
36

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore
Embedded Systems

JING LIU, Hunan University and Wuhan University of Science and Technology
KENLI LI, Hunan University
DAKAI ZHU, The University of Texas at San Antonio
JIANJUN HAN, Huazhong University of Science and Technology
KEQIN LI, Hunan University and State University of New York

Cost savings are very critical in modern heterogeneous computing systems, especially in embedded systems.
Task scheduling plays an important role in cost savings. In this article, we tackle the problem of scheduling
tasks on heterogeneous multicore embedded systems with the constraints of time and resources for minimiz-
ing the total cost, while considering the communication overhead. This problem is NP-hard and we propose
several heuristic techniques—ISGG, RLD, and RLDG—to address the problem. Experimental results show
that the proposed algorithms significantly outperform the existing approaches in terms of cost savings.

CCS Concepts: � Theory of computation → Scheduling algorithms; � Computer systems
organization → Multicore architectures; Heterogeneous (hybrid) systems; Embedded systems

Additional Key Words and Phrases: Graph grouping, heterogeneous multicore systems, task scheduling,
time and resource constraints

ACM Reference Format:
Jing Liu, Kenli Li, Dakai Zhu, Jianjun Han, and Keqin Li. 2016. Minimizing cost of scheduling tasks on
heterogeneous multicore embedded systems. ACM Trans. Embed. Comput. Syst. 16, 2, Article 36 (December
2016), 25 pages.
DOI: http://dx.doi.org/10.1145/2935749

1. INTRODUCTION

Heterogeneous multicore designs have been widely employed in various types of
computing systems such as embedded and mobile devices, servers, and supercom-
puters. The reason is that heterogeneous designs can provide high performance and
flexibility, and at the same time promise low-cost and power-efficient implementations

The research is partially supported by International Science & Technology Cooperation Program of China
(2015DFA11240), the Key Program of National Natural Science Foundation of China (Grant Nos. 61133005,
61432005), the National Natural Science Foundation of China (Grant Nos. 61370095, 61472124, 61472150),
the Open Fundation of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time
Industrial System (2016znss26C), and the Natural Science Foundation of Hubei Province (2015CFB335).
Authors’ addresses: J. Liu, College of Information Science and Engineering, Hunan University, Changsha
410082, China, and College of Computer Science and Technology, Wuhan University of Science and Tech-
nology, and Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial
System, Wuhan 430065, China; email: Idealer@126.com; K. Li (corresponding author), College of Information
Science and Engineering, Hunan University, and National Supercomputing Center in Changsha, Changsha
410082, China; email: lkl@hnu.edu.cn; D. Zhu, Department of Computer Science, University of Texas at San
Antonio, One UTSA Circle, San Antonio, TX 78249, USA; email: dakai.zhu@utsa.edu; J. Han, Department of
Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
email: jasonhan@hust.edu.cn; K. Li, Department of Computer Science, State University of New York, New
Paltz, New York 12561, USA; email: lik@newpaltz.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1539-9087/2016/12-ART36 $15.00
DOI: http://dx.doi.org/10.1145/2935749

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

http://dx.doi.org/10.1145/2935749
http://dx.doi.org/10.1145/2935749

36:2 J. Liu et al.

[Yi et al. 2009]. Note that the majority of computing devices are embedded, and
embedded applications usually have timing constraints. Research has shown that for
such application domains, heterogeneous multiprocessor systems can deliver higher
performance at a given energy budget than homogeneous multicore solutions [Ter
Braak et al. 2010]. Thus, we focus on heterogeneous multicore embedded systems in
this study. To meet the increasing demands for higher performance, the number of
integrated cores on a single chip continues to increase [Kong et al. 2012; Kim et al.
2014]. Increasing core density in a chip leads to increasing costs, such as energy
consumption, hardware cost, and electricity cost [Qiu and Sha 2009]. For example,
the cost of electricity is between CNY400,000 and CNY600,000 a day in National
Supercomputing Center in Guangzhou, China. The growing power causes more and
more energy consumption, which results in increasingly high temperature [Shafique
et al. 2015; Khdr et al. 2015; Mohaqeqi et al. 2014] and such increased temperature
has a significant impact on multicore systems. It decreases transistor age, slows down
signal transition speed, increases the rates of permanent failures and transient faults,
and brings high cooling charge. Consequently, cost savings are important issues in
multicore systems. This article concentrates on exploring scheduling algorithms to
reduce cost in modern heterogeneous multicore embedded systems. Reducing time
and saving cost are usually conflicting objectives. Therefore, how to save cost is a big
challenge in modern heterogeneous multicore real-time systems.

Recent heterogeneous multicore architectures integrate cores of different types into
a chip. Cores of different types differ from each other in computation capability and cost
consumption. Generally, a heterogeneous multicore computing system is comprised of
a set of clusters connected to communication links. Each cluster consists of a group
of cores of the same type. Chip vendors have released several kinds of heterogeneous
multicore clusters in 2014, such as Samsung Exynos 5422 and AllWinner A80 [Linder
2014]. Communication links among clusters may have different capacities and costs.

Task scheduling is to assign tasks of an application to processing cores and identify
their execution order on the cores [Topcuoglu et al. 2002]. Different task scheduling
schemes lead to different makespan and cost. The makespan considered in this article
includes the computation time for executing tasks in a Directed Acyclic Graph (DAG)
and the time used for exchanging data between tasks. The cost considered in this article
is an abstract representation of various costs, such as energy consumption, money, etc.
Therefore, task scheduling becomes one of the most important techniques for fully
exploiting the potential of heterogeneous multicore systems.

Numerous techniques have been proposed to minimize total cost of computing sys-
tems in the past years [Wang and Yao 2011; Zhang et al. 2013; Ge et al. 2014; March
et al. 2013; Arras et al. 2015; Huang et al. 2011; Qiu and Sha 2009; Zong et al. 2011].
Studies in Wang and Yao [2011], Zhang et al. [2013], Ge et al. [2014], and March
et al. [2013] focus on periodic tasks. The study in Arras et al. [2015] considers memory
constraints and aims at minimizing the makespan. The study in Huang et al. [2011]
considers the reliability. The study in Qiu and Sha [2009] does not consider communi-
cation. The study in Zong et al. [2011] does not consider time constraints.

In this article, we study the problem of scheduling tasks represented by a DAG on
heterogeneous multicore embedded systems while considering communication under
limited time and resource. Hereafter, this problem is denoted by STCLTR. The goal is to
find efficient task scheduling policies for all tasks in a dataflow graph with minimized
total cost under limited time and execution resources. This work is an extension of our
previous work [Liu et al. 2014], which does not consider scheduling. Since the problem
addressed in Liu et al. [2014] is NP-hard and can be reduced to the STCLTR problem,
the STCLTR problem is NP-hard as well. The problem in Liu et al. [2014] does not take
resource constraint into account, and thus their proposed techniques are not applicable
to the STCLTR problem.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:3

To solve the STCLTR problem, we propose three static heuristic algorithms. First, we
propose the ISGG algorithm to partition tasks of an application modeled by a DAG into
several groups, aiming at reducing communication overhead. Second, we propose the
RLD algorithm to solve the STCLTR problem. RLD computes a local deadline for each
task and determines the assignment of each task by defined cost-time ratio. Finally,
combining algorithms ISGG and RLD, we propose the RLDG algorithm to solve the
STCLTR problem. RLDG first uses ISGG to divide all tasks into a specific number of
groups, each group with a limited size. Then it adopts a method similar to RLD to
schedule each task. All tasks within a group are required to be executed on cores in the
same cluster.

Our main contributions are as follows.

—We propose the ISGG algorithm to partition all tasks of a DAG into several groups
which still form a DAG. The number of tasks in each group is restricted to a constant.

—We propose a novel scheduling algorithm RLD to solve the STCLTR problem.
—We propose another scheduling algorithm RLDG to solve the STCLTR problem by

combining ISGG and RLD. RLDG has higher time complexity than RLD, but it can
generate better solutions.

We conduct extensive experiments on synthetic benchmarks with various charac-
teristics and real benchmarks to test the effectiveness and efficiency of the proposed
algorithms. Experimental results show that the proposed algorithms can greatly reduce
cost compared with other existing techniques. For example, for synthetic benchmarks
whose ratios of communication to computation (CCR) are 0.5 under the first configura-
tion, RLDG can achieve 30.01% and 39.72% reductions in total system cost on average,
compared to two well-known scheduling algorithms, HEFT [Topcuoglu et al. 2002] and
DBUS [Bozdag et al. 2006], respectively.

The remainder of this article is organized as follows. Section 2 reviews the related
work. Section 3 describes models and defines the STCLTR problem studied in this
article. Section 4 gives a motivational example. Section 5 presents an improved safe
group graph algorithm. Section 6 proposes two heuristic scheduling algorithms to solve
the STCLTR problem. Section 7 evaluates and analyzes the proposed techniques by
comparing with other existing approaches. Section 8 concludes this article.

2. RELATED WORK

Researchers have developed plenty of methods to reduce cost in various computing
systems in the past decades.

