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As one of the most complex parts in manufacturing systems, scheduling plays an important role in the effi-
cient allocation of resources to meet individual customization requirements. However, due to the uncertain
disruptions (e.g., task arrival time, service breakdown duration) of manufacturing processes, how to respond
to various dynamics in manufacturing to keep the scheduling process moving forward smoothly and effi-
ciently is becoming a major challenge in dynamic manufacturing scheduling. To solve such a problem, a wide
spectrum of artificial intelligence techniques have been developed to (1) accurately construct dynamic sched-
uling models that can represent both personalized customer needs and uncertain provider capabilities and
(2) efficiently obtain a qualified schedule within a limited time. From these two perspectives, this article
systemically makes a state-of-the-art literature survey on the application of these artificial intelligence
techniques in dynamic manufacturing modeling and scheduling. It first introduces two types of dynamic
scheduling problems that consider service- and task-related disruptions in the manufacturing process,
respectively, followed by a bibliometric analysis of artificial intelligence techniques for dynamic manu-
facturing scheduling. Next, various kinds of artificial-intelligence-enabled schedulers for solving dynamic
scheduling problems including both directed heuristics and autonomous learning methods are reviewed,
which strive not only to quickly obtain optimized solutions but also to effectively achieve the adaption to
dynamics. Finally, this article further elaborates on the future opportunities and challenges of using artificial-
intelligence-enabled schedulers to solve complex dynamic scheduling problems. In summary, this survey
aims to present a thorough and organized overview of artificial-intelligence-enabled dynamic manufacturing
scheduling and shed light on some related research directions that are worth studying in the future.
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1 INTRODUCTION

Along with the prosperity of artificial intelligence (AI), industrial internet of things (IIoT),
and human-cyber-physical systems (HCPSs) techniques, we are witnessing an industrial revo-
lution toward industry 5.0, aiming to create a human-centric and highly autonomous manufactur-
ing mode for individualized and digitalized products [1]. Unlike industry 4.0, industry 5.0 substan-
tially improves the intelligence levels of traditional manufacturing systems for better flexibility,
mass customization, and higher productivity. Especially, industry 5.0 emphasizes that manufac-
turing should raise awareness of its contribution to society and develop toward sustainability and
resilience [2]. To achieve such grand visions, manufacturing systems are required to promote their
capability of autonomous learning. In this situation, scheduling as a key part of manufacturing
systems has naturally pivoted to be data driven, where dynamic scheduling decisions are made
precisely based on the learning from both historical system data and real-time communication
between humans, machines, and sensors.

The manufacturing scheduling problem mainly involves two kinds of entities, i.e., tasks and ser-
vices [3]. Manufacturing tasks refer to individualized requirements submitted by consumers, while
manufacturing services denote various kinds of resources (e.g., machines, raw materials, human
resources) encapsulated by specific modern encapsulation technologies [4]. To facilitate the task-
to-service mapping, manufacturing tasks can be decomposed into subtasks with finer granularities
to fit their target manufacturing services. As a classic NP-hard problem, static scheduling tries to
figure out an optimal solution to task allocation on services under various quality of service

(QoS) constraints (e.g., makespan, cost), assuming that the settings of manufacturing tasks and
services are all known a priori. However, such an assumption is not always true due to ubiquitous
uncertain disruptions (e.g., task arrival time, task requirements, service breakdown duration) in
a real-world manufacturing environment. As a result, solutions obtained by existing static sched-
uling methods may often violate the specified QoS constraints during practical manufacturing
processes, resulting in inestimable losses. In order to cope with such uncertain disruptions, more
and more dynamic scheduling methods [3] are investigated to keep scheduling processes moving
forward, which further complicates the manufacturing scheduling problem. Due to the problem of
“state space explosion,” when dealing with large-scale manufacturing scheduling problems, it is ex-
tremely time-consuming to achieve optimal solutions. Therefore, traditional dynamic scheduling
methods are not suitable for large-scale manufacturing, especially when manufacturing systems
require real-time adjustments to uncertain disruptions to ensure manufacturing progress.

To enable large-scale dynamic scheduling, AI-based methods have gained increasing attention
due to their ability to quickly and efficiently approximate optimal solutions. As shown in Figure 1,
existing AI-based dynamic manufacturing algorithms can be classified into two categories, i.e.,
directed heuristic-based methods and autonomous learning-based methods. Based on various iter-
ative evolution schemes, the directed heuristic-based methods can quickly achieve near-optimal
solutions. However, such methods typically require complete information on both tasks and
services to make scheduling decisions, which is difficult to obtain in practice within an uncer-
tain environment. Generally, when encountering uncertain disruptions during manufacturing,
directed heuristic-based methods need to figure out optimal task-to-service mappings promptly
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Fig. 1. Overview and organization of this article.

based on the estimated information of remaining tasks and services, and conduct the rescheduling
if necessary by reallocating subsequent unfinished tasks to their newly assigned services. Al-
though the directed heuristic-based methods are easy to implement, frequent rescheduling tasks
may easily result in the notorious “schedule nervousness” problem, which strongly limits their
applicability for mass production. Therefore, how to reasonably adjust rescheduling frequency
becomes one of the most notable problems in the design of directed heuristic-based methods. As
an alternative, autonomous learning-based methods enable decision-making based on various
effective scheduling policies, which are autonomously learned by agents from their frequent inter-
actions with the scheduling environment. Unlike directed heuristic-based methods, autonomous
learning-based methods are based on sequential decision-making, which dispatches one subtask
at each decision point based on the observed state of the scheduling environment in real time.
Although autonomous learning-based methods are powerful in addressing dynamic scheduling

problems (DSPs) without taking rescheduling frequency into account, they suffer from the
problems of low training efficiency to achieve expected policies. The goal of this article is to detail
various kinds of solutions (i.e., heuristic-enabled schedulers in Section 5 and learning-enabled
schedulers in Section 6) to show how the above two problems (i.e., schedule nervousness and low
training efficiency) are addressed, respectively.

Figure 1 shows the overview and organization of this article. Based on the two categories of dis-
ruptions (i.e., service-related disruptions and task-related disruptions) caused by uncertain disrup-
tions in the manufacturing process, this article first introduces a general formalization for different
dynamic scheduling of problems (e.g., job shop scheduling, flow shop scheduling, parallel schedul-
ing, and production planning). Next, a systematic survey of two mainstream AI-based dynamic
manufacturing techniques (i.e., directed heuristics and autonomous learning) is presented. Fi-
nally, this article details existing effective solutions (i.e., heuristic-enabled schedulers and learning-
enabled schedulers) to handle various uncertain disruptions during the manufacturing process
from the perspectives of both modeling and solving. Compared with existing related surveys of
manufacturing scheduling problems, this article makes the following three major contributions:

(1) A comprehensive view of AI-enabled techniques for dynamic scheduling (see Section 4).
Aiming to reflect the application status of AI-enabled techniques in the manufacturing field,
this article conducts a bibliometric analysis using VOSviewer. Two kinds of nature-inspired
AI-enabled techniques are explored for DSPs, revealing why DSP solutions evolve from di-
rected heuristics to autonomous learning.

(2) A purposeful elaboration and comparison of AI-enabled schedulers for dynamic schedul-
ing (see Sections 5 and 6). From the perspectives of both modeling and solving, this article
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Table 1. Comparison of Related Surveys

Reference Problem Environment Method
Giret et al. [5] Job shop scheduling Static Hybrid heuristics
Rossit et al. [6] Flow shop scheduling Static Objective-based analysis
Edis et al. [7] Parallel machine scheduling Static Exact/approximation methods
Ojstersek & Brezocnik [8] Production scheduling Static Evolutionary computation
Robert et al. [9] Resource-constrained scheduling Static Hybrid metaheuristics
Singh et al. [10] Manufacturing scheduling Static Metaheuristic techniques
Priore et al. [11] Manufacturing scheduling Dynamic Machine learning
Zarandi et al. [3] Manufacturing scheduling Dynamic Intelligent approaches
Liu et al. [12] Manufacturing scheduling Dynamic DRL framework
Our survey Manufacturing scheduling Dynamic Artificial intelligence

elaborates on the pros and cons of two kinds of AI-based dynamic schedulers (i.e., heuristic-
enabled schedulers and learning-enabled schedulers) and gives examples to illustrate which
dynamic scheduling scenarios they apply to.

(3) Identification of critical challenges and future opportunities (see Section 7). The end of this
article makes a deep discussion of various research challenges confronting modeling and
solving DSPs caused by ubiquitous uncertain disruptions in the real-world manufacturing
environment. Meanwhile, corresponding research opportunities are explored to inspire fu-
ture work, which promotes the effective and sustainable development of modern manufac-
turing systems.

The rest of this article is organized as follows. Section 2 makes a comparison between re-
lated surveys on manufacturing scheduling problems. Section 3 defines the DSPs and presents
the motivation of AI-enabled techniques for dynamic scheduling. Section 4 identifies the cat-
egories of AI-enabled techniques for dynamic scheduling. Section 5 discusses the application
of heuristic-enabled schedulers on dynamic scheduling. Section 6 introduces the application of
learning-enabled schedulers on dynamic scheduling. Finally, Section 7 concludes the article and
presents future opportunities.

2 RELATED WORK

Common scheduling problems in manufacturing systems include the job shop scheduling prob-

lem (JSSP) [5], flow shop scheduling problem (FSSP) [6], parallel machine scheduling prob-
lem [7], production planning [8], and resource-constrained project scheduling [9], which can be
collectively referred to as manufacturing scheduling problems. Table 1 makes a comparison be-
tween related surveys on manufacturing scheduling problems. In this table, the first five surveys
focused on specific categories of manufacturing scheduling problems, while the remaining five
works conducted comprehensive investigations on various manufacturing scheduling problems.
Note that the first six surveys do not take uncertain disruptions into account. Since the first six
works investigated techniques for solving static scheduling problems, none of them can achieve
optimal solutions in a dynamic scheduling environment. To achieve effective dynamic adaption to
ubiquitous uncertain disruptions in real-world manufacturing environments, researchers focus on
studying emerging AI-enabled techniques.

