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As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which
greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced
MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping
segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization
network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to
provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in
nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature
representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information
of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections
are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using
kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private
nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and
accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment
results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing
segmentation methods.

1. Introduction

According to the latest global cancer data released by the
International Agency for Research on Cancer (IARC) of
the World Health Organization, the number of deaths from
liver cancer in 2020 ranks fourth in the world [1]. The diag-
nosis and treatment of liver cancer have always been the pri-
ority and difficulty of medical research. Liver tumor is a
significant biomarker for the diagnosis of liver cancer, and
accurate segmentation of liver tumor can greatly increase
the detection rate of liver cancer [2]. However, the current
segmentation of liver tumor is manually segmented by radi-
ologists on a large number of MRI images slice by slice. The
results of segmentation depend on the clinical knowledge
and experience of the radiologist which is highly subjective

and time-consuming [3]. Using deep learning technology
to automatically segment liver tumor can avoid misdiagnosis
caused by the subjective differences of physicians, speed up
the screening of liver tumor, and lay the foundation for cli-
nicians to accurately diagnose and formulate reasonable
treatment plans. The model which automatically segments
liver tumor can play a crucial role in the diagnosis and treat-
ment of liver cancer.

In the clinical diagnosis of liver tumor, gadolinium-
based contrast agents are usually injected into patients to
enhance the contrast between the tumor and the surround-
ing organs [4]. Unfortunately, gadolinium-based contrast
agents also bring many dangers: (1) the elements contained
in the contrast agent may have specific toxic effects on the
liver and kidney functions of the human body [5]; (2)
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standard clinical protocols usually require multiple MRI col-
lections before and after contrast injection; this intermittent
multiple collection takes more than twice the time of CT col-
lection [6]; and (3) the use of contrast agents demands more
medical resources (the extra equipment and labor) [7]. Seg-
mentation of liver tumor in nonenhanced MRI images
(without contrast agents) can eliminate the risk of injection
of contrast agents; at the same time, it also reduces the detec-
tion time of patients and medical resource consumption. It
has become an urgent clinical need to develop a kind of seg-
mentation method without contrast agent [8]. Because of
missing contrast enhancement, nonenhanced MRI images
show extremely unclear tumor margins, the contrast with
the surrounding tissues is low, and also, the anatomical
structure is complicated. Liver tumors are diverse in shape
and size. The diameter of a small liver tumor is usually less
than or equal to 2 cm, the diameter of a massive liver tumor
can reach more than 10 cm, and automatic segmentation of a
small tumor is still a challenging task [9]. The comparison of
enhanced and nonenhanced MRI is shown in Figure 1. The
pixel distribution of normal tissue and tumor in the data has
a high degree of similarity, and it is extremely hard to pre-
cisely locate and segment tumor.

Most of the current liver tumor segmentation work is
based on enhanced images. Liu et al. [10] proposed a resid-
ual attention U-Net (ResAttU-Net) to segment liver lesions
in enhanced images. The model incorporated the residual
blocks and skip-connection attention modules to dig deeper
into the features associated with the lesion. This model
achieved a Dice score of 89.52% for liver tumor segmenta-
tion. Chlebus et al. [11] developed a fully automatic method
for liver tumor segmentation in CT images based on a 2D
fully convolutional neural network with an object-based
postprocessing step. This method was ranked third in the
MICCAI 2017 second round of liver tumor segmentation
challenge. Hong et al. [12] presented an automatic segmen-
tation framework based on 3D U-Net, which incorporates
dense connection and global detail optimization. The
method first obtained the probability map of the liver from
incorporating the dense connection U-Net. Then, the prob-
ability map was refined as an initial surface and a priori
shape. A multiscale approach was employed by Kushnure
and Talbar [13] to scale the perceptual field of convolutional
neural networks (CNNs). The multiscale block was able to
pull in global and local features at a much finer granularity
level. This method obtained 84.15% Dice score in liver
tumor segmentation task. Mo et al. [14] proposed a segmen-
tation method based on graph learning. It was motivated by
extracting modality-specific features and constructing the
regional correspondence effectively between T1WI and
T2WI. The above works are based on enhanced MRI or
CT data. The tumor in the nonenhanced data is less distin-
guishable compared to the enhanced images, and it will
inevitably result in poor segmentation results that directly
transfer from these methods to the nonenhanced image data.

Although many researchers have proposed a series of
effective segmentation methods, few of them are directly
applied to nonenhanced images. Klimont et al. [15] designed
a semiautomatic segmentation method for cerebral angiog-

raphy based on deep learning. This method performed spa-
tial alignment, denoising, and manual correction on brain
CT with and without contrast to generate a binary mask.
Then, they trained their model designed basing on the U-
Net structure to perform blood vessel segmentation from
noncontrast CT images. This semiautomatic segmentation
method has two weaknesses. On the one hand, the data
input to the model must undergo a series of tedious prepro-
cessing steps. On the other hand, the quality of the labels in
the data is poor. Xu et al. [16] used spatial correlation which
represents different time and step sizes in cardiac images and
the complementarity between quantization and segmenta-
tion as reference information. The integrated spatiotemporal
features of myocardial infarction were extracted from 2D
temporal sequence images (2D+T), and automatic segmen-
tation of myocardial infarction without contrast agents was
realized. This method is only suitable for dynamic image
segmentation, such as dynamic heart image, but not for
static image without spatiotemporal characteristics. In the
field of liver tumor segmentation, Xiao et al. [17] proposed
a radiological-guided GAN (radiomics-guided GAN). The
radiomic characteristics of contrast-enhanced images were
introduced into the discriminator as prior knowledge to
guide the adversarial learning of the segmentation network
to segment liver tumor from nonenhanced MRI images. This
work is the first method to accomplish liver tumor segmen-
tation on nonenhanced images, but the huge number of
parameters makes generalization difficult in medical images
with small amounts of data. Zhang et al. [18] introduced a
kind of the relative entropy bias and proposed two tumor
detection strategies to identify the tumor location. They used
the tumor features visible in the enhanced image as a guid-
ance information to assist the segmentation task in the
nonenhanced image. It was a weakly supervised segmenta-
tion method; the Dice and recall of this method are 83.11%
and 85.12%, correspondingly. Both of the above methods
promote segmentation by introducing different tumor-
related features as guides. Zhao et al. [19] proposed a united
adversarial learning framework for simultaneous liver tumor
segmentation and detection using multimodality noncon-
trast MRI. However, existing works have ignored the value
of tumor edge information in enhancing segmentation accu-
racy; at the same time, the difficult of tiny tumor segmenta-
tion has not been well addressed.

