
TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore 1
Embedded Systems 2

JING LIU, Hunan University and Wuhan University of Science and Technology 3
KENLI LI, Hunan University 4
DAKAI ZHU, The University of Texas at San Antonio 5
JIANJUN HAN, Huazhong University of Science and Technology 6
KEQIN LI, Hunan University and State University of New York 7

Cost savings are very critical in modern heterogeneous computing systems, especially in embedded systems. 8
Task scheduling plays an important role in cost savings. In this article, we tackle the problem of scheduling 9
tasks on heterogeneous multicore embedded systems with the constraints of time and resources for minimiz- 10
ing the total cost, while considering the communication overhead. This problem is NP-hard and we propose 11
several heuristic techniques—ISGG, RLD, and RLDG—to address the problem. Experimental results show 12
that the proposed algorithms significantly outperform the existing approaches in terms of cost savings.

Q1

Q2

13

CCS Concepts: 14

Additional Key Words and Phrases: Graph grouping, heterogeneous multicore systems, task scheduling, 15
time and resource constraints 16

ACM Reference Format: 17
Jing Liu, Kenli Li, Dakai Zhu, Jianjun Han, and Keqin Li. 2016. Minimizing cost of scheduling tasks on 18
heterogeneous multicore embedded systems. ACM Trans. Embed. Comput. Syst. 16, 2, Article 36 (November 19
2016), 25 pages. 20
DOI: http://dx.doi.org/10.1145/2935749 21

1. INTRODUCTION 22

Heterogeneous multicore designs have been widely employed in various types of 23
computing systems such as embedded and mobile devices, servers, and supercom- 24
puters. The reason is that heterogeneous designs can provide high performance and 25
flexibility, and at the same time promise low-cost and power-efficient implementations 26
[Yi et al. 2009]. Note that the majority of computing devices are embedded, and 27

The research is partially supported by International Science & Technology Cooperation Program of China
(2015DFA11240), the Key Program of National Natural Science Foundation of China (Grant Nos. 61133005,
61432005), the National Natural Science Foundation of China (Grant Nos. 61370095, 61472124, 61472150),
the Open Fundation of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time
Industrial System (2016znss26C), and the Natural Science Foundation of Hubei Province (2015CFB335).
Authors’ addresses: J. Liu, College of Information Science and Engineering, Hunan University, Changsha,
China; College of Computer Science and Technology, Wuhan University of Science and Technology; and
Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System,
Wuhan, China; email: Idealer@126.com; K. Li (corresponding author), College of Information Science and
Engineering, Hunan University, and National Supercomputing Center in Changsha, Changsha, China;
email: lkl@hnu.edu.cn; D. Zhu, Department of Computer Science, University of Texas at San Antonio, United
States; email: dzhu@cs.utsa.edu; J. Han, School of Computer Science and Technology, Huazhong University
of Science and Technology, China; email: han_j_j@163.com; K. Li, Department of Computer Science, State
University of New York, New Paltz, United States; email: lik@newpaltz.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1539-9087/2016/11-ART36 $15.00

DOI: http://dx.doi.org/10.1145/2935749

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

http://dx.doi.org/10.1145/2935749
http://dx.doi.org/10.1145/2935749

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:2 J. Liu et al.

embedded applications usually have timing constraints. Research has shown that for28
such application domains, heterogeneous multiprocessor systems can deliver higher29
performance at a given energy budget than homogeneous multicore solutions [Ter30
Braak et al. 2010]. Thus, we focus on heterogeneous multicore embedded systems in31
this study. To meet the increasing demands for higher performance, the number of32
integrated cores on a single chip continues to increase [Kong et al. 2012; Kim et al.33
2014]. Increasing core density in a chip leads to increasing costs, such as energy34
consumption, hardware cost, and electricity cost [Qiu and Sha 2009]. For example,35
the cost of electricity is between CNY400,000 and CNY600,000 a day in National36
Supercomputing Center in Guangzhou, China. The growing power causes more and37
more energy consumption, which results in increasingly high temperature [Shafique38
et al. 2015; Khdr et al. 2015; Mohaqeqi et al. 2014] and such increased temperature39
has a significant impact on multicore systems. It decreases transistor age, slows down40
signal transition speed, increases the rates of permanent failures and transient faults,41
and brings high cooling charge. Consequently, cost savings are important issues in42
multicore systems. This article concentrates on exploring scheduling algorithms to43
reduce cost in modern heterogeneous multicore embedded systems. Reducing time44
and saving cost are usually conflicting objectives. Therefore, how to save cost is a big45
challenge in modern heterogeneous multicore real-time systems.46

Recent heterogeneous multicore architectures integrate cores of different types into47
a chip. Cores of different types differ from each other in computation capability and cost48
consumption. Generally, a heterogeneous multicore computing system is comprised of49
a set of clusters connected to communication links. Each cluster consists of a group of50
cores of the same type. Chip vendors have released several kinds of heterogeneous mul-51
ticore clusters in 2014, such as Samsung Exynos 5422 and AllWinner A80 [Allwinner52
Technology 2014]. Communication links among clusters may have different capacities53
and costs.54

Task scheduling is to assign tasks of an application to processing cores and identify55
their execution order on the cores [Topcuoglu et al. 2002]. Different task scheduling56
schemes lead to different makespan and cost. The makespan considered in this article57
includes the computation time for executing tasks in a Directed Acyclic Graph (DAG)58
and the time used for exchanging data between tasks. The cost considered in this article59
is an abstract representation of various costs, such as energy consumption, money, etc.60
Therefore, task scheduling becomes one of the most important techniques for fully61
exploiting the potential of heterogeneous multicore systems.62

Numerous techniques have been proposed to minimize total cost of computing sys-63
tems in the past years [Wang and Yao 2011; Zhang et al. 2013; Ge et al. 2014; March64
et al. 2013; Arras et al. 2013; Huang et al. 2011; Qiu and Sha 2009; Zong et al. 2011].65
Studies in Wang and Yao [2011], Zhang et al. [2013], Ge et al. [2014], and March66
et al. [2013] focus on periodic tasks. The study in Arras et al. [2013] considers memoryQ367
constraints and aims at minimizing the makespan. The study in Huang et al. [2011]68
considers the reliability. The study in Qiu and Sha [2009] does not consider communi-69
cation. The study in Zong et al. [2011] does not consider time constraints.70

In this article, we study the problem of scheduling tasks represented by a DAG on71
heterogeneous multicore embedded systems while considering communication under72
limited time and resource. Hereafter, this problem is denoted by STCLTR. The goal is to73
find efficient task scheduling policies for all tasks in a dataflow graph with minimized74
total cost under limited time and execution resources. This work is an extension of our75
previous work [Liu et al. 2014], which does not consider scheduling. Since the problem76
addressed in Liu et al. [2014] is NP-hard and can be reduced to the STCLTR problem,77
the STCLTR problem is NP-hard as well. The problem in Liu et al. [2014] does not take78
resource constraint into account, and thus their proposed techniques are not applicable79
to the STCLTR problem.80

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:3

To solve the STCLTR problem, we propose three static heuristic algorithms. First, we 81
propose the ISGG algorithm to partition tasks of an application modeled by a DAG into 82
several groups, aiming at reducing communication overhead. Second, we propose the 83
RLD algorithm to solve the STCLTR problem. RLD computes a local deadline for each 84
task and determines the assignment of each task by defined cost-time ratio. Finally, 85
combining algorithms ISGG and RLD, we propose the RLDG algorithm to solve the 86
STCLTR problem. RLDG first uses ISGG to divide all tasks into a specific number of 87
groups, each group with a limited size. Then it adopts a method similar to RLD to 88
schedule each task. All tasks within a group are required to be executed on cores in the 89
same cluster. 90

Our main contributions are as follows. 91

—We propose the ISGG algorithm to partition all tasks of a DAG into several groups 92
which still form a DAG. The number of tasks in each group is restricted to a constant. 93

—We propose a novel scheduling algorithm RLD to solve the STCLTR problem. 94
—We propose another scheduling algorithm RLDG to solve the STCLTR problem by 95

combining ISGG and RLD. RLDG has higher time complexity than RLD, but it can 96
generate better solutions. 97

We conduct extensive experiments on synthetic benchmarks with various charac- 98
teristics and real benchmarks to test the effectiveness and efficiency of the proposed 99
algorithms. Experimental results show that the proposed algorithms can greatly reduce 100
cost compared with other existing techniques. For example, for synthetic benchmarks 101
whose ratios of communication to computation (CCR) are 0.5 under the first configura- 102
tion, RLDG can achieve 30.01% and 39.72% reductions in total system cost on average, 103
compared to two well-known scheduling algorithms, HEFT [Topcuoglu et al. 2002] and 104
DBUS [Bozdag et al. 2006], respectively. 105

The remainder of this article is organized as follows. Section 2 reviews the related 106
work. Section 3 describes models and defines the STCLTR problem studied in this 107
article. Section 4 gives a motivational example. Section 5 presents an improved safe 108
group graph algorithm. Section 6 proposes two heuristic scheduling algorithms to solve 109
the STCLTR problem. Section 7 evaluates and analyzes the proposed techniques by 110
comparing with other existing approaches. Section 8 concludes this article. 111

2. RELATED WORK 112

Researchers have developed plenty of methods to reduce cost in various computing 113
systems in the past decades. 114