As shown in the table, three surveys (i.e., [3, 11, 12]) investigated several AI-enabled techniques
for solving DSPs. For example, Priore et al. [11] provided a systematic review of a real-time
scheduling system that uses different machine learning approaches to modify dispatching rules
to achieve rapid response in a dynamic manufacturing environment, such as inductive learning,
support vector machine (SVM), and reinforcement learning (RL). In [3], Zarandi et al.
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investigated five major AI-enabled techniques for dynamic scheduling, which are fuzzy logic,
expert systems, machine learning, stochastic local search optimization algorithms, and constraint
programming. For more complex DSPs in cloud manufacturing, Liu et al. [12] summarized a gen-
eral deep reinforcement learning (DRL) framework, under which machines can automatically
extract high-level features of tasks and services to learn inherent scheduling patterns.

Unlike the surveys in [3, 11, 12], this article comprehensively considers AI-enabled techniques,
which are classified into two categories: (1) directed heuristic-based methods that include evo-
lutionary computation and swarm intelligence optimization and (2) autonomous learning-based
methods that contain RL and DRL. Instead of introducing a general AI framework, this article
focuses on elaborating how AI-enabled techniques can achieve dynamic control for different
scheduling problems from the perspectives of both modeling and solving.

3 PROBLEM DEFINITION AND MOTIVATION

In this section, we first introduce the preliminaries of DSPs in manufacturing (see Section 3.1),
including problem description (see Section 3.1.1), disruption categories (see Section 3.1.2), and
solution strategies (see Section 3.1.3). Next, we describe the motivation of existing AI-enabled
techniques for dynamic scheduling in Section 3.2.

3.1 Dynamic Scheduling in Manufacturing

3.1.1 Problem Description. According to the ever-changing manufacturing environment, dy-
namic scheduling arranges tasks for candidate services to allocate resources rationally and update
solutions consecutively. Typically, the scheduling procedure is decomposed into two sub-problems:
(1) service assignment that refers to the process of selecting appropriate services for each subtask
based on non-functional requirements, i.e., QoS [4], and (2) task sequencing that focuses on mini-
mizing idle service time by reasonably arranging congested tasks on a service, since task conges-
tion may occur when a large number of tasks pile up on one service at the same time.

Assuming that i , j, and k are the indices of tasks, subtasks, and services, Si, j and Ei, j represent
the start time and completion time of each subtask, respectively. Based on these notations, the
definition of a general DSP is mathematically described as minimizing makespanCmax under a set
of constraints:

min : Cmax = max
∀i, j

Ei, j (1)

s .t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

K∑
k = 1

λi, j,k = 1

Si, j =

{
Ai if j = 1

max(Ei, j−1,E J Ik,x ,OIk,x
) otherwise

Ei, j = Si, j +
K∑

k = 1
λi, j,kti, j,k

other constraints on tasks or services,

(2)

where Ai indicates the arrival time of task Ji and ti, j,k is the processing time of subtask Oi, j per-

formed on serviceMk . Here, J Ik,x andOIk,x are the task index and subtask index of the x th subtask
performed on service Mk , respectively. The notation λi, j,k is an indicator variable, indicating sub-
task Oi, j is processed by service Mk if λi, j,k = 1. The first constraint specifies that each subtask is
performed on only one service. The second constraint on Si, j indicates that the start time of each
subtask depends on the completion time of adjacent subtasks of the same task or the completion
time of adjacent subtasks performed on the same service. The third constraint means that each
subtask must be completed before executing the next subtask. Other constraints depend on the
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specific non-functional requirements of tasks or services for scheduling problems, such as the en-
ergy constraints of services and subtask sequence constraints within different tasks. For example,
energy-efficient scheduling focuses on rationally allocating resources to complete all the manufac-
turing tasks within the scope of the limited energy consumption. For FSSPs, it is necessary to add
a constraint (i.e., the execution sequence of subtasks in different tasks is exactly the same), which
is suitable for batch production. Due to the unpredictable disruptions in real-world manufacturing
processes, it is hard to figure out exact parameters (e.g., Ai and ti, j,k ) in practice. For example,
we cannot accurately predict the arrival time Ai of future tasks in advance. Furthermore, services
may be interrupted due to sudden machine breakdown or material shortage, which may result in
extended processing time ti, j,k .

Due to the promising capability to approximate optimal solutions, AI-enabled techniques can
achieve reasonable resource allocation solutions for complex DSPs in a quick and efficient manner.
To evaluate the effectiveness and efficiency of such techniques from different perspectives, various
kinds of benchmark datasets have been designed and open-sourced. However, due to privacy con-
cerns, most of these datasets are of small scale [13–17], which cannot fully reflect the performance
of state-of-the-art AI-enabled techniques for their quantitative comparison. To address this issue,
various data augmentation methods have been studied to extend small-scale benchmarks. By en-
larging the sizes of datasets or dataset elements according to specific distributions, e.g., Poisson
distribution and Uniform distribution [18, 19], datasets for large-scale scheduling can be generated
to accommodate complex DSPs.

3.1.2 Disruption Categories in Manufacturing Process. According to the definitions of manufac-
turing entities, the uncertainty of the parameters aforementioned can be mainly classified into the
following two categories [20], i.e., service-related disruptions and task-related disruptions.

Service-related Disruptions. Service-related disruptions are caused by imprecise QoS or sud-
den interruption of services. Since a solution is optimized based on the QoS (e.g., processing time)
predicted by analyzing historical data, whether the manufacturing processes of tasks follow the so-
lution depends on the accuracy of predictions. Specifically, if a service is unavailable for any task as
expected, the subsequent tasks will fail to execute as scheduled. Moreover, severe weather such as
blizzards and earthquakes may cause the completed subtasks to be blocked during transportation
to the subsequent subtasks on time.

Task-related Disruptions. Task-related disruptions are typically caused by urgent tasks, the
arrival of new tasks, due date changes, or task cancellation. Note that the arrival of new tasks
is one of the most common forms of dynamics. Since the arrival time of a manufacturing task
depends on its submission time, it is difficult to predict it in advance. In this case, once an urgent
manufacturing task arrives, the scheduling performance will be affected inevitably.

3.1.3 Solution Strategies. Based on the time points of responses to uncertain disruptions, so-
lution strategies are classified into two categories: (1) proactive scheduling that provides early
warning measures before the execution of a schedule and (2) reactive scheduling that conducts
real-time adjustment during the manufacturing process. Typically, proactive scheduling requires
the interrupted time of a service and its interruption duration in advance. Based on the analysis
of historical data, the distribution of interrupted information (i.e., corresponding interrupted time
and duration) follows a Uniform distribution.

Table 2 comprehensively compares the AI-enabled techniques (i.e., directed heuristics and
autonomous learning) used for solving DSPs with service- and task-related disruptions. From this
table, we can find that directed heuristic-enabled methods are widely used to solve DSPs with task-
related and service-related disruptions. This is mainly because directed heuristic-enabled methods
can be easily implemented to obtain superior results by predicting interruptions in advance or
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Table 2. AI-enabled Techniques for DSPs with Service- and Task-related Disruptions

Service-related Disruptions

Cause Strategy Problem Algorithm

Machine

breakdown

P JSSP GA [21]
P FJSSP GA [22]
P FJSSP NSGA [23]
P FJSSP NSGA [19]
R FSSP ABC [24]
P MPSP GA [18]

Stochastic

processing time

P JSSP SA + TS [25]
P FMS GA + SA [26]
P FMS GA [27]
P SMSP SA [28]
P FJSSP VNS + Q-learning [29]
P FSSP K-means + GA [30]

Task-related Disruptions

Cause Strategy Problem Algorithm

Dynamic task arrivals

R JSSP GEP [31]
R FJSSP double DQN [32]
R JSSP double loop DQN [33]
R FSSP VNS [34]
R JSSP dueling double DQN [35]
R BSP VNS + Q-learning [36]
R SMSP NSGA [37]

PR FSSP GA [38]
PR MPSP PG [39]

Dynamic requests for

various products

PR FJSSP DQN [40]
PR FMS DQN [41]
PR BSP Q-learning [42]

Combination of Service-related and Task-related Disruptions

Cause Strategy Problem Algorithm

Random task arrivals and

machine breakdown

R FSSP GA [43]
PR JSSP GA + TS [44]
PR FJSSP NSGA [45]
PR FSSP NSGA [46]

1We use the symbols P, R, and PR to indicate proactive strategy, reactive strategy, and a combination of the two,

respectively.
2Flexible job shop scheduling problem (FJSSP), flexible manufacturing system (FMS), single machine scheduling

problem (SMSP), multi-project scheduling problem (MPSP), batch scheduling problem (BSP).
3Genetic algorithm (GA), nondominated sorting genetic algorithm (NSGA), artificial bee colony (ABC), simulated

annealing (SA), tabu search (TS), variable neighborhood search (VNS), gene expression programming (GEP), deep

Q-network (DQN), policy gradient (PG).

triggering rescheduling once an uncertain disruption occurs. Since sequential decision-making
is suitable to achieve real-time scheduling of consecutive arrival tasks in manufacturing systems,
autonomous learning-enabled methods mainly focus on addressing task-related disruptions
rather than service-related disruptions. Specifically, a proactive strategy is often used to deal with
service-related disruptions, since interrupted information (e.g., interrupted time of a service and
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its interruption duration ) can be predicted based on historical data. Unlike uncertain disruptions
caused by services, personalized task information (e.g., arrival time and manufacturing require-
ments) submitted by customers cannot be easily pre-determined in advance. Therefore, reactive
strategies (i.e., triggering rescheduling once a task arrives) are often used to address task-related
disruptions.