Different from these existing methods, we build a liver
tumor segmentation model on the basis of edge constraints
and location mapping, named edge constraint and localiza-
tion mapping segmentation model (ECLMS). It consists of
localization network and dual-branch segmentation net-
work, which is used to segment liver tumors from MRI
images without contrast agents. Inspired by Oda et al. [20],
we design a dual-branch segmentation network. With task-
independent decoders forming edge branch and main
branch, these two branches efficiently exploit tumor features
and edge features, individually, while enabling edge branch
and main branch to promote each other for finer segmenta-
tion of tumor details. The SE block proposed by Hu et al.
[21] learns channel-specific descriptors by global averaging
pooling to exclude spatial dependencies. This descriptor is
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employed to recalibrate the feature map to highlight useful
channels. This approach mines information along the chan-
nel direction, which is effective for classification, while for
fine-grained image segmentation, the spatial information of
pixels is more critical. Inspired by SE blocks, another spatial
SE block (sSE) [22] is presented, which is “squeezed” along
channels and “excited” spatially, and is more suitable for
segmentation networks. We embed sSE block into the net-
work, prompting the network to pay more attention to
informative features and suppress unimportant ones. The
diverse tumor morphology creates a challenge for intensive
pixel-level prediction. Using multiscale of receptive fields
to capture targets with large variations in shape is essential
to improve the accuracy of tumor segmentation. In tradi-
tional convolutional networks, fixed-size convolutional ker-
nels are usually used. It is difficult to represent each pixel
with a single-scale feature. But multiperceptual fields of dif-
ferent sizes can expand the perceptual dimension of the net-
work. To improve the segmentation accuracy of different-
size tumors, especially small tumors, the bottleneck multi-
scale module (BMM) is introduced by us to capture features
at different scales. Because background tissue with similar
grayscale values as the tumor is deceptive and distracting
to the model, segmentation networks on their own are still
insufficient to accurately identify the tumor. A typical
method to solve this problem is to utilize the classification
network to identify the notable area in the image [23, 24].

However, the location maps generated directly by the clas-
sification network may only contain the discriminative
regions related to the category, which is not enough to
guide the generation of accurate segmentation masks.
Some studies have proved that segmentation networks
can effectively promote the performance of classification
networks [25, 26]. Therefore, an additional localization
network is brought to generate the location mapping of
the tumor, which includes a segmentation network and a
classification network. A segmentation network is first
used to generate a coarse segmentation mask. Then, a clas-
sification network is applied to determine the correctness
of the coarse segmentation mask and generate a location
mapping. Finally, the location mapping is merged with
the high-dimensional features in the middle of dual-
branch segmentation network to alleviate the bias caused
by inaccurate features so as to increase the learning ability
of the segmentation network for low-contrast lesion
regions. In summary, the contributions of this paper are
as follows:

(i) We propose a novel edge constraint and location
mapping for liver tumor segmentation model, so
called ECLMS. This model can segment liver tumor
from nonenhanced MRI. The final segmentation
result (Dice) reaches 90.23%, which has superior
performance

Non-enhanced MRI Enhanced MRI Ground truth 

The area of the tumor
is shown in red.

Advantages:
• Safe
• Short time-consuming

• Edge blur of tumor
• Low contrast

Contrast agents
enhanced

Advantages:
• Clear edge of tumor 
• High contrast

Disadvantages:Disadvantages:
• High-risk
• Long time-consuming

Case 2 

Case 1 

Contrast agents
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(a)
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Tumor-like
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(A) Small liver tumor
(The diameter is usually

less than or equal to 2cm.)

(B) Large liver tumor
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more than 10cm.)

(C) The deceptive tumor-like
tissues in the background.

(b)

Figure 1: (a) Shows the nonenhanced images and enhanced images before and after contrast injection in two patients. The nonenhanced
images have low contrast between the tumor region and tissues; the tumor edges are also blurred. (b) Demonstrates that there is not
only diversity in morphology and size of liver tumor in the nonenhanced images but also many tumor-like tissues that are cheating.
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(ii) Considering the complementarity between tumor
and edge, we innovatively design a dual-branch seg-
mentation network. And the sSE block is embedded
in it to enhance the network’s capability to capture
the critical features. At the same time, the features
of different layers and sizes in the encoder-decoder
are fused by dense upward connections to enrich
the shallow network features and alleviate the infor-
mation degradation in the coding process. To the
best of our knowledge, this is the first time that edge
information is utilized in nonenhanced image seg-
mentation to improve the segmentation accuracy
of tumor

(iii) We propose a bottleneck multiscale module (BMM)
to extract features at different scales, while integrat-
ing the location mappings generated by the localiza-
tion network to adapt the network for targets with
diverse morphological sizes

