tracts to ensure a trustworthy and fair collaborative process are the goals of the collaborative-
learning mechanism proposed in this paper. Blockchain smart contracts are utilised to
establish and capture collaborative behaviours and connections in this paper. Specifically,
in this study, the distributed-collaboration process of the collaborative-learning mecha-
nism is defined as a collaborative task, and a smart contract defines and encapsulates the
collaborative relationship between the actors and nodes in the task, acting as a medium
of communication and trust. At the same time, a model-fusion method based on feature
fusion is proposed based on the idea of migration learning. Instead of the direct sharing of
data resources, distributed-model collaboration training is used to organise dispersed data
resources for effective distributed collaboration.

Future Internet 2024, 16, 6

50f 33

The overall architecture of TDLearning is shown in Figure 1. The mechanism consists
of six smart contracts, which are defined and encapsulated into three types of functional
modules: role-authority management, trusted database construction, collaborative task
management and collaborative incentive allocation. Authority management is imple-
mented by the authority-management contract (AMC), database construction is based on
the data-retrieval contract (DRC) and the data-evaluation contract (DEC) and task-process
management and motivation are based on the task-management contract (TMC) and the
task-incentive contract (TIC). The node in the mechanism contains four types of roles,
namely supervisor, task owner, task participants and model verifiers. The roles and their
corresponding collaborative behaviours are shown in Table 1. From the perspective of each
node participating in the collaborative training of the distributed model, the collaborative-

learning mechanism consists of the following three steps in total.

[Ethereum Blockchain / | P F S >

Smart Contract Deployment and Interaction Key information reading, writing and retrieval

Tusted ¢ | 7, Tesk | Collaborative
Task)

Data - 1 registration Task

Tusted Contract Task | Task overview

]

Node d 1
v JlEicoece

]

]

]

]

-

. N
‘ \
H ! Data Management 1
—_—]| goooooooy o) - Data
Node e 8 e : registration
istrati : i —
: i
Node name :

1
1
1 Trusted Node
1
1
! | Node address
1
1
1
1
1
1

Trusted Data

: 1
Index
Data Retrieval .
| creation | Data overview
—> Data attributes

Identification Authority

TSI o

'
1 U
1 1
1 '
1 '
. 1
[} 4 control
N Authority 1] 1 |Task Incentive Contract
Node overview) , Data 1
Node authority . 8 Data Evaluation 1_Retrieval ' Task Incentive
Credibility | Contract] Contract "T Data hash 1 |model verification result| \——c——>
assessment P) 'R = 4| 1 verification
MV's credibility ! ! evaluation Qualty i |Ri=Hash(A1.Az ..., S)| | YL Inf:;; :mﬂ:;m
1+ |[Ds=1Is+ Z Ei-wi| evaluation . / upload
' < -
: '

Global model based on . . N . B L Model information interaction
Model fusion: Feature fusion based on attention / model verification J

- -

i i i i |

Global model Model 1 Model 2 Model n Initial Model
Training set Dataset 1 Dataset 2 DEEEEEY Dataset n Test set
TO Tp1 Tp2 Tpn TO
N e e e e e e T T C D e e e e e e e et e T T T E D e e e C kD 6t et e e e e C D e e e T L e e e e e .,
(Model fusion and fine-tuning | Model pre-training

Figure 1. Overall architecture of TDLearning: (1) Smart contracts define and encapsulate collaborative
relationships, behaviours and specifications between collaborating nodes. (2) Collaborative model
training: a model-fusion approach based on feature fusion.

Table 1. The description of notation symbols used in TDLearning.

Role

Collaborative Behaviours

Supervisor—Su

Task Owner—To

Task Participant—Tp

Model Verifier—Mvuv

(1) Smart contract deployment and collaborative node authority management. (2) Collaboration task access
audit and collaboration node on-chain behaviour monitoring. (3) Initiation of smart-contract-function
execution, such as data-quality assessment, contract incentive, etc.

(1) To issues global-model-development tasks, specifying pretrained model structures as well as standard
test sets. (2) To registers on-chain tasks via smart contracts and completes the incentive funding pledge.
(3) After receiving all the validated pretrained models, To completes global model fusion and fine

tuning locally.

(1) Tp registers local private data by using a data-management contract, which participates in the
collaborative-learning task as a data node. (2) Tp uses the specified model structure to develop pretrained
models locally by using the private data. (3) After the pretrained model is verified, Tp receives automatic
motivation from the smart contract.

(1) Mo completes pretrained model verification based on the standard test set given by the task owner and
uploads the validation results via the smart contract. (2) After the smart contract reaches a consensus on
the pretrained model validation, Mo receives an automatic incentive from the smart contract.

Future Internet 2024, 16, 6

6 of 33

—_

Tp uses its local data to develop pretrained models.

Mo verifies all pretrained models by using the standard validation set provided by To.
3. Toreceives a validated pretrained model, and model fusion is completed by using its
local data to develop the global model.

N

The three types of functional modules defined and encapsulated by smart contracts
locate and solve each of the following three types of problems:

¢ The role-authority-management module locates the trust issue for collaborative-
learning nodes, which maintain a list of trusted collaborative nodes through the AMC.
In this mechanism, the prerequisite for participation in collaboration is the registration
and authentication of identity, and role-based authority management assigns authority
to collaborative nodes by role. The binding of identity information to authority en-
courages collaborative nodes to act honestly, and the traceability and tamper-evident
nature of the blockchain strongly restrains them from acting maliciously.

* Trusted database construction locates data-availability and collaborative-data-quality
issues. The DRC maintains an index of registered data, which enables the on-chain
retrieval of data. To achieve the keyword retrieval of blockchain data, the traditional
solution is to synchronise data off-chain for retrieval; however, due to the existence of
synchronisation cycles and the fact that off-chain data security cannot be guaranteed,
this will inevitably lead to a reduction in the data availability, hence the need for secure
on-chain retrieval in this mechanism. The DEC introduces a fuzzy comprehensive
evaluation method, which uses the information in the data and the collaborative
behaviour of the data nodes as indicators to evaluate the quality of the data. The DMC
completes data registration and maintains a list of trusted data to build a trusted
database by invoking the DRC and DEC.

* The collaborative task-management and collaboration-incentive-allocation modules
locate the credibility and fairness of collaboration. The TMC controls the process
of task execution by differentiating the status of collaborative tasks and maintain-
ing task lists. At the same time, to ensure the quality of pretrained models and
the fairness of collaboration, we introduce a verification mechanism for the valid-
ity of pretrained models, in which the smart contract determines whether multiple
model verifiers have reached a consensus on model verification. Model-verification
consensus ensures verification fidelity and pretrained model validity and provides
incentive weighting metrics for collaborative incentive allocation. Once consensus is
reached, the TIC assigns incentives with predetermined rules and model-verification
results. In summary, the collaboration mechanism uses smart contracts to imple-
ment distributed-collaborative-learning-task interaction control to guarantee collabo-
rative trustworthiness.

In order to achieve distributed collaboration and reduce the risk of data-privacy leak-
age, the collaborative-learning mechanism transforms the value of data resources into the
value of pretrained models and replaces the exchange and sharing of local data among
collaborators with the fusion of pretrained models. Therefore, the effective fusion of multi-
ple pretrained models is the key to the effective organisation of distributed data resources
in collaborative-learning mechanisms. In view of the above problems and background,
inspired by migration-learning ideas, we propose a model-fusion method based on feature
fusion to achieve distributed-model collaborative training. As shown in Figure 2, task
participants complete submodel pretraining by using their local data, and the task owner
generates global features by fusing the features extracted from the pretrained submodels
and uses the global features as classifier inputs to develop global models.

3.2. Task Flow of TDLearning

As shown in Figure 3, the collaborative-learning-task process is divided into a task-
information-initialisation phase and a task-execution phase from the perspective of each

Future Internet 2024, 16, 6

7 of 33

node participating in the collaborative training of the distributed model. The core steps of
the task-information-initialisation phase are as follows.

' \ / /) : Feature
Local Data 1 —_— : ; Extractor

D Classifer

__ : QFeaiure Fusioni
@®Model pretraining Module

Local Data of
Task Owner

> Global

Feature

Figure 2. Model-fusion method based on feature fusion.

1.

2.

Su deploys the relevant smart contracts and assigns a set of Mo to initialise their
credibility ratings.

Each collaborating node registers identity information through the AMC, and the Su as-
signs the nodes corresponding to role authority based on the identity request information.
Tp registers the local data summary via the DMC. The DMC invokes the DRC and
DEC to index the newly registered data and initialise its quality evaluation.

To registers and initialises collaborative tasks via the TMC, which specifies the task
overview, pretrained model structure, standard test sets and Mv credibility threshold,
and pledges task incentives to the TMC. To uses the smart contract to perform secure on-
chain searches and queries the quality ratings of relevant datasets to find high-value
trusted data.

To specifies the data nodes involved in the task, i.e., the task participants, while
the supervisor specifies the model verifiers for the task based on the Mv credibility
threshold requirement. After the above steps are completed, if the TMC determines
that sufficient collaboration incentives have been deposited, the collaboration task is
formally published.

The core steps of the task-execution phase are as follows.

Tps develop a pretrained model locally by using private data in the specified model
structure. Once the pretrained model is developed, Tps send it to the specified Muv;
as an on-chain encrypted transmission.

Mpus complete pretrained model verification locally with a standard test set specified
by To and upload the verification results encrypted to the TMC.

The TMC determines whether a consensus on pretrained model verification is reached
based on the verification results of Mvs. When the consensus is reached, Mv; send
the pretrained model to To via on-chain encryption. At the same time, the TMC
creates the TIC, and the TIC completes the collaboration-incentive allocation, and both
Tps and Mu, involved in the collaboration will be automatically incentivised by the
smart contract.

To invokes the DEC to update the collaborative data-quality evaluation. At the same
time, To invokes the AMC to update the credibility evaluation of Muv;. If a collaborative
node believes that Mv has suspicious malicious behaviour, the collaborative node can
request to initiate a trust arbitration vote on the Mo, and the AMC updates the Mv
credibility evaluation based on the vote arbitration result.

Future Internet 2024, 16, 6

8 of 33

5. To completes pretrained model fusion to develop the global model, and the collabora-

tive task ends.

Authority Data Management Data Evaluation Task Task Incentive
Management |Su and Retrieval Tps Contract To Management Mvg Contract
Contract Contract Contract
. Node régistration ' ;
L and authorization > ! ! H
; 1. Node registration and :
H authorization H ! :
o H 1. Node registration and ~ :
' authorjzation B
B3 : : ; >
: i 2a.Data registration : :
Task ; i

information 2b. Cpeating .
initialisation | ! indexes !
phase .

i

2c. Initial evaluation

>

i3a. Retrieving data;

i 3b.Query data !
V B evaluation !
H -
3c. Query Mvg credibility rating H

> <€

Task
execution
phase

i 5b.Update Mvg : :
! credibflity rating : ;”T
h H H H H F

| 4aTask :
__registration !
— TR >

: T 4BrStart of
: i thefask
4d. On-chain ctyptographic :

model 1

»

1 4eModel
4f. Upload i validation

:xalidation results

4q. Verifiers !
consegsus

4c. el !
training

ah. Create TIC

4i. Iﬁcentivising Tps antl Mvg

4j.0n-chain cryptographic
model transmissi

<

" 5a.Update data !
1 quality évaluation |
B del

ion

Figure 3. Sequence diagram of trusted distributed cooperative-learning mechanism based on

smart contract.

3.3. Smart Contract Design

Smart contracts act as a medium of trust, a guarantee of trustworthiness and fairness
for distributed-collaborative-learning mechanisms, and this section details their key algo-
rithmic design. Table 2 shows the key notations used in TDLearning and their descriptions.

Table 2. Notation symbols used in TDLearning.

Notation Description

Naddress Collaborative node Ethereum address
Ninfo Node identity and authority information
N,o1e/Nstatus Node role/status

Nuame/Nsummary ~ Node name/summary

Dyasi/Dstatus Data hash/availability status
Duame/Dsummary ~ Data name/summary

Thame Collaborative task name

Tsummary/Trewara ~ Task summary/incentive benchmark
Tsecret Cryptographic numbers for model verification
Vy The number of Mv; specified by To

Cy Credibility for Mo

Vi Credibility threshold for Mvs

0 Model-verification thresholds

3.3.1. Role-Authority Management

As shown in Algorithm 1, the role-authority-management module is implemented by
the AMC, which implements a role-based authority-management mechanism for accessing
and assigning authority to collaborative nodes to participate in collaboration. Its core

Future Internet 2024, 16, 6

9 of 33

function is to maintain a list of trusted collaborative nodes. In addition, the Mv is a special
collaborative role, which interacts with both the To and the Tp. Therefore, the AMC records
the list of Mvs and maintains credibility values for them. When the To and Tp; believe that
the Muv is behaving suspiciously, they can apply to the Su to initiate arbitration, and the
AMC will initiate a trust arbitration vote on the Mv.