Some focus on embedded systems. Studies in Wang and Yao [2011], Zhang et al. 115
[2013], and March et al. [2013] address scheduling algorithms for period tasks in em- 116
bedded systems. Ge et al. [2014] present a Reducing Context Switches Scheduling 117
(RCSS) algorithm based on preemption thresholds scheduling for real-time embedded 118
systems to decrease system energy consumption. They consider a set of independent 119
periodic or sporadic tasks. A communication energy-aware task mapping heuristic is 120
studied in Singh et al. [2010], however, task computation energy is not considered. 121
Singh et al. [2016] present a novel runtime trace analysis strategy to rapidly identify 122
the maximum throughput mapping to support a use-case while optimizing for through- 123
put and resource usage. However, they do not consider time constraint. Qiu and Sha 124
[2009] propose optimal algorithms for a tree-structural task model and heuristics for 125
a general task model on heterogeneous embedded systems with hard/soft time con- 126
straints. They do not consider communication and aim at minimizing cost. Addtionally, 127
Singh et al. [2013b] investigate numerous works on scheduling algorithms in embed- 128
ded systems. However, the majority of works are based on homogeneous systems. For 129
works based on heterogeneous systems, they differ from our work in one or more of 130

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:4 J. Liu et al.

three aspects: architectures, constraints, and goals, so that the techniques proposed in131
these works are not suitable to solve the problem studied in our work.132

Some are based on other computing systems. Zong et al. [2011] focus on scheduling133
parallel tasks on homogeneous clusters without considering time constraints. They134
propose two energy-aware duplication scheduling algorithms, EAD and PEBD, to bal-135
ance schedule lengths and energy savings by judiciously replicating predecessors of136
a task if the duplication can aid in performance without degrading energy efficiency.137
Xian et al. [2007] present an energy-aware scheduling algorithm based on EDF for ho-138
mogeneous multiprocessor systems that support the Dynamic Voltage and Frequency139
Scaling (DVFS) techniques with uncertain task execution time. They consider a set140
of independent, periodic, preemptive, and hard real-time tasks. Lee [2012] studies141
energy-efficient scheduling of independent and periodic real-time tasks on lightly142
loaded homogeneous multicore processors that contain more processing cores than143
running tasks. Han et al. [2015] consider the Voltage/Frequency Island (VFI)-based144
and DVFS-enabled multicore systems, and study both static and dynamic energy man-145
agement schemes for real-time tasks. Liu et al. [2011] deal with scheduling parallel146
applications on heterogeneous clusters, considering no time constraints. They propose147
an Efficient Energy-based Task Clustering Scheduling (EETCS) algorithm that con-148
serves power by judiciously shrinking communication energy consumption. Mishra149
et al. [2003] propose static and dynamic power management schemes to schedule a150
set of real-time tasks with precedence constraints executing on distributed systems.151
They consider preemptive scheduling and aim to save energy. Seo et al. [2008] propose152
two heuristic algorithms, dynamic repartitioning and dynamic core scaling, to sched-153
ule periodic real-time tasks on multicore processors with the Dynamic Voltage Scaling154
(DVS) technique. Kong et al. [2011] develop algorithms to determine a schedule for155
independent and real-time tasks on cluster-based multicore systems under time and156
operating frequency constraints. Singh et al. [2013a] present a DVFS methodology for157
streaming applications that contain actors having cyclic dependencies. Gerards and158
Kuper [2013] present a schedule for independent, frame-based, real-time tasks that159
globally minimizes the energy consumption by applying DVFS and Dynamic Power160
Management (DPM). Chen et al. [2014] present an energy optimization technique for161
scheduling periodic real-time tasks on multicore systems with optimal DFVS and DPM162
combination.163

DVFS is a popular technique in reducing energy consumption. Studies [Wang et al.164
2010; Xian et al. 2007; Gerards and Kuper 2013; Chen et al. 2014] all use DVFS to165
save energy. However, Shafique et al. [2013] point out that DVFS scaling potential is166
diminishing due to the shrinking gap between nominal and threshold voltages and the167
high overhead of voltage regulators in densely integrated chips with 100s of cores. Zong168
et al. [2011] also show that communication-intensive applications may decrease the169
benefits of DVFS. Thus, we do not consider the DVS, DVFS, or DPM techniques in our170
study. We address scheduling dependent tasks on heterogeneous multicore embedded171
systems considering communication, time, and resource constraints.172

3. MODELS AND PROBLEM DEFINITION173

In this section, we introduce the heterogeneous system model, the task model, and the174
problem to be studied in this article.175

3.1. Heterogeneous System Model176

The system model of heterogeneous multicore embedded systems adopted in this177
article is composed of a set of M connected, heterogeneous clusters, denoted by178
CL = {CL1, CL2, . . . , CLM}. These clusters are connected with each other through in-179
terconnects. Each cluster includes a finite number of cores, which means that tasks180

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:5

Fig. 1. An example of system model. (a) A system model with three heterogeneous clusters, each of which
has finite cores. (b) Values of communication time and cost for transferring unit data volume between cores
in (a).

will be executed with resource contention. Cores in the same cluster are identical, 181
while cores in different clusters are heterogeneous. Communication between cores 182
within a cluster passes through interconnects in the cluster. Communication be- 183
tween cores of different clusters passes through interconnects between clusters. Sup- 184
pose that cluster CLi contains ni cores and cores in cluster CLi are numbered as 185
clSi−1+1, clSi−1+2, . . . , clSi , where Si represents the total number of cores of clusters from 186
CL1 to CLi, Si = Si−1 + ni, S0 = 0, and 1 ≤ i ≤ M. Then the set CL can be rewritten as 187
CL = {cl1, cl2, . . . , clS1 , clS1+1, . . . , clS2 , . . . , clSM−1+1, clSM−1+2, . . . , clSM}. Figure 1(a) shows 188
an example of the heterogeneous system model, which consists of three heterogeneous 189
clusters. 190

In general, an application consists of multiple tasks. If a task vi needs the result com- 191
puted by a task v j (j �= i) and both vi and v j are executed on two cores, communication 192
is required between the two cores. 193

Different interconnects may present different communication capacities and prop- 194
agation delays, which also leads to different communication overhead. We define the 195
communication time for transmitting a unit of data through the interconnect from 196
core clp to core clq as a function UCT(clp, clq). We define the communication cost for 197
transmitting a unit of data through the interconnect from core clp to core clq as a 198
function UCC(clp, clq). In view of communication between cores within a cluster via 199
interconnects of the cluster and communication between cores of different clusters via 200
interconnects among clusters, the communication cost for transmitting one unit of data 201
between clusters is higher than that within a cluster and the communication time for 202
transmitting one unit of data between clusters is longer than that within a cluster. 203
The values of these two functions can be obtained by testing several sets of data sent 204
through communication links. Thus, we assume that the communication time and cost 205
for transmitting a unit of data are known in advance. Like other studies, we assume 206
that that the communication cost and time are negligible between tasks executing on 207
the same core. 208

Figure 1(b) shows an example of values of communication time and cost for transfer- 209
ring one unit of data between any two cores in Figure 1(a). For example, the value 3 in 210
the cell of column “UCT3” and row “cl2” shows that the communication time transfer- 211
ring one unit of data from core cl2 in cluster CL2 to core cl3 in cluster CL3 is three time 212
units. 213

3.2. Task Model 214

The target task model is a Directed Acyclic Dataflow Graph (DADFG). We use DADFG 215
to model tasks of an application to be executed on the target system described in 216
Section 3.1. A DADFG G = 〈V, E, D〉 is an edge-weighted DAG, where V = 217
{v1, v2, . . . , vN} is a set of nodes, E ⊆ V × V is a set of edges, and D is a set of edge 218

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:6 J. Liu et al.

Fig. 2. An example of DADFG. (a) A tree. (b) Values of execution time and cost for tasks in (a) on the system
model in Figure 1.

weights. Each node v ∈ V represents a task. Each edge (u, v) ∈ E represents the depen-219
dency relationship between node u and node v, indicating that task u should be finished220
before executing task v. We denote D(vi, v j) to be the data volume transferred from task221
vi to task v j . A task without any parent is called an entry task and a task without any222
child is called an exit task. We assume that a DADFG G has only one entry node and223
one exit node. If there is more than one exit (entry) task, they can be connected to a224
zero-cost pseudo exit (entry) task with zero-cost edges. Figure 2(a) shows an example225
of a DADFG.226

Due to the heterogeneity of cores, different types of cores have different computing227
capacities for a task and consume different cost. Let ET (vi, clp) be the execution time228
of task vi when it is assigned to core clp. Let EC(vi, clp) be the execution cost of task229
vi when it is assigned to core clp. Figure 2(b) shows the values of the execution time230
and cost of tasks in Figure 2(a) when these tasks are executed on the system model in231
Figure 1. For instance, the value located in column “ET2” and row “v3” indicates that232
the execution time of task v3 is three time units when it is assigned to core cl2 in cluster233
CL2; the value located in column “EC2” and row “v3” indicates that the execution cost234
of task “v3” is three units when it is assigned to core cl2 in cluster CL2.235

Every task in V must be assigned to a core in the system model as described in236
Section 3.1. We define a task assignment function A : V −→ CL. For ∀v ∈ V , we have237
A(v) ∈ CL which represents that task v is assigned to a core A(v) that belongs to the238
set CL. For example, A(v1) = cl3 indicates that task v1 is assigned to core cl3 of the set239
CL.240

Furthermore, we use functions CT ((u, v), (A(u), A(v))) and CC((u, v), (A(u), A(v))) to241
represent communication time and communication cost on an edge (u, v) under the242
task assignment function A, respectively. Since we focus on static task scheduling,243
functions CT and CC can be computed in advance for all interconnects between cores.244
We assume that communication cost and time between tasks assigned to the same core245
are negligible. Techniques proposed in this article can be applied to a computing system246
as long as functions CT ((u, v), (A(u), A(v))) and CC((u, v), (A(u), A(v))) are nonnegative247
and nondecreasing with an increasing number of tasks. In this work, we assume that248
communication time and cost through an edge are linearly proportional to the volume249
of data transferred on the edge, which is a reasonable assumption in practice. That250
is, function CT can be computed as D(u, v) × UCT(A(u), A(v)) and function CC can be251
computed as D(u, v) × UCC(A(u), A(v)).252