Some focus on embedded systems. Studies in Wang and Yao [2011], Zhang et al.
[2013], and March et al. [2013] address scheduling algorithms for period tasks in em-
bedded systems. Ge et al. [2014] present a Reducing Context Switches Scheduling
(RCSS) algorithm based on preemption thresholds scheduling for real-time embedded
systems to decrease system energy consumption. They consider a set of independent
periodic or sporadic tasks. A communication energy-aware task mapping heuristic is
studied in Singh et al. [2010], however, task computation energy is not considered.
Singh et al. [2016] present a novel runtime trace analysis strategy to rapidly identify
the maximum throughput mapping to support a use-case while optimizing for through-
put and resource usage. However, they do not consider time constraint. Qiu and Sha
[2009] propose optimal algorithms for a tree-structural task model and heuristics for
a general task model on heterogeneous embedded systems with hard/soft time con-
straints. They do not consider communication and aim at minimizing cost. Addtionally,
Singh et al. [2013b] investigate numerous works on scheduling algorithms in embed-
ded systems. However, the majority of works are based on homogeneous systems. For
works based on heterogeneous systems, they differ from our work in one or more of

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:4 J. Liu et al.

three aspects: architectures, constraints, and goals, so that the techniques proposed in
these works are not suitable to solve the problem studied in our work.

Some are based on other computing systems. Zong et al. [2011] focus on scheduling
parallel tasks on homogeneous clusters without considering time constraints. They
propose two energy-aware duplication scheduling algorithms, EAD and PEBD, to bal-
ance schedule lengths and energy savings by judiciously replicating predecessors of
a task if the duplication can aid in performance without degrading energy efficiency.
Xian et al. [2007] present an energy-aware scheduling algorithm based on EDF for ho-
mogeneous multiprocessor systems that support the Dynamic Voltage and Frequency
Scaling (DVFS) techniques with uncertain task execution time. They consider a set
of independent, periodic, preemptive, and hard real-time tasks. Lee [2012] studies
energy-efficient scheduling of independent and periodic real-time tasks on lightly
loaded homogeneous multicore processors that contain more processing cores than
running tasks. Han et al. [2015] consider the Voltage/Frequency Island (VFI)-based
and DVFS-enabled multicore systems, and study both static and dynamic energy man-
agement schemes for real-time tasks. Liu et al. [2011] deal with scheduling parallel
applications on heterogeneous clusters, considering no time constraints. They propose
an Efficient Energy-based Task Clustering Scheduling (EETCS) algorithm that con-
serves power by judiciously shrinking communication energy consumption. Mishra
et al. [2003] propose static and dynamic power management schemes to schedule a
set of real-time tasks with precedence constraints executing on distributed systems.
They consider preemptive scheduling and aim to save energy. Seo et al. [2008] propose
two heuristic algorithms, dynamic repartitioning and dynamic core scaling, to sched-
ule periodic real-time tasks on multicore processors with the Dynamic Voltage Scaling
(DVS) technique. Kong et al. [2011] develop algorithms to determine a schedule for
independent and real-time tasks on cluster-based multicore systems under time and
operating frequency constraints. Singh et al. [2013a] present a DVFS methodology for
streaming applications that contain actors having cyclic dependencies. Gerards and
Kuper [2013] present a schedule for independent, frame-based, real-time tasks that
globally minimizes the energy consumption by applying DVFS and Dynamic Power
Management (DPM). Chen et al. [2014] present an energy optimization technique for
scheduling periodic real-time tasks on multicore systems with optimal DFVS and DPM
combination.

DVFS is a popular technique in reducing energy consumption. Studies [Wang et al.
2010; Xian et al. 2007; Gerards and Kuper 2013; Chen et al. 2014] all use DVFS to
save energy. However, Shafique et al. [2013] point out that DVFS scaling potential is
diminishing due to the shrinking gap between nominal and threshold voltages and the
high overhead of voltage regulators in densely integrated chips with 100s of cores. Zong
et al. [2011] also show that communication-intensive applications may decrease the
benefits of DVFS. Thus, we do not consider the DVS, DVFS, or DPM techniques in our
study. We address scheduling dependent tasks on heterogeneous multicore embedded
systems considering communication, time, and resource constraints.

3. MODELS AND PROBLEM DEFINITION

In this section, we introduce the heterogeneous system model, the task model, and the
problem to be studied in this article.

3.1. Heterogeneous System Model

The system model of heterogeneous multicore embedded systems adopted in this
article is composed of a set of M connected, heterogeneous clusters, denoted by
CL = {CL1, CL2, . . . , CLM}. These clusters are connected with each other through in-
terconnects. Each cluster includes a finite number of cores, which means that tasks

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:5

Fig. 1. An example of system model. (a) A system model with three heterogeneous clusters, each of which
has finite cores. (b) Values of communication time and cost for transferring unit data volume between cores
in (a).

will be executed with resource contention. Cores in the same cluster are identical,
while cores in different clusters are heterogeneous. Communication between cores
within a cluster passes through interconnects in the cluster. Communication be-
tween cores of different clusters passes through interconnects between clusters. Sup-
pose that cluster CLi contains ni cores and cores in cluster CLi are numbered as
clSi−1+1, clSi−1+2, . . . , clSi , where Si represents the total number of cores of clusters from
CL1 to CLi, Si = Si−1 + ni, S0 = 0, and 1 ≤ i ≤ M. Then the set CL can be rewritten as
CL = {cl1, cl2, . . . , clS1 , clS1+1, . . . , clS2 , . . . , clSM−1+1, clSM−1+2, . . . , clSM}. Figure 1(a) shows
an example of the heterogeneous system model, which consists of three heterogeneous
clusters.

In general, an application consists of multiple tasks. If a task vi needs the result com-
puted by a task v j (j �= i) and both vi and v j are executed on two cores, communication
is required between the two cores.

Different interconnects may present different communication capacities and prop-
agation delays, which also leads to different communication overhead. We define the
communication time for transmitting a unit of data through the interconnect from
core clp to core clq as a function UCT(clp, clq). We define the communication cost for
transmitting a unit of data through the interconnect from core clp to core clq as a
function UCC(clp, clq). In view of communication between cores within a cluster via
interconnects of the cluster and communication between cores of different clusters via
interconnects among clusters, the communication cost for transmitting one unit of data
between clusters is higher than that within a cluster and the communication time for
transmitting one unit of data between clusters is longer than that within a cluster.
The values of these two functions can be obtained by testing several sets of data sent
through communication links. Thus, we assume that the communication time and cost
for transmitting a unit of data are known in advance. Like other studies, we assume
that that the communication cost and time are negligible between tasks executing on
the same core.

Figure 1(b) shows an example of values of communication time and cost for transfer-
ring one unit of data between any two cores in Figure 1(a). For example, the value 3 in
the cell of column “UCT3” and row “cl2” shows that the communication time transfer-
ring one unit of data from core cl2 in cluster CL2 to core cl3 in cluster CL3 is three time
units.

3.2. Task Model

The target task model is a Directed Acyclic Dataflow Graph (DADFG). We use DADFG
to model tasks of an application to be executed on the target system described in
Section 3.1. A DADFG G = 〈V, E, D〉 is an edge-weighted DAG, where V =
{v1, v2, . . . , vN} is a set of nodes, E ⊆ V × V is a set of edges, and D is a set of edge

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:6 J. Liu et al.

Fig. 2. An example of DADFG. (a) A tree. (b) Values of execution time and cost for tasks in (a) on the system
model in Figure 1.

weights. Each node v ∈ V represents a task. Each edge (u, v) ∈ E represents the depen-
dency relationship between node u and node v, indicating that task u should be finished
before executing task v. We denote D(vi, v j) to be the data volume transferred from task
vi to task v j . A task without any parent is called an entry task and a task without any
child is called an exit task. We assume that a DADFG G has only one entry node and
one exit node. If there is more than one exit (entry) task, they can be connected to a
zero-cost pseudo exit (entry) task with zero-cost edges. Figure 2(a) shows an example
of a DADFG.

Due to the heterogeneity of cores, different types of cores have different computing
capacities for a task and consume different cost. Let ET (vi, clp) be the execution time
of task vi when it is assigned to core clp. Let EC(vi, clp) be the execution cost of task
vi when it is assigned to core clp. Figure 2(b) shows the values of the execution time
and cost of tasks in Figure 2(a) when these tasks are executed on the system model in
Figure 1. For instance, the value located in column “ET2” and row “v3” indicates that
the execution time of task v3 is three time units when it is assigned to core cl2 in cluster
CL2; the value located in column “EC2” and row “v3” indicates that the execution cost
of task “v3” is three units when it is assigned to core cl2 in cluster CL2.

Every task in V must be assigned to a core in the system model as described in
Section 3.1. We define a task assignment function A : V −→ CL. For ∀v ∈ V , we have
A(v) ∈ CL which represents that task v is assigned to a core A(v) that belongs to the
set CL. For example, A(v1) = cl3 indicates that task v1 is assigned to core cl3 of the set
CL.

Furthermore, we use functions CT ((u, v), (A(u), A(v))) and CC((u, v), (A(u), A(v))) to
represent communication time and communication cost on an edge (u, v) under the
task assignment function A, respectively. Since we focus on static task scheduling,
functions CT and CC can be computed in advance for all interconnects between cores.
We assume that communication cost and time between tasks assigned to the same core
are negligible. Techniques proposed in this article can be applied to a computing system
as long as functions CT ((u, v), (A(u), A(v))) and CC((u, v), (A(u), A(v))) are nonnegative
and nondecreasing with an increasing number of tasks. In this work, we assume that
communication time and cost through an edge are linearly proportional to the volume
of data transferred on the edge, which is a reasonable assumption in practice. That
is, function CT can be computed as D(u, v) × UCT(A(u), A(v)) and function CC can be
computed as D(u, v) × UCC(A(u), A(v)).