3.2 Motivation Behind Intelligent Dynamic Scheduling

To solve scheduling problems, exact algorithms can quickly figure out optimal solutions for small-
scale manufacturing, including dynamic programming [47], branch-and-bound approach [48, 49],
and constraint programming [50]. For example, Pang and Le [47] formulated a scheduling problem
as a non-convex mixed-integer nonlinear program. Based on a reachable graph, they presented
a dynamic programming approach to optimize energy consumption. Experiments on datasets
demonstrate that the proposed method achieves significantly less deviation and computational
time compared to baseline approaches. Cheng et al. [51] developed an extended branch-and-bound
algorithm to obtain an optimal solution to a permutation FSSP, which takes advantage of the suf-
ficient precondition-based dominance relation to reduce search load efficiently. Later, to improve
the performance of branch-and-bound algorithms, they designed a special construct based on dom-
inance properties (i.e., upper bounds or lower bounds) to enforce a sequence of non-overlapping
activities [52, 53]. In [50], Zeballos presented a constraint programming methodology that consists
of both a model and a search strategy to solve flexible scheduling problems. In this approach, differ-
ent features in industrial environments are considered, including the capacity of tool magazines,
limits on set-up, the due date of tasks, and constraints on machine tools. Moreover, by assigning
machines and tool types to part subtask procedures, this method uses a domain-specific search
strategy to guide the movement through the search space. To clarify the relationship between the
computation time of this approach and the scale of scheduling problems (i.e., the number of ma-
chines and the number of parts), they developed comparative experiments. From the experimental
results applied to various test problems, the formulation performance of this approach is sensitive
to the increasing number of both machines and parts. Furthermore, the formulation performance
is more influenced by augment in the number of machines than in the number of parts. To im-
prove solution efficiency, Google OR-tools serve as a set of open-source and fast operational tools
for solving optimization problems, providing a unified interface to call common solvers such as
GLPK, Gurobi, and CPLEX [54].

Since scheduling problems are NP-hard, along with the increasing scale of manufacturing, sky-
rocketing computation complexity hinders exact algorithms from effectively achieving large-scale
manufacturing. To search for near-optimal solutions within an acceptable computation time, Li
et al. [55] presented a modified dynamic programming algorithm, which designs a transition se-
quence heuristic function and evaluation function to explore potential states. Note that each po-
tential state in a problem is treated as a node. Since the maximum number of nodes per stage
is strictly controlled within a reasonable value, this algorithm explores only the most promising
states, which greatly reduces search space. Moreover, by formulating online printing shop sched-
uling problems as mixed-integer linear programming formulations, Lunardi et al. [56] designed a
constraint programming optimization solver to fully explore the structure of underlying correla-
tions through modeling language.

Although these approximate algorithms can accelerate to tackle complex scheduling problems
based on a series of static assumptions, they suffer from poor adaption to real-world manufac-
turing environments. As a promising way, AI-enabled techniques are considered to be effective
as well for dynamic scheduling due to the following three reasons. First, instead of pursuing
exact solutions, AI-enabled technologies aim to obtain near-optimal solutions within a reasonable
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Fig. 2. Keyword co-occurrence network related to dynamic scheduling in the manufacturing field.

time. Second, although AI-enabled techniques (e.g., directed heuristic-enabled methods) focus
on solving static scheduling problems, they can adjust solutions by combining rescheduling
strategies. Third, due to sequential decision-making, AI-enabled techniques such as RL assign
subtasks to machines incrementally to achieve dynamic adaption. Therefore, the following
sections will focus on AI-enabled techniques for DSPs.

4 CLASSIFICATION OF AI-ENABLED TECHNIQUES FOR DYNAMIC SCHEDULING

This section first presents an overview of AI-enabled techniques for solving DSPs (see Section 4.1).
Then, it details two kinds of AI-enabled techniques for dynamic scheduling, i.e., directed heuristics
(see Section 4.2) and autonomous learning (see Section 4.3).

4.1 Overview of AI-enabled Techniques for Dynamic Scheduling

To comprehensively understand dynamic scheduling in the manufacturing field, we conducted a
bibliometric analysis of relevant works using VOSviewer. For the topic of dynamic scheduling, we
filtered out irrelevant works and collected a total of 891 papers, where all the papers are extracted
from the core collection of Web of Science dating from 2012 to 2021. By setting the threshold for the
minimum number of occurrences of a keyword to 15, Figure 2 shows the keyword co-occurrence
network related to dynamic scheduling in the manufacturing field, where each circle indicates a
keyword and each line indicates the strength of relationships between two keywords. Note that
the larger the circle size is, the more representative the keyword is. Based on the occurrence rela-
tionship of different keywords, there are seven clusters indicated by different colors. As shown in
the figure, we can find that the red one is the largest cluster, while the remaining six clusters are
all smaller, where the red one mainly contains keywords such as optimization, algorithm, simula-

tion, particle swarm optimization, and genetic algorithm. In other words, directed heuristic-related
techniques represented by particle swarm optimization algorithms and genetic algorithms have
received great attention in solving DSPs in the manufacturing field. The keywords in the bright
blue cluster mainly involve autonomous learning-related techniques such as machine learning,
reinforcement learning, and Q-learning. Moreover, keywords such as dynamics, uncertainty, and
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Fig. 3. Classification tree of AI-enabled techniques for dynamic scheduling in the manufacturing field.

dynamic optimization show that researchers are not limited to static scheduling problems but take
into account uncertain disruptions in manufacturing processes.

Similar to the work [57] where Telikani et al. regarded the evolutionary computation approaches
as a kind of AI technique to improve the performance of machine learning, in this article, we define
the notation “AI-enabled techniques” as mainstream AI techniques including heuristic search, rein-
forcement learning, and deep learning [58]. To visualize the classes of AI-enabled techniques in the
domain of dynamic scheduling, Figure 3 gives the classification tree of dynamic scheduling in the
manufacturing field, where AI-enabled techniques are classified into two categories, i.e., directed
heuristics and autonomous learning. As shown in the figure, the directed heuristics mainly consist
of evolutionary algorithms (see Section 4.2.1) and swarm intelligence optimization algorithms (see
Section 4.2.2), while autonomous learning involves reinforcement learning (see Section 4.3.1) and
deep reinforcement learning (see Section 4.3.2).

Since manufacturing scheduling focuses on dynamic response timeliness in practical manu-
facturing scenarios, computation complexity analysis plays an important role in measuring the
performance of AI-enabled techniques for solving DSPs. Here, the time complexity of directed
heuristic-enabled methods is typically O (дmn), where д is the number of generations, n is
population size, and m is the size of individuals. As an alternative, the training complexity
for autonomous learning-enabled methods (e.g., Q-learning, PG, DQN) is generally defined as
O (p |s |2 |a |), where p is the number of iterations, |s | is the number of states, and |a | is the number
of actions. Note that the parameters m, |s |, and |a | are strongly affected by the size of scheduling
problems themselves. Therefore, when the size of a dynamic scheduling problem increases, the
complexity of both types of AI-enabled techniques will increase dramatically. To reduce the
solving/training time of AI-enabled techniques, there are two classes of widely used solutions:
(1) improve the optimization/learning efficiency of each generation/iteration to accelerate
convergence speed or (2) reduce the optimization/learning time of each generation/iteration.

To visualize the development trends of these two kinds of AI-enabled techniques for manufac-
turing, Figure 4 shows the number of papers related to dynamic scheduling over the past decade.
As illustrated in the figure, the total number of papers using directed heuristics and autonomous
learning for dynamic scheduling has steadily increased from 2012 to 2018, and has grown rapidly
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Fig. 4. Number of papers related to AI-enabled techniques for dynamic scheduling.

since 2019. These AI-enabled technologies aforementioned have received increasing attention due
to the following two reasons:

(1) To achieve better flexibility, mass customization, and higher productivity, manufacturing
systems are pushed to improve their intelligence levels. As an essential part of manufacturing
systems, intelligent scheduling can improve the utilization rate of idle resources and alleviate
the pressure of resource shortage.

(2) Since DSPs are NP-hard problems, traditional approaches cannot search for large-scale
scheduling within an acceptable time. To achieve efficient large-scale scheduling, AI-enabled
techniques quickly search for near-optimal solutions rather than optimal solutions.

As shown in the figure, directed heuristics for dynamic scheduling attracted great attention from
2012 to 2021 due to easy implementation and high search efficiency. However, mass customization
requirements make it difficult for directed heuristics to achieve fully dynamic adaptation by ad-
justing solutions through rescheduling. Unlike directed heuristics, RL is suitable for DSPs due to
sequential decision-making. Suffering from the issue of “state space explosion,” RL had not been
widely used to solve DSPs until rapid growth occurred in 2019, and it even surpassed directed
heuristics in 2020. This is because DRL uses the powerful representation ability of deep learning
to fit Q-tables or directly fit policies to effectively alleviate the “state space explosion” issue. Fur-
thermore, the blockbuster Alpha Go from 2016 to 2017 has greatly promoted the development of
DRL, which can adjust actions through interacting with the environment.