After that, we define the completion time (i.e., makespan) and the total cost executing253
a DADFG G = 〈V, E, D〉 under the system model addressed in Section 3.1 and a254
task assignment function A. Since G is completed only if its exit node is finished, the255
completion time of G is defined to be the actual finish time of its exit node vexit as shown256

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:7

in Equation (1): 257

makespan = AFT (vexit), (1)

where AFT (vexit) represents the actual finish time of vexit. The total cost for executing 258
G is the sum of the total execution cost of all nodes and the total communication cost 259
for data communication. Denote the total cost as C(G)A, which can be expressed as 260
Equation (2): 261

C(G)A =
∑
v∈V

EC(v, A(v)) +
∑

(u,v)∈E

CC((u, v), (A(u), A(v))). (2)

3.3. Problem Definition 262

The problem is defined as follows: Given a DADFG G = 〈V, E, D〉, a system model 263
consisting of a set of M heterogeneous clusters CL = {CL1, CL2, . . . , CLM}, each cluster 264
CLi (1 ≤ i ≤ M) with ni cores, and a time constraint L, the STCLTR problem is to find 265
a task assignment function A(v) for each task v ∈ V and identify the execution order of 266
all tasks on cores in clusters without violating task dependencies so that the total cost 267
CA(G) is minimized, while the time constraint L is guaranteed, that is, AFT (vexit) ≤ L. 268

In this article, since the STCLTR problem is NP-hard, we propose heuristic algo- 269
rithms to solve it. We propose a grouping algorithm ISGG to partition all tasks into 270
a number of groups, and two scheduling algorithms RLD and RLDG to generate near 271
optimal solutions for the STCLTR problem. 272

4. A MOTIVATIONAL EXAMPLE 273

Before presenting the proposed algorithms, we first show the effectiveness of our pro- 274
posed algorithms RLD and RLDG through an example. We use the example to illustrate 275
that task scheduling has an important impact on energy saving, assuming that the unit 276
of time is second (s) and the unit of energy is joule (J). 277

In the example, there are a total of five tasks that form a DADFG as shown in 278
Figure 2(a). These tasks are executed on the system model as shown in Figure 1. The 279
system model consists of three heterogeneous clusters CL1, CL2, and CL3. Figure 1(a) 280
shows the structure of these three clusters and Figure 1(b) shows values of communi- 281
cation time and energy consumption for transferring a unit of data between cores of 282
all clusters. We assume that the performance of cores in clusters CL1, CL2, and CL3 283
is decreased and their power consumption is decreased in sequence. Figure 2(b) shows 284
the values of execution time and energy consumption of all five tasks on the given 285
system model. The value beside each edge is the data volume transferred on the edge. 286

Figure 3 shows four different scheduling schemes for five tasks executing on the 287
given system model. In each scheduling scheme, the horizontal, the vertical axis, and a 288
rounded rectangle represent time, core, and a task, respectively. The head of a rounded 289
rectangle corresponds to the starting execution time of the task on its assigned core, 290
and the tail of a rounded rectangle corresponds to the finish execution time of the 291
task on its assigned core. A line with an arrow represents communication incurred 292
by two tasks residing on different cores. For example, in Figure 3(d), the line with an 293
arrow from the rounded rectangle labeled “v1” to the rounded rectangle labeled “v3” 294
represents communication between core cl2 and core cl3 incurred by data dependency 295
between task v1 on core cl2 and task v3 on core cl3. The head corresponds to the start 296
time of communication and the tail corresponding to the finish time of communication. 297

Among four scheduling schemes, the scheme (a) is obtained from HEFT [Topcuoglu 298
et al. 2002], where tasks v1, v2, v3, v4, v5 are executed in order on core cl1. The energy 299
consumed by the scheme (a) is (6 + 7 + 7 + 8 + 9)J = 37J, and the completion time is 300
6s. The scheme (b) is obtained from DBUS [Bozdag et al. 2006], consuming time of 5s 301

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:8 J. Liu et al.

Fig. 3. Four different scheduling schemes. (a) A schedule consuming 37J of energy and 6s of time; (b) a
schedule consuming 38J of energy and 5s of time; (c) a schedule consuming 33J of energy and 7s of time;
(d) a schedule consuming 18J of energy and 9s of time.

and energy of 38J, respectively. The scheme (c) is obtained from RLD to be proposed,302
consuming time of 7s and energy of 33J. The scheme (d) is obtained from RLDG to be303
proposed, consuming time of 9s and energy of 18J.304

This example reveals that different scheduling schemes will generate different re-305
sults and it is necessary to explore efficient scheduling algorithms for the STCLTR306
problem.307

5. AN IMPROVED SAFE GRAPH GROUPING ALGORITHM308

In this section, we present an improved safe graph grouping algorithm, for example,309
ISGG. ISGG is a static heuristic and based on the Safe Graph Grouping (SGG) algo-310
rithm proposed by Sun et al. [2014]. The differences lie in that we consider limited311
resource of processing cores and restrict the number of tasks in each group, while there312
are no such restrictions for SGG. The basic idea of ISGG is to choose a pair of nodes313
with the largest communication data size from the input DADFG to merge without314
forming any cycle. This operation is repeated on the newly formed DADFG after every315
merger until the required DADFG is obtained or no nodes can be merged.316

Before presenting ISGG, we introduce two binary operations ∨ and �, three matrices317
bA, bAx, and bA≥2, and a theorem.318

Definition 5.1 (Boolean Join ∨). Given two Boolean matrices A = (aij)n×n and B =319
(bij)n×n, define A∨ B = (cij)n×n and cij = aij ∨ bij . We have320

cij =
{

1, if aij = 1 or bij = 1, 1 ≤ i, j ≤ n
0, otherwise. (3)

Let A1 = (a1
i j)n×n, A2 = (a2

i j)n×n, . . . , An = (an
ij)n×n be n Boolean matrices, and their321

Boolean join can be defined as A1 ∨ A2 ∨ · · · ∨ An = (cij)n×n, where cij = a1
i j ∨ a2

i j · · · ∨ an
ij ,322

ak
ij ∈ Ak, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n. We have323

cij =
{

1, if ∃k, s.t. ak
ij = 1, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n,

0, otherwise (4)

Definition 5.2 (Boolean Product �). Given two boolean matrices A = (aij)n×n and324
B = (bij)n×n, define A� B = (cij)n×n and cij = (ai1 � b1 j) ∨ (ai2 � b2 j) ∨ · · · ∨ (ain � bnj). We325

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:9

have 326

cij =
{

1, if ∃k, s.t. aik = 1 and bkj = 1, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n
0, otherwise. (5)

Definition 5.3 (Boolean Adjacency Matrix bA). Given a DADFG G that contains n 327
nodes, the Boolean adjacency matrix bA of G is an n × n matrix, where the value of 328
each element aij ∈ bA is 0 or 1: aij = 1 if and only if there exists an edge from node vi 329
to node v j , 1 ≤ i, j ≤ n. 330

Definition 5.4 (Boolean x Matrix bAx). Given a DADFG G that contains n nodes, 331
the Boolean x matrix bAx (1 < x < n) of G is an n × n matrix, where the value of each 332
element ax

ij ∈ bAx is 0 or 1: ax
ij = 1 if and only if there exists at least one path of at least 333

x edges from node vi to node v j , 1 ≤ i, j ≤ n. We have 334

bAx = bAx−1 � bA,

ax
ij = (

ax−1
i1 � a1 j

) ∨ (
ax−1

i2 � a2 j
) ∨ · · · ∨ (

ax−1
in � anj

)
,

ax
ij ∈ bAx, ax−1

ik ∈ bAx−1, akj ∈ bA, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n.

(6)

Note that matrix bAx defined here is different from that defined in Sun et al. [2014]. 335

Definition 5.5 (Boolean ≥ 2 Matrix bA≥2). Given a DADFG G that contains n nodes, 336
the Boolean ≥ 2 matrix bA≥2 of G is an n × n matrix, where the value of each element 337

a≥2
i j ∈ bA≥2 is 0 or 1: a≥2

i j = 1 if and only if there exists at least one path from node vi to 338

node v j with at least two edges, 1 ≤ i, j ≤ n. We have 339

bA≥2 = bA2 ∨ bA3 ∨ · · · ∨ bAn−1,

a≥2
i j = a2

i j ∨ a3
i j ∨ · · · ∨ an−1

i j , ax
ij ∈ bAx, 1 < x < n, 1 ≤ i, j ≤ n.

(7)

THEOREM 5.6. Given a DADFG G with n nodes and its Boolean ≥ 2 matrix bA≥2, 340

merge any pair of nodes vi and v j that satisfy a≥2
i j = 0 (a≥2

i j ∈ bA≥2), and then the new 341

graph G′ generated by merging remains a DADFG with n − 1 nodes. 342

According to Corollary 4.1 in Sun et al. [2014], Theorem 5.6 is true and it is used to 343
guarantee that the new graph G′ is a DAG. So G′ is a DADFG. Note that a node in the 344
original input graph is a task, while a node in the new graph generated after every 345
merge is a group. A group does not represent a task and it maybe includes several 346
tasks. 347

After that, we will explain how to compute the Boolean adjacency matrix bA′ and 348
the Boolean ≥ 2 matrix bA′≥2 of the new graph G′ generated by merging nodes vi and 349
v j of graph G. Let vr be the node generated by merging nodes vi and v j , where r is 350
the smaller one of the two indexes i and j, denoted by r = min{i, j}. Merging can only 351
change connections between node vr and those nodes that node vh connects to or is 352
connected by, where h be the larger one of the two indexes i and j. For nodes that vh 353
connects to or is connected by, after merging, they either connect to vr or are connected 354
by vr, which makes the length of path between some nodes change. There are only three 355
cases that can make the longest length of path between nodes change (see Figure 4). 356
So, we can obtain bA′ of G′ by the following three steps: 357

Step 1. a′
st = ast, a′

st ∈ bA′, ast ∈ bA, 1 ≤ s, t ≤ |V |, s �= i, j, and t �= i, j. 358
Step 2. a′

rr = 0, a′
rr ∈ bA′. 359

Step 3. a′
rk = aik∨ajk, a′

kr = aki ∨akj , aik ∈ bA, ajk ∈ bA, a′
rk ∈ bA′, a′

kr ∈ bA′, 1 ≤ k ≤ |V | 360
and k �= i, j. 361

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:10 J. Liu et al.