(iv) We construct a localization network for generating
location mappings to alleviate the negative impact
of inaccurate localization on segmentation results.
It allows the network to concentrate more effectively
on the tumor region and improves the segmentation
performance

2. Related Work

2.1. Medical Image Segmentation. Biomedical data is increas-
ing in volume thanks to advances in image acquisition
methods. The automated analysis of these large-scale data-
sets presents new challenges for data-driven and model-
based computational approaches. During the past few
decades, medical image segmentation methods have mainly
focused on developing algorithms, such as watershed [27],
level set [28], statistical shape model [29], region growing
[30], active contour model [31], graph cuts [32], threshold
processing [33], and traditional machine learning methods
[34], but these methods require manual extraction of tumor
features. In the latest years, Deep Neural Networks (DNNs)
have been widely implemented to learn increasingly com-
plex feature hierarchies from processed data, thereby
enabling multilevel abstraction. Specifically, DNNs exploit
the property that many natural signals are compositional
hierarchies (i.e., higher-level features are obtained by com-
posing lower-level ones) [35]. Deep learning methods have
made great breakthroughs in medical image segmentation.
In the 2017 liver tumor segmentation challenge (LiTS), the
automatic segmentation methods that submitted high scores
almost all used the fully convolutional network architecture
(FCNs), and its fully connected layers were replaced by con-
volutional layers [36]. The popular U-Net [37] was a variant
of FCN, which consists of an encoder, a decoder, and a skip
connection between them. Medical images have fuzzy
boundaries and complex gradients, which need more high-
resolution information. Because the internal structure of
medical images is relatively fixed, the distribution of seg-
mentation targets in the images is very regular and the
semantics are simple and clear. Low-resolution features can

provide structural information to identify targets. U-Net
cleverly combines low-resolution information with high-
resolution information. However, the parameters of its net-
work are much smaller than those of most natural image
semantic segmentation networks. As a result, U-Net can bet-
ter adapt to medical images with scarce samples. Due to the
good effect of U-Net in medical image segmentation, it has
been widely used in various segmentation networks. Some
common improvement methods include redesigning skip
connection and adding dilated convolutions or residual con-
nections. Schlemper et al. [38] introduced a soft attention-
gated mechanism, an early application of soft attention ideas
to medical image analysis. This mechanism is able to sup-
press the task-irrelevant part of network learning while
enhancing the task-relevant features. The U-Net++ network
proposed by Zhou et al. [39] set up U-Net sets of different
depths and redesigned the skip connections. The redesigned
skip connection allowed to acquire features at different levels
and integrate them. This approach overcomes the unneces-
sary limitations in fusing features at the same scale but also
increases the number of parameters exponentially. Inspired
by this idea, we connect the deep features of the encoder to
the shallow layer of the decoder to enrich the semantic infor-
mation of the shallow features. Most of the current methods
concentrate on changing the connection ways between net-
work nodes or changing the structure of convolutional units,
ignoring the output characteristics of the convolutional units
in the nodes. Tran et al. [40] suggested the Un-Net model
based on the traditional U-Net. This approach used the out-
put features of the convolutional units as skip connection
and utilized those features from the nodes well. Li and Tso
[41] merged the dense module, inception module, and
dilated convolution into the original U-Net encoding path,
then proposed a bottleneck feature supervision (BSU-Net)
model. It achieved Dice per case 96.1% for liver segmenta-
tion task and 56.9% for tumor segmentation task. BSU-Net
used dilated convolution to expand the perceptual field,
but the dilated convolution kernel was discontinuous and
failed to cover all image features, which led to loss of image
continuity. Wang et al. [42] introduced the idea of recursion
into U-Net. The output of the previous state (hidden tensor)
and the original image (input image) was cascaded as the
input of the next cycle, and the recursive remaining convolu-
tional layer was deployed for feature accumulation to ensure
better feature representation in the segmentation task. This
kind of lite network has a lesser number of parameters and
better real-time performance, but it often brings loss of seg-
mentation accuracy.

2.2. Segmentation Based on Edge Information. When we
apply the method based on enhanced images to none-
nhanced MRI images, the feature maps tend to be blurred
near the border of the tumor. This is caused by the unclear
tumor boundary in the nonenhanced MRI image. The most
direct way to eliminate this kind of blur is to extract more
edge information and strengthen the network’s attention to
the edge. Su et al. [43] designed a continuously expanding
boundary-aware network. In this network, the boundary
location flow selectively enhanced the characteristics of the
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boundary. The internal perceptual flow ensured the invari-
ance of the internal features. In order to balance the internal
and external information, this method used the transition
compensation flow to correct the transition region between
the internal and the boundaries. Qin et al. [44] developed a
boundary-aware predict-refine architecture BAS-Net. The
prediction module was used to predict the saliency maps
from the input image. The multiscale residual refinement
module refined the saliency maps of the prediction module
by learning the residual between the saliency maps and the
ground truth. This network can effectively segment fine
structures with clear boundaries in natural images, but it is
not suitable for medical images with a small number of
channels and a single pixel distribution. Chen et al. [45] uti-
lized semantic edge aware loss to implicitly integrate struc-
tural information into segmentation prediction. The
semantic edge detection network mapped the segmentation
mask to the corresponding edge map. Another part of the
network, the prediction of segmenting the network output,
could be optimized in the embedding space of the semantic
edge detection network. These methods are all effective in
segmenting fine structures with clear boundaries in natural
images, but they are rarely applicable to medical images with
a small number of channels, a single pixel distribution, and
unclear target boundaries.