Algorithm 1 Authority Management (AMC)

1. nodeRegister():
if (msg.sender is not registered)
Update node list: Nj,z,[msg.sender] = nodelnfo (Nyore, Nstatus, Npame, Naddresss
Nsummury)/'
Initialise node authority;
else
return false;
2. updateAuthority():
require (msg.sender ;. == Su)
Update Niy s [Nagdress-niodeRole] = Nyope;
Update Njy ro [Naddress-nodeStatus] = Nstatus;
3. update VerifiersCredit():
require (msg.sender,,;, == Su)
for each i in Mu,
if (i is not been applied for arbitration)
CZJ,’ = Cvi +1;
else
Su creates the arbitration for i;

(a) A new node participating in a collaborative task calls nodeRegister() to register
identity information with the blockchain. N, is represented by four sets of key—value
pairs, 0 for an undefined role, 1 for Su, 2 for To and Tp and 3 for Mv. Nsatys is represented
by two sets of key—value pairs, 0 for pending audit or illegal status and 1 for legal status.
Nyddress is a unique node identifier, which is bound to the identity-authority information by
keyword mapping.

(b) Su calls updateAuthority to edit collaborative node permissions. The blockchain
keeps a realistic record of collaborative interactions, allowing Su to intervene in a timely
manner when a node behaves suspiciously.

(c) Su deploys smart contracts while initializing Mv and initializing C,. To deal with
potentially malicious behaviour, the collaborative-learning mechanism introduces a model
verifier credibility-evaluation system and an arbitration voting mechanism for suspicious
behaviour. After the collaborative task is completed, Su calls the updateVerifiersCredit() to
update C,. Cy is updated as shown in Equation (1), where 7 is the number of untrusted
votes for Mv in the arbitration vote and n is 0 to mean that no node in this task has
requested to initiate arbitration for Mv. m is the number of Tp;, and Su removes the Mv
from the verifiers list and sets C, to 0 when more than half of the Tp; believe that the Mv
has suspicious behaviour:

Co+1,n=0
Co=(Co—nn<h 1
0O,n>1%

3.3.2. Trusted Database Construction

Trusted database construction is implemented by the DMC, DRC and DEC. The DRC
creates an inverted index for on-chain data to support the keyword retrieval of data.
The on-chain data retrieval returns the latest status of the data in real time, enhancing the
data availability of the collaboration mechanism, which therefore eliminates the need to
maintain an off-chain synchronised database. The data-assessment contract introduces a

Future Internet 2024, 16, 6

10 of 33

fuzzy comprehensive evaluation mechanism to evaluate the quality of the data involved in
the collaboration. This evaluation process is automatically completed by the smart contract,
and the relevant data-quality evaluation is updated at the end of each collaborative task.
The DMC implements data registration on the chain. Its core function is to maintain the list
of available data and to build a high-value trusted database by calling the DRC and DEC.
The core steps are described below:

(a) Data registration. Tp calls the dataRegister() to register data information with the
blockchain. Dy, is a unique identifier of the data in the data list, which is bound to the
rest of the data information by keyword mapping.

(b) Data indexing. The blockchain continuously listens for the data-registration event
“event DataReg(Dy,,q1,)”, and the DMC uses this to determine whether the corresponding data
have been registered. When a collaborating node completes the registration of new data,
the smart contract creates an inverted index for it. The detailed steps for index building
are shown in Algorithm 2, which consists of two steps: data summary preprocessing and
building the inverted index.

Algorithm 2 Data registration and retrieval (DMC and DRC)

1. dataRegister():
if msg.sender has audited and these data are not registered then
Update database: DataSet[Dy,] = dataDescription (Dname, Dsummary, Dhash, Dstatus);
else
throws;
end if
2. createDatalndex(): when the blockchain has listened for data-registration event:
lexicon[] = processString (Dsummary);
for all each word i in lexicon[] do
if 0 == bytes (lexicon[i]) or stopWords|[lexicon[i]] then
continue;
else
word = stem (lexicon[i]);
if 0 == invertedIndex[word]. termFrequency (Dy,g,) then
invertedIndex[word]. hashList.push (Dy,en);
invertedIndex[word]. termFrequency (Dy,uqp,) ++;
else
invertedIndex[word]. termFrequency (Dyqsp,) ++;
end if
end if
end for

e Data-summary preprocessing. When the blockchain listens for a data-registration
event, the DRC calls propressString() and stem() to traverse the Dsummary and
complete the preprocessing. The preprocessing includes special character substitution,
word separation and stemming, and the DRC builds the dictionary through these steps.

* Building the inverted index. The smart contract iterates through the dictionary and
updates the inverted list PostingList with the inverted index table invertedIndex when
the dictionary array lexicon[i] is not empty and not for retrieving stop words. The in-
verted list stores a list of data indexes as well as word frequencies. The inverted
index table is in the form of key-value pairs, where the key is the word and the value
is the inverted list corresponding to the word. Through the above steps, the smart
contract establishes a keyword dictionary and an inverted index table corresponding
to each of these words. In addition, due to the peculiarities of the permanent storage
of blockchain data, the data-retrieval contract designs a list of stop words. When
you want data related to a keyword to no longer be searchable, add the keyword to
the table.

Future Internet 2024, 16, 6

11 of 33

3.3.3. Collaborative Task Management and Collaboration-Incentive Allocation

To protect data privacy, the blockchain only stores a summary of the data, so the
registration of the data by data nodes, i.e., Tp, is completely subjective, and it is difficult
to assess the quality of their local data. In order to cope with this problem, we introduce
the fuzzy comprehensive evaluation method into smart contracts to realise the quality
evaluation of on-chain registration data. In order to realise the dynamic evaluation of the
dataset quality, the evaluation factors are divided into initial static-evaluation factors and
dynamic-behaviour-evaluation factors. For example, for supervised classification questions,
set the evaluation factors as shown in Table 3.

Table 3. Factor sets of the fuzzy comprehensive evaluation.

Initial Static Factors Dynamic Behaviour Factors

Data size: Dyjy, Number of tasks completed: Ty;ym
Sample label completeness: Dy, Completion time for this task: Ty,
Node computing power: D,;,;, Node Credits: N g

The three initial evaluation factors and T}, all belong to a skewed large trapezoidal
distribution, corresponding to the function shown in Equation (2), where x is the true value
of the evaluation factor and S(x) is the rating of the evaluation factor, and the constants a
and b are determined by the properties of the task and the associated dataset, respectively:

0,x
5(x) = § 4,

<
=5
1,b <

a
<x<b 2)
x

Tiime is affiliated with a small skewed trapezoidal distribution with the corresponding
function shown in Equation (3), and ¢ is the predefined model submission-time threshold
for the collaborative task:

Lx<t
S(x) = 22 < x <2t (3)
0,2t < x

Ncredit is set as an adjustable constant with the update expression as in Equation (4).
C is the current credit value, C; is the task-completion credit reward value and C, is the
noncompletion credit penalty value. 0; is the value of the pretrained model-verification
metric for data node i, such as the model-classification accuracy, and 6 is the model-

verification metric threshold:
[C+Cr6, >0
C_{C—Cp,9i<9 @)

The evaluation steps are shown in Algorithm 3, including initialising the data scores
and updating the data scores. The smart contract calculates a composite score Dscore based
on a predefined weight vector and evaluation factors, as shown in Equation (5). E; is the
evaluation factor, w; is the corresponding weight and Dscre € [0, 1], with higher scores
representing the higher quality of the corresponding dataset:

Dscore = Zwi X Ej ()

In summary, the data-index construction and data-quality evaluation are performed
through smart contracts, and the data registered by the data nodes to the blockchain are
organised into the structure shown in Figure 4. Each piece of data in the trusted database is
associated with a data owner and is highly structured in a way that creates an inverted index
for easy data retrieval. A data-quality-evaluation mechanism encourages data nodes to
upload high-value data, and records of dynamic updates to the data scores are permanently
stored in the blockchain in the form of transactions.

Future Internet 2024, 16, 6 12 of 33

Algorithm 3 Data evaluation (DEC)

1. Initialisation: when the blockchain has listened for data-registration event: initScore =
callnitialScore (gethescription (Dhash));
2. updateDataScore(): require (msg.sender,,;, == Su);
if the compute node completes the task as required then
ScoreSet [Dy,s].n0deCredit++;
ScoreSet [Dy,]-taskNumber++;
ScoreSet [Dygep]-taskTime = Tyipe;
else
ScoreSet [Dy,q,1.n0deCredit -= 2;
end if
Dscore = initScore + XE; - w;;

Dname: mnist.... Inverted Index

<:> Dsummary:

= | | e IE—j
Node Dscore: 0.675 <:> @_,

Evaluation

Information Trusted Data
;/ Records

wWww
owner: Oxdc....06 V.Y.V.V]
@ wwv
i Dhash: mq....7p
o

Figure 4. Structure of collaborative data on the blockchain.

3.3.4. Collaborative Task Management and Collaboration Incentive Allocation

Collaborative task management and incentive allocation are achieved by the TMC
and TIC. The TMC records the collaborative tasks registered to the blockchain and con-
trols the task process by changing the task status to ensure the trustworthiness and fair-
ness of the tasks. The TIC incentivises Tps and Mu; according to predefined rules and
model-verification results. In the collaborative-learning mechanism, the task state is di-
vided into: initialisation, formal publication, model-verification consensus and task end.
Algorithm 4 shows the detailed steps of the task-management contract, Algorithm 5 intro-
duces the incentive mechanism of the collaborative task and the details of the collaborative
interactions at each stage of the collaborative-learning task are described below. In the
collaborative task, there are m task participants and n model verifiers.

(a) Task initialisation. To calls taskRegister() to register the collaborative-learning task
with the blockchain and pledge the task incentive, after which the smart contract initialises
the task status and publishes the associated event. After task initialisation is completed, the
TMC randomly assigns V;, model verifiers according to the task owner’s requirements and
determines whether sufficient task incentives have been pledged according to Equation (6).
In Equation (6), Tamount is the incentive amount already pledged by 1o and k is the Mv
reward factor, k € (0, 1].

Tamount > Tps.length X Tyopparg X Vi X k (6)

(b) Task formal publication. After the smart contract determines that To has pledged
sufficient task incentives, the task is officially published and To provides a standard test set
of collaborative tasks for all model verifiers. Tps develop pretrained models by using their
local data and subsequently send the models to all designated model verifiers. The above
interactions are transmitted encrypted via the transmit() function shown in Equation (7),
which prevents the leakage of data and models related to the collaborative task and is
stored in the blockchain in the form of transactions. In Equation (7), from is the address of

Future Internet 2024, 16, 6

13 of 33

the message publisher, to is the address of the message recipient, key is the public key of the
message recipient and the data are stored by IPFS [30] to reduce the storage overhead of
the blockchain:

transmit(from, to, key, IPFS(message)) (7)

Algorithm 4 Collaborative task management (TMC)

1. taskRegister():
if msg.sender has audited and this task is not registered then
Update database: TaskSet [Tnamel = taskDesc (Tuame, Tsummary, Trewards TPs, Vo, Tsecret);
TaskSet [Tpame].status = initialisation;
else
return false
end if
2. taskPublish():
if Tomount > Tpslength * Tropara + Mus.length * Tyoparg * k then
TaskSet [Tyame]-status = formal publication;
for each verifier j in Mvs do
Transmit (7o, j, key]-, IPFS(validation set));
Participants use private data to train their own local model;
end for
for each participant i in Tp,s and each verifier j in Mvs do
Transmit (i, j, key;, IPFS(model;));
end for
end if
3. verifyConsensus():
for each verifier j in Mv; do
resultj = Hash (accy, accy, ..., accy, secretj);
end for
The random verifier uploads the plaintext result — accuracy []
consensusFlag = true
for each verifier j in Mv; do
if Hash (accuracy [], secret;) # result; then
consensusFlag = false;

end if

end for

if consensusFlag = true then
Go to Algorithm 5

for each verifier j in Mv; do
Transmit (j, To, keyt,, IPFS(verifiedmodels));

end for
else

Go to (3);
end if
4. updateEvaluation(): require (fundsToParticipants and fundsToVerifiers), go to Algo-
rithm 1. (3) and Algorithm 2, TaskSet [Tyame]. status = task end;