Fig. 4. Three kinds of subgraphs of G that will change values of elements of matrix bA≥2 after merging
nodes vi and v j .

ALGORITHM 1: ISGG
Input: A DADFG G = 〈V, E, D〉, bA and bA≥2 of G, two positive integers k1 and k2.
Output: The target DADFG with total communication data size minimized.

1 regard each node vi in G as a group, 1 ≤ i ≤ |V |;
2 |vi| ← 1, 1 ≤ i ≤ |V | /* |v| represents the number of tasks in group v*/;
3 repeat
4 find a pair of groups vi and v j from G that meet a≥2

i j = 0 and have the largest
communication data size, a≥2

i j ∈ bA≥2;
5 if |vi| + |v j | > k2 then
6 go to line 4 to find a new pair of groups;
7 end
8 vr ← vi ∪ v j(r = min{i, j}) /*merge vi and v j into a new group vr */;
9 |V | ← |V | − 1; |vr | ← |vi| + |v j |;

10 Apply the previously mentioned methods mentioned above to compute Boolean
matrices bA′ and bA′≥2 of the new DADFG G′ generated by merging;

11 G ← G′; bA ← bA′; bA≥2 ← bA′≥2;
12 until |V | ≤ k1 or no groups in G can be merged;

Also, we can obtain bA′≥2 of G′ by the following five steps:362

Step 1. a′≥2
st = a≥2

st , a′≥2
st ∈ bA′≥2, a≥2

st ∈ bA, 1 ≤ s, t ≤ |V |, and s, t �= h.363
Step 2. a′≥2

rr = 0, a′≥2
rr ∈ bA′≥2.364

Step 3. a′≥2
rx = 0, if a′≥2

rx = 1 and the longest path from nodes vr to vx with length less365

than 2, ∀a′≥2
rx ∈ bA′≥2 (see Figure 4(a)).366

Step 4. a′≥2
yr = 0, if a′≥2

yr = 1 and the longest path from nodes vy to vr with length less367

than 2, ∀a′≥2
yr ∈ bA′≥2 (see Figure 4(b)).368

Step 5. a′≥2
xy = 1, if a′≥2

xy = 0 and node vx connects to node vr and vr connects to node369

vy, ∀a′≥2
xy ∈ bA′≥2 (see Figure 4(c)).370

Now, we present the ISGG algorithm, which is shown in Algorithm 1. First, ISGG371
regards each node vi in the input graph G as a group and records the number of tasks372
in each group vi, 1 ≤ i ≤ |V | (lines 1 and 2). Second, ISGG tries to find a pair of groups373

vi and v j that meet a≥2
i j = 0 (a≥2

i j ∈ bA≥2) and have the largest communication data size374

(line 4). If the total number of tasks in groups vi and v j is larger than k2, then ISGG375
goes to line 4 to find a new pair of groups; otherwise, group vi and group v j are merged376
into a new group denoted by vr, where r is the smaller one of the two indexes i and j,377
that is, r = min{i, j} (lines 5–8). Third, ISGG updates the total number of groups and378
the number of tasks in group vr (line 9). Denote the new DADFG generated by merging379

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:11

Fig. 5. An example of merging nodes. (a) DAG G. (b) DAG G′ generated by merging nodes v3 and v4 of G.
(c) DAG G′′ generated by merging nodes v1 and v2 of G′. (d)–(f) are the Boolean adjacency matrices of G, G′,
and G′′, respectively. (g)–(i) are the Boolean ≥ 2 matrices of G, G′, and G′′, respectively.

groups vi and v j to be G′; line 10 computes the Boolean adjacency matrix bA′ and the 380

Boolean ≥ 2 matrix bA′≥2 of G′ applying the methods mentioned previously. Line 11 381
updates graph G and its Boolean matrices bA and bA≥2. Finally, operations from line 4 382
to line 11 are repeated until the total number of groups is not larger than k1 or no 383
groups can be merged. 384

Figure 5 shows an example to merge nodes by ISGG. The input graph G = 〈V, E, D〉 385
is shown in Figure 5(a) with four nodes, and let k1 = 2 and k2 = 2. Regard each node 386
in G as a group, Figures 5(a)–5(c) show the new graphs generated after every merge, 387
where the colorless circles represent the groups that do not finish partition, and the 388
gray circles represent the groups that finish partition. Figures 5(d) and 5(g) show the 389
Boolean adjacency matrices and the Boolean ≥ 2 matrices of the original input graph 390
G. For each matrix, a column of numbers on the left and a row of numbers on the top 391
of the matrix are both indexes of all groups, sorted by ascending order of indexes. For 392
example, numbers “1, 2, 3, 4” on the left of the matrix shown in Figure 5(d) are indexes 393
of groups v1, v2, v3, v4, respectively. 394

Observing Figures 5(a) and 5(g), we find that the communication data size between 395

groups v3 and v4 are the largest among all pairs of groups, a≥2
34 = 0, and the total number 396

of tasks in v3 and v4 is 2. Therefore, we merge v3 and v4, resulting in a new DADFG 397
G′ shown in Figure 5(b). Figures 5(e) and 5(h) show the Boolean adjacency matrix and 398
the Boolean ≥ 2 matrix of G′, respectively. We go on searching the next pair of groups 399
and find that groups v1 and v2 satisfy the merge conditions. After merging v1 and v2, a 400
second new DADFG G′′ is generated shown in Figure 5(c). Its Boolean adjacency matrix 401
is shown in Figure 5(f) and its Boolean ≥ 2 matrix is shown in Figure 5(i). G′′ is the 402
target DADFG, which contains two groups v1 and v3. Group v1 contains two tasks v1 403
and v2; group v3 contains two tasks v3 and v4. Compared with the total communication 404
data size of eight data units before merging, the total communication data size after 405
merging is greatly reduced to four data units. 406

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:12 J. Liu et al.

The time complexity of finding two groups to merge is O(|V |2), the time complexity407
of computing bA′ and bA′≥2 is O(|V |2), and repetition at most occurs |V | times, where408
|V | is the number of nodes in the input DADFG. Thus, the time complexity of ISGG is409
O(|V |3), which is lower than the time complexity O(|V |4) of SGG.410

6. TWO HEURISTIC SCHEDULING ALGORITHMS411

In this section, we propose two heuristic scheduling algorithms for solving the STCLTR412
problem. One is the ratio and local deadline algorithm, for example, RLD. The other413
is the ratio and local deadline with grouping algorithm, for example, RLDG, which is414
based on ISGG and RLD.415

Before presenting the two scheduling algorithms, we introduce some notations416
EST (vi, clp), EFT (vi, clp), ranku(vi), ld(vi), and ratio to be used in this section. Given417
a DADFG G = 〈V, E, D〉 consisting of n nodes v1, v2, . . . , vn, a time constraint L, and M418
heterogeneous clusters CL1, CL2, . . . , CLM, suppose that cluster CLi contains ni cores,419
1 ≤ i ≤ n. All cores are numbered by the method described in Section 3.1. We now420
address these notations one by one.421

EST (vi, clp) represents the earliest execution start time of node vi on core clp. It can422
be computed as follows:423

EST (vi, clp) =
{0, if vi = ventry

max{avail[clp], maxvm∈pred(vi){AFT (vm)+
CT ((vm, vi), (A(vm), clp))}}, if vi �= ventry,

(8)

where ventry is the entry node of G and pred(vi) is the set of immediate predecessor nodes424
of vi. avail[clp] is the earliest available time for core clp to be available for executing425
a new node. If node v is the last assigned node on core clp, then avail[clp] is the time426
that clp finishes the execution of v and it is ready to execute another node using a427
noninsertion-based scheduling policy. AFT (vi) is the actual finish time of vi, computed428
as AFT (vi) = maxclp∈CL{EFT (vi, clp)}. EFT (vi, clp) represents the earliest execution429
finish time of node vi on core clp. It can be computed as follows:430

EFT (vi, clp) = ET (vi, clp) + EST (vi, clp). (9)

ranku(vi), an upward rank, is used to determine the scheduling order of node vi, 1 ≤ i ≤431
n. It is computed recursively by traversing G upward starting from the exit node vexit,432
and can be computed as follows:433

ranku(vi) =

⎧⎪⎨
⎪⎩

ETi, if vi = vexit

maxv j∈succ(vi)(CT ((vi, v j), (A(vi), A(v j))) + ranku(v j))

+ETi, if vi �= vexit,

(10)

434

ETi =
SM∑
p=1

ET (vi, clp)/SM, where SM =
M∑

p=1

np, (11)

435

CT ((vi, v j), (A(vi), A(v j)) = UCT × D(vi, v j), (12)
436

UCT =
⎛
⎝ SM∑

p=1

SM∑
q=1

UCT (clp, clq)

⎞
⎠ /S2

M, (13)

where succ(vi) is the set of immediate successors of node vi, ETi is the average com-437

putation time of node vi, CT ((vi, v j), (A(vi), A(v j))) is the average communication time438