After that, we define the completion time (i.e., makespan) and the total cost executing
a DADFG G = 〈V, E, D〉 under the system model addressed in Section 3.1 and a
task assignment function A. Since G is completed only if its exit node is finished, the
completion time of G is defined to be the actual finish time of its exit node vexit as shown

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:7

in Equation (1):

makespan = AFT (vexit), (1)

where AFT (vexit) represents the actual finish time of vexit. The total cost for executing
G is the sum of the total execution cost of all nodes and the total communication cost
for data communication. Denote the total cost as C(G)A, which can be expressed as
Equation (2):

C(G)A =
∑
v∈V

EC(v, A(v)) +
∑

(u,v)∈E

CC((u, v), (A(u), A(v))). (2)

3.3. Problem Definition

The problem is defined as follows: Given a DADFG G = 〈V, E, D〉, a system model
consisting of a set of M heterogeneous clusters CL = {CL1, CL2, . . . , CLM}, each cluster
CLi (1 ≤ i ≤ M) with ni cores, and a time constraint L, the STCLTR problem is to find
a task assignment function A(v) for each task v ∈ V and identify the execution order of
all tasks on cores in clusters without violating task dependencies so that the total cost
CA(G) is minimized, while the time constraint L is guaranteed, that is, AFT (vexit) ≤ L.

In this article, since the STCLTR problem is NP-hard, we propose heuristic algo-
rithms to solve it. We propose a grouping algorithm ISGG to partition all tasks into
a number of groups, and two scheduling algorithms RLD and RLDG to generate near
optimal solutions for the STCLTR problem.

4. A MOTIVATIONAL EXAMPLE

Before presenting the proposed algorithms, we first show the effectiveness of our pro-
posed algorithms RLD and RLDG through an example. We use the example to illustrate
that task scheduling has an important impact on energy saving, assuming that the unit
of time is second (s) and the unit of energy is joule (J).

In the example, there are a total of five tasks that form a DADFG as shown in
Figure 2(a). These tasks are executed on the system model as shown in Figure 1. The
system model consists of three heterogeneous clusters CL1, CL2, and CL3. Figure 1(a)
shows the structure of these three clusters and Figure 1(b) shows values of communi-
cation time and energy consumption for transferring a unit of data between cores of
all clusters. We assume that the performance of cores in clusters CL1, CL2, and CL3
is decreased and their power consumption is decreased in sequence. Figure 2(b) shows
the values of execution time and energy consumption of all five tasks on the given
system model. The value beside each edge is the data volume transferred on the edge.

Figure 3 shows four different scheduling schemes for five tasks executing on the
given system model. In each scheduling scheme, the horizontal, the vertical axis, and a
rounded rectangle represent time, core, and a task, respectively. The head of a rounded
rectangle corresponds to the starting execution time of the task on its assigned core,
and the tail of a rounded rectangle corresponds to the finish execution time of the
task on its assigned core. A line with an arrow represents communication incurred
by two tasks residing on different cores. For example, in Figure 3(d), the line with an
arrow from the rounded rectangle labeled “v1” to the rounded rectangle labeled “v3”
represents communication between core cl2 and core cl3 incurred by data dependency
between task v1 on core cl2 and task v3 on core cl3. The head corresponds to the start
time of communication and the tail corresponding to the finish time of communication.

Among four scheduling schemes, the scheme (a) is obtained from HEFT [Topcuoglu
et al. 2002], where tasks v1, v2, v3, v4, v5 are executed in order on core cl1. The energy
consumed by the scheme (a) is (6 + 7 + 7 + 8 + 9)J = 37J, and the completion time is
6s. The scheme (b) is obtained from DBUS [Bozdag et al. 2006], consuming time of 5s

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:8 J. Liu et al.

Fig. 3. Four different scheduling schemes. (a) A schedule consuming 37J of energy and 6s of time; (b) a
schedule consuming 38J of energy and 5s of time; (c) a schedule consuming 33J of energy and 7s of time;
(d) a schedule consuming 18J of energy and 9s of time.

and energy of 38J, respectively. The scheme (c) is obtained from RLD to be proposed,
consuming time of 7s and energy of 33J. The scheme (d) is obtained from RLDG to be
proposed, consuming time of 9s and energy of 18J.

This example reveals that different scheduling schemes will generate different re-
sults and it is necessary to explore efficient scheduling algorithms for the STCLTR
problem.

5. AN IMPROVED SAFE GRAPH GROUPING ALGORITHM

In this section, we present an improved safe graph grouping algorithm, for example,
ISGG. ISGG is a static heuristic and based on the Safe Graph Grouping (SGG) algo-
rithm proposed by Sun et al. [2014]. The differences lie in that we consider limited
resource of processing cores and restrict the number of tasks in each group, while there
are no such restrictions for SGG. The basic idea of ISGG is to choose a pair of nodes
with the largest communication data size from the input DADFG to merge without
forming any cycle. This operation is repeated on the newly formed DADFG after every
merger until the required DADFG is obtained or no nodes can be merged.

Before presenting ISGG, we introduce two binary operations ∨ and �, three matrices
bA, bAx, and bA≥2, and a theorem.

Definition 5.1 (Boolean Join ∨). Given two Boolean matrices A = (aij)n×n and B =
(bij)n×n, define A∨ B = (cij)n×n and cij = aij ∨ bij . We have

cij =
{

1, if aij = 1 or bij = 1, 1 ≤ i, j ≤ n
0, otherwise. (3)

Let A1 = (a1
i j)n×n, A2 = (a2

i j)n×n, . . . , An = (an
ij)n×n be n Boolean matrices, and their

Boolean join can be defined as A1 ∨ A2 ∨ · · · ∨ An = (cij)n×n, where cij = a1
i j ∨ a2

i j · · · ∨ an
ij ,

ak
ij ∈ Ak, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n. We have

cij =
{

1, if ∃k, s.t. ak
ij = 1, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n,

0, otherwise (4)

Definition 5.2 (Boolean Product �). Given two boolean matrices A = (aij)n×n and
B = (bij)n×n, define A� B = (cij)n×n and cij = (ai1 � b1 j) ∨ (ai2 � b2 j) ∨ · · · ∨ (ain � bnj). We

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:9

have

cij =
{

1, if ∃k, s.t. aik = 1 and bkj = 1, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n
0, otherwise. (5)

Definition 5.3 (Boolean Adjacency Matrix bA). Given a DADFG G that contains n
nodes, the Boolean adjacency matrix bA of G is an n × n matrix, where the value of
each element aij ∈ bA is 0 or 1: aij = 1 if and only if there exists an edge from node vi
to node v j , 1 ≤ i, j ≤ n.

Definition 5.4 (Boolean x Matrix bAx). Given a DADFG G that contains n nodes,
the Boolean x matrix bAx (1 < x < n) of G is an n × n matrix, where the value of each
element ax

ij ∈ bAx is 0 or 1: ax
ij = 1 if and only if there exists at least one path of at least

x edges from node vi to node v j , 1 ≤ i, j ≤ n. We have

bAx = bAx−1 � bA,

ax
ij = (

ax−1
i1 � a1 j

) ∨ (
ax−1

i2 � a2 j
) ∨ · · · ∨ (

ax−1
in � anj

)
,

ax
ij ∈ bAx, ax−1

ik ∈ bAx−1, akj ∈ bA, 1 ≤ k ≤ n, 1 ≤ i, j ≤ n.

(6)

Note that matrix bAx defined here is different from that defined in Sun et al. [2014].

Definition 5.5 (Boolean ≥ 2 Matrix bA≥2). Given a DADFG G that contains n nodes,
the Boolean ≥ 2 matrix bA≥2 of G is an n × n matrix, where the value of each element
a≥2

i j ∈ bA≥2 is 0 or 1: a≥2
i j = 1 if and only if there exists at least one path from node vi to

node v j with at least two edges, 1 ≤ i, j ≤ n. We have

bA≥2 = bA2 ∨ bA3 ∨ · · · ∨ bAn−1,

a≥2
i j = a2

i j ∨ a3
i j ∨ · · · ∨ an−1

i j , ax
ij ∈ bAx, 1 < x < n, 1 ≤ i, j ≤ n.

(7)

THEOREM 5.6. Given a DADFG G with n nodes and its Boolean ≥ 2 matrix bA≥2,
merge any pair of nodes vi and v j that satisfy a≥2

i j = 0 (a≥2
i j ∈ bA≥2), and then the new

graph G′ generated by merging remains a DADFG with n − 1 nodes.

According to Corollary 4.1 in Sun et al. [2014], Theorem 5.6 is true and it is used to
guarantee that the new graph G′ is a DAG. So G′ is a DADFG. Note that a node in the
original input graph is a task, while a node in the new graph generated after every
merge is a group. A group does not represent a task and it maybe includes several
tasks.