(c) Model-verification consensus and collaborative-task incentives. After receiving
multiple pretrained models, model verifiers perform model verification by using the
standard test set and upload the cryptographic verification results through the smart
contract after completing all model verifications. The verification metric is the model-
classification accuracy, and the cryptographic verification result of model verifier j is shown
in Equation (8). Once all verifiers have completed uploading their encrypted verification
results, the smart contract randomly assigns a verifier to upload the plaintext verification
results and compares them to the encrypted verification results. If the comparison results
are consistent, the smart contract declares a consensus on model verification, and Mv

Future Internet 2024, 16, 6

14 of 33

calls transmit() to send the validated pretrained model to To as an on-chain encrypted
transmission. If the consensus is not reached, Su steps in and restarts a new round of
model-validation consensus. Once the TMC determines that consensus has been reached, it
will create the TIC for the task and transfer the To pledge incentive to that contract:

result; = Hash(accy, accy, ..., accm,secret]-) 8)

The incentive mechanism is shown in Equation (9), where the TIC incentivises task par-
ticipant i by Typy0rq and the model accuracy weight, where 6,5+ is the number of models
that satisfy the predefined verification threshold of the collaborative task, and the model
verifier j incentive is determined by T,y,4 and incentive factor k. In addition, the TIC
determines whether all collaborative nodes have been incentivised by setting incentive flag
bits fundsToParticipants and fundsToVerifiers. The remaining funds are returned to To after
the incentive is completed:

. acc;
rewardpurticipants m = Ocount X Trewara ¥ Wtilﬂzcy

rewardparticipants m = Trewara X k &)

(d) End of task. Consensus on model verification marks the completion of the main
collaborative-learning step, and the subsequent allocation of incentives for collaboration
is automatically performed by the smart contract according to predefined rules. At the
same time, the DEC updates the data-quality evaluation, and the AMC updates the model-
validator reputation value. Once the above steps are completed, the collaborative task ends
and To completes global model development by fusing pretrained models. In summary,
blockchain provides a trusted collaborative environment for collaborative-learning mecha-
nisms, acting as a distributed ledger to record collaborative node interactions, and smart
contracts to control the process of collaborative tasks through predefined rules, allowing for
trusted and fair collaboration between collaborative nodes that do not fully trust each other.

Algorithm 5 Collaboration-incentive allocation (TIC)

1. getTaskInfo(): I;;, fo = getTaskInfo (Tyame), fundsToParticipants = false, fundsToVerifiers =
false;
2. nodelncent():
for each participant i in Tp;s do
if accuracy[i] > 0 and fundsToParticipants = false then

acc;
Tpi.transfer((‘)count * Treward * Zuc]c);
end if
end for

fundsToParticipants = true;
for each verifier j in Mv; do
Muj.transter(Trewpara * k);
end for
fundsToVerifiers = true;
3. refund(): require (fundsToParticipants and fundsToVerifiers), To. transfer(address (this.
balance));

3.4. Model-Fusion Method Based on Feature Fusion

Based on the above blockchain smart contract collaboration architecture and transfer
learning [31], we propose a model-fusion method based on feature fusion to enable collabo-
rative model training to aggregate dispersed data resources. The method consists of the
following two steps:

1. Submodel pretraining: data node i (i € [1, n]) develops a pretrained model i by using
its local data.

Future Internet 2024, 16, 6

15 of 33

2. Model fusion and fine tuning: The task-publishing node uses its local data to perform
parallel-feature extraction from 7 pretrained submodels and then uses an attention
mechanism to fuse the extracted features from the submodels to generate global
features, which are finally used as the input to the classifier to obtain the global model.

Figure 5 depicts the global-model-development process for the collaborative-learning
mechanism proposed in this paper, with steps 5 and 8 corresponding to the submodel
pretraining, model fusion and fine-tuning steps, respectively. Figure 6 illustrates the model-
fusion architecture. As shown in this architecture, in order to develop a global model,
features from all pretrained submodels need to be integrated to generate global features.
Define the global model input as x, the ith submodel feature extraction layer as a function
fi, E; as the features extracted by submodel i, F as the feature-fusion operator and V as
the global features. Then, the attention-based feature-fusion process can be formulated by
Equations (10) and (11), where E; € REXHXW E ¢ RiXCXHXW ang v ¢ REXHXW,

Ei = fi(x)
{E = Feoncat(E1, E2, ..., En) (10)

V' = Futtention (E,fl(x),fz(x),~--,fn(x)) (11)
C
@ (e ®
Model fusion <€ ,\.“/ < ‘

Verified

models Mvs

' ®Model
@Getting models v verification ®
consensus
Q (®Task registration
S CEREEEEE T >
Pre-trained
To
models
Blockchain (DData
® registration
@Data
Retrieval ® ®
.1 Data information L | @Getting task
—— l
Trusted Task list Trs

database

Figure 5. The process of collaborative training of the model based on blockchain.

To elaborate on Fjtepntion, 1 is taken to be 3, i.e., 3 pretrained submodels are fused,
as shown in the corresponding framework for the Attention Layer in Figure 6. Naturally,
the present architecture can also be very easily extended to scenarios where 7 is greater than
3. The merged feature map E contains feature information extracted from all submodels,
and the global feature information is embedded in the vector T (T € R*!1*1) by using
global average pooling, as shown in Equation (12). After the above steps are completed,
the vector T is fed to the fully connected layer fc, which adaptively fuses the features
further. In addition, to reduce the model computation, the number of fc neurons is set to 4
<o)

S oY EG))

HxW
D = fe(T) (13)

T = AvgPool (E) = (12)

The global feature information is further extracted by vector D. Subsequently, a soft
attention mechanism is introduced in order to calculate the fusion weights of the features
extracted by the different submodels. Corresponding to the three pretrained submodels,
the fully connected layer fc connects each of the three fully connected layers, i.e., the three
branches of the model: fc_1, fc_2, fc_3. Finally, the output vectors of the different fully

Future Internet 2024, 16, 6

16 of 33

connected layers are normalised by the softmax function to generate the feature attention
vectors wl, w2 and w3. The number of neurons in fc_1, fc_2 and fc_3 are all set to C to
recover the vector dimension, w1, w2 and w3 € RE*1x1;

(wl, w2, w3) = softmax(fc_1(D), fc_2(D), fc_3(D)) (14)

Fully Connected
Feature Extractor Output Layer
Layer
Feature Attention
Map Layer

b \ :
" N A [|
j U 4 h L7 J
i ; | . 1
i D ; ’,' '
? e e K Weighted Feature Maps
H a H :

4 (© concatenate

'
P element-wise add]

) element-wise product

Weighted
Feature Maps |

Figure 6. Model fusion and fine tuning: feature-fusion method based on the attention mechanism.

In the above calculation step, the weight vectors of the features extracted by the
different submodels are obtained through the application of feature adaptive fusion and
soft attention, and then the global features V' can be calculated from Equations (15) and (16),
Vi,V € ROXHXW;

n

Vi = w; x Ei(} w; =1) (15)
i=1
V=Vi+W+Vs (16)

In summary, the proposed method models the association between features extracted
from different submodels explicitly based on an attention mechanism and provides accurate
guidance for model fusion through the adaptive calculation of feature weights.

4. Formal Security Analysis of Smart Contracts

Smart contracts act as automated protocols with inherent execution conditions and
execution logic that define and guide distributed collaboration in a trustworthy and fair
manner. The security of smart contracts is crucial for the application of the method proposed
in this paper in collaborative learning. We use Coloured Petri Nets (CPNs) [32] to implement
the formal modelling and verification of smart contracts to prove that they satisfy the
expected trustworthiness attributes. In this section, attributes are modelled for smart
contracts related to collaborative-learning mechanisms, and the hierarchical CPN model

Future Internet 2024, 16, 6

17 of 33

is constructed. We then describe the design of the formal model and verify the degree to
which its attributes are satisfied by using a simulation, state space and Model Checking.

4.1. Preliminary
4.1.1. Formal Concepts for CPN

The CPN can be described and defined by a nine-tuple, i.e., CPN=(P, T, A,Y, V,C,
G, E, I). P is the Place Set, T is the Transition Set and A is the Arc Set. The set of the three
forms the CPN model infrastructure and satisfies the definiion AC P x TUT x P. } is
the colour set of the CPN model, defining the data structure and type of the token in the
model. V is the Variable Set, any set of variables v € V in the model satisfies the definition
Type[v] €). Cis a colour set definition function that specifies the colour set for the token
contained in each place of the model. G is the guard function of the transition, defining the
defensive expression of the transition, whose return value is of Boolean type and is used to
determine whether the transition can be fired or not. E is an arc expression function that
specifies an expression for each directed arc in the model. I is an initialisation function that
specifies the initial state of the model.

4.1.2. CPN-Based Formal Modelling and Verification

Based on the theory of Coloured Petri Nets and the CPN Tools [33], the simulation,
state space analysis and Model Checking of CPN models can be achieved, and the formal
verification of CPN models can be completed by the above methods. The simulation execu-
tion implements interactions with the model and automatic model-simulation execution.
The state space tool automatically generates a reachable graph of all states of the model,
based on which the ASK-CTL and CPN ML [34] languages are used to implement Model
Checking and determine how well the model satisfies the desired attributes.

4.2. Attribute Modelling and the Top-Layer Model Design
4.2.1. Modelling Smart Contract Attributes

Smart contracts related to collaborative-learning mechanisms are defined as three
types of functional modules that implement role-authority management, trusted database
construction and collaborative task management and incentive allocation. Based on the
above-mentioned functionalities and security guarantees, the smart contract model should
satisfy the following attributes in order to ensure its trustworthiness:

Attribute 1: Collaborative nodes must be authorised by the smart contract to par-
ticipate in collaborative learning. The smart contract assigns different authorities to col-
laborative nodes according to their roles and can immediately restrict their collaboration
authority when they behave maliciously.

Attribute 2: collaborative nodes must meet the conditions specified by the smart
contract restriction function to perform on-chain operations.

Attribute 3: consensus on model verification requires all model verifiers to participate,
and the task-management contract creates incentive contracts for collaborative tasks only
when consensus is reached.

Attribute 4: The smart contract can initiate trust arbitration for model verifiers. If more
than half of the task participants believe that they are suspected of malicious behaviour,
the smart contract shall remove their model-verifier role authority.

4.2.2. Top-Layer Model Design

We use a hierarchical modelling approach to build a two-layer CPN model for smart
contracts, with the top-layer model shown in Figure 7. The top-layer model models the be-
haviour of each of the four aspects of smart contracts, namely role-authority management,
role-authority validation, model-validation consensus and model-validator trust arbitration,
represented by four submodules: the Authority layer, Validation layer, Consensus layer
and Arbitration layer. The top-layer model consists of nine places, with admin denoting Su,
which is responsible for authorising collaborator nodes, creating model-verifier trust arbi-

Future Internet 2024, 16, 6

18 of 33

tration and overseeing the model-verification consensus. Co_Info and Verifiers_Info denote
the collaborators (To and Tp;) to be authorised and the model verifiers to be authorised,
respectively. Co_nodes and V_nodes correspond to the list of authorised collaborators and
authorised model verifiers, respectively. The Validation layer models the smart contract
and requires the restriction function, so Collaborators and Verifiers denote the collabora-
tors and model verifiers operating in the request chain, respectively, and Collaborators_v
and Verifiers_v denote the collaborators and model verifiers of operations in the request
chain, respectively.

'0x2001",0,0,"col") ++

1
1°("0x2002",0,0,"co2") ++
1" ("0x2003",0,0,"co3")

1°("0x3001",0,0,"v1",80)++
Verifiers_Info)1'("0x3002",0,0,"v2",75)++
1°("0x3003",0,0,"v3",70)

VPACK

("0x1001",1,1,"admin")

ust Arbitration

~

Authority Management

'0x2001","model1")++ U-L1ST

("
1°("0x2002","model2") ++
1" ("0x2003","model3")

Collaborators_v

Task Consensus

PPACK —
1°("0x3001",80)++ Consgnsus
1°("0x3002",75)++
1°("0x3003",70)

VMAP

VMAP

Figure 7. The top layer of CPN model.