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:13

between core A(vi) and core A(v j), and UCT is the average communication time for 439
transferring a unit of data through all communication links. If ranku(vi) > ranku(v j), vi 440
has higher priority than v j and should be scheduled before v j . We use the preceding 441
method to calculate the priority because similar methods are adopted in other work 442
and have been proved to be good [Topcuoglu et al. 2002]. 443

ld(vi) (1 ≤ i ≤ n), a local deadline of node vi, can be obtained by four steps. First, we 444
compute the upward local deadline denoted by ld(vi)u of node vi as follows: 445

ld(vi)u =
{

L, if vi = vexit

minv j∈succ(vi){ld(v j) − ETj − CT ((vi, v j), (A(vi), A(v j)))}, if vi �= vexit.
(14)

It is computed recursively by traversing G upward starting from the exit node vexit. 446
One disadvantage of ld(vi)u is that ld(vi)u of some nodes are negative when L is small, 447
which is invalid. Second, we compute a downward local deadline denoted by ld(vi)d for 448
node vi as follows: 449

ld(vi)d =
{

ETi, if vi = ventry

maxv j∈pred(vi){ld(v j) + ETj}, if vi �= ventry.
(15)

It is computed recursively by traversing G downward starting from the entry node ventry. 450
Notice that ld(vi)d may be larger than the time constraint L, which is also invalid. Third, 451
we recompute a new downward local deadline denoted by ld′(vi)d for vi as follows: 452

ld′(vi)d = ld(vi)d × L
max1≤ j≤n{ld(v j)d} . (16)

Also, ld′(vi)d has a disadvantage, that is, it may result in a makespan much shorter 453
than the given time constraint L but a large cost. Finally, to avoid adverse factors 454
mentioned in the second and third steps, we have 455

ld(vi) = max{ld(vi)u, ld′(vi)d}. (17)

ratio, a cost-time ratio, is used to determine the assignment A(vi) of node vi, 1 ≤ i ≤ n. 456
We compute the total cost and the earliest finish time of executing vi on every core. 457
Meanwhile, we record the core that makes the earliest finish time of vi minimum among 458
all cores under its local deadline as A1(vi), and the core that makes the total cost of 459
vi minimum among all cores under its local deadline as A2(vi). Suppose that the total 460
cost and the earliest finish time of vi executing on core A1(vi) are cost(vi, A1(vi)) and 461
e f t(vi, A1(vi)), and the total cost and the earliest finish time of vi executing on core 462
A2(vi) are cost(vi, A2(vi)) and e f t(vi, A2(vi)). We have 463

ratio = − �cost
�time

= cost(vi, A1(vi)) − cost(vi, A2(vi))
e f t(vi, A2(vi)) − e f t(vi, A1(vi))

. (18)

The ratio is compared with a nonnegative number r1 to determine whether node vi is 464
assigned to A1(vi) or A2(vi). If ratio > r1, then A(vi) = A2(vi). Otherwise, A(vi) = A1(vi). 465

Other notations used throughout the remainder of this article are listed in Table I. 466

6.1. The RLD Algorithm 467

In this subsection, we propose the RLD algorithm. The main idea of RLD is to start with 468
computing a local deadline for each task, schedule the task under its local deadline, 469
and identify the assignment of the task by a cost-time ratio. Then RLD changes values 470
of some parameters to obtain better schedules. Finally, RLD chooses the schedule with 471
the smallest cost under the given time constraint as the final schedule. 472

Algorithm 2 is our proposed RLD algorithm and shows how to get a near optimal 473
schedule of an input DADFG G. At first, it calculates ranku values of all tasks of 474

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:14 J. Liu et al.

Table I. Parameters to be Used

Parameter Meaning
|v| the number of tasks in group v

k1 the number of groups to be partitioned for a given DADFG G
k2 the number of tasks at most in each group
r1 a nonnegative real number that is used to determine the assignment of a task
γ the relaxation factor of time constraint

step an increment of time constraint before the first successful schedule is found
step1 an increment of time constraint after the first successful schedule is found
A1(v) the assignment of task v that makes the earliest finish time of v minimum and

satisfies ld(v)
A2(v) the assignment of task v that makes the cost of finishing executing v minimum and

satisfies ld(v)
A(v) the assignment of task v

EFT (g, CLp) the earliest finish time of group g when executing on cluster CLp

cost(g, CLp) the cost of group g when executing on cluster CLp

A1(g) the assignment of group g that makes the earliest finish time of g minimum
A2(g) the assignment of group g that makes the cost of finishing executing g minimum
A(g) the assignment of group g

ALGORITHM 2: RLD
Input: A DADFG G = 〈V, E, D〉, a time constraint L, and positive integers step and step1.
Output: A near optimal schedule of G.

1 calculate ranku(v) for each node v ∈ G by Equation (10);
2 sort all nodes in a scheduling list list by nonincreasing order of ranku values;
3 L1 ← ∞; L′ ← L; cost ← ∞; time ← ∞; Smin ← φ;
4 while L′ ≤ L1 do
5 calculate ld(v) for each node v ∈ G by Equation (17);
6 call Function(RLDschedule(list, r1));
7 if (L1 < ∞) then
8 L′ ← L′ + step1;
9 else

10 L′ ← L′ + step (step > step1);
11 end
12 end
13 return Smin.

G by Equation (10), sorts all tasks in a scheduling list list by nonincreasing order475
of ranku values, and initializes some related parameters (lines 1–3). Then, it uses476
a while loop to get as many as possible successful schedules of G by changing the477
value of the parameter L′ (lines 4–12). The while loop firstly calculates the local478
deadline ld(v) for each task v by Equation (17) under the time constraint L′, then479
calls the function Fuction(RLDschedule(list, r1)) shown as in Algorithm 3 to try to find480
successful schedules. If the value of the parameter L1 is not ∞, which means that481
the first successful schedule is obtained, the increment of L′ is reduced to a smaller482
constant step1 from a larger constant step. Finally, the returned schedule Smin is the483
solution.484

Algorithm 3 shows how to obtain as many as possible successful schedules of G485
by changing values of the parameter r1. During finding schedules of G, if the first486
successful schedule is obtained, the value of the parameter L1 is fixed to be (int)(γ ×L′),487
where γ is the relaxation factor of the time parameter of L′. In addition, it records the488

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:15

ALGORITHM 3: Function(function)
Input: A time constraint L and a positive integer N1.
Output: A schedule of DADFG G that satisfies the time constraint L.

1 r1 ← −0.05;
2 for j ← 0 to N1 do
3 r1 ← r1 + α /* α is a positive increment */;
4 if function�= −1 then
5 record the successful schedule as S, and the corresponding cost and time of G as

costS, timeS;
6 if costS < cost and timeS ≤ L then
7 cost ← costS; time ← timeS; Smin ← S;
8 end
9 if S is the first successful schedule then

10 L1 ← (int)(γ × L′);
11 end
12 end
13 end

schedule with the minimum cost among all successful schedules that meets the given 489
time constraint L. 490

ALGORITHM 4: RLDschedule(list, r1)
Input: A scheduling list list, a set of M heterogeneous clusters CL = {cl1, cl2, . . . , clSM }, a

real number r1.
Output: A schedule of tasks in list.

1 costS ← 0;
2 repeat
3 v ← the task with the largest ranku value in list;
4 A(v) ← ScheduleNode(v, 0, SM, r1, costS);
5 if A(v) = −1 then
6 break;
7 end
8 costS ← cost(v, A(v)); list ← list − {v};
9 until list ← ∅;

10 return A(v).

Algorithm 4 shows how to obtain a schedule of G with a given value of the parameter 491
r1. It picks out the task v with the largest ranku value from the scheduling list list, and 492
calls the function ScheduleNode(v, 0, SM, r1, costS) shown as in Algorithm 5 to schedule 493
task v. After scheduling task v, it takes off v from list and selects another task with 494
the largest ranku value from list to schedule. This process is repeated until all tasks 495
are tackled. 496

Algorithm 5 is a function and shows how to get the assignment of a task v. It starts 497
with computing the earliest finished time EFT (v, clq) of task v on every given core clq 498
by using the insertion-based scheduling policy and the corresponding cost cost(v, clq) 499
of finishing executing v. The main idea of the insertion-based scheduling policy: 500
Given a node vi and a core clj , find a suitable time slot for vi on clj ; the start time 501
of searching is the time when all data from the parent nodes of vi arrived at clj ; the 502
searching is repeated until the first time slot that satisfies the execution time of vi is 503
obtained. Then, it records the assignment that makes the earliest finished time of v 504
is minimal as A1(v), and the assignment that makes the cost of finishing executing 505

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:16 J. Liu et al.

ALGORITHM 5: ScheduleNode(v, ntotal, np, r1, cost)

Input: The local deadline ld(v) of node v, the number np of cores in CLp, some real
numbers ntotal , r1, cost.

Output: The assignment of v.
1 A2(v) ← −1; cost1 ← ∞; time ← ∞;
2 for q ← ntotal + 1 to ntotal + np do
3 calculate EFT (v, clq) by Equation (9) using the insertion-based scheduling policy;
4 if EFT (v, clq) < ld(v) then
5 calculate cost(v, clq) ← cost + ∑

u∈pred(v) CC((u, v), (A(u), clq)) + EC(v, clq);
6 if EFT (v, clq) < time then
7 A1(v) ← clq; time ← EFT (v, clq);
8 end
9 if cost(v, clq) < cost1 then

10 A2(v) ← clq; cost1 ← cost(v, clq);
11 end
12 end
13 end
14 call Assignment(v, A1(v), A2(v), r1);
15 return A2(v).

ALGORITHM 6: Assignment(v, A1(v), A2(v), r1)
Input: cost(v, A1(v)), cost(v, A2(v)), EFT (v, A2(v)), EFT (v, A1(v)) of a task (or group) v.
Output: The assignment of v.