In the field of medical image segmentation, there are
growing researches focusing on improving the segmentation
accuracy of targets by focusing on edges. Seo et al. [46]
designed modified U-Net. They added a residual path to
the skip connection of U-Net, which contained deconvolu-
tion and activation operations. The features in the residual
paths were adaptively integrated into the features of the skip
connection. In this way, the repetition of low-resolution
information of features was avoided; the high-resolution
edge information of large targets was extracted more effec-
tively. The edge information of the liver and the morpholog-
ical information of liver tumor were better processed. This
method obtained 89.72% Dice similarity coefficient in the
liver tumor segmentation task. The network used MSE as
the loss function, and it was computationally simple in the
backpropagation process, but it could not adequately cap-
ture the structural similarity information of the images. Also,
the network has the problem of poor generalization. Oda
et al. [20] proposed an edge enhancement segmentation net-
work, which relied on two decoders to restore the original
image resolution. One decoder (boundary enhancement)
could be used to improve the quality of the segmentation
in another decoder (nucleus segmentation). We found that
using this additional edge enhancement decoder can effec-
tively predict the edge of the tumor and improve the blur.
Nevertheless, it was difficult to distinguish tumor-like tissue
in the background. Tang et al. [47] developed a two-stage 2D
liver and tumor segmentation framework (E2-Net). The first
stage was rough segmentation of the liver tumor. The second
stage of the edge enhancement network introduced an edge
prediction module and used the edge distance map between
the liver and the tumor boundary as an additional supervi-
sion signal to train the edge enhancement network. The
method achieved a Dice coefficient of 82.9% in the liver

tumor segmentation task. For enhanced images, the liver is
much easier to segment than the tumor, so those two-stage
segmentation methods segment the liver first and then the
tumor can alleviate the disturbance of background pixels
other than the liver. In contrast, for nonenhanced images,
the liver cannot be segmented more easily than the tumor.
Too much dependence on the segmentation results of the
first stage may lead to the performance degradation of the
whole model. Segmentation of liver tumor directly can avoid
negative optimization between networks.

3. Method

In this section, we introduce the overall structure of ECLMS.
As shown in Figure 2, localization network and dual-branch
segmentation network constitute our model. The localiza-
tion network generates an accurate map of the lesion loca-
tion and encodes it into the two-branch segmentation
network as guidance information. This information will help
the dual-branch segmentation network to improve accuracy.
The dual-branch segmentation network is made up of a
single-encoder and a dual-decoder structure. The decoder
part decodes the border and internal area of the tumor by
the two branches, respectively. Since the training objectives
of the two branches are consistent, the network can learn
more discriminative features, which is helpful to improve
the final segmentation performance. Our model involves
two types of labels, one of them is called boundary label
(marking only the marginal part of the tumor), and the other
is called normal label (marking the entire tumor part). Next,
we will introduce ECLMS in detail.

3.1. Localization Network. The localization network is
applied to enhance the capability of locating the tumor of
the segmentation network in nonenhanced image data.
Figure 3 shows the network details. We use the classic med-
ical image segmentation network U-Net to generate the
rough mask. The information about the location of the
tumor is encoded in coarse segmentation mask and utilized
to assist the subsequent network in obtaining the exact loca-
tion of the lesion. Xception [48] follows U-Net to convert
location information into location mapping. To strengthen
the feature extraction ability and accelerate the convergence
of the network, U-Net and Xception are pretrained on MIC-
CAI 2017 LiTS challenge dataset and ImageNet, correspond-
ingly. U-Net is chosen because of its small number of
parameters and accurate encoding of image information.
Xception is a convolutional network structure entirely based
on a separable convolution layer proposed by Google. Sepa-
rable convolution is a classic approach to reduce the number
of convolution parameters, which allows for more efficient
use of model parameters. The original image with image-
level labels and the coarse segmentation mask obtained from
U-Net are concatenated and input to Xception. To extend
the resolution of the features, the last max pooling layer of
the exit flow was removed by us. After the features pass
through the global average pooling (GAP) layer, the softmax
activation function maps the outputs of multiple neurons to
the [0,1] interval. The class activation mapping (CAM)
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approach [49] is used to generate class-specific location
mappings from the last separable convolutional layer to
guide the segmentation network to more accurate
predictions.

3.2. Dual-Branch Segmentation Network. We innovatively
design a dual-branch segmentation network to accurately
segment liver tumor, as shown in Figure 4. The encoder part
is similar to U-Net, including five double-convolution blocks

and four max pooling operations. Each double-convolution
block contains two combinations of convolution, and each
convolution operation is followed by batch normalization
and ReLU. The output feature of the encoder concatenates
with the location maps after through the bottleneck multi-
scale module. Then, enter the two branches of the decoding
part, namely, the edge decoding branch and main decoding
branch, respectively. Each branch contains four double-
convolution blocks and four upsampling. The main decod-
ing branch is used to recover the features of the whole tumor
region, and the Mini-UNet at the end is used to extract the
edges of the predicted images from the main decoding
branch. The edge decoding branch is used to extract the edge
features of the tumor and predict the fine boundary. Similar
to the dense skip connection of U-Net++, we not only bring
in a skip connection between the same scale features of the
encoder and the two decoding branches but also concatenate
the feature mappings of layers 2, 3, and 4 of the encoder with
the same scale features of layers 1, 2, and 3 of the main
decoding branch and the edge decoding branch, respectively.
And this kind of connection is called dense upward connec-
tion. This approach makes the aggregation layer fuse various
features carried by the skip connection with the decoder fea-
tures, enabling the decoder to share the deep features of the
encoder. This connection overcomes the limitation that the
original skip connection only fuses the same scale features,
better recovers the feature information lost in the network
during downsampling, and enriches the feature representa-
tion of the network. In order to reduce the influence of back-
ground interference pixels, we embed channel squeeze and
spatial excitation block (sSE block) [22] after each pooling
and upsampling operation. It can be added to an existing
network without destroying the original main structure of
the network. The sSE block mainly includes two parts of
channel squeeze and spatial excitation. The squeeze along
the channel is achieved through a convolution operation.
Spatial excitation is to reactivate the compressed projection
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tensor to [0,1] with sigmoid function and then multiply the
activated weights with the corresponding positions of all
channels of the original feature maps. The goal is to recali-
brate the feature spatially. This operation increases the
weight of important location information in each layer of
features. This approach encourages the network to retain
more useful information in space and to ignore locations
that are not relevant to the tumor region.