4.2 Directed Heuristics

Based on the theory of “survival of the fittest” [22], directed heuristics continuously improve the
quality of a population through the guidance of well-behaved individuals (i.e., solutions). Figure 5
shows the procedure of directed heuristic-based methods, which mainly consists of five steps, i.e.,
encoding, initialization, evolution, updating population, and decoding. For the encoding step, one-
dimensional representation and two-dimensional representation are the most common forms for a
solution, where two-dimensional representation shows the service assignment and task sequenc-
ing information more intuitively, while one-dimensional representation encodes the information
of both dimensions into one [59]. For the initialization step, the population is generally composed
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Fig. 5. A general procedure of directed heuristic-based methods.

of random individuals based on an encoding operator. Since the quality of an initial population di-
rectly affects convergence speed and final solutions, existing methods designed problem-specific
rules to improve the quality of the initial population [60, 61]. For each iteration, individuals evolve
according to information sharing in the population to generate offspring individuals. To effectively
update the population, the original individual will be replaced by its better-behaved offspring indi-
vidual. Directed heuristics repeat evolving and updating the population until algorithms converge,
and then decode an optimal solution. Based on the start and end time of each subtask calculated
in the decoding step, the solutions can be visualized by a Gantt chart. In this article, we mainly
introduce two typical classes of directed heuristic-based methods, i.e., evolution computation and
swarm intelligence optimization, as follows.

4.2.1 Evolutionary Computation. By simulating the collective learning process of a population
composed of individuals, evolutionary computation algorithms effectively update the population.
Due to easy implementation and high search efficiency, evolutionary computation algorithms are
widely used for scheduling problems. To find a near-optimal solution, a population evolves under
guidance from well-behaved individuals by performing selection, crossover, and mutation oper-
ators. Here, selection operators give well-adapted individuals more opportunities to be retained
in the next generation population than poorly adapted individuals. Crossover operators generate
offspring individuals by changing the information of individuals, and mutation operators produce
new individuals randomly to the population. Research on evolutionary computation algorithms is
classified into three categories, i.e., genetic algorithms (GAs) [18, 22, 62–64], evolution strategies
[23], and evolutionary programming [28].

Since GA is the most common evolutionary computation algorithm, this subsection takes it
as an example to detail evolutionary processes. In GA, an individual represents a candidate solu-
tion, which contains the information of both service assignment and task sequencing. Based on
selection, crossover, and mutation operators, a population covering multiple individuals evolves
continuously to produce offspring individuals. Since GA follows the “survival of the fittest” to
update individuals in the population, it ensures that the population can continue to approach an
optimal solution. In other words, individuals with good behaviors stand out from the candidates
and are retained in the next population.

4.2.2 Swarm Intelligence Optimization. Similar to evolutionary computation algorithms,
swarm intelligence optimization algorithms mainly simulate the population behavior of insects,
herds, birds, and fish. Typically, the evolutionary process of a population can be regarded as a
swarm intelligence only if it satisfies two conditions [65]: (1) self-organization that allows an
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initial disordered population to determine the movement trajectories of food search through
local interactions among individuals and (2) the division of labor that helps different professional
individuals (well behaved) perform different tasks at the same time.

Based on the simulation of different animal behaviors, swarm intelligence optimization algo-
rithms mainly include particle swarm optimization (PSO) algorithms [66–69], ant colony opti-

mization (ACO) algorithms [70], artificial bee colony (ABC) algorithms [24, 71, 72], flower pol-

lination algorithms (FPAs) [73], biogeography-based optimization (BBO) algorithms [74],
and whale optimization algorithms [75]. In these algorithms, individuals search for food in a coop-
erative way and constantly improve their search directions by learning from their own experience
and the experience of other individuals. More details on how these algorithms solve the DSPs will
be presented in Section 5.

4.3 Autonomous Learning

4.3.1 Reinforcement Learning. The learning process of RL is to update a policy by successively
executing actions to maximize cumulative rewards. Common RL algorithms mainly include Q-
learning [8, 76–80], SARSA [81], policy gradient (PG) [82–84], and actor-critic (AC) [41, 85].
In RL, a state St has Markov property if and only if state St+1 depends only on state St at time t .
In other words, the future is independent of the past given the present. When a sequence of ran-
dom states in a process has Markov property, the process is a Markov decision process (MDP).
Based on the description of MDP, RL modeling mainly involves the following four scheduling com-
ponents: states, action, policy, and reward. Specifically, an agent performs different actions at each
state and chooses one of these actions. According to the action executed by the agent, the envi-
ronment will change to another state and give feedback on a reward. Since dynamic scheduling
is the process of assigning tasks to appropriate services one by one based on the current state of
a system, and each task assignment causes a change in the state of a system, almost all the DSPs
can be formalized into MDPs.

4.3.2 Deep Reinforcement Learning. Inspired by neural networks that simulate the human brain
for analysis and learning, deep learning mimics the mechanism of the human brain to interpret
data [86]. By combining low-level features, a distributed feature representation of the data can
form more abstract high-level representations, attribute categories, or features. Although RL is
good at DSPs due to sequential decision-making, it suffers from the problem of state space explo-
sion for large-scale scheduling. Especially in a real-world manufacturing environment, large state
space severely deteriorates the performance of training. To effectively solve complex scheduling
problems, the DQN-based methods introduce deep learning to learn scheduling policies, whose
procedures are presented in Figure 6. As shown in the figure, an agent observes a state st of the
current manufacturing environment, which is input to a neural network as a feature vector. Based
on the feature vector, the neural network outputs Q-values, which represent the scores obtained
by the interactions between the agent and the environment. Based on the Q-values, the agent
selects an action, represented by a candidate operation or a dispatching rule. Finally, the manufac-
turing environment returns a reward to the agent and changes to another state. We can find that
DQN does not require massive storage space to learn an optimal scheduling policy. Besides DQN,
more DRL methods have been investigated to solve DSPs, such as AC [87] and proximal policy

optimization (PPO) [88], where the learning procedures of these algorithms are similar to DQN.

5 HEURISTIC-ENABLED SCHEDULER

This section reviews the research works of heuristic-enabled schedulers on dynamic scheduling.
These works focus on modeling and solving DSPs. We first introduce the heuristic-enabled
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Fig. 6. Procedures of DQN-based methods [40].

modelers in Section 5.1, including fuzzy representation (see Section 5.1.1) and performance mea-
surement (see Section 5.1.2). Then, we describe heuristic-enabled solvers in Section 5.2, including
periodic rescheduling (see Section 5.2.1), batch rescheduling (see Section 5.2.2), decomposition-
based rescheduling (see Section 5.2.3), and aperiodic rescheduling (see Section 5.2.4). Finally, we
summarize heuristic-enabled schedulers in Section 5.3.

5.1 Heuristic-enabled Modeler

5.1.1 Fuzzy Representation. To enable reasonable allocation of manufacturing resources, most
of the existing works focus on building optimization models with precise QoS. However, in
real-world manufacturing scenarios, the manufacturing ability of resources cannot be accurately
measured. This is because the manufacturing process is influenced by various factors, such as
insufficient workforce and unreliable machines. To address this problem, these works [63, 89, 90]
used fuzzy representation instead of precise QoS to offset the delay caused by uncertain disrup-
tions. Table 3 summarizes the classification of fuzzy representation-based methods in solving
DSPs, including intuitionistic fuzzy set, triangular fuzzy number, type-2 fuzzy set, left-right fuzzy
set, and interval-based fuzzy set.

Intuitionistic Fuzzy Set. An intuitionistic fuzzy set (IFS) needs to define a membership
function based on historical data, making it more capable of expressing QoS fluctuations when
processing uncertain information [97, 98]. For example, Vishwakarma and Sharma [89] designed a
vague lambda-tau method based on IFS theory to analyze the dynamics in the operational behavior
of an industrial system. In this approach, they defined various reliability parameters to evaluate
the system performance, such as system failure rates, mean time to repair, mean time between
failures, expected number of failures, system reliability, and machine availability. To solve multi-
objective optimization problems under the optimistic and pessimistic viewpoint, Rani et al. [90]
presented a linear membership function and a non-linear membership function corresponding to
optimistic and pessimistic optimization objectives, respectively. In [63], Zhang et al. used interval-
valued intuitionistic fuzzy entropy weight to represent inaccurate QoS attribute values, which can
obtain a better preference of QoS attributes and task priority for further calculation.
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Table 3. Classification of Fuzzy Representation-based Methods in Solving DSPs

Fuzzy Representation Problem Approach Solution

Intuitionistic

fuzzy set

Manufacturing

plant [89]

Vague lambda-tau

method

A vague lambda-tau method based on IFS
theory is used to evaluate the
performance of a dynamic system.

Manufacturing

system [90]

Linear and non-linear

membership functions

Linear and non-linear membership
functions correspond to optimistic and
pessimistic optimization objectives,
respectively.

Multi-task

scheduling [63]

Interval-valued
intuitionistic fuzzy

entropy

Interval-valued intuitionistic fuzzy
entropy weight is used to represent
inaccurate QoS attribute values.

Triangular fuzzy

number

FJSSP [72] TFN-based ABC
TFN-based ABC represents the
uncertainty of processing time as a TFN.

FJSSP [71]
TFN-based two-stage

ABC

TFN-based two-stage ABC triggers a
rescheduling operator once a new task is
inserted.

Production
planning and

scheduling [91]
Fuzzy bi-stage decision

A fuzzy bi-stage decision model is used
to handle the uncertain time scales of
machine startup, task processing, and
transformation.

FJSSP [74] TFN-based BBO
TFN-based BBO minimizes fuzzy
completion time under fuzzy due date.

FJSSP [68] TFN-based HPSO
TFN-based HPSO assigns resources for
each subtask while considering the
uncertainty of processing time.

JSSP [92] Fuzzy framework
A fuzzy framework is defined for
calculating non-processing energy.

Type-2 fuzzy set
Real-time

embedded system
[93]

Interval type-2
trapezoidal membership

function

An interval type-2 trapezoidal
membership function is proposed to
increase the interpretability of dynamics.