After that, we will explain how to compute the Boolean adjacency matrix bA′ and
the Boolean ≥ 2 matrix bA′≥2 of the new graph G′ generated by merging nodes vi and
v j of graph G. Let vr be the node generated by merging nodes vi and v j , where r is
the smaller one of the two indexes i and j, denoted by r = min{i, j}. Merging can only
change connections between node vr and those nodes that node vh connects to or is
connected by, where h be the larger one of the two indexes i and j. For nodes that vh
connects to or is connected by, after merging, they either connect to vr or are connected
by vr, which makes the length of path between some nodes change. There are only three
cases that can make the longest length of path between nodes change (see Figure 4).
So, we can obtain bA′ of G′ by the following three steps:

Step 1. a′
st = ast, a′

st ∈ bA′, ast ∈ bA, 1 ≤ s, t ≤ |V |, s �= i, j, and t �= i, j.
Step 2. a′

rr = 0, a′
rr ∈ bA′.

Step 3. a′
rk = aik∨ajk, a′

kr = aki ∨akj , aik ∈ bA, ajk ∈ bA, a′
rk ∈ bA′, a′

kr ∈ bA′, 1 ≤ k ≤ |V |
and k �= i, j.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:10 J. Liu et al.

Fig. 4. Three kinds of subgraphs of G that will change values of elements of matrix bA≥2 after merging
nodes vi and v j .

ALGORITHM 1: ISGG
Input: A DADFG G = 〈V, E, D〉, bA and bA≥2 of G, two positive integers k1 and k2.
Output: The target DADFG with total communication data size minimized.

1 regard each node vi in G as a group, 1 ≤ i ≤ |V |;
2 |vi| ← 1, 1 ≤ i ≤ |V | /* |v| represents the number of tasks in group v*/;
3 repeat
4 find a pair of groups vi and v j from G that meet a≥2

i j = 0 and have the largest
communication data size, a≥2

i j ∈ bA≥2;
5 if |vi| + |v j | > k2 then
6 go to line 4 to find a new pair of groups;
7 end
8 vr ← vi ∪ v j(r = min{i, j}) /*merge vi and v j into a new group vr */;
9 |V | ← |V | − 1; |vr | ← |vi| + |v j |;

10 Apply the previously mentioned methods mentioned above to compute Boolean
matrices bA′ and bA′≥2 of the new DADFG G′ generated by merging;

11 G ← G′; bA ← bA′; bA≥2 ← bA′≥2;
12 until |V | ≤ k1 or no groups in G can be merged;

Also, we can obtain bA′≥2 of G′ by the following five steps:

Step 1. a′≥2
st = a≥2

st , a′≥2
st ∈ bA′≥2, a≥2

st ∈ bA, 1 ≤ s, t ≤ |V |, and s, t �= h.
Step 2. a′≥2

rr = 0, a′≥2
rr ∈ bA′≥2.

Step 3. a′≥2
rx = 0, if a′≥2

rx = 1 and the longest path from nodes vr to vx with length less
than 2, ∀a′≥2

rx ∈ bA′≥2 (see Figure 4(a)).
Step 4. a′≥2

yr = 0, if a′≥2
yr = 1 and the longest path from nodes vy to vr with length less

than 2, ∀a′≥2
yr ∈ bA′≥2 (see Figure 4(b)).

Step 5. a′≥2
xy = 1, if a′≥2

xy = 0 and node vx connects to node vr and vr connects to node
vy, ∀a′≥2

xy ∈ bA′≥2 (see Figure 4(c)).

Now, we present the ISGG algorithm, which is shown in Algorithm 1. First, ISGG
regards each node vi in the input graph G as a group and records the number of tasks
in each group vi, 1 ≤ i ≤ |V | (lines 1 and 2). Second, ISGG tries to find a pair of groups
vi and v j that meet a≥2

i j = 0 (a≥2
i j ∈ bA≥2) and have the largest communication data size

(line 4). If the total number of tasks in groups vi and v j is larger than k2, then ISGG
goes to line 4 to find a new pair of groups; otherwise, group vi and group v j are merged
into a new group denoted by vr, where r is the smaller one of the two indexes i and j,
that is, r = min{i, j} (lines 5–8). Third, ISGG updates the total number of groups and
the number of tasks in group vr (line 9). Denote the new DADFG generated by merging

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:11

Fig. 5. An example of merging nodes. (a) DAG G. (b) DAG G′ generated by merging nodes v3 and v4 of G.
(c) DAG G′′ generated by merging nodes v1 and v2 of G′. (d)–(f) are the Boolean adjacency matrices of G, G′,
and G′′, respectively. (g)–(i) are the Boolean ≥ 2 matrices of G, G′, and G′′, respectively.

groups vi and v j to be G′; line 10 computes the Boolean adjacency matrix bA′ and the
Boolean ≥ 2 matrix bA′≥2 of G′ applying the methods mentioned previously. Line 11
updates graph G and its Boolean matrices bA and bA≥2. Finally, operations from line 4
to line 11 are repeated until the total number of groups is not larger than k1 or no
groups can be merged.

Figure 5 shows an example to merge nodes by ISGG. The input graph G = 〈V, E, D〉
is shown in Figure 5(a) with four nodes, and let k1 = 2 and k2 = 2. Regard each node
in G as a group, Figures 5(a)–5(c) show the new graphs generated after every merge,
where the colorless circles represent the groups that do not finish partition, and the
gray circles represent the groups that finish partition. Figures 5(d) and 5(g) show the
Boolean adjacency matrices and the Boolean ≥ 2 matrices of the original input graph
G. For each matrix, a column of numbers on the left and a row of numbers on the top
of the matrix are both indexes of all groups, sorted by ascending order of indexes. For
example, numbers “1, 2, 3, 4” on the left of the matrix shown in Figure 5(d) are indexes
of groups v1, v2, v3, v4, respectively.

Observing Figures 5(a) and 5(g), we find that the communication data size between
groups v3 and v4 are the largest among all pairs of groups, a≥2

34 = 0, and the total number
of tasks in v3 and v4 is 2. Therefore, we merge v3 and v4, resulting in a new DADFG
G′ shown in Figure 5(b). Figures 5(e) and 5(h) show the Boolean adjacency matrix and
the Boolean ≥ 2 matrix of G′, respectively. We go on searching the next pair of groups
and find that groups v1 and v2 satisfy the merge conditions. After merging v1 and v2, a
second new DADFG G′′ is generated shown in Figure 5(c). Its Boolean adjacency matrix
is shown in Figure 5(f) and its Boolean ≥ 2 matrix is shown in Figure 5(i). G′′ is the
target DADFG, which contains two groups v1 and v3. Group v1 contains two tasks v1
and v2; group v3 contains two tasks v3 and v4. Compared with the total communication
data size of eight data units before merging, the total communication data size after
merging is greatly reduced to four data units.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:12 J. Liu et al.

The time complexity of finding two groups to merge is O(|V |2), the time complexity
of computing bA′ and bA′≥2 is O(|V |2), and repetition at most occurs |V | times, where
|V | is the number of nodes in the input DADFG. Thus, the time complexity of ISGG is
O(|V |3), which is lower than the time complexity O(|V |4) of SGG.

6. TWO HEURISTIC SCHEDULING ALGORITHMS

In this section, we propose two heuristic scheduling algorithms for solving the STCLTR
problem. One is the ratio and local deadline algorithm, for example, RLD. The other
is the ratio and local deadline with grouping algorithm, for example, RLDG, which is
based on ISGG and RLD.

Before presenting the two scheduling algorithms, we introduce some notations
EST (vi, clp), EFT (vi, clp), ranku(vi), ld(vi), and ratio to be used in this section. Given
a DADFG G = 〈V, E, D〉 consisting of n nodes v1, v2, . . . , vn, a time constraint L, and M
heterogeneous clusters CL1, CL2, . . . , CLM, suppose that cluster CLi contains ni cores,
1 ≤ i ≤ n. All cores are numbered by the method described in Section 3.1. We now
address these notations one by one.

EST (vi, clp) represents the earliest execution start time of node vi on core clp. It can
be computed as follows:

EST (vi, clp) =
{0, if vi = ventry

max{avail[clp], maxvm∈pred(vi){AFT (vm)+
CT ((vm, vi), (A(vm), clp))}}, if vi �= ventry,

(8)

where ventry is the entry node of G and pred(vi) is the set of immediate predecessor nodes
of vi. avail[clp] is the earliest available time for core clp to be available for executing
a new node. If node v is the last assigned node on core clp, then avail[clp] is the time
that clp finishes the execution of v and it is ready to execute another node using a
noninsertion-based scheduling policy. AFT (vi) is the actual finish time of vi, computed
as AFT (vi) = minclp∈CL{EFT (vi, clp)}. EFT (vi, clp) represents the earliest execution
finish time of node vi on core clp. It can be computed as follows:

EFT (vi, clp) = ET (vi, clp) + EST (vi, clp). (9)

ranku(vi), an upward rank, is used to determine the scheduling order of node vi, 1 ≤ i ≤
n. It is computed recursively by traversing G upward starting from the exit node vexit,
and can be computed as follows:

ranku(vi) =

⎧⎪⎨
⎪⎩

ETi, if vi = vexit

maxv j∈succ(vi)(CT ((vi, v j), (A(vi), A(v j))) + ranku(v j))

+ETi, if vi �= vexit,

(10)

ETi =
SM∑
p=1

ET (vi, clp)/SM, where SM =
M∑

p=1

np, (11)

CT ((vi, v j), (A(vi), A(v j)) = UCT × D(vi, v j), (12)

UCT =
⎛
⎝ SM∑

p=1

SM∑
q=1

UCT (clp, clq)