4.3. Design and Analysis of Authority Layer and Validation Layer
4.3.1. Formal Modelling

The Authority layer model is the bottom implementation of the authority-management
substitution transition, which models the role-authority-management function. As shown
in Figure 8, the model contains a total of 17 places and 10 transitions, with five of the
port places connected to the top-layer CPN model. The places Ulnfo and VInfo denote
the collaborators and model verifiers to be authorised, respectively, and C_list and V_list
are the lists of collaborators and model verifiers that have been authorised, respectively.
Collaborator permissions are modelled as a quadruplet (UAdd, URole, UStatus and Ulnfo)
with the collaborating node’s Ethernet address, node role, node-identity status and node
information overview, respectively. The model verifier authority is modelled as a five-tuple
(UAdd, URole, UStatus, Ulnfo and V_Credit), with the first four items of authority informa-
tion being the same as the collaborator and the fifth item being the model-verifier credibility
value. Therefore, we will introduce the places and transitions of the Authority layer in
terms of the model-verifier authority-management process, without going into the rest of
the content. The change Init_V models the collaborative node information-initialisation
behaviour, modifying the node-identity status from pending review to legal, and V_Auth
models the smart contract assignment of node role-authority behaviour, modifying the node
role from pending assignment to model verifier. The places V_Nodes and Co_Verifier denote
model verifiers before and after the role-authority assignment, respectively. The place
v_times denotes the number of times the smart contract presets role-authority assignment
to limit the supervisor’s authority assignment behaviour. The transition V_As adds model
verifiers that have been assigned collaborative node role authority to the list V_Iist and also
records the corresponding authority information to the place v_node. When a model verifier
behaves suspiciously, the Su can restrict its role authority through the AMC. The transitions
Cancel_V and Deau_V model the behaviour of the AMC restricting the authority of a model
verifier, and the places cancel_v and V_Malicious denote a malicious model verifier with its
corresponding suspicious behaviour, respectively.

Future Internet 2024, 16, 6 19 of 33
UPACK
cancel_v Cancel _V
(= if #2 vpack=3 -
VPACK then 1" vpack A
else empty
m2
UPACK m vpack
i if #2 upack=2 i
o then 1 upack V_Malicious
upack else empty M_Act (#1 vpack,0,0\:4 vpack,0)
v_user
(#1 upack,0,0,#4 upack) -
VPACK A
vpack
rm (#1 vpack,
i #5 vpack) v_addlist
rm (#1 upack) (add,r,s+1,i,c)
u_addlist VPACK v_addlist
(add,r,s,
V_LIST
¢ then v_addlistA ™ v_addlist
else u_addlist”~[add INT —ddli -
- ladd] (add,r+2,s,i) (add,r+3,5,i,c) else v_addlist*~[(add,c)]
(add,r,
add,rs,i add,r,s,i add,r,s,i,c s,i,C
- {) ,_C,As < {) Co_learner Co_verifyer ¢)) J

L=

UPACK VPACK

Figure 8. The Authority layer of CPN model.

The Validation layer is the bottom implementation of the Authorisation Validation
substitution transition, which models the role-authority-validation function in smart con-
tracts. As shown in Figure 9, the transition Validation_C models the collaborator-authority-
validation behaviour, which is achieved by determining whether a collaborator belongs
to the list of legitimate collaborators. The place of require_1 indicates the collaborator re-
quest, and the place of right_1 indicates the result of the smart contract authority-restriction
function, which returns “access” if it passes the authority verification; otherwise, it returns
“no acces”. The transitions Validation_C and Validation_U together represent the authority-
validation behaviour, where Validation_C determines whether the model verifier requesting
an on-chain operation belongs to the list of legitimate verifiers, Validation_U determines
whether the corresponding model verifier meets the credibility threshold requirements
and the places require_2 and right_2 represent the results returned by the model-verifier on-
chain operation request and the smart contract authority-restriction function, respectively.

3 access

if mem u_addlist (#1 ppack)
then 1°"access"
else 1" "no access"

Require STRING

u_addlist
require

ppack
Collaborators3) m T k\ Collaborators_v
% if mem u_addlist (#1 ppack)

Validation_C
then 1" ppack
PPACK else empty PPACK

if (#2 vmap) > 60
then 1'vmap
else empty

Validation_V Validation_U

if (#2 vmap) > 60
then 1" "access"
else 1" "no access"

require

3" access
VMAP Require STRING

Figure 9. The Validation layer of CPN model.

4.3.2. Formal Verification

To verify the degree of model-attribute satisfaction, based on the Authority and
Validation layer models, we set the initial marking of the top-layer model as My and use
the model verifier v1 as an example to execute the authority-management and verification
process by using the simulation tool as follows:

Future Internet 2024, 16, 6

20 of 33

Step1 Myl[lnit_V>My, Init_V transition fired and contract status is converted from My to
Mj. At this point, E(VInfo, Init_2) <add, 1, s, i, c>=1'(“0x3001", 0, 0, “v1”, 80). That
is, the arc pointing to the Init_V transition binds the authority information of the v1
to be authorised. After the Init_V transition is fired, the v1 status is updated to the
legal status.

Step2 M;[V_Auth>M;, V_Auth transition fired and contract status is converted from M;
to My. At this point, E(V_Nodes, V_Auth) <add, r, s, i, c>= 1'(“0x3001”, 0, 1, “v1”,
80), E(v_times, V_Auth) <times>= 1, E(admin, V_Auth) <upack>=1'(“0x1001", 1, 1,
“admin”). After the V_Auth transition is fired, the contract assigns the model-verifier
role authority to v1.

Step3 M;[V_As>Mj3, V_As transition fired and contract status is converted from M, to
Mj3. At this point, E(co_verifiers, V_As) <add, 1, s, i, c>=1"("0x3001", 3, 1, “v1”, 80).
After the V_As transition is fired, the contract adds v1 to the list of legitimate model
verifiers V_List.

Step4 Mz Validation_V>M,, Validation_V transition fired and contract status is converted
from M3 to My. At this point, E(Verifiers, Validation_V) >vmap>= 1’(“0x3001", 80),
E(V_nodes, Validation_V) <v_addlist>= 1’[(“0x3001”, 3, 1, “v1”, 80)]. It is used to
determine whether or not v1 has legal-role authority.

Step 5 My[Validation_U>Ms, Validation_U transition fired and contract status is converted
from My to Ms. At this point, E(verifier, Validation_U) <vmap>= 1'(“0x3001”, 80),
E(V_nodes, Validation_U) <require_2>= “access”. That is, the two arcs pointing
to the Validation_U transition bind the v1 operating on the application chain to
the application request, respectively. After the Validation_U transition is fired, the
contract determines whether the corresponding credibility value of v1 is greater
than the required threshold. Here, the threshold is met, and then v1 can perform the
on-chain operation it requested.

Step 6 Ms[Cancel_V>Mjg, Cancel _U transition fired and contract status is converted from
Ms to Mg. At this point, E(v_node, Cancel_V) <vpack> = 1'(“0x3001”, 3, 1, “v1”,
80). That is, the arc pointing to the transition Cancel_V binds information about the
model-verifier authority for possible malicious behaviour.

Step 7 Mg[Deau_V>Mg, Deau_U transition fired and contract status is converted from M5 to
Mg. At this point, E(V_Malicious, Deau_V) <m>= m2, E(cancel_v, Deau_V) <vpack>=
1'("0x3001”, 3, 1, “v1”, 80). That is, the contract confirms the presence of malicious
behaviour by verifier v1. After the Deau_V transition is fired, the contract removes
v1 from the list of legitimate verifiers and initialises its authority information to
(“0x3001”, 0, 0, “v1”, 0).

In the above steps, steps 1 to 3 simulate the process of the contract assigning the
verifier authority to model verifier v1, and steps 6 and 7 simulate the process of the contract
restricting the authority of v1 in the event of suspected malicious behaviour. The process of
contract authorisation and the restriction of permissions is atomic and requires supervisor
permissions when role permissions are assigned. The first attribute is therefore safeguarded.
Steps 4 and 5 simulate the contract authority-verification function. From the top-layer
model design and the above steps, it is clear that authority verification is a precondition for
nodes to apply for on-chain operations and that this verification process is not influenced
by external factors. Therefore, the second attribute is guaranteed.

4.4. Design and Analysis of Consensus Layer
4.4.1. Formal Modelling

The Consensus layer is the bottom implementation of the Task-Consensus substitution
transition, which models the consensus mechanism for model verification in collaborative-
learning mechanisms. As shown in Figure 10, the place Collaborators_v indicates the task
participants who have passed the authority verification, and the place Verifiers_v indicates
the model verifiers who have passed the authority verification. The transition Start Verifica-
tion indicates that the task participant has completed local pretraining model development

Future Internet 2024, 16, 6

21 of 33

and is ready to send the model to the model verifier to start the model-verification consen-
sus, and the places Init Flag and start consensus indicate that the smart contract initialises the
model-verification consensus flag bit. The transition Send Model indicates model transmis-
sion, the places participant and gas model the chain-transmission process and the place model
indicates that all model verifiers have received the model. The transition Distribute Key
models the encryption upload process, the place secret represents the encrypted random
numbers assigned to the different model verifiers and place verifier_s stores the model
verifiers and their corresponding random numbers. The transition verify models the smart
contract model-verification-consensus process, and the place accuracy represents the plain-
text verification results uploaded by a randomly assigned model verifier. The place match
records the number of results that have been matched, and the place mismatch records the
addresses of model verifiers that do not agree with the plaintext results. The transitions
consensus and No consensus indicate consensus reached and consensus failed, respectively.

consensus_flag
1°("0x1001",1,1,"admin") ~

e@ start concsensus consensus _flag
UPACK upack Flag
1°("0x2001","model1")++ |pack
1°("0x2002"."model2")++ p: consensus_flag
1°("0x2003","model3") I
opack c init
@Y collaborators_v Start Verification create incentive
- consensus_flag
n/Out}
PPACK Flag Flag
"model”
1°("0x3001",80)++ 50000 . .
1°("0x3002",75)++ . incentive
1°("0x3003",70) Participant ©)
Modellink |, " INT
9 Verifiers_v model
AN
3 ifresult v=ace t D0
n
VMAP Send Model then y+1 Y Consensus
vmap n=3
INT
#1 vmap # #1 v_secret 3 "model" Verify Y
data

y=3
) add
Distribute key @ if result_v=acc_f No Consensus
then 1" add

else empty UAdd
ModelLink
v_secret (#1 vmap, 22.y_secret) N "restart"
acc_t
(add,secret) et
@ D
SPACK SPACK Result
Fla
1°("0x3001",51)++ n+l 0 9
1°("0x3002"s2)++ ’(count (D)
1°("0x3003",s3)

n INT

Figure 10. The Consensus layer of CPN model.

4.4.2. Formal Verification

Let the model status shown in Figure 10 be M;, and the steps to perform a model-
validation consensus by using the simulation tool are shown in Table 4. Steps 6 to 9 indicate
that the smart contract will only judge consensus reached if all verifiers participate in
the model-verification consensus and the cryptographic verification results are consistent.
Thus, the third property is guaranteed. To further illustrate the correctness of the model
and simulation results, the Consensus layer is analysed next and verified by using the state
space tool and Model Checking. Execute the following status formula:

fun Consensus (“incentive”: STRING) : Node list =
PredAllNodes (fn n =>cf(‘‘incentive’’, Mark.Consensus’create_incentive 1 n) >0);
Consensus(“incentive”);

The above state formula is executed to find the state space node corresponding to the model
status after the consensus transition is fired, and the function is executed to return node
70. The path query “Reachable’ (1, 70)” finds the state space node path from the initial
marking to the model-verification consensus, and the result shows (1, 3, 11, 18, 23, 24, 28,
44, 58, 70). Therefore, after the transition consensus is fired, the model will only produce
one marking, consistent with the simulation execution results. Figure 11 shows the results
of the execution of the above state formula and query statement.

Future Internet 2024, 16, 6

22 of 33

Table 4. The transition enables sequence of model-verification consensus.

[72)

-

[}
la~]

Simulations

O O NOUTHk WN -~

M;[Start Verification>M;_ 1, smart contract initialises consensus flag.

M; 1 1[Send Model>M;_ 5, Tp sends pretrained models to all model verifiers.

M p[Send Model>M;_ 3, smart contracts specify the cryptographic number for model verifier v1.
M; 1 3[Send Model>M;_ 4, smart contracts specify the cryptographic number for model verifier v2.
M t4[Send Model>M;_ 5, smart contracts specify the cryptographic number for model verifier v3.
M 5[Verify>M; ¢, smart contract verifies the encryption verification result of v1.

My ¢[Verify>M; 7, smart contract verifies the encryption verification result of v2.

M y[Verify>M; g, smart contract verifies the encryption verification result of v3.

M;g[Consensus>M; g, smart contract determines that a model-verification consensus has been reached, modifies the

consensus flag bit and creates TIC.