Left-right fuzzy

set

Open-station

assembly line [94]
State-space model

A state-space model uses active time
left-right (LR) fuzzy numbers to represent
uncertain processing time.

Interval-based

fuzzy set

SMSP [95]
Global dominance

relation

A global dominance relation is developed
for DSPs with unknown information.

Make-to-order
manufacturing

system [96]

Fuzzy analytic network

process

A fuzzy analytic network process method
is used to identify top suppliers, which
are considered as the last objective.

Triangular Fuzzy Number. Unlike IFS, which needs to define an accurate member function,
the member function of a triangular fuzzy number (TFN) is reduced to a triangle determined
by three values (i.e., upper bound, most probable value, and lower bound), which more intuitively
represent the probability of each attribute value in the interval [99–102]. Therefore, TFN is suitable
for scheduling problems that cannot obtain large amounts of historical data to define appropriate
member functions. For example, Gao et al. [72] proposed an improved ABC algorithm to solve a
realistic FJSSP in a remanufacturing system with the goal of minimizing fuzzy completion time
and fuzzy machine workload, where the uncertainty of processing time is represented by a TFN.
To further address real-world FJSSPs with new task insertions, Gao et al. [71] presented a two-
stage ABC algorithm with THN. In this approach, the first stage is to optimize fuzzy processing
time and obtain a high-quality solution, while the second stage triggers a rescheduling operator
once a new task is inserted. In [91], Han et al. constructed a fuzzy bi-stage decision model to deal
with a DSP, where TFN represents the uncertain time scales of machine startup, task processing,
and transformation. To solve this decision model, they proposed a PSO-based method together
with TFN to update solutions and finally obtained an optimal solution, which achieves better near-
optimal solutions and improves computational efficiency.
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Table 4. Performance Metrics and Measurements for Dynamic Scheduling

Metric Method Measurement

Robustness

Scenario-based
stochastic programming

[19, 70, 79, 107–109]

Robustness measurement evaluates the overall
performance deviation (e.g., makespan,
tardiness) under different scenarios.

Robust counterpart
optimization

[80, 106, 110, 111]

Robustness measurement is minimizing the
expected optimization objectives (e.g., total
completion time, total flow time) under the
worst-case scenario.

Stability
Partial

performance
deviation

[23, 103, 112]

Stability metric is used to obtain a solution
with a small deviation in partial performance
of each subtask (e.g., completion time and
sequence).

Others. Besides IFS and TFN, other fuzzy representations also apply to dynamic scheduling,
such as left-right fuzzy sets and interval-based fuzzy sets. For example, to address ambiguous
characteristics of tasks caused by the prediction of timing constraints in the initial design stage,
Shurla et al. [93] presented an interval type-2 trapezoidal membership function (i.e., a lower mem-
bership function and an upper membership function) to increase the interpretability of real-time
embedded systems, which involves two functions. Compared to models with crisp timing param-
eters and fuzzy type-1, it is found that the model with fuzzy type-2 consumes the least system
energy by ensuring task completion with maximum earliness. To address manual mixed-model
assembly lines, Ruppert et al. [94] proposed a state-space model based on a left-right (LR) fuzzy
set to represent the active time of each module in modular products. Similar to IFS, the LR fuzzy set
requires both the efficient integration of data-driven information and expert knowledge of process
engineers into the model. For more complex manufacturing environments, where known informa-
tion has only the lower and upper bounds for processing times of each task, Aydilek et al. [95]
developed a global dominance relation, which describes processing times as the weighted average
of an interval. Computational analysis reveals that the overall average error of this method is only
1.34% worse than the optimal solution.

5.1.2 Performance Measurement. Although makespan can effectively reflect the time perfor-
mance of a solution, it cannot be used to measure the ability of a solution to cope with uncertain
disruptions in a real-world manufacturing environment [103–105]. According to Section 3.1.2, un-
certain disruptions in the manufacturing field can be mainly classified as service-related disrup-
tions and task-related disruptions. Once a disruption occurs, a solution will suffer from the issue of
being inapplicable to real-time manufacturing scenarios, resulting in the delay of tasks. To enable
the on-time completion of manufacturing tasks, real-time adjustment is necessary to be applied
to a solution to accommodate manufacturing scenarios with different uncertain disruptions. Since
the size adjustment of a solution may easily result in the notorious “schedule nervousness” prob-
lem, performance measurements are used to judge whether the solution is resilient to uncertain
disruptions. To better evaluate the ability of a solution to deal with uncertain disruptions, Table 4
introduces two typical metrics of DSPs, i.e., robustness and stability, which are detailed as follows.

Robustness. The metric robustness is used to measure solutions with a small deviation in over-
all performance. Based on the number of uncertain scenarios, Table 4 presents two classes of ro-
bustness methods, i.e., scenario-based stochastic programming (SSP) and robust counterpart

optimization (RCO) [106]. Specifically, SSP tries to obtain an optimal solution that is as close as
possible to all the given scenarios, while RCO is derived from the corresponding deterministic
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model by considering the worst-case values of uncertain parameters. Due to the comprehensive
consideration of different scenarios, a robust solution obtained based on an SSP measurement
can better deal with different uncertain disruptions. For example, in the manufacturing field, ro-
bustness measurement is used to evaluate the deviation in overall performance (e.g., makespan,
tardiness) between proactive solutions and realized solutions [70, 79, 107–109], where a proactive
solution refers to a solution before an uncertain disruption occurs, and a realized solution is a
newly optimized solution once triggering rescheduling. To further accurately evaluate the robust-
ness of machines, Yang et al. [19] developed a measurement method called RMc for FJSSP, where
the effect of float time on solutions is determined by considering both machine failure probability
and fluctuation range.

Compared to SSP, RCO is easier to estimate in practice since it only requires clear upper and
lower bounds of uncertain parameters. For example, to handle DSPs with uncertain processing
time, Ying [106], Wang et al. [80], Lu et al. [111], and Chang et al. [110] defined robustness as
the expected optimization objectives (e.g., total completion time, total flow time) under various
worst-case scenarios. Specifically, Ying [106] formulated a two-machine FSSP with uncertain pro-
cessing times as an RCO model, which introduces an asymmetric and bounded uncertain dataset
to find a robust solution. In [110] Chang et al. presented a min-max distributional robust model
that is universal for complex DSPs, since it does not require exact probability distributions. To
address SMSPs with interval processing times, Lu et al. [111] proposed a mixed integer linear pro-
gram together with an iterative improvement heuristic to obtain a robust solution with minimum
worst-case total flow time. Moreover, Wang et al. [80] developed a united-scenario neighborhood
structure based on a bad scenario set, where a threshold of performance is given as a standard to
evaluate system performance rather than the optimal performance.

Stability. Unlike robustness, stability measurement considers partial performance deviation,
where a stable solution refers to a solution that has a very small deviation in performance of each
subtask (e.g., completion time and executing sequence) between a proactive solution and a realized
solution. For example, to address SMSPs with machine breakdown, Liu et al. [112] calculated the
sum of the absolute deviations of task completion time between a realized solution and a proac-
tive solution to evaluate the stability of the proactive solution. In [103], Shen and Yao presented a
multi-objective dynamic scheduling optimization model for FJSSP, where each rescheduling point
evaluates three measurements related to shop stability: (1) deviation from early execution of sub-
tasks, (2) deviation from the delay of subtasks, and (3) extension of the completion time of subtasks.
To handle this model, they designed a multi-objective evolutionary algorithm based on a proactive-
reactive method, which can obtain an optimal solution according to the interrupted information
(e.g., interrupted time and duration) of machines and the QoS values of arrived tasks. If a random
event occurs, the algorithm coupled with a proactive-reactive strategy will trigger rescheduling
operators at each rescheduling point to re-optimize the original solution. To further improve the
stability of solutions for FJSSPs, Ahmadi et al. [23] proposed two evolutionary algorithms to opti-
mize makespan and stability simultaneously, which can effectively prevent a tremendous change
caused by machine breakdown.

5.2 Heuristic-enabled Solver

By combining rescheduling strategies, heuristic-enabled solvers can adjust solutions in time to
handle uncertain disruptions during manufacturing. Since frequent rescheduling operations will
increase the chance of “schedule nervousness,” how often a rescheduling should be triggered is
becoming a critical issue in real-time manufacturing systems. To address this problem, many
rescheduling policies have been developed, including periodic rescheduling, batch rescheduling,
decomposition-based rescheduling, and aperiodic rescheduling [113], as introduced below.
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5.2.1 Periodic Rescheduling. By periodically triggering rescheduling operations, periodic
rescheduling-based methods can effectively address most uncertain disruptions that do not re-
quire immediate resolution. For example, to handle the problem of continuous arrival of tasks in
a hybrid flow shop, Chen et al. [38] presented a periodic scheduling policy by decomposing a DSP
into successive static sub-problems to reduce the computational difficulty, where each static sub-
problem is regarded as a decision interval. Within each decision interval, they designed a modified
GA to minimize the mean longest waiting duration (MLWD) of all the tasks. By investigating
the sensitivity of decision intervals, they concluded that as the decision interval increases, the de-
creasing trend in MLWD becomes more significant. In [114], Angel-Bello et al. proposed a hybrid
heuristic method based on a periodic rescheduling approach to minimize makespan in a dynamic
SMSP with sequence-dependent setup times. Specifically, the production horizon is equally divided
into time intervals. To obtain an optimal solution that is more suitable for the current scheduling
environment, they presented two rescheduling strategies, where the first rescheduling strategy is
to schedule all the available subtasks at the beginning of each interval to minimize makespan, and
the second strategy focuses on scheduling future tasks that can be completed within the current
interval. Experimental results show that scheduling future tasks in advance can improve resource
utilization by reducing the idle time of machines at the current time interval.