3.3. Bottleneck Multiscale Module. The bottleneck multiscale
module (BMM) consists of three adaptive convolutional
blocks (ACB) with different kernel sizes; each of them can
acquire the feature representation of a specific scale which
is related to the input. Three sizes of convolution kernels
are employed in BMM to extract features. These filters are
dynamically generated based on the regional context of the
input image. This operation can incorporate rich content
and high-level semantics and adaptively capture internal
variations of the input image, allowing different sized targets
to be accurately covered by a single sensory field. This
method is more flexible than traditional filters. Figure 5
shows the internal structure of the BMM.

The input of BMM is the feature maps x ∈ Rh×w×c which is
the output of the encoder at the same time. The input feature x
is processed by 1 × 1 convolution operation to obtain the fea-

ture maps FðxÞ ∈ Rh×w×c′ðc′ < cÞ, where h,w, and c denote the
height, width, and channel number of feature x, separately.
Adaptive Max Pooling (AMP) can adjust the features to a
specified size adaptively. AMP is used to size the feature map
x to s × s and then adjust the number of channels by a 1 × 1

convolution to make it equal to the number of channels c′c′
of FðxÞ. The generated features are denoted as KsðxÞ ∈
Rs×s×c′ . We use KsðxÞ as the convolution kernel to perform a
depth-wise convolution operation with the feature FðxÞ to
obtain a specific scale representation. Different from ordinary
convolution operation, depth-wise convolution carries out
independent convolution operation on each channel of the
input layer. Three scale features after convolution are fused:

ys = F xð Þ ⊗ Ks xð Þ, ð1Þ

y′ = y1 ⊕ y3 ⊕ y5, ð2Þ
where ⊗ is the convolution operation, ⊕ is the concatenate

operation, s is the size of the convolution kernel, and ys ∈
Rh×w×c′ is the output of ACB. We choose s = 1, 3, 5 as the three
kernel sizes of ACB.We aggregate y′, the original feature map x
, and the locationmapM. The aggregated feature Y is input into
the edge decoding branch andmain decoding branch after 1 × 1
convolution adjustment channel.Wewill concretely analyze the
influence of the number of ACB and convolution kernel size on
model performance in the experimental part.

3.4. Loss Function

3.4.1. The Location Loss Function. We construct the loss func-
tion Lloc based on Dice loss and rank loss, as well as utilize it to
optimize U-Net in the positioning network. First of all, the Dice
loss measures the degree of overlap between the prediction and
the ground truth. It is suitable for segmentation problems with a
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Figure 4: The structure of dual-branch segmentation network.
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small proportion of the foreground. Secondly, pixels which are
easy to be classified account for a relatively low proportion of
the network optimization process. Hard pixels that are difficult
to identify (such as boundary pixels) can provide more infor-
mation during network learning. For these reasons, we use rank
loss to add additional constraints between the boundary pixels
of the tumor region and the background. This loss can help
the network focus on learning more discriminative information
in hard pixels. Lloc is defined as

Lloc = 1 −
2∑iαiβi + smooth

∑iαi +∑iβi + smooth
+ λ1

∑K
i=1∑

K
j=1max 0, Bn

i − Tn
j + μ

n o

K2 , ð3Þ

where the first item is Dice loss. αi denotes the probability that
pixel i is classified as tumor area. βi means the ground truth of
the corresponding area. The parameter smooth is used to
avoid the denominator being 0. Here, we set smooth = 1e − 5
. λ1 is a weighting factor that balances these two losses. n
denotes the nth input image. K denotes the K pixels with the
largest error in the tumor area or the background area. Bn

i

and Tn
j denote the predicted values of the ith hard pixel of

the background and the jth hard pixel of the tumor. After each
batch of forward propagation, the pixels of the lesion and the
background area are sorted according to the error.

3.4.2. The Segmentation Loss Function. The goal of Lseg is to
reduce the difference between the ground truth with predic-
tion masks and the boundary predictions generated by the
edge decoding branch and the main decoding branch,

respectively. It consists of multiple independent losses,
which are the area loss Larea, the edge loss Ledge, the edge
detection loss Led, and the constraint loss Lcon. These losses
are defined in detail as follows:

Lseg = Larea + Ledge + Led + λ2Lcon,

Larea = −〠
i

xi log αið Þ + 1 −
2∑iαiβi + smooth

∑iαi +∑iβi + smooth

� �
,

Ledge = −〠
i

yi log pið Þ,

Led = −〠
i

yi log qið Þ,

Lcon = −〠
i

pi log
qi
pi

� �
−〠

i

qi log
pi
qi

� �
,

ð4Þ

x Conv1*1 F(x)

AdaptiveMaxPool Conv1*1 K3(x)

y 3
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Figure 5: The bottleneck multiscale module uses adaptive convolutional blocks with convolutional kernel sizes of 1, 3, and 5 to extract
multiscale features and concatenate the extracted features with location mappings.

Table 1: Comparison results of sSE block embedding in different positions.