<instream>:1.6-2.81 Warning: match nonexhaustive
“incentive" => ...

val Consensus = fn : STRING -> Node list

fun Consensus (Vincentive™:STRING) : Node list

= PredAllNodes (fn n => cf("incentive" ,Mark.Consensus'create_incentive 1 n) > 0)

val it = [70] : Node list val it = [70,69,68,67,66,65,64,63] :

Consensus("incentive™) ListDeadMarkings ()

A path from node 1 to node 70is: [1, 3, 11, 17, 23, 24, 28, 44, 58, 70]

val it = true : bool

Reachable'(1,70)

Figure 11. The execution results state formula and query statements of Consensus layer.

Node list

To further illustrate the status of the model when a consensus on model verification
is not reached, a status query statement “ListDeadMarkings()” is used to list all the dead
marks of the model, as shown in Figure 11. The results show that in addition to state node
70, state nodes 63 to 69 indicate the model status when a model-verification consensus has
not been reached. As shown in Figure 12, we listed the eight dead markings of the model
through the state space tool, and the results show that state nodes 63 to 69 are all in the
status of not reaching consensus on model verification, at which point the smart contract
records the addresses of model verifiers with inconsistent verification results (the token

values in the place mismatch).

63: 64:) &5:) 66:

Consensus'Collaborators_v 1: 1° ("0 Consensus'Collaborators_v 1: 1° ("C Consensus'Collaborators_v 1: 17 ("0 Consensus'Collaborators_v 1: 1° ("0x2001","n
1'("0%x2002","model2")++ 1°("0x2002 17("0x2002","model2")++ :

1" ("0x2003","model3") 17 ("0x2003' 17 ("0x2003","model3")

Consensus'admin 1: 1" ("0x1001",1, Consensus’admin 1: 1" (*0x1001",1, Consensus'admin 1: 1’ ("0x1001",1, Consensus'admin 1: 1" (*0x1001",1,1,"admin"
Consensus'verifiers_v 1: 17 ("0x300; Consensus'Verifiers_v 1: 1 ("0x300 Consensus'Verifiers_v 1: 1° ("0x300 Consensus'Verifiars_v 1: 1" ("0x3001",80)++

17("0%3002",75)++ 17 ("0x3002",75)++ 1°("0x3002",75)++ 17("0%3002",75)++

1°("0%3003",70) 1" ("0x3003",70) 1" ("0%3003",70) 1°("0%3003",70)
Consensus'start_concsensus 1: emi Consensus'start_concsensus 1: emj Consensus'start_concsensus 1: emf Consensus'start_concsensus 1: empty
Consensus'Participant 1: empty Consensus'Participant 1: empty Consensus'Participant 1: empty Consensus'Participant 1: empty
Consensus'model 1: empty Consensus'model 1: empty Consensus'model 1: empty Consensus'model 1: empty
Consensus'secret 1: empty Consensus'secret 1: empty Consensus'secret 1: empty Consensus'secret 1: empty
Consensus'verifier_s 1: empty Consensus'verifier_s 1: empty Consensus'verifier_s 1: empty Consensus'verifier_s 1: empty
Consensus'accuracy 1: 1° acc_t Consensus'accuracy 1: 1° acc_t Consensus’accuracy 1: 1” acc_t Consensus'accuracy 1: 1° acc_t
Consensus'gas 1: empty Consensus'gas 1: empty Consensus'gas 1: empty Consensus'gas 1: empty

Consensus'match 1: 1 0 Consensus'match 1: 1 1 Consensus'match 1: 1 1 Consensus'match 1: 1 2
Consensus'mismatch 1: 1°"0x3001" Consensus'mismatch 1: 1° "0x3001" Consensus'mismatch 1: 1°“0x3001" Consensus'mismatch 1; 1°"0x3001"
1°"0x3002"++ 1" "0x3002" 1°"0x3003" Consensus'restart_consensus 1: 1" “restart”
1 "0x3003" Consensus'restart consensus 1: 1° Consensus'restart consensus 1: 1° Consensus'create incentive 1: empty
|67: 68: 69: 70:

Consensus'Collaborators_v 1: 1° ("0 Consensus'Collaborators_v 1: 1° ("C Consensus'Collaborators_v 1: 1° ("0 Consensus'Collaborators_v 1: 1° ("0x2001","n
1°("0%2002","model2")++ 17 ("0x2002","model2")++ 1°("0x2002","model2")++ 17("0%2002","model2")++

17 ("0%2003","model3") 17 ("0x2003","model3") 17 ("0x2003","model3") 17 ("0x2003","model3")

Consensus'admin 1: 17 ("0x1001",1, Consensus'admin 1: 1" ("0x1001",1, Consensus'admin 1: 1° ("0x1001",1, Consensus'admin 1: 1° ("0x1001",1,1,"admin"
Consensus'Verifiers_v 1: 17 ("0x300! Consensus'Verifiers_v 1: 1 ("0x300 Consensus'Verifiers_v 1: 17 ("0x300 Consensus'Verifiers_v 1: 1" ("0x3001",80)++

17 ("0%3002",75)++ 17("0x3002",75)++ 17("0x3002",75)++ 17 ("0%3002",75)++

1" ("0x3003",70) 17 ("0x3003",70) 17 ("0x3003",70) 17("0x3003",70)
Consensus'start_concsensus 1: emp Consensus'start_conesensus 1: emj Consensus'start_concsensus 1: emp Consensus'start_concsensus 1: empty
Consensus'Participant 1: empty Consensus'Participant 1: empty Consensus'Participant 1: empty Consensus'Participant 1: empty
Consensus'model 1: empty Consensus'model 1: empty Consensus'model 1: empty Consensus'model 1: empty
Consensus'secret 1: empty Consensus'secret 1: empty Consensus'secret 1: empty Consensus'secret 1: empty
Consensus'verifier_s 1: empty Consensus'verifier_s 1: empty Consensus'verifier_s 1: empty Consensus'verifier_s 1: empty
Consensus'accuracy 1: 1°acc_t Consensus'accuracy 1: 1" acc_t Consensus'accuracy 1: 1° acc_t Consensus'accuracy 1: 1" acc_t
Consensus'gas 1: empty Consensus'gas 1: empty Consensus'gas 1: empty Consensus'gas 1: empty
Consensusmatch 1: 1 1 Consensus'match 1: 1 2 Consensus'match 1: 1 2 Consensus'match 1: empty
Consensus'mismatch 1: 17 "0x3002" Consensus'mismatch 1: 17 "0x3002" Consensus'mismatch 1: 17 "0x3003||Consensus'mismatch 1: empty

1" "0x3003" Consensus'restart_consensus 1: 1° Consensus'restart_consensus 1: 1]|Consensus'restart_consensus 1: empty
Consensus'restart consensus 1: 1° Consensus'create incentive 1: emol Consensus'create incentive 1: empflConsensus'create incentive 1: 1” “incentive"!

Figure 12. The results of smart contract model verification.

Future Internet 2024, 16, 6

23 of 33

4.5. Design and Analysis of Arbitration Layer
4.5.1. Formal Modelling

The Arbitration layer model is the bottom implementation of the trust arbitration
substitution transition, which models the act of a smart contract initiating trust arbitration
on a model verifier. As shown in Figure 13, the model has three port places connected to
the top-layer model, where the place Collaborator_v denotes the task participants involved
in trust arbitration, the place admin denotes the supervisor who created the arbitration
and the place V_Nodes denotes the list of legitimate model verifiers. The transition Create
Arbitration indicates that the supervisor creates trust arbitration for the model verifier
with suspicious behaviour via the smart contract, and the place s_verifiers indicates that
verifier. The place initiate indicates the act of a task participant proposing trust arbitration,
the task participants join trust arbitration through the transition Join Arbitration and the
transition verification indicates the verification and confirmation of the suspicious behaviour.
The places confidence vote and suspicious behaviour indicate that all task participants have
completed the suspicious-behaviour confirmation and subsequently start the trust arbi-
tration vote through variation voting. Furthermore, we model a counter via place limit
to ensure that each participant has only one chance to vote. The places distrust and frust
indicate that the participants do not trust or trust the model verifier, and the transition
Cancel_Au models the act of revoking authority. If only half or less of the participants
believe that the model verifier is behaving suspiciously, the smart contract reduces the
model verifier credibility value based on the number of untrusted votes, and the transitions
Reduce_C and Update model the behaviour, with the place temp indicating that the model
verifier information is temporarily stored.

PPACK

1'("0x2001","model1")++
Collaborators_v 9 1'("0x2002","model2")++
_Z 1°("0x2003","model3")

o

confidence
vote

Join Arbitration Verification

"susepct"

STRING

if vote=distrpist

Cancel_Au
—

n>=2

> Reduce_C

vmap O
vmap
N\ n>=2 andalso n2=0
("0x1001",1,1,"admin") verifier }& vmap] 17("0x3001",80)
VMAP
o@ < >| Create Arbitration (1)
[Tn/Out upack vmap
UPACK
v_addlist 1 [("0x3001",80)] v_addiist VMAP

~ J
rm vmap v_addlist v_addlist" A [(#1 vmap,#2 vmap-(3-n))]
V_LIS
rm vmap v_addlist v_addlist
vma vma
Update (_p@(P Y,

Figure 13. The Arbitration layer of CPN model.

4.5.2. Formal Verification

Let the model status shown in Figure 13 be M;, and the steps to perform the model-
verifier trust arbitration by using the simulation tool are shown in Table 5. According
to the corresponding design of the Arbitration layer, in addition to the above simulation

Future Internet 2024, 16, 6 24 of 33

results, if there are task participants who choose not to trust the model verifier, the smart
contract will reduce the reputation value of the model verifier or remove its verifier role
authority based on the trust arbitration results. The state space tool gives the simulation
results shown in Table 5 corresponding to the model state nodes as 33. We use the query
statement “Reachable’ (1, 33)” to find the state space node path from the initial marking to
the completion of trust arbitration, and the result shows (1, 3, 7, 10, 15, 18, 27, 31, 33). We
then used the query statement “ListDeadMarkings()” to list all the dead markings of the
model and the results showed (25, 28, 29, 32, 33). From the previous analysis, it can be seen
that the four dead markings except state node 33 should be the case where there are task
participants who do not trust the model verifier, and to verify the correctness of the model
in this case, the following CPN ML status formula is executed:

fun Cancel (v_addlist: V_LIST) : Node list = Pred AlINodes (fn n =>cf([], Mark. Arbitration’V_Nodes 1 n) >0);

Cancel([]);

fun Reduce(v_addlist:V_LIST) : Node list = Pred AllNodes (fn n =>cf([(“0x3001", 79)1, Mark. Arbitration’V_Nodes 1 n) >0);
Reduce([(“0x3001"”, 79)]);

The Cancel function indicates that more than half of the task participants believe that the
model verifier is behaving suspiciously, and the Reduce function indicates that only half
or less of the task participants choose not to trust the model verifier. Figure 14 shows the
results of the execution of the above query statement and status formula, with the Cancel
function returning a list of nodes (25, 28, 29) and the Reduce function returning a list of
nodes (32), showing that there were no unexpected error dead markings.

Table 5. The transition-enabled sequence of model-verifier trust arbitration.

Step Simulations

O IO U= WN -~

M;[Create Arbitration — M; 1], smart contract creates trust arbitration.
M; 1 [Join Arbitration — M, 5], task participants participate in the vote of confidence in arbitration.
ivo|Verification — M, 3], task participants confirm suspicious behaviour of the model verifier.

i+3[Voting — M 4], task participant 1 selects trust model verifier.

ir4|Voting — M, 5], task participant 2 selects trust model verifier.

5| Voting — M, 4], task participant 3 selects trust model verifier.

iv6|Reduce_C — M, 7], smart contract adds model verifier with updated credibility value to list.

[

M
M
M
M
M
M, 7[Update — M;, g], smart contracts remove old model verifier information from the list.

A path from node 1 to node 33 is: [1, 3, 7, 10, 15, 18, 27, 31, 33]
val it = true : bool

Reachable'(1,33)
val it = [33,32,29,28,25] : Node list

ListDeadMarkings()

val it = [29,28,25] : Node list | val it = [32] : Node list

Cancel([1) Reduce([("0x3001",79)])

Figure 14. The execution results of status formula and query statement of Arbitration layer.