Unlike the studies in [38, 114] assuming that machines are fully automatic, Delgoshaei et al.
[115] took the flexibility of workers into account to achieve a human-centric manufacturing mode.
Since human resource proficiency can be promoted by work experience and training, they took
workers with different skill levels into account [116]. Note that the skill rates can be measured by
conducting studies of workers before and after promotion. To achieve short-term period sched-
uling of dynamic cellular manufacturing systems in a dual resource-constrained environment,
Delgoshaei et al. [115] developed a multi-period scheduling algorithm to find a scheduling strategy
for in-house manufacturing using worker assignment (both skilled and temporary workers) and
outsourcing. At the beginning of each scheduling period, periodic training programs are used to im-
prove the skill level of workers. The algorithm allocates manufacturing tasks to in-house machines
or outsourced machines according to their capacities. To address the state space explosion issue
due to the increasing scheduling scale, Delgoshaei and Ali [117] proposed a hybrid TS and ACO al-
gorithm. In this approach, a short-term memory structure and long-term memory structure enable
the TS algorithm to obtain more chances to find potential solutions, where a short-term memory
is used to prohibit the TS algorithm from revisiting those previous rejected solutions, and a long-
term memory stores those solutions that are permanently banned. Moreover, a problem-specific
strategy is used to avoid the proposed hybrid algorithm falling into local optima. Although the
aforementioned periodic rescheduling-based methods can handle uncertain disruptions by regular
rescheduling, they cannot adjust solutions in time once an urgent uncertain disruptions occurs.

5.2.2 Batch Rescheduling. Batch rescheduling refers to the regular arrangement of tasks be-
longing to the same batch. Similar to periodic rescheduling, batch rescheduling-based methods
trigger rescheduling operations until all the tasks belonging to the same batch arrive at manu-
facturing systems. For the case of new task arrivals, Chen et al. [118] and Zhou et al. [119] se-
lected tasks into batches for processing. In [118], Chen et al. proposed two algorithms (i.e., GA
and ACO), which combine the earliest ready time and longest processing time heuristic to solve
parallel batch processing machine scheduling problems. To alleviate the problem of electric supply-
demand mismatch, Zhou et al. [119] designed an energy-efficient single-batch scheduling model
with non-identical release time and task sizes. Furthermore, two heuristics are presented to address
the model, where the first heuristic effectively groups tasks into batches, and the second heuris-
tic is used to evaluate solutions and obtain a Pareto front. Finally, they proved that the proposed
heuristics can effectively solve the single-batch scheduling model to balance sustainability and
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productivity, which is practical for the actual production environment. Moreover, Cao et al. [120]
presented a surrogate-assisted symbolic organized search algorithm to deal with parallel batch
processor scheduling problems with dynamic task arrivals. First, they built a two-stage algorith-
mic framework to optimize batch sequencing to guide the batch allocation. Second, to estimate
the fitness of batch sequencing, they designed a surrogate model, which can speed up the search
by avoiding moving in the wrong search directions. Finally, SARSA is used to build a self-adaptive
parameter control system to balance the global and local searches of the algorithm.

Taking both service-related disruptions and task-related disruptions, Pei et al. [121] investi-
gated a series-batching scheduling problem with machine breakdown and dynamic task arrivals,
where processing time and task size vary by types, assuming that each subtask with a different
type requires setup time before processing. Based on these definitions, they formulated the series-
batching scheduling problem as a mixed inter-programming model with the goal of minimizing
the makespan. To solve this model, they modified a gravitational search algorithm with a batching
mechanism. For this batching mechanism, once all tasks are assigned to a manufacturing system,
they are split into batches and then scheduled on all services to optimize all objectives. To further
handle a dynamic serial batch scheduling problem, Pei et al. [122] divide the problem into two
stages: (1) the first stage is composed of two factories producing tasks submitted by customers,
where the uncertain disruptions caused by machine breakdown and dynamic tasks’ arrival are
considered simultaneously, and (2) in the second stage, vehicles carry the completed tasks from
factories to customers. For each stage, they presented two structural properties, where the first
property is that a solution remains unchanged when any two tasks in a batch are swapped, and
for the second one, there exists an optimal solution that all tasks in each batch are processed in
the non-decreasing order of their arrival time to machines. Based on these two properties, they
proposed a heuristic algorithm to analyze the performance of worst-case scenarios, which yields
near-optimal solutions to large-scale problems in a shorter time.

5.2.3 Decomposition-based Rescheduling. Decomposition-based rescheduling focuses on de-
composing a complex problem into multiple sub-problems to reduce solving complexity. For exam-
ple, Gao et al. [123] decomposed an FJSSP with new task arrivals into two stages, i.e., initialization
and rescheduling. During the initialization stage, Cao et al. regarded the problem as a static FJSSP
with the same available time of machines, where the available time of machines in the reschedul-
ing stage relies on the completion time of subtasks. To simplify flexible FSSPs with machine break-
down, Wang and Choi [124] developed a neighboring K-means clustering algorithm, which can
group machines into several clusters. Note that traditional K-means clustering algorithms must
solve the following two issues to decompose the flexible FSSPs: (1) how to group the machines
into machine clusters and (2) how to choose a suitable machine cluster number. To address the first
issue, Wang and Choi proposed a machine allocation algorithm, which allocates machines to the
nearest neighboring machine cluster centers by calculating the distances of machines’ stochastic
vectors. Aiming to choose an appropriate machine cluster number, they proposed a clustering al-
gorithm based on weighted cluster validity indices, which measure the intra-cluster distances and
the inter-cluster distances between machine clusters. Specifically, the intra-cluster distance mea-
sures the distances of objects within a cluster to represent its compactness, while the inter-cluster
distance computes the distance between two different clusters. Based on the decomposition, this
algorithm can quickly generate an optimal solution for each machine cluster.

Unlike the previous works that ignore earliness and tardiness penalties for the completion time
of each tasks, Wang and Li [125] designed a JIT JSSP, where subtasks that are completed ear-
lier/later than their due dates will incur a penalty. To cope with this problem, they proposed a
variable neighborhood search (VNS) procedure, which can explore the huge feasible solution
space efficiently by alternating the swap and insertion neighborhood structures. To further ad-
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dress the JIT JSSP, Ahmadian et al. [126] decomposed the problem into two smaller problems,
i.e., assignment and sequencing. Pinedo and Hadavi pointed out that optimal scheduling based
on a given sequence can be obtained in polynomial time if a feasible sequence can be provided
[127]. Inspired by this observation, Ahmadian et al. designed a VNS algorithm with novel rela-
tion neighborhoods to obtain near-optimal subtask sequences for those smaller problems. Here,
the relaxation neighborhoods partially destruct subtask sequences and then re-construct certain
subtasks. Experimental results demonstrate that the proposed VNS algorithm obtains new best
solutions for 57% of benchmark instances.

5.2.4 Aperiodic Rescheduling. In real-time systems, time-triggered mechanisms may cause sig-
nificant losses due to the over-provisioning of manufacturing resources, which seriously affects the
efficiency of rescheduling [128]. To address this issue, aperiodic rescheduling updates the solution
once an uncertain disruption occurs. For example, aiming to solve an FJSSP with random task ar-
rivals, Zhang et al. [129] designed an efficient memetic algorithm that minimizes both makespan
and mean tardiness at each rescheduling point (i.e., once a new task arrives) to optimize solu-
tions. Moreover, Syed et al. [130] proposed an extended task-shifting algorithm for scheduling
non-preemptive tasks, which can utilize both online and offline strategies to ensure the successful
execution of aperiodic tasks. To manage idle resources, they developed an offline strategy, which
can make efficient use of processors in partition-free scenarios. Experimental results demonstrate
that the extended task-shifting algorithm can achieve higher bandwidth utilization with less sched-
uling overhead. To further solve DSPs with aperiodic task arrivals, Zhou et al. [131] proposed an
event-triggered dynamic task scheduling (EDS) method, which triggers scheduling operations
on two types of subtasks: (1) the first subtask of a new task that has just arrived and (2) adjacent
intermediate subtasks whose predecessor subtasks have completed, where intermediate subtasks
refer to subtasks except for the first and last subtasks of tasks. Once receiving an aperiodic subtask
to be triggered, the DES method will select one of the subtasks to be triggered according to the QoS
values of all the candidate services. By prioritizing the earliest executable subtasks, they proposed
a subtask-oriented scheduling strategy that can not only effectively reduce the idle time of services
but also avoid the problem of prolonging the execution time caused by service preemption.