Location of sSE blocks Dice (%) Precision (%) Accuracy (%)

Without sSE blocks 85:03 ± 1:37 89:13 ± 1:66 87:65 ± 0:98

Only encoder 86:31 ± 1:45 87:55 ± 1:22 88:28 ± 0:69
Encoder + Edb 87:64 ± 2:07 89:79 ± 1:35 88:72 ± 2:09
Encoder +Mdb 88:18 ± 1:98 91:52 ± 1:48 91:46 ± 1:62
Encoder +Mdb + Edb 88:72 ± 1:27 91:38 ± 1:03 92:01 ± 0:76
Encoder +Mdb + Edb +Mini‒UNet 86:01 ± 2:63 90:23 ± 2:24 89:94 ± 1:57

Table 2: Comparison results of using different numbers of ACB
and size of convolution kernel.

ACB
number

Kernel
size

Dice (%)
Precision

(%)
Accuracy

(%)

0 — 85:03 ± 1:37 87:13 ± 1:66 87:53 ± 0:98

2 1, 3 85:33 ± 1:35 88:72 ± 2:57 89:46 ± 2:21

2 3, 5 87:67 ± 1:28 88:42 ± 1:49 91:32 ± 1:77

3 1, 3, 5 88:72 ± 1:27 91:38 ± 1:03 92:01 ± 0:76

3 3, 5, 7 87:92 ± 1:52 89:65 ± 2:13 90:11 ± 0:89

4 1, 3, 5, 7 87:26 ± 1:21 88:39 ± 1:33 90:31 ± 1:71
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where Larea measures the difference between the output of
the main decoding branch and the normal label. The cross-
entropy loss function penalizes pixel classification errors.
The Dice loss function measures the degree of overlap
between the predicted tumor area and the normal label,
which can alleviate the imbalance between the target and
the background. Ledge supervises the edge decoding branch
output, where pi represents the probability that the pixel i
is the tumor boundary, and yi ∈ f0, 1g is the correspond-
ing boundary label. The purpose of Led is to minimize
the difference between the output of the boundary detector
(Mini-UNet) and the boundary label, where the result is
predicted by Mini-UNet. The constraint loss Lcon is for
establishing dependencies between the main decoding
branch and the edge decoding branch to prevent them
from deviating from each other. For the hyperparameters
in the loss function, we separately set λ1 = 0:05, λ2 = 0:5,
K = 30, and μ = 0:3.

4. Experiment

4.1. Dataset. Our nonenhanced MRI dataset is composed of
215 different subjects (130 subjects with hepatic hemangi-
oma and 85 subjects with hepatocellular carcinoma). For
each of our data, an informed permission for data use is
obtained and signed by the patient. Three lesion images
are chosen for each case to obtain 645 liver tumor images.
Each subject has undergone a standard clinical liver MRI
examination and collected liver axial MRI images by a GE
Signa HDx 3.0T MRI System. T1WI modality is mainly
applied to observe the anatomical structure of organs and
tissues. In T2WI modality, the accumulation of water mole-
cules results in a higher signal than the surrounding normal
tissue. Therefore, T2WI is better for finding lesions. This
paper uses T2WI (256 × 256px) as training and test data
and randomly initializes the weights of the dual-branch seg-
mentation network. In order to ensure the consistency of
boundary label and normal label, the boundary label is first
marked to obtain the boundary label, and then, the bound-
ary label is filled to obtain the normal label. We select 80%
of all data as the training set and 20% as the test set and used
5-fold cross-validation to evaluate the model. Then, we aug-
ment the data of the training set by rotating each image hor-
izontally by 90°, 180°, and 270° and scaling outward by 50%
with the location of the tumor in the center. The final dataset
after data augmentation contains a total of 2709 images
(2580 in the training set and 129 in the test set).
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Figure 6: Comparison results for different values of the hyperparameters in the loss function.

Table 3: Comparison results of four candidate networks for
generating location mapping.

Network Dice (%) Precision (%) Accuracy (%)

VGG16 86:52 ± 1:74 88:46 ± 2:10 90:35 ± 2:44

ResNet50 89:75 ± 1:83 90:18 ± 1:36 91:24 ± 2:31

Inception v3 88:31 ± 2:45 92:03 ± 2:62 91:48 ± 1:79

Xception 90:23 ± 2:01 92:25 ± 1:97 92:39 ± 1:88
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4.2. Evaluation Metrics. We utilize three standard metrics,
Dice similarity coefficient (DSC), pixel accuracy, and preci-
sion to evaluate our model, where TP, FP, TN, and FN are
divided into true positive, false positive, true negative, and
false negative. The Dice similarity coefficient is the most
commonly measured evaluation metrics in segmentation
networks. It is adopted to measure the spatial overlap accu-
racy between the network segmentation result and the
golden standard mask in the field of image segmentation.
DSC is defined as follows:

DSC =
2TP

FP + 2TP + FN
: ð5Þ

Pixel accuracy is a common and intuitive evaluation
index, which represents the proportion of pixels that are cor-

rectly predicted to the total pixels. It is usually expressed as

Accuracy =
TP + TN

TP + TN + FP + FN
: ð6Þ

Precision represents the proportion of pixels predicted to
be tumor to the actual tumor pixels. It focuses on judging
whether the predicted mask accurately covers the tumor
area. The precision is defined as

Precision =
TP

TP + FP
: ð7Þ

4.3. Implementation Details. The deep learning framework
used in our experiment is PyTorch (version 1.4.0). The
CUDA version is 10.1. We implement our network on a
1.90GHz Intel(R) Xeon(R) E5-2620 CPU and NVIDIA
TITAN XP GPU computer. Stochastic gradient descent
(SGD) optimizer is applied to update the network parame-
ters of ECLMS. We set the momentum to 0.9, weight decay
to 0.0005, initial learning rate to 0.001, batch size to 8, and
epoch to 500.