As shown in Figure 15, we used the state space tool to list all the state node information
corresponding to the dead markings. The results show that state nodes 25, 28 and 29 are
the cases where more than half of the task participants have chosen not to trust the model
verifier vl. The smart contract removes the v1 verifier role from the list of legitimate
verifiers. State node 32 indicates that only one task participant has chosen not to trust v1,
and the corresponding information for v1 is updated to (“0x3001”, 79). State node 33 is
where all task participants choose to believe that there is no suspicious behaviour in v1,
and this result is consistent with the simulated execution results in Table 5. In summary,

Future Internet 2024, 16, 6

25 of 33

the smart contract can complete trust arbitration as designed, only removing its verifier role
authority if more than half of the task participants choose not to trust the model verifier.
The fourth attribute is therefore guaranteed.

=k 28: 29:

Arbitration's_verifier 1: emg Arbitration's_verifier 1: emj Arbitration's_verifier 1: emp
Arbitration'Collaborators_v Arbitration'Collaborators_v Arbitration'Collaborators_v
17 ("ox2002","model2")++ 17 ("0x2002","model2")++ 1 ("0x2002","model2")++
17 ("Ox2003","maodel3") 17 ("O0x2003","model3") 17 ("0x2003","model3")
Arbitration'admin 1: 17 ("Ox Arbitration'admin 1: 1" ("0x Arbitration'admin 1: 1" ("0x:
Arbitration'verifier 1: empty Arbitration'verifier 1: empty Arbitration'verifier 1: empty
Arbitration'confidence_vote Arbitration'confidence_vote Arbitration'confidence_vote
Arbitration'suspicious_behz Arbitration’'suspicious_beh: Arbitration'suspicious_beha
Arbitration’limit 1: empty Arbitration’limit 1: empty Arbitration'limit 1: empty
Arbitration'distrust 1: empt Arbitration'distrust 1: empt Arbitration'distrust 1: empty
Arbitration'trust 1: 1° 0 Arbitration'trust 1: 1° 0 Arbitration'trust 1: 171
Arbitration'initiate 1: empty Arbitration'initiate 1: empty Arbitration'initiate 1: empty
|Arbitration’vV_Users 1: 1" [] Arbitration’v_Users 1: 1" [] Arbitration'v_Users 1: 1" []}
32: 33:

Arbitration's_verifier 1: empty Arbitration's_verifier 1: empty
Arbitration'Collaborators_v 1: 17 ("0x200! Arbitration'Collaborators_v 1: 1 ("0x200:
17 ("ox2002 odel2")++ 17 ("Oox2002","model2")++

1° ("Ox2003 odel3") 17 ("Ox2003","model3")

Arbitration'admin 1: 17 ("0x1001",1,1,"ad Arbitration'admin 1: 1" ("0x1001",1,1,"ad

Arbitration'verifier 1: empty Arbitration'verifier 1: empty
Arbitration'confidence_vote 1: 1" "susepc Arbitration'confidence_vote 1: 1”7 "susepc
Arbitration'suspicious_behavior 1: empty Arbitration'suspicious_behavior 1: empty

Arbitration’limit 1: empty Arbitration’limit 1: empty
Arbitration'distrust 1: 171 Arbitration'distrust 1: 1° 0
Arbitration'trust 1: empty Arbitration'trust 1: empty
Arbitration'initiate 1: empty Arbitration'initiate 1: empty

Arbitration'v_Users 1: 1" [("0x3001",79)]

Figure 15. The execution results of status formula and query statement of Arbitration layer.

5. Experiment and Case Study

In this section, we verify the usability of TDLearning. After the mechanism was
deployed, model-fusion validation and collaboration cases were presented. The experimen-
tal results demonstrate that the mechanism can provide a trusted and fair collaborative
infrastructure and effectively aggregate dispersed data resources to develop global models.

5.1. Platform

Firstly, we used Ganache-cli to simulate a remotely accessible private Ethereum
blockchain. Secondly, the smart contract was developed by using the Solidity language
and compiled and deployed by using the Truffle framework. Finally, we implement the
interaction with the smart contract through the Node.js and Web3.js languages. The com-
putational tasks in collaborative learning are performed in Python with the PyTorch deep
learning framework, and pretrained models are stored by using IPFS.

5.2. Model-Fusion Validation
5.2.1. Experimental Scenario Setup

To aggregate the value of dispersed data resources, the collaborative-learning mecha-
nism uses a model-fusion method based on feature fusion to achieve collaborative model
training and proposes the use of an attention mechanism to precisely guide the model-
fusion process. In order to verify the effectiveness of this mechanism for collaborative
model training, a collaborative task based on the MNIST [35] dataset and the CIFAR10 [36]
dataset is published by the task owner, and the global model classification accuracy is used
as the evaluation index to analyse and evaluate the effectiveness of model fusion. The ex-
periment set up one task owner and four task participants for a total of five collaboration
nodes, with the collaboration goal of improving the global model accuracy. The structure
of the pretrained model used by the collaborative nodes and the training parameters are
shown in Table 6. Based on the differences in data distribution between collaborating nodes,
the following three types of collaboration scenarios are experimentally set up to analyse
the adaptability of the model-fusion approach to different data distributions.

Scenario A: The data distribution in this scenario is shown in Table 7, with each node’s
local data being independently and identically distributed.

Scenario B: The distribution of data in this scenario is shown in Table 8, where all four
task participants had data samples from only some of the categories but the same amount
of data from different labels.

Future Internet 2024, 16, 6

26 of 33

Scenario C: In this scenario, the task owner has the same data as in the previous two
scenarios, and the distribution of the task participants” data is shown in Figure 16. The
horizontal axis in the figure represents the sample category, and the vertical axis represents
the number of samples.

Table 6. Pretrained model structure and training parameters.

CNN-MNIST

CNN-CIFAR10

Convolution layer 1
Pooling layer 1
Convolution layer 2
Pooling layer 2

Fully connected layer

Output layer
Optimiser
Learning rate
Batch size
Max local-training epochs

Max fine-tuning epochs

16 5 x 5 kernels

2 x 2 max pooling
325 x 5 kernels

2 x 2 max pooling
128 units (with ReLU activation)
Softmax

Adam

0.001

64

20

20

645 x 5 kernels

2 x 2 max pooling
64 5 x 5 kernels

2 x 2 max pooling
512 units (with ReLU activation)
Softmax

Adam

0.001

64

20

20

Table 7. Data distribution in scenario A (dataset: MNIST /CIFAR10).

Collaborative Nodes To Tp1 Tp2 Tp3 Tp 4
Amount 1000/10,000 600/3000 600/3000 600/3000 600/3000
Label {0,1,2,3,4,5,6,7,8,9}
Table 8. Data distribution in scenario B (dataset: MNIST /CIFAR10).
Collaborative Nodes To Tp1 Tp2 Tp 3 Tp 4
Amount 1000/10,000 600/3000 600/3000 600/3000 600/3000
Label {0,1,2,3,4,5,6,7,8,9} {0,2,3,4,5,7} {1,2,4,7,89} {1,3,5,6,7,9} {0,3,4,5,6,8}
Tp1l Tp2 T3 Tp 4
200 200 200 200
150 150 150 150
100 100 100 100
0 | R T L B AR
. I [. I | . | . [
012345617829 1234586789 01234586789 012345¢67389
MNIST
1 T2 o4

01234567829

1000
800
600
400
200

0

1000

800

600

400

I 200

I il

01234567829

CIFAR10

Figure 16. Data distribution in scenario C.

T3
I‘l

01234567289

1000

800

600

400

200 | |
I A

01234567829

Based on the above experimental scenario, the method proposed in [26] (F-Concat)
is compared with the feature-fusion method based on the attention mechanism proposed
in this paper (F-Attention). Meanwhile, the Federated Average Algorithm (FedAvg) in
Federated Learning is introduced as a benchmark, and the five collaborating nodes in

Future Internet 2024, 16, 6

27 of 33

Federated Learning are trained with the following settings. In the MNIST dataset scenario,
the number of local training rounds for the collaborative nodes is 20 and the maximum
number of global model updates is 100, while in the CIFAR10 dataset scenario, the number
of local training rounds for the collaborative nodes is 20 and the maximum number of
global model updates is 50. In addition, the node-selection process is ignored in the global
model update process, i.e., all nodes are selected to complete the global model update each
time. For the processing of private data, the two steps are used. On the one hand, task
participants register their local private data by using a data-management contract, which
acts as a data node participating in collaborative-learning tasks. On the other hand, task
participants use a specified model structure to develop pretrained models locally by using
their private data.

5.2.2. Experimental Conclusions and Analysis

Based on the above experimental setup, the experimental results for the three types
of collaboration scenarios are shown in Figure 17. The vertical axis in the figure indi-
cates the average global model accuracy, and the horizontal axis indicates the number of
fusion models. As shown in the experimental results, the classification accuracy of the
global model developed by the proposed F-Attention improved steadily with the increase
in the number of pretrained models fused in different collaboration scenarios, which ef-
fectively completed the fusion of the pretrained models. The F-Concat performed the
worst, with degradation of the global model performance occurring in several scenarios,
i.e., the global model accuracy decreased as the number of global-model-fusion pretrained
models increased. The experimental results show that the attention mechanism used by
the F-Attention achieves accurate guidance for feature fusion and avoids the degradation
of the global model performance when a simple concatenation of features is performed.
At the same time, the experimental results also indicate that the Fed Avg has significant
advantages in scenario one where the local data of collaborative nodes is independently
and identically distributed. Its final global model classification accuracy is superior to the
model-fusion method based on feature fusion. In scenarios two and three with heteroge-
neous data distribution, the F-Attention and the Fed Avg method ended up with similar
global model classification accuracies. The advantage of F-Attention is the efficiency of
model fusion, which requires only one round of parameter interaction to complete the
model fusion with a time complexity of O(1), while Fed Avg requires multiple rounds of
parameter interaction with a time complexity of O(n), where n denotes the number of
rounds of parameter interaction. The effectiveness and usability of the methodology of the
paper are verified by evaluating the model-fusion technique.

5.3. Case Study

In order to fully analyse and verify the usability of TDLearning, a typical case is
implemented. A university released a collaborative task based on the F-MNIST [37] dataset,
and four research institutions had the type of data and decided to participate in a collab-
orative effort to develop a global model together through collaborative model training.
The university as the task owner has 2000 training samples containing 200 data samples
for each of the 10 categories from 0 to 9 and has all 10,000 test samples. The four research
institutions, as task participants, each have 2000 training samples, with heterogeneous
data distribution due to different data sources. Each of the five collaborative nodes used
the following pretrained model structure: a CNN with two 5 x 5 convolutional layers
(the first with 16 channels while the second with 32, each followed by a ReLU activation
and 2 x 2 max pooling), a fully connected layer with 256 units (with the ReLU activation
function) and a final softmax output layer. The model training parameters were set as
follows: learning rate: 0.001, batch size: 64, optimiser: Adam, max local training epochs: 30,
max fine-tuning epochs: 20.

Future Internet 2024, 16, 6

28 of 33
9.2 , 63
- - = - Task owner single model 62 - - - - Task owner single model
g 95.8 4 F-Attention . g 6 4 F-Attention
> —o— F-Coneat - —+— F-Concat
© 954 . g 60 .
5 FedAvg-100 . 7 £ FedAvg-50
3 e e g so - .
T o5 X - © -
S ~ 5 %8
=) k=3
8 946 g 57 R e
s $ s - ~
2 % @ —
]
G %42 74 S e
V4 55
o3g LTyt EEEAAAA ALY 54
1 2 3 a 5 1 2 3 a 5
Number of fusion models Number of fusion models
Scenario A: MNIST Scenario A: CIFAR10
95.8 | ! et
- = = - Task owner single model - - - - Task owner single model
- : 60
Losal ° FAtention g 4 F-Attention .
- —+— F-Concat > 59 —+— F-Concat «
g " = — g .
£ FedAvg-100 e .
5 e f vg-100 — S s FedAvg-50 N
8 e 8
c -~ £
- c
- 57 .
~§ 9.6 | ~ 2 e —
/ ® -
& / & 56 /
@ = _
® 942 / F e
=] /. oL
L
93.8 54
1 2 3 a 5 1 2 3 a 5
Number of fusion models Number of fusion models
Scenario B: MNIST Scenario B: CIFAR10
958 I Task ingle model 0
ask owner single mode N - - - - Task owner single model
- : "
Rogsa |l 4 F-Attention . N g 59 4+ F-Attention
—+— F-Concat .
> —+— F-Concat
Z e — g s "
S s | FedAvg-100 - g FedAvg-50
o A ~ 8
b - ® 57 A
/ c
2 o6 | 74 2 . 2
S T 56
&= &
2 oa / 8
3 y 4 &ss f T Toommsgtooooooooooooooooooooooos
e
93.8 54
1 2 3 a 5 1 2 3 4 5
Number of fusion models Number of fusion models
Scenario C: MNIST Scenario C: CIFAR10

Figure 17. Experimental results in three scenarios: in different collaboration scenarios, with the
increase in the number of fused pretrained models, the classification accuracy of the global model
developed based on F-Attention has been steadily improved.