1 if A2(v) = −1 then
2 return
3 end
4 calculate ratio ← cost(v,A1(v))−cost(v,A2(v))

EFT (v,A2(v))−EFT (v,A1(v)) according to Equation (18);
5 if ratio > r1 then
6 A(v) ← A2(v);
7 else
8 A(v) ← A1(v);
9 end

10 cost ← cost(v, A(v));

v is minimum as A2(v), under the local deadline of v. Finally, it calls the function

Q4

506
Assignment(v, A1(v), A2(v), r1) as shown in Algorithm 6. Assignment(v, A1(v), A2(v), r1)507
shows how to decide the assignment of a task (or group) v.508

The time complexity of Algorithm 4 is O(|V |2 × ∑M
p=1 np). Because step>step1,509

L1
1.1 − L
step

+ L1 − L1
1.1

step1
<

L1
1.1 − L
step1

+ L1 − L1
1.1

step1
= L1 − L

step1
.

The time complexity of the RLD algorithm is O(|N1|× L1−L
step1 ×|V |2 ×∑M

p=1 np). Generally,510

we can set |N1| × L1−L
step1 < C, where C is a constant. Thus, the time complexity of the511

RLD algorithm is O(|V |2 × ∑M
p=1 np).512

6.2. The RLDG Algorithm513

In this subsection, combining the ISGG algorithm described in Section 5 and the514
RLD algorithm, we propose the RLDG algorithm. The basic idea of RLDG is sim-515
ilar to that of RLD. It firstly allocates a local deadline for each task, and partitions516

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:17

ALGORITHM 7: RLDG
Input: A DADFG G = 〈V, E, D〉, CL = {CL1, CL2, . . . , CLM}, the Boolean adjacency matrix

bA of G, a time constraint L, and some positive integers N1, N2, step, and step1.
Output: A near optimal schedule of G.

1 calculate ranku(v) by Equation (10), ∀v ∈ V ;
2 compute the Boolean ≥ 2 matrix of G by the method mentioned in Section 5;
3 L1 ← ∞; L′ ← L; cost ← ∞; time ← ∞; Smin ← φ;
4 while L′ ≤ L1 do
5 calculate ld(v) by Equation (17), ∀v ∈ V ;
6 k1 ← n;
7 while k1 ≥ 2 do
8 use Algorithm 1 to partition all tasks of graph G into k1 groups, each group of at

most k2 = n/k1 + 2 tasks, obtaining a new graph G′;
9 calculate ranku values of groups in graph G′ by Equation (10), and sort these

groups in a scheduling group list glist by nonincreasing order of their ranku values;
10 call Function(ScheduleGroup(glist, r1));
11 k1 ← k1 − N2 /* N2 is a decrement */;
12 end
13 if (L1 < ∞) then
14 L′ ← L′ + step1;
15 else
16 L′ ← L′ + step (step > step1);
17 end
18 end
19 return Smin.

all tasks into a specified number of groups by ISGG to reduce communication overhead. 517
Next, it schedules a group on each cluster by scheduling all the tasks in the group on 518
cores in the cluster under their local deadlines, and determines the assignment of the 519
group by a cost-time ratio. Notice that the assignment of a group is a cluster, not a 520
core. Then, it changes values of some parameters to obtain more successful schedules. 521
Finally, it chooses the schedule with the smallest cost from these successful schedules 522
that satisfy the time constraint as the final schedule. 523

Algorithm 7 is our proposed RLDG algorithm and shows how to get a near optimal 524
schedule for an input DADFG G. At first, it calculates ranku values of all tasks of G 525
by Equation (10), computes the Boolean ≥ 2 matrix of G by the method mentioned 526
in Section 5, and initializes some related parameters (lines 1–3). Then, it uses an 527
outer while loop to get as many as possible successful schedules of G by changing 528
the value of the parameter L′ (lines 4–18). The outer while loop first calculates the 529
local deadline ld(v) for each task v by Equation (17) under the time constraint L′, then 530
uses an inner while loop to obtain successful schedules by changing the values of the 531
parameter of k1. The inner while loop firstly uses the ISGG algorithm shown as in 532
Algorithm 1 to partition all tasks of the input graph G into k1 groups, each group of 533
at most k2 = n/k1 + 2 tasks, obtaining a new graph G′. The inner while loop secondly 534
calculates ranku values of all groups by Equation (10) and sorts these groups in a 535
scheduling group list glist by nonincreasing order of their ranku values. Thirdly, the 536
inner while loop calls the function Function(ScheduleGroup(glist, r1)) shown as in 537
Algorithm 3 to try to find successful schedules. If the value of the parameter L1 is not 538
∞, which means that the first successful schedule is obtained, the increment of L′ is 539
reduced to a smaller constant step1 from a larger constant step. Finally, the returned 540
schedule Smin is the solution. 541

The function Function(ScheduleGroup(glist, r1)) uses the function ScheduleGroup 542
(glist, r1) shown as in Algorithm 8 to obtain assignments of all groups, where the 543

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:18 J. Liu et al.

ALGORITHM 8: ScheduleGroup(glist, r1)
Input: A scheduling group list glist and a real number r1.
Output: A schedule of tasks in glist which that minimizes the total cost and satisfies the

time constraint L.
1 cost(g) ← 0; /*cost(g) and time(g) represent the final cost and time of group g*/;
2 repeat
3 g ← the group with the largest ranku value in glist;
4 A(g) ← −1; ntotal ← 0; cost ← ∞; time ← ∞ ;
5 for p ← 1 to M do
6 i ← 1; cost(g, p) ← cost(g); EFT (g, p) ← 0;
7 repeat
8 v ← the task with the ith largest ranku value in the group g;
9 A(v) ← ScheduleNode(v, ntotal, np, r1, cost(g, p));

10 if A(v) = −1 then
11 break;
12 end
13 if EFT (g, p) < EFT (v, A(v)) then
14 EFT (g, p) ← EFT (v, A(v));
15 end
16 cost(g, p) ← cost(v, A(v)); i ← i + 1;
17 until all tasks in the group g have been performed;
18 if A(v) = −1 then
19 ntotal ← ntotal + np; continue;
20 end
21 if time > EFT (g, p) then
22 time ← EFT (g, p); A1(g) ← CLp;
23 end
24 if cost > cost(g, p) then
25 cost ← cost(g, p); A2(g) ← CLp;
26 end
27 end
28 call Assignment(g, A1(g), A2(g), r1);
29 glist ← glist − {g}; cost(g) = cost(g, A(g));
30 until glist ← ∅ or A(g) ← −1;
31 return A(g).

assignment of a group is a cluster, not a core. Algorithm 8 firstly picks out the group g544
with the largest ranku value from the scheduling list glist and initializes some related545
parameters. Next, it tries to schedule group g on every cluster CLp by a for loop546
(lines 5–27). The for loop tries to schedule all tasks in g by the order of their ranku val-547
ues on cores of cluster CLp, and records the assignment that makes the earliest finished548
time of g is minimal as A1(g), and the assignment that makes the cost of finishing exe-549
cuting g is minimum as A2(g). Then, it calls the function Assignment(g, A1(g), A2(g), r1)550
as shown in Algorithm 6 to determine the assignment of group g. After that, it deletes551
g from glist and selects another group with the largest ranku value from glist to552
schedule. Finally, this process is repeated until all groups are tackled.553

The time complexity of Algorithm 7 is554

O

⎛
⎝ L1 − L

step1
× |V | − 2

N2

⎛
⎝|V |3 + N1 × |V |2 ×

M∑
p=1

np

⎞
⎠

⎞
⎠

= O

⎛
⎝ L1 − L

step1
× |V | − 2

N2

⎛
⎝|V |3 + N1 × |V |2 ×

M∑
p=1

np

⎞
⎠

⎞
⎠

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:19

Table II. Values of Communication Time and Cost Transferring a Unit of Data Between Different
Cores of Clusters, Assuming that the Communication Overhead on the Same Core is Zero

CL1 CL2 CL3 CL4

Clusters UCT1 UCC1 UCT1 UCC1 UCT1 UCC1 UCT1 UCC1

CL1 1 1 2 3 2 2 5 4
CL2 2 3 1 1 4 5 3 2
CL3 2 2 4 5 1 1 2 2
CL4 5 4 3 2 2 2 1 1

Generally,
∑M

p=1 np ≤ |V |, L1−L
N2×step1 , and N1 are bounded by constants. Thus, the time 555

complexity of Algorithm 7 is O(|V |4 + |V |3 ∑M
p=1 np). 556

7. EXPERIMENTAL RESULTS AND DISCUSSION 557

In this section, we evaluate the effectiveness and efficiency of our proposed techniques. 558
All experiments are conducted on a simulator running on a computer equipped with 559

the 32-bit Windows 7 operating system and two identical processing cores: Intel (R) 560
Core (TM) i5-2400 CPU @ 3.10GHz. The simulator is a C program, and it is used to simu- Q5561
late a system model described in Section 3.1, consisting of four connected heterogeneous 562
clusters CL1, CL2, CL3, and CL4. We consider two configurations: (1) CL1, CL2, CL3, 563
and CL4 are composed of six, four, three, and five processing cores, respectively; (2) 564
CL1, CL2, CL3, and CL4 are composed of six, four, four, and four processing cores, re- 565
spectively. Values of communication time and cost transferring a unit of data under two 566
configurations are the same and as shown in Table II. We assume that the performance 567
of cores in clusters CL1, CL2, CL3, and CL4 are decreased and their execution costs 568
are decreased in sequence. That is, cores in cluster CL1 have the highest computation 569
capacity as well as the highest cost, and cores in clusters CL2, CL3, and CL4 have 570
slower computation capacity with lower cost. 571