4.4. Ablation Study. To further evaluate our model, we con-
duct ablation experiments under different settings. Each
time we introduce a modification to measure our contribu-
tion to the overall improvement of the model, we analyze
the impact of the network that generates the location map,

Table 4: Performance comparison results of gradually reducing components.

Models Dice (%) Precision (%) Accuracy (%)

ECLMS 90:23 ± 2:01 92:25 ± 1:97 92:39 ± 1:88
ECLMS − L‒Net 88:72 ± 1:27 91:38 ± 1:03 92:01 ± 0:76
ECLMS − BLNet − BMM 87:30 ± 2:07 91:02 ± 1:64 90:86 ± 1:24
ECLMS − BLNet − BMM − sSE 84:21 ± 2:26 89:17 ± 1:79 87:39 ± 2:86

Non-enhanced
image Ground Truth

Without
L-Net

With
L-Net Location Map

Figure 7: Comparison of segmentation results with and without localization network.

Table 5: Comparison results with existing segmentation methods.

Methods Year Dice (%) Precision (%) Accuracy (%)

U-Net 2015 77:31 ± 1:19 82:88 ± 0:75 83:66 ± 1:24

U-Net++ 2019 84:51 ± 2:37 85:36 ± 3:62 84:03 ± 2:02

BESNet 2018 83:69 ± 1:85 86:44 ± 2:47 87:23 ± 3:26

RgGAN 2019 88:09 ± 2:67 89:16 ± 1:34 91:92 ± 2:15

Our method 2021 90:23 ± 2:01 92:25 ± 1:97 92:39 ± 1:88
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the embedding location of the sSE block, and some impor-
tant hyperparameters on the model results. We combine all
indicators to determine the most suitable configuration.
The best results in each experiment are shown in italic.

4.4.1. Ablation for sSE Block. We analyze the impact of the
embedding position of sSE block on the performance of
the model. Table 1 reports the results of adding sSE blocks
in different locations. For the convenience of presentation,
we replace main decoding branch and edge decoding branch
with Mdb and Edb. After embedding sSE blocks in both the
encoding part and the decoding part, the model reaches the
highest level in Dice and accuracy. The difference between
precision and the highest score is only 0.14%. On the whole,
embedding sSE block in the main decoding branch and edge

decoding branch has the greatest improvement in model
performance. We believe that the constraint loss between
the two branches converges their prediction results. If sSE
block is embedded in one branch alone, it will aggravate
the prediction difference between the two branches, and
the prediction accuracy of the branch with accurate predic-
tion will be pulled down by the other one with inaccurate
prediction, resulting in a worse overall performance.

4.4.2. Ablation for BMM. In this experiment, we test the
effects of different adaptive convolutional block (ACB) num-
bers and different sizes of convolution kernel in the BMM on
the performance of the module. We try three cases where the
number of ACB is 2, 3, and 4. Each ACB number corre-
sponds to the combination of different core sizes. We choose
four common kernel sizes of 1, 3, 5, and 7 to achieve differ-
ent combinations. In Table 2, BMM shows the best perfor-
mance when the ACB number is 3 and the kernel size is 1,
3, and 5. Dice, precision, and accuracy are increased by
3.69%, 4.25%, and 4.48%, respectively. When the convolu-
tion kernel is increased to 7 × 7, the network performance
incurred decay. This is because a large size of convolution
kernel like 7 × 7 brings a larger perceptual field while losing
more image details, and the loss of this detailed information
for tumor of smaller size leads to a degradation of the model
performance. Also, large-size convolution adds more param-
eters and computational complexity.

U-Net

U-Net++

BESNet

RgGAN

Our model

Ground
Truth

Non-enhanced
image

Tumor 
Details

Figure 8: Comparison of segmentation masks is generated by different methods. (a–d) Are the segmentation results of the other four
methods; (e) is the segmentation results of our model; (g) shows the nonenhanced images and tumor details. We mark the ground truth
with a red box, and the segmentation results with inaccurate positioning or poor effect are marked with a blue box.

Table 6: Results of model complexity comparison with existing
segmentation methods.

Methods Params (M) Dice (%)

U-Net 7.8 77:31 ± 1:19

U-Net++ 9.0 84:51 ± 2:37

BESNet 15.4 83:69 ± 1:85

RgGAN 95.8 88:09 ± 2:67

Our method 51.9 90:23 ± 2:01
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4.4.3. Ablation for Hyperparameter of Loss Function. We
perform ablation experiments for the four hyperparameters
(λ1, λ2, K , and μ) in the loss function to determine their
optimal values. We evaluate the performance of different
values of hyperparameters on three evaluation metrics and
select the highest evaluation metric that can be obtained as
the optimal set of hyperparameters. As shown in Figure 6,
the three evaluation metrics Dice, precision, and accuracy
reach the highest level when λ1 = 0:05, λ2 = 0:5, K = 30,
and μ = 0:3.

4.4.4. Ablation for Localization Network. We choose VGG16
[50] and the three revolutionary architectures ResNet50
[51], Inception v3 [52], and Xception in the neural network
as candidate networks for generating location mapping.
VGG16 is a common convolutional neural network. It is
composed of several convolutional layers and pooling layers
in a stacked manner. Each block of ResNet is composed of a
series of layers and a shortcut connection. This shortcut
causes the gradient to backpropagate to the previous layer,
ensuring that the network of layer l + 1 contains more image
information than layer l. Then, perform the add operation
on the element level. In Inception v3, input data is mapped
to multiple smaller input spaces using 1 × 1 convolution.
For each of these input spaces, a different type of filter is
used to perform transformations on smaller modules of
these data. Xception maps the spatial correlation separately
for each output channel and then uses 1 × 1 depth-wise con-
volution to extract crosschannel correlation. All four models
are initialized with weights pretrained on ImageNet. Table 3
is the comparison result of using these four kinds of net-
works. The comparison results show that the network using
Xception shows the best performance. As the result, we use
Xception in ECLMS to generate location mapping.