⎞
⎠ /S2

M, (13)

where succ(vi) is the set of immediate successors of node vi, ETi is the average com-
putation time of node vi, CT ((vi, v j), (A(vi), A(v j))) is the average communication time

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:13

between core A(vi) and core A(v j), and UCT is the average communication time for
transferring a unit of data through all communication links. If ranku(vi) > ranku(v j), vi
has higher priority than v j and should be scheduled before v j . We use the preceding
method to calculate the priority because similar methods are adopted in other work
and have been proved to be good [Topcuoglu et al. 2002].

ld(vi) (1 ≤ i ≤ n), a local deadline of node vi, can be obtained by four steps. First, we
compute the upward local deadline denoted by ld(vi)u of node vi as follows:

ld(vi)u =
{

L, if vi = vexit

minv j∈succ(vi){ld(v j) − ETj − CT ((vi, v j), (A(vi), A(v j)))}, if vi �= vexit.
(14)

It is computed recursively by traversing G upward starting from the exit node vexit.
One disadvantage of ld(vi)u is that ld(vi)u of some nodes are negative when L is small,
which is invalid. Second, we compute a downward local deadline denoted by ld(vi)d for
node vi as follows:

ld(vi)d =
{

ETi, if vi = ventry

maxv j∈pred(vi){ld(v j) + ETj}, if vi �= ventry.
(15)

It is computed recursively by traversing G downward starting from the entry node ventry.
Notice that ld(vi)d may be larger than the time constraint L, which is also invalid. Third,
we recompute a new downward local deadline denoted by ld′(vi)d for vi as follows:

ld′(vi)d = ld(vi)d × L
max1≤ j≤n{ld(v j)d} . (16)

Also, ld′(vi)d has a disadvantage, that is, it may result in a makespan much shorter
than the given time constraint L but a large cost. Finally, to avoid adverse factors
mentioned in the second and third steps, we have

ld(vi) = max{ld(vi)u, ld′(vi)d}. (17)

ratio, a cost-time ratio, is used to determine the assignment A(vi) of node vi, 1 ≤ i ≤ n.
We compute the total cost and the earliest finish time of executing vi on every core.
Meanwhile, we record the core that makes the earliest finish time of vi minimum among
all cores under its local deadline as A1(vi), and the core that makes the total cost of
vi minimum among all cores under its local deadline as A2(vi). Suppose that the total
cost and the earliest finish time of vi executing on core A1(vi) are cost(vi, A1(vi)) and
e f t(vi, A1(vi)), and the total cost and the earliest finish time of vi executing on core
A2(vi) are cost(vi, A2(vi)) and e f t(vi, A2(vi)). We have

ratio = − �cost
�time

= cost(vi, A1(vi)) − cost(vi, A2(vi))
e f t(vi, A2(vi)) − e f t(vi, A1(vi))

. (18)

The ratio is compared with a nonnegative number r1 to determine whether node vi is
assigned to A1(vi) or A2(vi). If ratio > r1, then A(vi) = A2(vi). Otherwise, A(vi) = A1(vi).

Other notations used throughout the remainder of this article are listed in Table I.

6.1. The RLD Algorithm

In this subsection, we propose the RLD algorithm. The main idea of RLD is to start with
computing a local deadline for each task, schedule the task under its local deadline,
and identify the assignment of the task by a cost-time ratio. Then RLD changes values
of some parameters to obtain better schedules. Finally, RLD chooses the schedule with
the smallest cost under the given time constraint as the final schedule.

Algorithm 2 is our proposed RLD algorithm and shows how to get a near optimal
schedule of an input DADFG G. At first, it calculates ranku values of all tasks of

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:14 J. Liu et al.

Table I. Parameters to be Used

Parameter Meaning
|v| the number of tasks in group v

k1 the number of groups to be partitioned for a given DADFG G
k2 the number of tasks at most in each group
r1 a nonnegative real number that is used to determine the assignment of a task
γ the relaxation factor of time constraint

step an increment of time constraint before the first successful schedule is found
step1 an increment of time constraint after the first successful schedule is found
A1(v) the assignment of task v that makes the earliest finish time of v minimum and

satisfies ld(v)
A2(v) the assignment of task v that makes the cost of finishing executing v minimum and

satisfies ld(v)
A(v) the assignment of task v

EFT (g, CLp) the earliest finish time of group g when executing on cluster CLp

cost(g, CLp) the cost of group g when executing on cluster CLp

A1(g) the assignment of group g that makes the earliest finish time of g minimum
A2(g) the assignment of group g that makes the cost of finishing executing g minimum
A(g) the assignment of group g

ALGORITHM 2: RLD
Input: A DADFG G = 〈V, E, D〉, a time constraint L, and positive integers step and step1.
Output: A near optimal schedule of G.

1 calculate ranku(v) for each node v ∈ G by Equation (10);
2 sort all nodes in a scheduling list list by nonincreasing order of ranku values;
3 L1 ← ∞; L′ ← L; cost ← ∞; time ← ∞; Smin ← φ;
4 while L′ ≤ L1 do
5 calculate ld(v) for each node v ∈ G by Equation (17);
6 call Function(RLDschedule(list, r1));
7 if (L1 < ∞) then
8 L′ ← L′ + step1;
9 else

10 L′ ← L′ + step (step > step1);
11 end
12 end
13 return Smin.

G by Equation (10), sorts all tasks in a scheduling list list by nonincreasing order
of ranku values, and initializes some related parameters (lines 1–3). Then, it uses
a while loop to get as many as possible successful schedules of G by changing the
value of the parameter L′ (lines 4–12). The while loop firstly calculates the local
deadline ld(v) for each task v by Equation (17) under the time constraint L′, then
calls the function Fuction(RLDschedule(list, r1)) shown as in Algorithm 3 to try to find
successful schedules. If the value of the parameter L1 is not ∞, which means that the
first successful schedule is obtained, the increment of L′ is reduced to a smaller constant
step1 from a larger constant step. Finally, the returned schedule Smin is the solution.

Algorithm 3 shows how to obtain as many as possible successful schedules of G
by changing values of the parameter r1. During finding schedules of G, if the first
successful schedule is obtained, the value of the parameter L1 is fixed to be (int)(γ ×L′),
where γ is the relaxation factor of the time parameter of L′. In addition, it records the
schedule with the minimum cost among all successful schedules that meets the given
time constraint L.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:15

ALGORITHM 3: Function(function)
Input: A time constraint L and a positive integer N1.
Output: A schedule of DADFG G that satisfies the time constraint L.

1 r1 ← −0.05;
2 for j ← 0 to N1 do
3 r1 ← r1 + α /* α is a positive increment */;
4 if function�= −1 then
5 record the successful schedule as S, and the corresponding cost and time of G as

costS, timeS;
6 if costS < cost and timeS ≤ L then
7 cost ← costS; time ← timeS; Smin ← S;
8 end
9 if S is the first successful schedule then

10 L1 ← (int)(γ × L′);
11 end
12 end
13 end

ALGORITHM 4: RLDschedule(list, r1)
Input: A scheduling list list, a set of M heterogeneous clusters CL = {cl1, cl2, . . . , clSM }, a

real number r1.
Output: A schedule of tasks in list.

1 costS ← 0;
2 repeat
3 v ← the task with the largest ranku value in list;
4 A(v) ← ScheduleNode(v, 0, SM, r1, costS);
5 if A(v) = −1 then
6 break;
7 end
8 costS ← cost(v, A(v)); list ← list − {v};
9 until list ← ∅;

10 return A(v).

Algorithm 4 shows how to obtain a schedule of G with a given value of the parameter
r1. It picks out the task v with the largest ranku value from the scheduling list list, and
calls the function ScheduleNode(v, 0, SM, r1, costS) shown as in Algorithm 5 to schedule
task v. After scheduling task v, it takes off v from list and selects another task with
the largest ranku value from list to schedule. This process is repeated until all tasks
are tackled.

Algorithm 5 is a function and shows how to get the assignment of a task v. It starts
with computing the earliest finished time EFT (v, clq) of task v on every given core clq
by using the insertion-based scheduling policy and the corresponding cost cost(v, clq)
of finishing executing v. The main idea of the insertion-based scheduling policy:
Given a node vi and a core clj , find a suitable time slot for vi on clj ; the start time
of searching is the time when all data from the parent nodes of vi arrived at clj ; the
searching is repeated until the first time slot that satisfies the execution time of vi is
obtained. Then, it records the assignment that makes the earliest finished time of v
is minimal as A1(v), and the assignment that makes the cost of finishing executing
v is minimum as A2(v), under the local deadline of v. Finally, it calls the function
Assignment(v, A1(v), A2(v), r1) as shown in Algorithm 6. Assignment(v, A1(v), A2(v), r1)
shows how to decide the assignment of a task (or group) v.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:16 J. Liu et al.

ALGORITHM 5: ScheduleNode(v, ntotal, np, r1, cost)

Input: The local deadline ld(v) of node v, the number np of cores in CLp, some real
numbers ntotal , r1, cost.