In this study, we consider synthetic benchmarks and real benchmarks. Synthetic 572
benchmarks are some DAGs randomly generated using TGFF [Dick et al. 1998]; real 573
benchmarks come from the DSPstone benchmark suite [Wolf et al. 2008], including 574
IIR, 4-Stage Lattice Filter, Differential Equation Solver, RSL-Languerre Lattice, and 575
20-4Stage Lattice Filter. 576

The DAGs are randomly generated with four varying parameters: (1) the number 577
of nodes in a DAG; (2) the number of parents of a node, that is, the indegree of the 578
node; (3) the number of children of a node, that is, the outdegree of the node; and 579
(4) the communication to computation ratio, CCR, which is computed by the average 580
communication time divided by the average computation time on a target system and 581
is selected from set {0.2, 0.5, 1, 5, 10}. According to the indegree and outdegree of nodes 582
in DAGs, we generated three kinds of DAGs: slim DAGs, medium DAGs, and fat DAGs. 583
Each kind of DAG includes five DAGs, which contain 20, 50, 150, 250, and 320 nodes, 584
respectively. The average indegree of nodes in a slim DAG is 1 or 2 and the average 585
outdegree is 1, 2, or 3. Both the average indegree and outdegree of nodes in a fat DAG 586
are

√
n, where n is the number of nodes in the fat DAG. The average indegree and 587

outdegree of nodes in a medium DAG are determined by the following method. Given a 588
slim DAG G1, a medium DAG G2, and a fat DAG G3, all these DAGs contain n nodes. 589
Let the average indegree and outdegree of nodes in G1 be n1 and n2, and then the 590
average indegree and outdegree of nodes in G2 are n1 + √

n/2 and n2 + √
n/2. 591

For a randomly generated DAG, each node is assigned two node weights, the 592
execution cost and the execution time, both from interval (0, 30] with a uniform prob- 593
ability distribution. Each edge is assigned an edge weight, the data size transferred 594

on the edge, from interval (0, 30 × CC R/CT] to approximate the desired CCR. For 595

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:20 J. Liu et al.

Fig. 6. Experimental results of five medium benchmarks with CCR = 0.5 under the first configuration.
(a)–(e) shows total cost obtained from different algorithms.

benchmarks from the DSPstone, values of execution time and cost are obtained from596
Shao et al. [2005]. The data size transmitted on edges is from interval (0, 5] with a597
uniform probability distribution.598

Lee and Zomaya [2011] studied energy conscious scheduling for distributed comput-599
ing systems using DVS. They used HEFT [Topcuoglu et al. 2002] and DBUS [Bozdag600
et al. 2006] as their baselines for the reason “Although the scheduling of these previ-601
ous algorithms is energy unconscious, they were proven to perform well for the task602
scheduling problem; in addition, none of the existing scheduling algorithms is directly603
applicable to such a problem.” We met the same difficulty as them and their proposed604
algorithms are not suitable for our problem. So, inspired by them, we also use HEFT605
and DBUS as our baselines.606

Considering that it is not convenient to list all experimental results and the nature607
of these results are more or less the same, we only show experimental results for608
Synthetic benchmarks of medium benchmarks with CCR = 0.5 and CCR = 5, and real609
benchmarks.610

Figures 6 and 7 shows experimental results for five medium benchmarks with CCR =611
0.5 and five medium benchmarks with CCR = 5 under the first configuration with612
varied time constraints. Figures 8 and 9 show experimental results for five medium613
benchmarks with CCR = 0.5 and five medium benchmarks with CCR = 5 under the614
second configuration with varied time constraints. For each subfigure, the horizontal615
axis represents the time constraint, and the vertical axis represents the cost for execut-616
ing a given benchmark obtained by algorithms HEFT, DBUS, RLD ,and RLDG when617
time constraint varies. The name of a benchmark is composed of an integral value and618
a letter “M,” where the integral value is the number of nodes in the benchmark and619
“M” represents that the benchmark is a medium DAG. Besides, in some subfigures,620
some algorithms cannot find solutions for the corresponding benchmarks under some621
time constraints, so the corresponding costs are not shown.622

We observe that for each benchmark, the HEFT algorithm generates the same so-623
lution no matter how the time constraint varies. It is true for the DBUS algorithm.624

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:21

Fig. 7. Experimental results of five medium benchmarks with CCR = 5 under the first configuration. (a)–
(e) shows total cost obtained from different algorithms.

Fig. 8. Experimental results of five medium benchmarks with CCR = 0.5 under the second configuration.
(a)–(e) shows total cost obtained from different algorithms.

Whereas, when the time constraint changes, both RLD and RLDG can generate var- 625
ied solutions. Generally, when the time constraint increases, the total cost decreases. 626
Moreover, both RLD and RLDG can generate better results than HEFT and DBUS. 627
What is more, total costs produced by RLDG are usually less than that produced by 628
RLD. For example, when the time constraint is 150, the total cost of benchmark “50M” 629
with CCR = 0.5 in Figure 6 generated by algorithms HEFT, DBUS, RLD, and RLDG 630
is 1361, 1392, 1196, and 921, respectively; when the time constraint is 250, the total 631

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:22 J. Liu et al.

Fig. 9. Experimental results of five medium benchmarks with CCR = 5 under the second configuration.
(a)–(e) shows total cost obtained from different algorithms.

cost is 1361, 1392, 715, and 553, respectively. Additionally, in some cases, all these632
four algorithms except for DBUS can obtain a solution when the time constraint is633
small. For benchmark “50M” with CCR = 0.5 in Figure 6, RLDG can reduce total cost634
by 44.77% on average compared with DBUS under five given time constraints. On635
the whole, RLDG reduces total cost by 30.01% and 39.72% on average compared with636
DBUS and HEFT, respectively, for five benchmarks with CCR = 0.5.637

In addition, for medium benchmarks with CCR = 5, more identical values appear,638
which is incurred by the large communication overhead. Once CCR is larger than 1, the639
completion time is dominated by the communication time. For CCR = 5, the data size640
between two dependent tasks can be up to 60 data units, and the communication time641
can be about 150 time units on average and up to 300 time units when these two tasks642
resided on different cores. If the assignment of one task of them is changed, a large643
amount of communication time will be produced such that the total time of the new644
schedule may exceed the given time constraint. If the increment of the time constraint645
is too small to change the assignments of some tasks in the original scheduling, then646
the original schedule remains unchanged. If the increment of the time constraint is647
enough large, then the total cost can be further reduced in general648

Obviously, the preceding four figures reflects similar information.649
Figure 10 shows experimental results for five benchmarks from DSPstone benchmark650

suite under the first configuration. It reflects similar information as in Figures 6 and651
8. Due to limit space, we do not show experimental results for five benchmarks from652
DSPstone benchmark suite under the second configuration.653

Sometimes RLD and RLDG can obtain better results than both HEFT and DBUS654
in terms of time and cost under these two configurations. Table III shows several655
examples. For example, RLD can find a solution with cost 6,994 and time 308 for656
benchmark “150S” under the first configuration, and RLDG can find a solution with657
cost 5,376 and time 246. HEFT and DBUS produce no solutions under time 310.658

We also find that the experimental results are invariant when the value of the659
relaxation factor γ varies, like γ = 1.05, 1.1, and 2.660

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:23

Fig. 10. Experimental results of five benchmarks from DSPstone benchmark suite under the first configu-
ration. (a)–(e) show the total cost obtained from different algorithms for these benchmarks.

Table III. Some Examples in which Both RLD and RLDG Excel HEFT and DBUS in Terms of Makespan
and Total Cost Under Two Configurations

Configuration CCR Benchmark
HEFT
Time

HEFT
Cost

DBUS
Time

DBUS
Cost

RLD
Time

RLD
Cost

RLDG
Time

RLDG
Cost

50S 65 1,219 76 1,483 65 1,188 63 1,147
0.5 250F 164 7,241 202 7,630 164 6,734 163 6,695

First 150S 310 7,596 326 9,486 308 6,994 246 5,376
10 320F 575 29,090 669 56,453 552 28,098 547 28,372

150M 148 4,526 112 4,023 112 4,036 112 3,830
Second 0.5 250M 297 8,492 210 7,490 207 7,533 208 7,340

5 50M 152 1,944 159 3,552 152 1,829 130 1,670

The preceding discussions demonstrate that the proposed algorithms RLD and RLDG 661
are highly efficient. Both algorithms can take full advantage of the given time to reduce 662
total costs as much as possible. 663

8. CONCLUSION 664

In this article, we have investigated the STCLTR problem. Since the STCLTR problem 665
is NP-hard, we propose heuristic scheduling algorithms to solve it. First, we present 666
the ISGG algorithm to partition tasks of the input DADFG into a specified number 667
of groups with the objective of minimizing the total communication data size. Second, 668
we propose the RLD algorithm to solve the STCLTR problem. RLD allots a local dead- 669
line for each task, schedules the task within its local deadline, and determines the 670
assignment of the task by defined cost-time ratio. Third, combining ISSG and RLD, we 671
present the RLDG algorithm to solve the STCLTR problem. Tasks in the same group are 672
assigned to cores in the same cluster. RLDG has higher time complexity, but it produces 673
better results than RLD. Extensive experiments with various characteristics show that 674
the RLD and RLDG algorithms significantly outperform the related algorithms. For 675
future work, we will develop techniques to solve task scheduling applying the DVS, 676

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

36:24 J. Liu et al.