5.3 Discussions

Affected by dynamics in real-world manufacturing environments, the uncertain disruptions of
DSPs cannot be accurately modeled. To address this problem, heuristic-enabled schedulers use
fuzzy representations instead of precise QoS that are difficult to obtain, making it possible to offset
the prolonged processing time caused by uncertain disruptions. Moreover, robustness and stability
are two important performance metrics to evaluate whether a solution can deal with uncertain
disruptions effectively. Besides robustness and stability, other performance metrics related to
uncertain disruptions (e.g., reliability and risk) have raised great concerns in various fields, such
as product distribution scheduling [132], logistics configuration [133], financial risk control [134],
and delayed delivery [135]. Since the effectiveness of the above two methods depends on the
accuracy of predictions of uncertain disruptions, heuristic-enabled schedulers need to reschedule
solutions to achieve dynamic adaption, where the time points of rescheduling are important
to determine. Typically, heuristic-enabled schedulers trigger rescheduling once an uncertain
disruption occurs, which is called aperiodic rescheduling. Obviously, aperiodic rescheduling
is easily prone to “schedule nervousness” due to the frequent adjustment of solutions. Unlike
aperiodic rescheduling, heuristic-enabled schedulers make regular adjustments to solutions by
dividing time horizons or grouping tasks, which is applicable to DSPs that do not have emergency
situations. Therefore, to better deal with complex DSPs, heuristic-enabled schedulers need to
adjust the rescheduling frequency in time to improve scheduling efficiency.
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6 LEARNING-ENABLED SCHEDULER

Unlike heuristic-enabled schedulers, which have to combine rescheduling strategies to deal with
most of the uncertain disruptions, learning-enabled schedulers arrange each subtask based on
its current state step by step rather than making all decisions at once. From the perspectives of
modeling and solving DSPs, this section reviews the research efforts of learning-enabled sched-
ulers on scheduling control. Below, this section first introduces the learning-enabled modelers in
Section 6.1, including model-free reinforcement learning (see Section 6.1.1) and dispatching rule
learning (see Section 6.1.2). Then, based on different multi-agent RL architectures, Section 6.2
introduces three learning-enabled solvers, i.e., centralized training centralized execution (see
Section 6.2.1), centralized training decentralized execution (see Section 6.2.2), and decentralized
training decentralized execution (see Section 6.2.3). Finally, we summarize learning-enabled
schedulers in Section 6.3.

6.1 Learning-enabled Modeler

6.1.1 Model-free Reinforcement Learning. Depending on whether the environment is modeled
or not, the RL approach can be classified into two categories, i.e., model-based RL and model-free
RL. Then model-based RL approaches rely on the information of an entire scheduling environ-
ment to build its scheduling model, which requires multiple model reconstructions to adapt to a
dynamic scheduling environment. However, since the information of dynamic scheduling environ-
ments cannot be fully obtained, the accuracy of the scheduling model cannot be guaranteed. Unlike
model-based RL approaches, model-free RL approaches can figure out an optimal policy without
modeling the scheduling environment. Based on the different value outputs of actions, Table 5
classifies model-free RL approaches for dynamic scheduling into two categories, i.e., policy-based
and value-based RL, which are detailed as follows.

Value-based RL. Value-based RL designs scheduling policies by modeling and estimating value
functions, whose representative algorithms are mainly Q-learning and DQN. For each decision of
Q-learning, an agent needs to retrieve a Q-table to obtain its Q-value for a given state and action.
As the state space increases, the search speed of an agent will be greatly reduced due to the ever-
increasing Q-table. To solve this issue, DQN uses neural networks to approximate value functions,
which improves training efficiency.

To understand how the value-based RL solves DSPs, Table 5 introduces different scheduling com-
ponents of value-based RL. As presented in Table 5, value-based RL mainly includes Q-learning and
DQN. For example, to handle a dynamic JSSP with new task insertions and uncertain processing
time, Xanthopoulos et al. [136] designed an intelligent controller to dynamically select dispatch-
ing rules with limited human expert interference. Specifically, by taking uncertain disruptions
into account, this controller uses fuzzy schedulers based on both fuzzy logic and multi-objective
evolutionary optimization to store its knowledge in a set of linguistic rules, where the knowledge
reflects how the controlled system operates under various circumstances. Note that different fuzzy
schedulers here correspond to different tradeoffs between minimizing mean earliness and mean
tardiness. Furthermore, they proposed an RL-based approach named RLS, which applies a simple
transformation routine to map the current system condition to a discrete state. At each decision
point, the controller selects a dispatching rule from a set of rules and receives a reward. Based on
experiments, the intelligent controller in all simulation cases can significantly improve both mean
earliness and mean tardiness. Similar to this work [136], Shiue et al. [137] formulated the shop
floor scheduling as MDPs with the reward of maximum throughput. To improve the adaptation
of multiple dispatching rules (MDRs) responding to changes, Shiue et al. [137] established a
real-time scheduling (RTS)-based knowledge base, which can quickly yield acceptable solutions
to enable the system to make decisions in real time.
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Table 5. Classification of Model-free RL Approaches for Dynamic Scheduling

Value-based Reinforcement Learning
Approach Problem Definition of Key RL Component

Q-learning

SMSP [136]
State: system information; Action: selecting a
dispatching rule; Reward: mean earliness and mean
tardiness

Shop floor control
[137]

State: system information; Action: choosing a
dispatching rule; Reward: minimum throughput

Stochastic manufacturing
system [138]

State: both machine and task information; Action:
deciding the next stage of a system; Reward: the
expected profits of the overall first-class products

Make-to-order
system [139]

State: task information and production capacity;
Action: accepting or rejecting arrival tasks; Reward:
averaged profit

Hybrid FSSP
[140]

State: workpiece information; Action: selecting a
machine; Reward: the machining time of all workpieces

DQN

Smart
manufacturing

scheduling [141]

State: both task and system features; Action: selecting
a dispatching rule for a machine; Reward: the
utilization of machines

Smart
manufacturing

scheduling [142]

State: information of candidate services; Action:
selecting a dispatching rule; Reward: the maximum
completion time of all tasks

Shoemaking production
[143]

State: production information; Action: the joint angle
of manipulator coordinates; Reward: total discount

Policy-based Reinforcement Learning
Approach Problem Definition of Key RL Component

PG

Workflow management
[144]

State: both machine and task features; Action: selecting
an execution site; Reward: total workflow workload

MPSP [39]
State: environment information; Action: selecting a
machine; Reward: total makespan and logistical
distance

Resource
scheduling

problem [145]

State: the status of both assigned and waiting tasks in a
factory; Action: assigning factories to each task;
Reward: averaged completion time, averaged
manufacturing cost, and averaged resource usage

Production control system
[146]

State: information of production system; Action:
selecting a dispatching rule; Reward: weighted sum of
both dense and sparse rewards

AC
Resource scheduling

problem [87]
State: resource state; Action: choosing an operation;
Reward: total cost for finishing the part processing

Although Q-learning is promising in solving DSPs, it suffers from the problem of state space
explosion. To address this problem, Lin et al. [141] developed a DQN-based edge computing frame-
work to reduce the response time of making production decisions. In this work, the framework is
deployed in a smart semiconductor manufacturing factory, consisting of numerous edge devices
and a cloud center, where each edge device monitors and controls a machine to observe both
machine and job information in real time. Since the cloud center is connected to all the edge de-
vices, it can determine proper dispatching rules for each machine based on the monitored machine
and job information. Unlike traditional DQN-based methods that can only select one dispatching
rule at each decision point, Lin et al. proposed a multi-class DQN with multiple output neurons,
which can determine multiple dispatching rules simultaneously. Experimental results show that
the model trained by the multi-class DQN performed better than the traditional DQN in dynamic
scheduling environments.
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Policy-based RL. Policy-based RL directly models and estimates policies by maximizing feed-
back. Since policy-based RL does not require modeling based on state-value functions, it outputs
action probabilities instead of specific values, avoiding the state space explosion due to the in-
creasing size of scheduling problems. Furthermore, policy-based RL can easily converge because
each gradient descent is a direct improvement of the strategy. For example, Kintsakis et al. [144]
designed a machine learning model to schedule distributed resources in a workflow management
system. To handle this model, they designed a PG algorithm based on a sequence-to-sequence neu-
ral structure, which is used for estimating the gradients of policy networks as function approxima-
tors. To maximize the total future expected rewards, PG trains the parameters of a policy network
by simulating the probabilities of actions. Aiming to schedule massive interrelated tasks with un-
certain arrivals of tasks in a timely and effective way, Chen et al. [39] established a dual-objective
optimization model with the goal of minimizing both total makespan and logistical distances. Since
too dense system information will affect training performance, they designed a dynamic state clus-
tering algorithm, which ensures positions in the same state are closer to each other than those in
other states. Moreover, they developed an RL-based assigning policy (RLAP) approach to ob-
tain non-dominated solution sets. Compared with NSGA-II and Q-learning, the quality of obtained
solutions by the RLAP approach can be improved up to 32.1% and 5.7%, respectively.

Aiming to further reduce response time by leveraging the reusability and extensibility of his-
torical experience, Wu et al. [87] designed an AC algorithm for computer-aided process planning.
By training two networks, i.e., policy network and evaluation network, the policy network can
determine which combination to be chosen next, while the evaluation network can directly es-
timate the cost based on a resource state. To eliminate the influence of different input orders of
operating states on network outputs, the policy network uses a one-dimensional convolution layer.
Furthermore, based on a long short-term memory unit, the policy network calculates the proba-
bility distribution of actions and gets rid of long-distance dependence on encoding and decoding.
Based on the aforementioned improvements, the AC algorithm can not only significantly reduce
the response time but also cope with the dynamic changes in resource availability.

6.1.2 Dispatching Rule Learning. Since combined actions of DSPs greatly increase action space,
traditional RL approaches suffer from the problem of poor convergence [147–149]. For example,
unlike JSSPs that only sequence subtasks, distributed JSSPs need to assign tasks to factories before
sequencing subtasks in a factory [150]. To accelerate convergence, designing dispatching rules
to reduce the action space as a promising way has been gradually investigated in manufacturing
systems [151–154]. According to different construction methods of dispatching rules, Table 6 clas-
sifies dispatching rules-based approaches into two categories, i.e., dispatching rules selection and
dispatching rules extraction, described as follows.