5.3.1. Task-Information-Initialisation Phase

Steps (a) to (c) in Figure 18 represent collaborative node-identity registration and
authorisation, data registration and on-chain data retrieval, respectively. The prerequisite
for collaborative nodes to participate in collaborative tasks is the registration of identity
information and the assignment of role authority, i.e., their Ethereum account address is
tied to the authority information. Step (a) shows the task owner node-identity registration
and role-authority-assignment process, where the smart contract assigns the corresponding
role authority to the node after its identity information has been successfully registered.
As shown in this diagram, the assignment of authority triggers the UpdateNodeAuthority
event, indicating that the node has completed the authorisation process, and the authorisa-
tion process is recorded and interacted with in an event manner. The identity-registration
and authorisation process for the rest of the collaborating nodes is the same as that of the
node, after which each node has the authority to participate in the on-chain collaboration.

Step (b) shows the data-registration process for a research institution, where the smart
contract completes the data registration and returns the transaction record information.
As shown in this step, once the basic data information is filled in, the data are success-
fully registered and added to the data list via the DMC. The smart contract then creates
an inverted index for the data and initialises its data-quality evaluation. Subsequently,
the remaining three research institutions all completed data registration through the above
steps with data hashes of eh86m1, Yuthew and po8a7r, respectively. Step (c) shows the
data-retrieval process; after successful retrieval, the smart contract returns the data hash
value corresponding to the retrieval keyword and triggers the data-retrieval event.

Future Internet 2024, 16, 6

29 of 33

harry@harry:~/dapp$ node nodeRegister.js harry@harry:~/dapp$ node taskPublish.js

——————————————————— Node registration process------------------- (@)Please input your EOA: 6x9C051788E730b52170aC012075cA31a29955a132 (d)
Please input the task name: FMNIST classification
Please input your node name: College-IMU) R Please confirm that your task information is as follows:
Please input your node summary: Task Owner-FMNIST ldentity Registration { task reward benchmark: 1 ether,
task verifiers: [6xF9eB4b3926E67B2010a5Be189FaC4Cc6B13C5e99, OXAE1CCB6DAIACSOSFO
Node registration is successful! Please waiting for authorization ... ES5540E3AD3c07af42bB060, 0x649f95458026a847A1d4F5Chb340cAab340916871],
[0z1a7b, eh86m1, Suthew, po8a7r],
——————————————————— Authorization completed------------------- task summary: QnUgneDNfbP61hynZAQjvyB15GoQnLQRZEaGS1knUSOr } Task formally
Are you sure to publish this task? Y(y) / N(n): y blished
{ logIndex: 6, The task has been published---------<---=zcco- publishe
transactionIndex:
transactionHash: { logIndex:
'0x9f09b92944675ab7fd0cd0401a09ce30033183c43e7df9ebeb1715bb95986718", transactionIndex:
blockHash: transactionHash:
" Oxfba1539a152b1c782409F43779b33495071d4034 0ce6d918c858c675b22F", . 0x0104cBbB6FAb14a3b6861F33659aa66e1FBc152e69de8B6b3Saclc330eeff53e’ ,
blockNumber -4, blockHash:
address: 'Ox4F4f3b118966F55A60f75AeB1e257c57B30d71d5" , 0x391cb78427ff5efad6ac63F9076e27ddd5a40c85cdd7d44229b80531addeaess
type: 'mined', blockNumber :
removed: , address: 'Ox4F4f3b118966F55A60f75AeB1e257c57830d71d5" ,
id: 'log bSeace9o type: ‘'mined
event: 'UpdateNodeAuthority ', :s’:“’vfgq 9o3abras
Result ¢ Node Authority Update Event event: 'UpdateTaskitatus; Task Status Update Event
0': 'College-IMU', args:
"1': <BN: 2> Result(
20 ZBN: 1o o F classification’,
__length__: 3, LR hed,
nodeName: 'College-IMU', __lengt .) .
odeRate: ans oy TaskName: ' FMUIST classification’,
nodeStatus: <BN: 1> } } taskStatus: 'Published’ } }
harry@harry:~/dapps node dataRegister.js { logIndex: o,
rrrrrrrrrrrrrrrrrrr Data registration Process------------------- (b) transactionIndex: 0, (e)
transactionHash:
Please input your data name: FMNIST-1 Data registration ' 0xabbb99baecb8fbaec9634c9d7c77a51e7585498f31944176d385Fb9Fd931cbde’ ,
Please input your data hash: 6z1a7b blockHash:
Please input your data summary: FMNIST of Research Institution 1 '0xaed289e470c32e96f579afb8d12584e5F39e78119d83dd2decc8029aa7bd6716" ,
Please input your data size: 2000 blockNumber :

Please input your data label integrity(1-10): 8

Please input your node computing power(1-10): 10 address: 'Ox4F4f3b118966f55A60f75AeB1e257c57B30d71d5",

Data registration is successfull type: 'mined’, . |
transactionHash: ' 0x893e63c0567289eba7550e78e53c48c3d3e85bbbe28a2771b968c6FF47b1b911" removed:) Creating Task Incentive
e . . e . id: 'log_84dbid4e’', Contract Event
Please waiting for creating index and initializing data evaluation ... SVERTT— CTeaTeITCenTIvetaontracT
Index created successfully! Creating data indexes 3'95:1
transactionHash: '0x30b39 1fbf67d7c21e84dde27 ds7d7ees191cf83ddo1127c7’ | Result {)
Initialising data e n '0': 'FMNIST classification’,
Data initialization evaluation is completed!” Your initial data score: 0.44 1': 'Consensus
transactionHash: '0x22fa217b35b939e07726cb8a976 2824ebc8fd801b78f4a7972725ab5 2': '0x3E203FD41450D468B23F6f2701F5359c8E4493F5 ",
harry@harry:~/dapp$ node dataRetrieval.js '3': [<BN: 1b95>, <BN: 1ae2>, <BN: 1601>, <BN: 189a>],
Please input the search keyword: FMNIST (c) length__:
Searching for keyword :"FMNIST" = — EMTEC . '
Data retrieval successful! Retrieve on-chain data by keyword E:ztgi:ius “?1“ classification’,
The data retrieval result: [0z1a7b, eh86m1, Yuthew, po8a7r] A 2 : onsensus , » .
___________________ The retrieval event has been published---------------=--- incentiveContract: 'Ox3E203FD41450D468B23F6F2701F5359C8E4493F5",
conAccuracy: [<BN: 1b95>, <BN: lae2>, <BN: 1601>, <BN: 189a>] } }

{ logIndex: o, harry@harry:~/dapp$ node endTask.js

transactionIndex: 0, Please input the task name: FMNIST classification (f)
transactionHash:
0x384b6eObeddbcdf6ad25232153fF97cf89cd73775c9e09def8a373147Fc97704", 7" TT-i-tToemmo--- Verifier reputation update---------------oo-o
blockHash: Is arbitration of confidence initiated? Y(y) / N(n): n
0x05e32cf2722b8dcbcB8ab2acd0e2894858475cb9c413769b95950bdd26e80ce09 Verifier reputation values are updated as follows: N .
blockNumber : ’ { EaxraegagzyzsEg73z:;aasse:a&;fsgagcs?g;s?z, 51%, Updating model verifiers
. 'OxA2efB 9183f35 D966c849a82931E5A8: 0OXAE1CC86D49aC505FIESS540E3AD3CO7af42bBO6O, 81], bl "
idd:ssﬁ,l,,:',d 2efB42CEI1B3FISF7d7cDIE6CB49a82931ESAB2" [0x649954580262847A1d4F 5Cb340cAab340916871, 81] credibility rating
b d: false transactionHash: '0xe80c0c4049c441a255cb56dd91e9989ad489dab0a354f336027d8d3100feb6e2 "
ir(e,':"’vfﬁa 7bf825d5 Data Retrieval Event
L og Tbf82sds . e Data evaluation update-------------------
event: TLetResuTTT, Are there models that do not meet the task requirements? Y(y) / N(n): n
args: Are there collaboration nodes timeouts for submitting model? Y(y) / N(n): n
Result { . §) The data score for data "6z1a7b" is updated to: 0.656
0': ['0z1a7b’, 'eh86m1’, 'Suthew', 'po8a7r'], The data score for data "eh86mi" is updated to: 0.656 Updating data
—_length__: 1, The data score for data "Suthew" is updated to: 0.636 e e valiation
result: ['0z1a7b eh86m1 9uthew po8a7r' 11} The data score for data "poBa7r" is updated to: 0.646 q y

transactionHash: '0x67a09e7d668be9ce07719ab4a83627726a0c2f77dce9548a3f060c0497eccas7"
Figure 18. (a—c): task-information-initialisation phase, (d—f): task-execution phase.

In the information-initialisation phase of the collaborative task, each collaborative node
completed the registration of identity information and was assigned the corresponding
role authority by the smart contract. The four research institutes then uploaded local data
information to the blockchain as participants of the task, and the smart contract completed
data indexing and a data-quality evaluation, establishing a trusted on-chain database for
the collaborative task. In summary, the allocation of role authority and the establishment
of the trusted database marked the completion of the initialisation of the collaborative
task information.

5.3.2. Task-Execution Phase

After identifying the task participants and model verifiers involved in the collabo-
ration, the task owner invokes the task initialisation function of the task-management
contract to register the collaborative task with the blockchain and at the same time pledge
the task incentive to the contract. As in step (d), when the smart contract determines
that sufficient task incentives have been pledged, the task owner can officially release the
task, and the task status is updated to formal publication. After the collaborative task is
officially released, the task owner first sends the standard test set of the pretrained model
to all model verifiers in an on-chain encrypted manner. The task participants then send
the pretrained models to all model verifiers in an on-chain encrypted manner after they
have been developed, and the model verifiers evaluate the pretrained models with the
standard test sets and upload the model-verification results in an encrypted manner via the
TMC. When the TMC determines that a consensus on model validation has been reached,
it then creates a task-incentive contract for the task and publishes a corresponding event to
incentivise task participants and model verifiers with a preset incentive benchmark and
model-validation results as indicators, as shown in step (e).

After the task owner received the verified pretrained models, multiple models were
fused by using a model-fusion method based on feature fusion to develop a global model.

Future Internet 2024, 16, 6

30 of 33

Figure 19 shows the classification accuracy of the multiple pretrained models as well as
the global model, showing that the average classification accuracy of the global model
steadily increases as the number of fused models increases. At the end of the task incentive,
the supervisor invokes the authority-management contract and the data-evaluation contract,
respectively, to update the model verifier credibility value and the collaborative data-quality
evaluation associated with this collaborative task, as shown in step (f). Once the above
steps have been completed, the task is set to finished and this collaborative task is over.

90 83.53

®
o
T

70.61 68.82

o
T

62.98
56.33

o
T

Classification accuracy(%)
N W oA U o N
© © ©o ©
T T T T

[y
o
T

o

To Tpl Tp2 Tp3 Tpd
Collaborative Nodes
(a) Classification accuracy of pre-trained models

8 r 85.51

84.96 85.18

85 r 84.61

84 | 8353

83 r

82 r

Classification accuracy(%)

81

1 2 3 4 5

Number of fusion models

(b) Global model classification accuracy

Figure 19. Pretrained model and global model classification accuracy.

5.3.3. Trustworthiness and Fairness

Trustworthiness: Firstly, the smart-contract-based authority-management function
implements the access mechanism for distributed collaboration and completes the role-
based authority assignment. The binding of identity information and authority encourages
collaborative nodes to act honestly and avoid the influence of malicious nodes on collabo-
rative tasks. Secondly, the blockchain records the collaborative tasks and the collaborative
interactions between nodes, and its traceable and tamper-evident storage content strongly
restrains the possible malicious behaviour of nodes. Thirdly, smart contracts control the
process of collaborative tasks and complete the automatic incentive for collaborative nodes,
freeing them from reliance on trusted third parties. Finally, the introduction of events in the
mechanism further increases the trustworthiness of the collaboration mechanism. On the
one hand, events serve as signals for smart contracts to respond to and trigger collaboration
behaviours, describing the blockchain transaction behaviour at a specific or specified mo-
ment, and collaborating nodes can listen to the events to obtain the collaboration process
and execute the corresponding collaboration behaviours. On the other hand, the Ethereum

Future Internet 2024, 16, 6 31 of 33

platform records events in the form of logs, and collaborative nodes can retrieve the history
of collaborative actions through the logs.