DVFS, or DPM techniques on heterogeneous multicore embedded systems. Also, we677
will study a more complex case where clusters and cores are separately discussed.678

ACKNOWLEDGMENTS679

The authors would like to express their sincere gratitude to the editors and the referees for their valuable680
time and constructive comments which help improve the quality of the manuscript greatly.681

REFERENCES682

Allwinner Technology. 2014. Retrieved from http://www.allwinnertech.com/en/clq/processora/AllwinnerA80.Q6683
html.684

Doruk Bozdag, Umit Catalyurek, and Fuisun Ozguner. 2006. A task duplication based bottom-up schedul-685
ing algorithm for heterogeneous environments. In Proceedings of the 20th International Parallel and686
Distributed Processing Symposium (IPDPS). 12–23.687

Gang Chen, Kai Huang, and Alois Knoll. 2014. Energy optimization for real-time multiprocessor system-on-688
chip with optimal DVFS and DPM combination. ACM Trans. Embed. Comput. Syst. 13, 3s (March 2014),689
111:1–111:21.690

Robert P. Dick, David L. Rhodes, and Wayne Wolf. 1998. TGFF: Task graphs for free. In Proceedings of the691
6th International Workshop on Hardware/Software Codesign. 97–101.692

Yongqi Ge, Yunwei Dong, and Hongbing Zhao. 2014. Energy-efficient task scheduling and task energy693
consumption analysis for real-time embedded systems. In Proceedings of the Theoretical Aspects of694
Software Engineering Conference (TASE’14). 135–138.695

Marco E. T. Gerards and Jan Kuper. 2013. Optimal DPM and DVFS for frame-based real-time systems. ACM696
Trans. Archit. Code Optim (TACO) 9, 4 (Jan. 2013), 41:1–41:23.697

Jian-Jun Han, Man Lin, Dakai Zhu, and Laurence T. Yang. 2015. Contention-aware energy management698
scheme for NoC-based multicore real-time systems. IEEE Trans. Parallel Distrib. Syst. 26, 3 (2015),699
691–701.700

Heba Khdr, Santiago Pagani, Muhammad Shafique, and Jörg Henkel. 2015. Thermal constrained resource701
management for mixed ILP-TLP workloads in dark silicon chips. In Proceedings of the 52nd Annual702
Design Automation Conference. ACM, 179.703

Hyungjun Kim, Boris Grot, Paul V. Gratz, and Daniel A. Jimenez. 2014. Spatial locality speculation to reduce704
energy in chip-multiprocessor networks-on-chip. IEEE Trans. Comput. 63, 3 (March 2014), 543–556.705

Fanxin Kong, Wang Yi, and Qingxu Deng. 2011. Energy-efficient scheduling of real-time tasks on cluster-706
based multicores. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE).707
1–6.708

Joonho Kong, Sung Woo Chung, and Kevin Skadron. 2012. Recent thermal management techniques for709
microprocessors. ACM Comput. Surv. 44, 3 (June 2012).710

Wan Yeon Lee. 2012. Energy-efficient scheduling of periodic real-time tasks on lightly loaded multicore711
processors. IEEE Trans. Parallel Distrib. Syst. 23, 3 (2012), 530–537.712

Young Choon Lee and Albert Y. Zomaya. 2011. Energy conscious scheduling for distributed computing713
systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22, 8 (2011), 1374–714
1381.715

Jing Liu, Qingfeng Zhuge, Shouzhen Gu, Jingtong Hu, Guanyu Zhu, and Edwin H. M. Sha. 2014. Minimizing716
system cost with efficient task assignment on heterogeneous multicore processors considering time717
constraint. IEEE Trans. Parallel Distrib. Syst. 25, 8 (Aug 2014), 2101–2113.718

Wei Liu, Hongfeng Li, Wei Du, and Feiyan Shi. 2011. Energy-aware task clustering scheduling algorithm719
for heterogeneous clusters. In Proceedings of the 2011 IEEE/ACM International Conference on Green720
Computing and Communications (GreenCom). 34–37.721

Jos Luis March, Julio Sahuquillo, Salvador Petit, Houcine Hassan, and Jos Duato. 2013. Power-aware722
scheduling with effective task migration for real-time multicore embedded systems. Concurr. Comput.723
Prac. Exp. 25, 14 (2013), 1987–2001.724

Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel Mossé, and Rami Melhem. 2003. Energy aware725
scheduling for distributed real-time systems. In Proceedings of the International Parallel and Distributed726
Processing Symposium (IPDPS). 113–121.727

Morteza Mohaqeqi, Mehdi Kargahi, and Ali Movaghar. 2014. Analytical leakage-aware thermal modeling of728
a real-time system. IEEE Trans. Comput. 63, 6 (2014), 1378–1392.729

Meikang Qiu and Edwin H.-M. Sha. 2009. Cost minimization while satisfying hard/soft timing constraints730
for heterogeneous embedded systems. ACM Trans. Des. Autom. Electron. Syst. 14, 2 (April 2009).731

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

http://www.allwinnertech.com/en/clq/processora/AllwinnerA80.html
http://www.allwinnertech.com/en/clq/processora/AllwinnerA80.html

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:25

Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee. 2008. Energy efficient scheduling of real- 732
time tasks on multicore processors. IEEE Trans. Parallel Distrib. Syst. 19, 11 (2008), 1540–1552. 733

Muhammad Shafique, Dennis Gnad, Siddharth Garg, and Jörg Henkel. 2015. Variability-aware dark silicon 734
management in on-chip many-core systems. In Proceedings of the 2015 Design, Automation & Test in 735
Europe Conference & Exhibition. EDA Consortium, 387–392. 736

Muhammad Shafique, Benjamin Vogel, and Jorg Henkel. 2013. Self-adaptive hybrid dynamic power man- 737
agement for many-core systems. In Proceedings of the Design, Automation Test in Europe Conference 738
Exhibition (DATE), 2013. 51–56. 739

Zili Shao, Qingfeng Zhuge, Chun Xue, and E. H.-M. Sha. 2005. Efficient assignment and scheduling for 740
heterogeneous DSP systems. IEEE Trans. Parallel Distrib. Syst. 16, 6 (June 2005), 516–525. 741

Amit Kumar Singh, Anup Das, and Akash Kumar. 2013a. Energy optimization by exploiting execution 742
slacks in streaming applications on multiprocessor systems. In Proceedings of the 50th Annual Design 743
Automation Conference (DAC’13). 115:1–115:7. 744

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013b. Mapping on multi/many- 745
core systems: Survey of current and emerging trends. In Proceedings of the 50th Annual Design Automa- 746
tion Conference. ACM, 1. 747

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jorg Henkel. 2016. Resource and throughput 748
aware execution trace analysis for efficient run-time mapping on MPSoCs. IEEE Trans. Comput.-Aided 749
Design Integr. Circ. Syst. 35, 1 (2016), 72–85. 750

Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar, and Wu Jigang. 2010. Communication-aware 751
heuristics for run-time task mapping on NoC-based MPSoC platforms. J. Syst. Architect. 56, 7 (2010), 752
242–255. 753

Qunyan Sun, Qingfeng Zhuge, Jingtong Hu, Juan Yi, and E. H.-M. Sha. 2014. Efficient grouping-based 754
mapping and scheduling on heterogeneous cluster architectures. Comput. Elec. Eng. 40, 5 (2014), 1604– 755
1620. 756

Timon D. Ter Braak, Philip K. F. Hölzenspies, Jan Kuper, Johann L. Hurink, and Gerard J. M. Smit. 757
2010. Run-time spatial resource management for real-time applications on heterogeneous MPSoCs. 758
In Proceedings of the Conference on Design, Automation and Test in Europe. European Design and 759
Automation Association, 357–362. 760

Haluk Topcuoglu, Salim Hariri, and Min you Wu. 2002. Performance-effective and low-complexity task 761
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 3 (2002), 260–274. 762

Hwang Cheng Wang and Cheng Wen Yao. 2011. Task migration for energy conservation in real-time multi- 763
processor embedded systems. In Proceedings of the 2011 International Conference on Cyber-Enabled 764
Distributed Computing and Knowledge Discovery. 393–398. 765

Lizhe Wang, Gregor Von Laszewski, Jai Dayal, and Fugang Wang. 2010. Towards energy aware scheduling 766
for precedence constrained parallel tasks in a cluster with DVFS. In Proceedings of the 10th IEEE/ACM 767
International Conference on Cluster, Cloud and Grid Computing (CCGrid’10). 368–377. 768

Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. 2008. Multiprocessor system-on-chip (MPSoC) tech- 769
nology. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 27, 10 (2008), 1701–1713. 770

Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. 2007. Energy-aware scheduling for real-time multipro- 771
cessor systems with uncertain task execution time. In Proceedings of the 44th ACM/IEEE on Design 772
Automation Conference (DAC’07). 664–669. 773

Ying Yi, Wei Han, Xin Zhao, Ahmet T. Erdogan, and Tughrul Arslan. 2009. An ILP formulation for task 774
mapping and scheduling on multi-core architectures. In Proceedings of the Design, Automation & Test 775
in Europe Conference & Exhibition (DATE’09). 33–38. 776

Yukan Zhang, Yang Ge, and Qinru Qiu. 2013. Improving charging efficiency with workload scheduling in 777
energy harvesting embedded systems. In Proceedings of the 50th Annual Design Automation Conference. 778
1–8. 779

Ziliang Zong, A. Manzanares, Xiaojun Ruan, and Xiao Qin. 2011. EAD and PEBD: Two energy-aware du- 780
plication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Trans. Comput. 60, 3 781
(March 2011), 360–374. 782

Received September 2015; revised February 2016; accepted May 2016

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: November 2016.

TECS1602-36 ACM-TRANSACTION November 25, 2016 13:14

QUERIES

Q1: AU: Please provide CCS 2012 Concepts per author guidelines and provide XML codes as well.
Q2: AU: Please provide complete mailing and email addresses for all authors.
Q3: AU: Please add Arras et al. 2013 and Huang et al. 2011 to Ref. list or remove citation from text.
Q4: AU: Please check change from subscript to online“(v)”.
Q5: AU: Please check deletion.
Q6: AU: Please provide page title.