4.4.5. Ablation for the Contribution of Each Component. We
test the performance of the model while gradually reducing
the components. Different components have different
degrees of performance contribution to the model. The
quantitative analysis results are shown in Table 4. We abbre-
viate the localization network as L-Net in the figure and
table. The comparison results show that sSE block, BMM,
and localization network all have a certain degree of gain
in segmentation network performance.

In Figure 7, we visualize the segmentation results and
corresponding location mappings with and without localiza-
tion network on the three cases of data. It can be seen that
location maps focus the attention of the network around
the tumor. Compared with only using the dual-branch seg-
mentation network, the model can better reduce the interfer-
ence of background pixels after adding the positioning
network and achieve better performance. This proves that
the use of location mapping to assist the segmentation of
noncontrast images is crucial.

4.5. Comparison to State of the Art. We compare the perfor-
mance of the proposed ECLMS model with existing segmen-
tation methods to show the advancement of our method.
The comparison methods are (1) U-Net, (2) U-Net++, (3)

BESNet, and (4) RgGAN, where U-Net is a classic method
in medical image segmentation; U-Net++ is an improved
method based on U-Net; BESNet is a dual decoder network
based on boundary enhancement; and RgGAN is the latest
liver tumor segmentation method based on GAN without
contrast agent. To ensure the fairness of the experiments,
the comparison experiments between the method in this
paper and the remaining four methods are completed in
the same hardware environment and dataset. The compara-
tive results are shown in Table 5. Our method obtains the
best results on the three evaluation metrics. ECLMS achieves
90:23 ± 2:01% in Dice, 92:25 ± 1:97% in precision, and
92:39 ± 1:88% in accuracy.

In Figure 8, we visualize the other methods and our
method segmentation results of five cases of data. The results
show that the first three methods are greatly affected by
background pixels and cannot accurately locate tumors that
are difficult to identify with the naked eye. Our ECLMS,
however, enables the network to better identify the tumor
region due to the incorporation of location mapping, which
effectively reduces the interference of background spoof
pixels and allows more accurate localization of the tumor.
Since RgGAN introduces the radiomic characteristics of
the tumor as prior knowledge, the segmentation effect has
been significantly improved, but the prediction of the tumor
boundary is not accurate enough. Our method uses an edge
decoding branch to predict tumor edge pixels, allowing fuller
capture of detailed information of tumor edges. Also, sSE
block spatially increases the weight of important features to
make the network provide more attention to the tumor
region. Our method effectively reduces the interference of
background deception pixels and obtains a smoother tumor
edge. At the same time, the segmentation accuracy of small
tumor is improved.

4.6. Model Complexity Analysis. We compare ECLMS with
four existing methods in the area of the number of model
parameters. The most common measure of model complex-
ity is parameter count (Params). Table 6 shows our statisti-
cal results. From the results, the number of parameters for
our method is much smaller than that of RgGAN which is
the latest nonenhanced image segmentation method with
better generalization. The number of parameters of our
method is larger than that of the first three methods, because
of the targeted optimization made by our method for none-
nhanced images of the liver. The models with lower com-
plexity (such as the first three models) can barely reflect
the complex spatial and detailed information of none-
nhanced MRI and have lower segmentation accuracy.

5. Conclusion and Future Work

This paper proposes a novel liver tumor segmentation model
based on edge constraint and location mapping for none-
nhanced MRI. The localization network is used to generate
a location mapping that is capable of assisting the dual-
branch segmentation network to locate the tumor. The
dual-branch segmentation network can decode the internal
and boundary features of the tumor at the same time, and
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the rich edge features can effectively enhance the network’s
ability to recognize fuzzy boundaries. We embed the sSE
module in the network, which can automatically obtain the
importance of each feature channel by self-learning. We also
enrich the shallow features of the network by introducing
dense skip connection. The bottleneck multiscale module
after the encoder acquires a multiscale feature representation
of the image by using different sizes of convolutional kernels.
The location mapping generated by the localization network
is also fused to improve the perceptual dimensionality of the
network. Our ECLMS achieves 90.23%, 92.25%, and 92.39%
on Dice, precision, and accuracy, respectively. These results
prove that it is an effective computer-aided diagnosis tool.
Our ECLMS has significant advantages for medical images
with blurred edges and can help radiologists segment liver
tumor in the absence of contrast agent.

Although this paper emphasizes the potential and appli-
cability of the ECLMS model in nonenhanced image seg-
mentation, there are still some questions that deserve our
continued research. (1) When the location mapping is fused
to the segmented network, we only carry out simple concat-
enate operation between the output feature and the location
mapping, which may lead to insufficient utilization of the
location information in such a direct stitching way. In the
future, we will try new integration methods to address this
shortcoming. (2) Since the 2D method only encodes in two
directions and cannot obtain the interlayer context informa-
tion of the sequence images, our future work considers
extending ECLMS to 3D. The 3D network utilizes more
abundant information in the z-axis direction and can fully
capture the context information between layers and restore
the target features more continuously in the three-
dimensional space. However, due to the matching problem
between the amount of data and the amount of model
parameters, the 3D network may need more data to train,
otherwise it will lead to overfitting.
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