Fairness: The collaborative-learning mechanism introduces a model-verification con-
sensus mechanism to evaluate the contribution of different task participants to the collabo-
rative task. Multiple model verifiers independently verify the pretrained models submitted
by task participants and reach a consensus on the verification through a smart contract
and finally incentivise the task participants with the model accuracy. The model-verification
consensus and task incentive are both accomplished by the smart contract, which protects
the interests of both the task owner and task participants and encourages more data nodes
to participate in the collaborative task.

6. Conclusions

To address the problems of the ineffective aggregation of dispersed data resources
and the low trustworthiness of existing distributed-collaborative-learning architectures,
we propose TDLearning. The mechanism uses blockchain as the distributed collabora-
tive environment, and smart contracts define and encapsulate distributed collaborative
behaviours, relationships and specifications. At the same time, based on the smart contract
collaboration architecture and transfer learning, a model-fusion method based on feature
fusion is proposed to realise distributed-model collaborative training and aggregate the
value of dispersed data resources to improve the model performance. We analyse the
trustworthiness of smart contracts by means of formal methods and analyse the usability
of the proposed mechanism by means of experiments and a case study. The experimental
results show that the mechanism provides a credible and fair collaboration infrastructure
and organises decentralised data resources to accomplish the collaborative training of
models to develop effective global models. In subsequent studies, we would combine
and compare with other blockchain technologies to further improve the effectiveness of
distributed collaborative learning. Meanwhile, the application scenarios of the model
would be extended to verify the practicality of the architecture.

Author Contributions: Conceptualisation, J.L., X.H. and K.L.; formal analysis, J.L. and X.H.; method-
ology, J.L. and X.H.; supervision, K.L.; validation, X.H.; writing—original draft, X.H.; writing—review
and editing, J.L. and K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Natural Science Foundation of Inner Mongolia of
China (No. 2023ZD18); the Inner Mongolia Science and Technology Plan Project (No. 2020GG0187);
and the Engineering Research Center of Ecological Big Data, Ministry of Education.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Roh, Y;; Heo, G.; Whang, S.E. A Survey on Data Collection for Machine Learning: A Big Data—AI Integration Perspective. IEEE
Trans. Knowl. Data Eng. 2019, 33, 1328-1347. [CrossRef]

2. Issa, W.; Moustafa, N.; Turnbull, B.; Sohrabi, N.; Tari, Z. Blockchain-based federated learning for securing internet of things: A
comprehensive survey. ACM Comput. Surv. 2023, 55, 1-43. [CrossRef]

3. Qammar, A.; Karim, A.; Ning, H.; Ding, J. Securing federated learning with blockchain: A systematic literature review. Artif.
Intell. Rev. 2023, 56, 3951-3985. [CrossRef] [PubMed]

4. Yang, F.; Abedin, M.Z.; Hajek, P. An explainable federated learning and blockchain-based secure credit modeling method. Eur. J.
Oper. Res. 2023, in press. [CrossRef]

5. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.y. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017,
Fort Lauderdale, FL, USA, 2022 April 2017; pp. 1273-1282.

6. Li, T, Sahu, A K,; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process.
Mag. 2020, 37, 50-60. [CrossRef]

7. Toyoda, K.; Zhang, A.N. Mechanism design for an incentive-aware blockchain-enabled federated learning platform. In Pro-

ceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9-12 December 2019;
pp. 395-403.

http://doi.org/10.1109/TKDE.2019.2946162
http://dx.doi.org/10.1145/3560816
http://dx.doi.org/10.1007/s10462-022-10271-9
http://www.ncbi.nlm.nih.gov/pubmed/36160367
http://dx.doi.org/10.1016/j.ejor.2023.08.040
http://dx.doi.org/10.1109/MSP.2020.2975749

Future Internet 2024, 16, 6 32 of 33

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Lyu, L.; Yu, H,; Yang, Q. Threats to federated learning: A survey. arXiv 2020, arXiv:2003.02133.

Guo, H;; Yu, X. A Survey on Blockchain Technology and its security. Blockchain Res. Appl. 2022, 3, 100067. [CrossRef]

Lin, S.; Zhang, L.; Li, J.; Ji, L.; Sun, Y. A survey of application research based on blockchain smart contract. Wirel. Netw. 2022, 28,
635-690. [CrossRef]

Wang, X.; Ren, X.; Qiu, C.; Xiong, Z.; Yao, H.; Leung, V.C.M. Integrating edge intelligence and blockchain: What, why, and how.
IEEE Commun. Surv. Tutorials 2022, 24, 2193-2229. [CrossRef]

Khan, A.A; Laghari, A.A.; Rashid, M.; Li, H.; Javed, A.R.; Gadekallu, T.R. Artificial intelligence and blockchain technology
for secure smart grid and power distribution Automation: A State-of-the-Art Review. Sustain. Energy Technol. Assess. 2023,
57,103282.

Shukla, A.; Lodha, N. Investigating the Role of Artificial Intelligence in Building Smart Contact on Blockchain. In Proceedings of
the 2022 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 9-11 March 2022; pp. 1-6.
Kim, H.; Park, J.; Bennis, M.; Kim, S.-L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279-1283.
[CrossRef]

Qu, Y,; Gao, L.; Luan, TH.; Xiang, Y;; Yu, S; Li, B.; Zheng, G. Decentralized privacy using blockchain-enabled federated learning
in fog computing. IEEE Internet Things J. 2020, 7, 5171-5183. [CrossRef]

Wang, Y.; Su, Z.; Zhang, N.; Benslimane, A. Learning in the air: Secure federated learning for UAV-assisted crowdsensing. IEEE
Trans. Netw. Sci. Eng. 2020, 8, 1055-1069. [CrossRef]

Lu, Y,; Huang, X,; Dai, Y.; Maharjan, S.; Zhang, Y. Blockchain and federated learning for privacy-preserved data sharing in
industrial IoT. IEEE Trans. Ind. Inform. 2019, 16, 4177-4186. [CrossRef]

Harris,].D.; Waggoner, B. Decentralized and collaborative Al on blockchain. In Proceedings of the IEEE International Conference
on Blockchain (Blockchain), Atlanta, GA, USA, 14-17 July 2019; pp. 368-375.

Lugan, S.; Desbordes, P.; Brion, E.; Tormo, L.X.R.; Legay, A.; Macq, B. Secure architectures implementing trusted coalitions for
blockchained distributed learning (TCLearn). IEEE Access 2019, 7, 181789-181799. [CrossRef]

Awan, S.; Li, F; Luo, B.; Liu, M. Poster: A reliable and accountable privacy-preserving federated learning framework using the
blockchain. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,
11-15 November 2019; pp. 2561-2563.

Miao, Y.; Liu, Z.; Li, H.; Choo, K.R; Deng, R.H. Privacy-preserving Byzantine-robust federated learning via blockchain systems.
IEEE Trans. Inf. Forensics Secur. 2022, 17, 2848-2861. [CrossRef]

Ma, C,; L, J.; Shi, L.; Ding, M.; Wang, T.; Han, Z.; Poor, H.V. When federated learning meets blockchain: A new distributed
learning paradigm. IEEE Comput. Intell. Mag. 2022, 17, 26-33. [CrossRef]

Bozkurt, A.; Ucar, H. Blockchain technology as a bridging infrastructure among formal, non-formal, and informal learning
processes. In Research Anthology on Adult Education and the Development of Lifelong Learners; Information Science Reference: Hershey,
PA, USA, 2021; pp. 959-970.

Alsobeh, A.; Woodward, B. Al as a Partner in Learning: A Novel Student-in-the-Loop Framework for Enhanced Student
Engagement and Outcomes in Higher Education. In Proceedings of the 24th Annual Conference on Information Technology
Education, Marietta, GA, USA, 11-14 October 2023; pp. 171-172.

Ramanan, P; Nakayama, K. Baffle: Blockchain based aggregator free federated learning. In Proceedings of the 2020 IEEE
International Conference on Blockchain (Blockchain), Rhodes Island, Greece, 2-6 November 2020; pp. 72-81.

Mendis, G.J.; Wu, Y.; Wei, J.; Sabounchi, M.; Roche, R. A blockchain-powered decentralized and secure computing paradigm.
IEEE Trans. Emerg. Top. Comput. 2020, 9, 2201-2222. [CrossRef]

Ouyang, L.; Yuan, Y.; Wang, F.-Y. Learning markets: An Al collaboration framework based on blockchain and smart contracts.
IEEE Internet Things]. 2020, 9, 4273-14286. [CrossRef]

Ouyang, L.; Yuan, Y; Cao, Y.; Wang, E-Y. A novel framework of collaborative early warning for COVID-19 based on blockchain
and smart contracts. Inf. Sci. 2021, 570, 124-143. [CrossRef]

Oktian, Y.E; Stanley, B.; Lee, S.-G. Building Trusted Federated Learning on Blockchain. Symmetry 2022, 14, 1407. [CrossRef]
Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.

Neyshabur, B.; Sedghi, H.; Zhang, C. What is being transferred in transfer learning? Adv. Neural Inf. Process. Syst. 2020, 33,
512-523.

Jensen, K.; Kristensen, L.M. Coloured Petri Nets: Modelling and Validation of Concurrent Systems; Springer Science & Business Media:
Berlin, Germany, 2009.

Jensen, K.; Kristensen, L.M.; Wells, L. Coloured Petri Nets and CPN Tools for modelling and validation of concurrent systems. Int.
J. Softw. Tools Technol. Transf. 2007, 9, 213-254. [CrossRef]

Cheng, A.; Christensen, S.; Mortensen, K.H. Model Checking Coloured Petri Nets-Exploiting Strongly Connected Components; DAIMI
Report Series; The Royal Danish Library: Copenhagen, Denmark, 1997; Volume 519, pp. 1-17.

LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed
on 20 November 2023).

http://dx.doi.org/10.1016/j.bcra.2022.100067
http://dx.doi.org/10.1007/s11276-021-02874-x
http://dx.doi.org/10.1109/COMST.2022.3189962
http://dx.doi.org/10.1109/LCOMM.2019.2921755
http://dx.doi.org/10.1109/JIOT.2020.2977383
http://dx.doi.org/10.1109/TNSE.2020.3014385
http://dx.doi.org/10.1109/TII.2019.2942190
http://dx.doi.org/10.1109/ACCESS.2019.2959220
http://dx.doi.org/10.1109/TIFS.2022.3196274
http://dx.doi.org/10.1109/MCI.2022.3180932
http://dx.doi.org/10.1109/TETC.2020.2983007
http://dx.doi.org/10.1109/JIOT.2020.3032706
http://dx.doi.org/10.1016/j.ins.2021.04.021
http://dx.doi.org/10.3390/sym14071407
http://dx.doi.org/10.1007/s10009-007-0038-x
http://yann.lecun.com/exdb/mnist/

Future Internet 2024, 16, 6 33 of 33

36. Krizhevsky, A. Learning multiple layers of features from tiny images. In Handbook of Systemic Autoimmune Diseases; University of
Toronto: Toronto, ON, Canada, 2009.

37. Xiao, H,; Rasul, K,; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Replacing the Central Server in Distributed Learning
	Recording Distributed-Collaboration Processes
	Distributed-Collaborative-Learning Mechanism Based on Blockchain Smart Contracts

	Method
	Architecture of TDLearning
	Task Flow of TDLearning
	Smart Contract Design
	Role-Authority Management
	Trusted Database Construction
	Collaborative Task Management and Collaboration-Incentive Allocation
	Collaborative Task Management and Collaboration Incentive Allocation

	Model-Fusion Method Based on Feature Fusion

	Formal Security Analysis of Smart Contracts
	Preliminary
	Formal Concepts for CPN
	CPN-Based Formal Modelling and Verification

	Attribute Modelling and the Top-Layer Model Design
	Modelling Smart Contract Attributes
	Top-Layer Model Design

	Design and Analysis of Authority Layer and Validation Layer
	Formal Modelling
	Formal Verification

	Design and Analysis of Consensus Layer
	Formal Modelling
	Formal Verification

	Design and Analysis of Arbitration Layer
	Formal Modelling
	Formal Verification

	Experiment and Case Study
	Platform
	Model-Fusion Validation
	Experimental Scenario Setup
	Experimental Conclusions and Analysis

	Case Study
	Task-Information-Initialisation Phase
	Task-Execution Phase
	Trustworthiness and Fairness

	Conclusions
	References