Output: The assignment of v.
1 A2(v) ← −1; cost1 ← ∞; time ← ∞;
2 for q ← ntotal + 1 to ntotal + np do
3 calculate EFT (v, clq) by Equation (9) using the insertion-based scheduling policy;
4 if EFT (v, clq) < ld(v) then
5 calculate cost(v, clq) ← cost + ∑

u∈pred(v) CC((u, v), (A(u), clq)) + EC(v, clq);
6 if EFT (v, clq) < time then
7 A1(v) ← clq; time ← EFT (v, clq);
8 end
9 if cost(v, clq) < cost1 then

10 A2(v) ← clq; cost1 ← cost(v, clq);
11 end
12 end
13 end
14 call Assignment(v, A1(v), A2(v), r1);
15 return A2(v).

ALGORITHM 6: Assignment(v, A1(v), A2(v), r1)
Input: cost(v, A1(v)), cost(v, A2(v)), EFT (v, A2(v)), EFT (v, A1(v)) of a task (or group) v.
Output: The assignment of v.

1 if A2(v) = −1 then
2 return
3 end
4 calculate ratio ← cost(v,A1(v))−cost(v,A2(v))

EFT (v,A2(v))−EFT (v,A1(v)) according to Equation (18);
5 if ratio > r1 then
6 A(v) ← A2(v);
7 else
8 A(v) ← A1(v);
9 end

10 cost ← cost(v, A(v));

The time complexity of Algorithm 4 is O(|V |2 × ∑M
p=1 np). Because step>step1,

L1
1.1 − L
step

+ L1 − L1
1.1

step1
<

L1
1.1 − L
step1

+ L1 − L1
1.1

step1
= L1 − L

step1
.

The time complexity of the RLD algorithm is O(|N1|× L1−L
step1 ×|V |2 ×∑M

p=1 np). Generally,
we can set |N1| × L1−L

step1 < C, where C is a constant. Thus, the time complexity of the

RLD algorithm is O(|V |2 × ∑M
p=1 np).

6.2. The RLDG Algorithm

In this subsection, combining the ISGG algorithm described in Section 5 and the
RLD algorithm, we propose the RLDG algorithm. The basic idea of RLDG is sim-
ilar to that of RLD. It firstly allocates a local deadline for each task, and partitions
all tasks into a specified number of groups by ISGG to reduce communication overhead.
Next, it schedules a group on each cluster by scheduling all the tasks in the group on
cores in the cluster under their local deadlines, and determines the assignment of the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:17

ALGORITHM 7: RLDG
Input: A DADFG G = 〈V, E, D〉, CL = {CL1, CL2, . . . , CLM}, the Boolean adjacency matrix

bA of G, a time constraint L, and some positive integers N1, N2, step, and step1.
Output: A near optimal schedule of G.

1 calculate ranku(v) by Equation (10), ∀v ∈ V ;
2 compute the Boolean ≥ 2 matrix of G by the method mentioned in Section 5;
3 L1 ← ∞; L′ ← L; cost ← ∞; time ← ∞; Smin ← φ;
4 while L′ ≤ L1 do
5 calculate ld(v) by Equation (17), ∀v ∈ V ;
6 k1 ← n;
7 while k1 ≥ 2 do
8 use Algorithm 1 to partition all tasks of graph G into k1 groups, each group of at

most k2 = n/k1 + 2 tasks, obtaining a new graph G′;
9 calculate ranku values of groups in graph G′ by Equation (10), and sort these

groups in a scheduling group list glist by nonincreasing order of their ranku values;
10 call Function(ScheduleGroup(glist, r1));
11 k1 ← k1 − N2 /* N2 is a decrement */;
12 end
13 if (L1 < ∞) then
14 L′ ← L′ + step1;
15 else
16 L′ ← L′ + step (step > step1);
17 end
18 end
19 return Smin.

group by a cost-time ratio. Notice that the assignment of a group is a cluster, not a
core. Then, it changes values of some parameters to obtain more successful schedules.
Finally, it chooses the schedule with the smallest cost from these successful schedules
that satisfy the time constraint as the final schedule.

Algorithm 7 is our proposed RLDG algorithm and shows how to get a near optimal
schedule for an input DADFG G. At first, it calculates ranku values of all tasks of G
by Equation (10), computes the Boolean ≥ 2 matrix of G by the method mentioned
in Section 5, and initializes some related parameters (lines 1–3). Then, it uses an
outer while loop to get as many as possible successful schedules of G by changing
the value of the parameter L′ (lines 4–18). The outer while loop first calculates the
local deadline ld(v) for each task v by Equation (17) under the time constraint L′, then
uses an inner while loop to obtain successful schedules by changing the values of the
parameter of k1. The inner while loop firstly uses the ISGG algorithm shown as in
Algorithm 1 to partition all tasks of the input graph G into k1 groups, each group of
at most k2 = n/k1 + 2 tasks, obtaining a new graph G′. The inner while loop secondly
calculates ranku values of all groups by Equation (10) and sorts these groups in a
scheduling group list glist by nonincreasing order of their ranku values. Thirdly, the
inner while loop calls the function Function(ScheduleGroup(glist, r1)) shown as in
Algorithm 3 to try to find successful schedules. If the value of the parameter L1 is not
∞, which means that the first successful schedule is obtained, the increment of L′ is
reduced to a smaller constant step1 from a larger constant step. Finally, the returned
schedule Smin is the solution.

The function Function(ScheduleGroup(glist, r1)) uses the function ScheduleGroup
(glist, r1) shown as in Algorithm 8 to obtain assignments of all groups, where the
assignment of a group is a cluster, not a core. Algorithm 8 firstly picks out the group g
with the largest ranku value from the scheduling list glist and initializes some related

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:18 J. Liu et al.

ALGORITHM 8: ScheduleGroup(glist, r1)
Input: A scheduling group list glist and a real number r1.
Output: A schedule of tasks in glist which minimizes the total cost and satisfies the time

constraint L.
1 cost(g) ← 0; /*cost(g) and time(g) represent the final cost and time of group g*/;
2 repeat
3 g ← the group with the largest ranku value in glist;
4 A(g) ← −1; ntotal ← 0; cost ← ∞; time ← ∞ ;
5 for p ← 1 to M do
6 i ← 1; cost(g, p) ← cost(g); EFT (g, p) ← 0;
7 repeat
8 v ← the task with the ith largest ranku value in the group g;
9 A(v) ← ScheduleNode(v, ntotal, np, r1, cost(g, p));

10 if A(v) = −1 then
11 break;
12 end
13 if EFT (g, p) < EFT (v, A(v)) then
14 EFT (g, p) ← EFT (v, A(v));
15 end
16 cost(g, p) ← cost(v, A(v)); i ← i + 1;
17 until all tasks in the group g have been performed;
18 ntotal ← ntotal + np;
19 if A(v) = −1 then
20 continue;
21 end
22 if time > EFT (g, p) then
23 time ← EFT (g, p); A1(g) ← CLp;
24 end
25 if cost > cost(g, p) then
26 cost ← cost(g, p); A2(g) ← CLp;
27 end
28 end
29 call Assignment(g, A1(g), A2(g), r1);
30 glist ← glist − {g}; cost(g) = cost(g, A(g));
31 until glist ← ∅ or A(g) ← −1;
32 return A(g).

parameters. Next, it tries to schedule group g on every cluster CLp by a for loop
(lines 5–28). The for loop tries to schedule all tasks in g by the order of their ranku val-
ues on cores of cluster CLp, and records the assignment that makes the earliest finished
time of g is minimal as A1(g), and the assignment that makes the cost of finishing exe-
cuting g is minimum as A2(g). Then, it calls the function Assignment(g, A1(g), A2(g), r1)
as shown in Algorithm 6 to determine the assignment of group g. After that, it deletes
g from glist and selects another group with the largest ranku value from glist to
schedule. Finally, this process is repeated until all groups are tackled.

The time complexity of Algorithm 7 is

O

⎛
⎝ L1 − L

step1
× |V | − 2

N2

⎛
⎝|V |3 + N1 × |V |2 ×

M∑
p=1

np

⎞
⎠

⎞
⎠

= O

⎛
⎝ L1 − L

step1
× |V | − 2

N2

⎛
⎝|V |3 + N1 × |V |2 ×

M∑
p=1

np

⎞
⎠

⎞
⎠

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:19

Table II. Values of Communication Time and Cost Transferring a Unit of Data Between Different
Cores of Clusters, Assuming that the Communication Overhead on the Same Core is Zero

CL1 CL2 CL3 CL4

Clusters UCT1 UCC1 UCT1 UCC1 UCT1 UCC1 UCT1 UCC1

CL1 1 1 2 3 2 2 5 4
CL2 2 3 1 1 4 5 3 2
CL3 2 2 4 5 1 1 2 2
CL4 5 4 3 2 2 2 1 1

Generally,
∑M

p=1 np ≤ |V |, L1−L
N2×step1 , and N1 are bounded by constants. Thus, the time

complexity of Algorithm 7 is O(|V |4 + |V |3 ∑M
p=1 np).

7. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness and efficiency of our proposed techniques.
All experiments are conducted on a simulator running on a computer equipped with

the 32-bit Windows 7 operating system and two identical processing cores: Intel (R)
Core (TM) i5-2400 CPU @ 3.10GHz. The simulator is a C program, and it is used to simu-
late a system model described in Section 3.1, consisting of four connected heterogeneous
clusters CL1, CL2, CL3, and CL4. We consider two configurations: (1) CL1, CL2, CL3,
and CL4 are composed of six, four, three, and five processing cores, respectively; (2)
CL1, CL2, CL3, and CL4 are composed of six, four, four, and four processing cores, re-
spectively. Values of communication time and cost transferring a unit of data under two
configurations are the same and as shown in Table II. We assume that the performance
of cores in clusters CL1, CL2, CL3, and CL4 are decreased and their execution costs
are decreased in sequence. That is, cores in cluster CL1 have the highest computation
capacity as well as the highest cost, and cores in clusters CL2, CL3, and CL4 have
slower computation capacity with lower cost.

In this study, we consider synthetic benchmarks and real benchmarks. Synthetic
benchmarks are some DAGs randomly generated using TGFF [Dick et al. 1998]; real
benchmarks come from the DSPstone benchmark suite [Wolf et al. 2008], including
IIR, 4-Stage Lattice Filter, Differential Equation Solver, RSL-Languerre Lattice, and
20-4Stage Lattice Filter.

The DAGs are randomly generated with four varying parameters: (1) the number
of nodes in a DAG; (2) the number of parents of a node, that is, the indegree of the
node; (3) the number of children of a node, that is, the outdegree of the node; and
(4) the communication to computation ratio, CCR, which is computed by the average
communication time divided by the average computation time on a target system and
is selected from set {0.2, 0.5, 1, 5, 10}. According to the indegree and outdegree of nodes
in DAGs, we generated three kinds of DAGs: slim DAGs, medium DAGs, and fat DAGs.
Each kind of DAG includes five DAGs, which contain 20, 50, 150, 250, and 320 nodes,
respectively. The average indegree of nodes in a slim DAG is 1 or 2 and the average
outdegree is 1, 2, or 3. Both the average indegree and outdegree of nodes in a fat DAG
are

√
n, where n is the number of nodes in the fat DAG. The average indegree and

outdegree of nodes in a medium DAG are determined by the following method. Given a
slim DAG G1, a medium DAG G2, and a fat DAG G3, all these DAGs contain n nodes.
Let the average indegree and outdegree of nodes in G1 be n1 and n2, and then the
average indegree and outdegree of nodes in G2 are n1 + √

n/2 and n2 + √
n/2.

For a randomly generated DAG, each node is assigned two node weights, the
execution cost and the execution time, both from interval (0, 30] with a uniform prob-
ability distribution. Each edge is assigned an edge weight, the data size transferred
on the edge, from interval (0, 30 × CC R/CT] to approximate the desired CCR. For

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:20 J. Liu et al.

Fig. 6. Experimental results of five medium benchmarks with CCR = 0.5 under the first configuration.
(a)–(e) shows total cost obtained from different algorithms.

benchmarks from the DSPstone, values of execution time and cost are obtained from
Shao et al. [2005]. The data size transmitted on edges is from interval (0, 5] with a
uniform probability distribution.

Lee and Zomaya [2011] studied energy conscious scheduling for distributed comput-
ing systems using DVS. They used HEFT [Topcuoglu et al. 2002] and DBUS [Bozdag
et al. 2006] as their baselines for the reason “Although the scheduling of these previ-
ous algorithms is energy unconscious, they were proven to perform well for the task
scheduling problem; in addition, none of the existing scheduling algorithms is directly
applicable to such a problem.” We met the same difficulty as them and their proposed
algorithms are not suitable for our problem. So, inspired by them, we also use HEFT
and DBUS as our baselines.

Considering that it is not convenient to list all experimental results and the nature
of these results are more or less the same, we only show experimental results for
Synthetic benchmarks of medium benchmarks with CCR = 0.5 and CCR = 5, and real
benchmarks.

Figures 6 and 7 shows experimental results for five medium benchmarks with CCR =
0.5 and five medium benchmarks with CCR = 5 under the first configuration with
varied time constraints. Figures 8 and 9 show experimental results for five medium
benchmarks with CCR = 0.5 and five medium benchmarks with CCR = 5 under the
second configuration with varied time constraints. For each subfigure, the horizontal
axis represents the time constraint, and the vertical axis represents the cost for execut-
ing a given benchmark obtained by algorithms HEFT, DBUS, RLD ,and RLDG when
time constraint varies. The name of a benchmark is composed of an integral value and
a letter “M,” where the integral value is the number of nodes in the benchmark and
“M” represents that the benchmark is a medium DAG. Besides, in some subfigures,
some algorithms cannot find solutions for the corresponding benchmarks under some
time constraints, so the corresponding costs are not shown.

We observe that for each benchmark, the HEFT algorithm generates the same
solution no matter how the time constraint varies. It is true for the DBUS algorithm.
Whereas, when the time constraint changes, both RLD and RLDG can generate varied

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:21

Fig. 7. Experimental results of five medium benchmarks with CCR = 5 under the first configuration. (a)–
(e) shows total cost obtained from different algorithms.

Fig. 8. Experimental results of five medium benchmarks with CCR = 0.5 under the second configuration.
(a)–(e) shows total cost obtained from different algorithms.

solutions. Generally, when the time constraint increases, the total cost decreases.
Moreover, both RLD and RLDG can generate better results than HEFT and DBUS.
What is more, total costs produced by RLDG are usually less than that produced by
RLD. For example, when the time constraint is 150, the total cost of benchmark “50M”
with CCR = 0.5 in Figure 6 generated by algorithms HEFT, DBUS, RLD, and RLDG
is 1361, 1392, 1196, and 921, respectively; when the time constraint is 250, the total
cost is 1361, 1392, 715, and 553, respectively. Additionally, in some cases, all these
four algorithms except for DBUS can obtain a solution when the time constraint is

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:22 J. Liu et al.

Fig. 9. Experimental results of five medium benchmarks with CCR = 5 under the second configuration.
(a)–(e) shows total cost obtained from different algorithms.

small. For benchmark “50M” with CCR = 0.5 in Figure 6, RLDG can reduce total cost
by 44.77% on average compared with DBUS under five given time constraints. On
the whole, RLDG reduces total cost by 30.01% and 39.72% on average compared with
DBUS and HEFT, respectively, for five benchmarks with CCR = 0.5.

In addition, for medium benchmarks with CCR = 5, more identical values appear,
which is incurred by the large communication overhead. Once CCR is larger than 1, the
completion time is dominated by the communication time. For CCR = 5, the data size
between two dependent tasks can be up to 60 data units, and the communication time
can be about 150 time units on average and up to 300 time units when these two tasks
resided on different cores. If the assignment of one task of them is changed, a large
amount of communication time will be produced such that the total time of the new
schedule may exceed the given time constraint. If the increment of the time constraint
is too small to change the assignments of some tasks in the original scheduling, then
the original schedule remains unchanged. If the increment of the time constraint is
enough large, then the total cost can be further reduced in general.

Obviously, the preceding four figures reflects similar information.
Figure 10 shows experimental results for five benchmarks from DSPstone benchmark

suite under the first configuration. It reflects similar information as in Figures 6 and
8. Due to limit space, we do not show experimental results for five benchmarks from
DSPstone benchmark suite under the second configuration.

Sometimes RLD and RLDG can obtain better results than both HEFT and DBUS
in terms of time and cost under these two configurations. Table III shows several
examples. For example, RLD can find a solution with cost 6,994 and time 308 for
benchmark “150S” under the first configuration, and RLDG can find a solution with
cost 5,376 and time 246. HEFT and DBUS produce no solutions under time 310.

We also find that the experimental results are invariant when the value of the
relaxation factor γ varies, like γ = 1.05, 1.1, and 2.

The preceding discussions demonstrate that the proposed algorithms RLD and RLDG
are highly efficient. Both algorithms can take full advantage of the given time to reduce
total costs as much as possible.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:23

Fig. 10. Experimental results of five benchmarks from DSPstone benchmark suite under the first configu-
ration. (a)–(e) show the total cost obtained from different algorithms for these benchmarks.

Table III. Some Examples in which Both RLD and RLDG Excel HEFT and DBUS in Terms of Makespan
and Total Cost Under Two Configurations

Configuration CCR Benchmark
HEFT
Time

HEFT
Cost

DBUS
Time

DBUS
Cost

RLD
Time

RLD
Cost

RLDG
Time

RLDG
Cost

50S 65 1,219 76 1,483 65 1,188 63 1,147
0.5 250F 164 7,241 202 7,630 164 6,734 163 6,695

First 150S 310 7,596 326 9,486 308 6,994 246 5,376
10 320F 575 29,090 669 56,453 552 28,098 547 28,372

150M 148 4,526 112 4,023 112 4,036 112 3,830
Second 0.5 250M 297 8,492 210 7,490 207 7,533 208 7,340

5 50M 152 1,944 159 3,552 152 1,829 130 1,670

8. CONCLUSION

In this article, we have investigated the STCLTR problem. Since the STCLTR problem
is NP-hard, we propose heuristic scheduling algorithms to solve it. First, we present
the ISGG algorithm to partition tasks of the input DADFG into a specified number
of groups with the objective of minimizing the total communication data size. Second,
we propose the RLD algorithm to solve the STCLTR problem. RLD allots a local dead-
line for each task, schedules the task within its local deadline, and determines the
assignment of the task by defined cost-time ratio. Third, combining ISSG and RLD, we
present the RLDG algorithm to solve the STCLTR problem. Tasks in the same group are
assigned to cores in the same cluster. RLDG has higher time complexity, but it produces
better results than RLD. Extensive experiments with various characteristics show that
the RLD and RLDG algorithms significantly outperform the related algorithms. For
future work, we will develop techniques to solve task scheduling applying the DVS,
DVFS, or DPM techniques on heterogeneous multicore embedded systems. Also, we
will study a more complex case where clusters and cores are separately discussed.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

36:24 J. Liu et al.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to the editors and the referees for their valuable
time and constructive comments which help improve the quality of the manuscript greatly.

REFERENCES

Paul-Antoine Arras, Didier Fuin, Emmanuel Jeannot, Arthur Stoutchinin, and Samuel Thibault. 2015.
List scheduling in embedded systems under memory constraints. International Journal of Parallel
Programming 43, 6 (2015), 1103–1128.

Doruk Bozdag, Umit Catalyurek, and Fuisun Ozguner. 2006. A task duplication based bottom-up schedul-
ing algorithm for heterogeneous environments. In Proceedings of the 20th International Parallel and
Distributed Processing Symposium (IPDPS). 12–23.

Gang Chen, Kai Huang, and Alois Knoll. 2014. Energy optimization for real-time multiprocessor system-on-
chip with optimal DVFS and DPM combination. ACM Trans. Embed. Comput. Syst. 13, 3s (March 2014),
111:1–111:21.

Robert P. Dick, David L. Rhodes, and Wayne Wolf. 1998. TGFF: Task graphs for free. In Proceedings of the
6th International Workshop on Hardware/Software Codesign. 97–101.

Yongqi Ge, Yunwei Dong, and Hongbing Zhao. 2014. Energy-efficient task scheduling and task energy
consumption analysis for real-time embedded systems. In Proceedings of the Theoretical Aspects of
Software Engineering Conference (TASE’14). 135–138.

Marco E. T. Gerards and Jan Kuper. 2013. Optimal DPM and DVFS for frame-based real-time systems. ACM
Trans. Archit. Code Optim (TACO) 9, 4 (Jan. 2013), 41:1–41:23.

Jian-Jun Han, Man Lin, Dakai Zhu, and Laurence T. Yang. 2015. Contention-aware energy management
scheme for NoC-based multicore real-time systems. IEEE Trans. Parallel Distrib. Syst. 26, 3 (2015),
691–701.

Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl, and Alois Knoll. 2011. Analysis and optimization
of fault-tolerant task scheduling on multiprocessor embedded systems. In Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2011 Proceedings of the 9th International Conference on. 247–
256.

Heba Khdr, Santiago Pagani, Muhammad Shafique, and Jörg Henkel. 2015. Thermal constrained resource
management for mixed ILP-TLP workloads in dark silicon chips. In Proceedings of the 52nd Annual
Design Automation Conference. ACM, 179.

Hyungjun Kim, Boris Grot, Paul V. Gratz, and Daniel A. Jimenez. 2014. Spatial locality speculation to reduce
energy in chip-multiprocessor networks-on-chip. IEEE Trans. Comput. 63, 3 (March 2014), 543–556.

Fanxin Kong, Wang Yi, and Qingxu Deng. 2011. Energy-efficient scheduling of real-time tasks on cluster-
based multicores. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE).
1–6.

Joonho Kong, Sung Woo Chung, and Kevin Skadron. 2012. Recent thermal management techniques for
microprocessors. ACM Comput. Surv. 44, 3 (June 2012).

Wan Yeon Lee. 2012. Energy-efficient scheduling of periodic real-time tasks on lightly loaded multicore
processors. IEEE Trans. Parallel Distrib. Syst. 23, 3 (2012), 530–537.

Young Choon Lee and Albert Y. Zomaya. 2011. Energy conscious scheduling for distributed computing
systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22, 8 (2011), 1374–
1381.

Brad Linder. 2014. Allwinner A80 octa-core chip coming in Q2, 2014. (2014). Retrieved December 6, 2016
from https://liliputing.com/2014/04/allwinner-a80-octa-core-chip-coming-q2-2014.html.

Jing Liu, Qingfeng Zhuge, Shouzhen Gu, Jingtong Hu, Guanyu Zhu, and Edwin H. M. Sha. 2014. Minimizing
system cost with efficient task assignment on heterogeneous multicore processors considering time
constraint. IEEE Trans. Parallel Distrib. Syst. 25, 8 (Aug 2014), 2101–2113.

Wei Liu, Hongfeng Li, Wei Du, and Feiyan Shi. 2011. Energy-aware task clustering scheduling algorithm
for heterogeneous clusters. In Proceedings of the 2011 IEEE/ACM International Conference on Green
Computing and Communications (GreenCom). 34–37.

Jos Luis March, Julio Sahuquillo, Salvador Petit, Houcine Hassan, and Jos Duato. 2013. Power-aware
scheduling with effective task migration for real-time multicore embedded systems. Concurr. Comput.
Prac. Exp. 25, 14 (2013), 1987–2001.

Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel Mossé, and Rami Melhem. 2003. Energy aware
scheduling for distributed real-time systems. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS). 113–121.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

https://liliputing.com/2014/04/allwinner-a80-octa-core-chip-coming-q2-2014.html

Minimizing Cost of Scheduling Tasks on Heterogeneous Multicore Embedded Systems 36:25

Morteza Mohaqeqi, Mehdi Kargahi, and Ali Movaghar. 2014. Analytical leakage-aware thermal modeling of
a real-time system. IEEE Trans. Comput. 63, 6 (2014), 1378–1392.

Meikang Qiu and Edwin H.-M. Sha. 2009. Cost minimization while satisfying hard/soft timing constraints
for heterogeneous embedded systems. ACM Trans. Des. Autom. Electron. Syst. 14, 2 (April 2009).

Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee. 2008. Energy efficient scheduling of real-
time tasks on multicore processors. IEEE Trans. Parallel Distrib. Syst. 19, 11 (2008), 1540–1552.

Muhammad Shafique, Dennis Gnad, Siddharth Garg, and Jörg Henkel. 2015. Variability-aware dark silicon
management in on-chip many-core systems. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition. EDA Consortium, 387–392.

Muhammad Shafique, Benjamin Vogel, and Jorg Henkel. 2013. Self-adaptive hybrid dynamic power man-
agement for many-core systems. In Proceedings of the Design, Automation Test in Europe Conference
Exhibition (DATE), 2013. 51–56.

Zili Shao, Qingfeng Zhuge, Chun Xue, and E. H.-M. Sha. 2005. Efficient assignment and scheduling for
heterogeneous DSP systems. IEEE Trans. Parallel Distrib. Syst. 16, 6 (June 2005), 516–525.

Amit Kumar Singh, Anup Das, and Akash Kumar. 2013a. Energy optimization by exploiting execution
slacks in streaming applications on multiprocessor systems. In Proceedings of the 50th Annual Design
Automation Conference (DAC’13). 115:1–115:7.

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013b. Mapping on multi/many-
core systems: Survey of current and emerging trends. In Proceedings of the 50th Annual Design Automa-
tion Conference. ACM, 1.

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jorg Henkel. 2016. Resource and throughput
aware execution trace analysis for efficient run-time mapping on MPSoCs. IEEE Trans. Comput.-Aided
Design Integr. Circ. Syst. 35, 1 (2016), 72–85.

Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar, and Wu Jigang. 2010. Communication-aware
heuristics for run-time task mapping on NoC-based MPSoC platforms. J. Syst. Architect. 56, 7 (2010),
242–255.

Qunyan Sun, Qingfeng Zhuge, Jingtong Hu, Juan Yi, and E. H.-M. Sha. 2014. Efficient grouping-based
mapping and scheduling on heterogeneous cluster architectures. Comput. Elec. Eng. 40, 5 (2014), 1604–
1620.

Timon D. Ter Braak, Philip K. F. Hölzenspies, Jan Kuper, Johann L. Hurink, and Gerard J. M. Smit.
2010. Run-time spatial resource management for real-time applications on heterogeneous MPSoCs.
In Proceedings of the Conference on Design, Automation and Test in Europe. European Design and
Automation Association, 357–362.

Haluk Topcuoglu, Salim Hariri, and Min you Wu. 2002. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13, 3 (2002), 260–274.

Hwang Cheng Wang and Cheng Wen Yao. 2011. Task migration for energy conservation in real-time multi-
processor embedded systems. In Proceedings of the 2011 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery. 393–398.

Lizhe Wang, Gregor Von Laszewski, Jai Dayal, and Fugang Wang. 2010. Towards energy aware scheduling
for precedence constrained parallel tasks in a cluster with DVFS. In Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (CCGrid’10). 368–377.

Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. 2008. Multiprocessor system-on-chip (MPSoC) tech-
nology. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 27, 10 (2008), 1701–1713.

Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. 2007. Energy-aware scheduling for real-time multipro-
cessor systems with uncertain task execution time. In Proceedings of the 44th ACM/IEEE on Design
Automation Conference (DAC’07). 664–669.

Ying Yi, Wei Han, Xin Zhao, Ahmet T. Erdogan, and Tughrul Arslan. 2009. An ILP formulation for task
mapping and scheduling on multi-core architectures. In Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition (DATE’09). 33–38.

Yukan Zhang, Yang Ge, and Qinru Qiu. 2013. Improving charging efficiency with workload scheduling in
energy harvesting embedded systems. In Proceedings of the 50th Annual Design Automation Conference.
1–8.

Ziliang Zong, A. Manzanares, Xiaojun Ruan, and Xiao Qin. 2011. EAD and PEBD: Two energy-aware du-
plication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Trans. Comput. 60, 3
(March 2011), 360–374.

Received September 2015; revised February 2016; accepted May 2016

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 36, Publication date: December 2016.