Dispatching Rule Selection. Based on a set of dispatching rules, dispatching rule selection
tries to replace combined actions as dispatching rules to avoid poor convergence problems
caused by large combined action space. For example, to investigate a distributed JSSP considering
technical precedence constraints, Xiong et al. [155] designed four dispatching rules, where each
rule involves two sub-problems, i.e., assigning jobs to factories and determining the sequence
of operations at each factory. To reduce the action space size, they designed four dispatching
rules: (1) SOP rule, where an operation with the least slack should be given priority to load
for processing; (2) MSOP rule, which prioritizes operations with lower tardiness; (3) RR+SOP
rule, where RR shows dynamic and global characteristics; and (4) RR+MSOP rule. Since model
parameters significantly affect the performance of dispatching rules, they analyzed the perfor-
mance of four proposed dispatching rules. Experimental results illustrate that four dispatching
rules perform well when the due dates of tasks are relatively loose. To further solve a dynamic
JSSP, Aydin and Öztemel [157] constructed an autonomous dynamic scheduling system, where
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Table 6. Classification of Dispatching Rules-based Approaches for Dynamic Scheduling

Dispatching Rule Selection
Approach Problem Description

DQN

JSSP [155]
Four dispatching rules are designed and analyzed in
different scenarios.

FJSSP [40]
Double DQN and soft target weight are used to
enhance the training efficiency of DQN.

Neural network
approach

Shop floor control
[156]

An intelligent multi-controller approach is designed
based on self-organizing maps to achieve dispatching
rules selection in real time.

Semiconductor wafer
fabrication system

[153]

A multi-objective semiconductor fab scheduler is
proposed to satisfy both customers and
semiconductor companies.

FSSP [152]
A real-time scheduling rule selection method based
on a neural network is proposed.

Q-learning

JSSP [157]
An agent trained by Q-III makes decisions in real time
to choose the most appropriate scheduling rule.

SMSP [154]
A Q-learning algorithm takes three given dispatching
rules as actions based on the current state to
minimize the averaged delay.

Production
scheduling [148]

A single machine agent can learn common dispatch
rules for different example scenarios.

GA+SVM FSSP [149]
The task of data transformation is completed by a
GA-based feature selection mechanism, and SVM is
used to select the categories of dynamic dispatching
rules.

Decision tree
Stochastic and

dynamic job shop
problem [158]

Based on the latent knowledge extracted from the
data of the manufacturing environment, dispatching
rules are selected according to the decision tree at
each scheduling stage.

Dispatching Rule Extraction
Approach Problem Description

GA
Industrial scheduling

[159]
Dispatching rules are extracted by combining the
ideas of push and pull.

Genetic
programming

Production
scheduling [160]

Genetic programming coupled with an evolutionary
algorithm is proposed to update complex rules by
analyzing system information.

GEP FJSSP [161]
A GEP method designs terminal sets to extract
dispatching rules with different lengths and functions.

scheduling strategies can be adjusted through self-learning based on a trial-and-error manner.
In this approach, an improved RL algorithm called Q-III constantly updates the knowledge for
future actions and gains experience in the process of updating knowledge, aiming to learn how
to interpret current states and decide a dispatching rule.

To solve DSPs in real-time scheduling environments, Guh et al. [156] developed an appropri-
ate dispatching rule selection strategy named the intelligent multi-controller, which includes
three mechanisms, i.e., the training instance generation mechanism based on simulation, data
pre-processing mechanism, and real-time MDRs selection mechanism based on self-organizing
maps. Specifically, the data pre-processing mechanism involves a Las Vegas filter-based feature
selection, which is carried out independently by learning algorithms before applying the classifier
to a selected feature subset. Based on online simulation experiment verification, the intelligent
multi-controller can minimize throughput, mean cycle time, and the number of tardy parts in
solving real-time DSPs.
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Dispatching Rule Extraction. Unlike dispatching rule selection, which learns how to select
a suitable rule from a large number of candidate rules, dispatching rule extraction focuses on
extracting more potentially efficient dispatching rules. This is because limited dispatching rules
have difficulty covering various dynamic scheduling scenarios for real-world applications [160]. To
solve this problem, Geiger et al. [159] presented a novel method to automatically discover efficient
scheduling rules in the production environment. First, by designing a reasoning mechanism in
the evaluation procedure and the numerical output of the performance evaluator, this method
can effectively measure and modify the next-generation solutions. Second, since the performance
measurements for all candidate rules are passed to the reasoning mechanism, a new set of rules can
be constructed from the current performance rule using an evolutionary search operation. Third,
once a set of rules is passed to the problem domain, the performance of the new rules is evaluated.
This method repeats the above evaluations until an acceptable general performance level is reached.
Experiments prove the superiority of the proposed method in various independent environments.

To solve dynamic FJSSP with limited buffers, Teymourifar et al. [161] proposed a useful approach
for extracting an applicable and effective dispatching rule, taking both the irregular arrival of tasks
and stochastic machine breakdown into account. In the proposed approach, a gene expression
programming method is proposed to construct rules and undertake further improvement in a short
time. Then, the generated rules are evaluated via a simulation model. The simulation case proves
that the obtained rules are not only robust to different dynamic scenarios but also scalable to be
applied to similar scheduling problems.

6.2 Learning-enabled Solver

Based on trajectories (including states, actions, and rewards), learning-enabled solvers train models
through the continuous interactions between agents and their surrounding environments. Accord-
ing to multi-agent RL architectures, Table 7 introduces three classes of learning-enabled solvers
for dynamic scheduling, i.e., centralized training centralized execution (CTCE), centralized

training decentralized execution (CTDE), and decentralized training decentralized exe-

cution (DTDE). For centralized approaches, the observed information is shared among agents
and a central controller to facilitate efficient model training and execution. Inevitably, frequent
communication between the agents and the central controller greatly prolongs both the training
and execution time of models. The decentralized approach is the opposite of the centralized ap-
proach. Although a decentralized approach can effectively avoid the communication cost between
the agents and the central controller by training models separately, the training performance
of these models will deteriorate. More details of multi-agent RL architectures are presented
as below.

6.2.1 Centralized Training Centralized Execution. Agents in a CTCE architecture send their par-
tial observations to a central controller, which makes decisions for all the agents. In this way, agents
can make better decisions, which are decided based on the fully observed environmental informa-
tion. For example, to achieve the optimal scheduling of multi-stage processes in a manufacturing
system, Qu et al. [42] formulated an MDP model for DSPs. To address this model, they proposed
a centralized Q-learning approach to enable real-time cooperation of each processing machine
inside the system. In this approach, a distributed weighted vector is designed to capture the co-
operative pattern of massive action space. Aiming to minimize makespan, power, and resource
cost simultaneously, this work used three agents for each objective to speed up the convergence
of learning processes, respectively. To achieve an online dynamic multiple workflow scheduling,
Asghari et al. [162] proposed a Q-learning approach to train the scheduling model in a centralized
manner, which involves two phases: (1) each agent in the first phase explores the workflow to get
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Table 7. Classification of Multi-agent Learning-enabled Solvers for Dynamic Scheduling

Architecture Problem Objective RL Characteristic

CTCE

Production scheduling
[42]

Makespan Q-learning Distributed weighted
vector

FSSP [162] Makespan, power,
and resource cost

Q-learning Two-phase training

JSSP [163] Mean tardiness of the
finished tasks

Q-learning Negotiation and
cooperation

Production scheduling
problem [164]

Time-weighted
function

Q-learning Sliding window protocol

JSSP [88] Makespan PPO Stochastic gradient ascent
JSSP [165] Makespan Actor-critic Petri net representation

CTDE

Semiconductor
manufacturing [166]

Makespan DQN Sharing parameters among
agents

Discrete manufacturing
system [167]

Profit MADDPG Partially observable
Markov model

Demand-driven
manufacturing [168]

Revenue and penalty PG Stochastic processing
network

DTDE

JSSP [169] Makespan PG Lightweight
communication

mechanism
Parallel production

system [170]
Cost PPO Opportunistic

maintenance
Distributed system

[171]
Makespan Q-learning Machine learning box

Routing and scheduling
[172]

Cost Q-learning Variable neighborhood
descent

Tight-coupled assembly
system [173]

Makespan Q-learning Decentralized dynamic
interaction architecture

Cloud resource
management [174]

Makespan and cost Q-learning Cloud resource
provisioning

Workflow scheduling
[175]

Makespan and cost DQN Multi-criteria interaction
Markov game

MPSP [176] Makespan and
logistical distance

RLAP Dynamic state
representing

Smart manufacturing
system [177]

Makespan DQN Negotiation among agents

the highest access cost of a critical path, and (2) the second phase is to allocate resources before
task deadlines. Before the resource allocation process, they conducted a proper initial clustering of
resources depending on the characteristics of each workflow, which speeds up the training process
of allocating resources to tasks. Experimental results show that the trained scheduling model can
not only reduce cost but also increase the utilization of resources.

Since Q-learning as a value-based RL algorithm suffers from the issue of state space explosion
caused by the increasing problem scales, Wang et al. [88] developed a modified PPO algorithm
to find an optimal scheduling policy, which involves two parts by integrating the advantages of
value-based RL and policy-based RL, i.e., interaction part and training part. In the interaction part,
agents interact with their environment to sample trajectories based on an old policy network
π (θ ′). In the training part, the algorithm samples mini-batches from a buffer to update the
policy network π (θ ), where parameter θ is updated according to a stochastic gradient ascent
method. Experimental results illustrate that the proposed method can effectively realize adaptive
real-time scheduling compared with traditional scheduling methods. Note that although the
central controller can make better decisions due to knowing all the observations, its training and
execution speed will be greatly affected.
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6.2.2 Centralized Training Decentralized Execution. During the training process using a CTDE
architecture, a central controller can get the observations of all the agents, which ensures the
performance of models. Unlike agents in the CTCE architecture, which execute models in a cen-
tralized manner, each agent in the CTDE architecture only outputs actions according to its own
local observations to reduce execution time. For example, to solve sequence-dependent semicon-
ductor production scheduling problems, Park et al. [166] presented a multi-agent model. In this
model, each production stage corresponds to an agent, which allocates tasks to machines based on
observations. Furthermore, a set of transitions that consist of state, action, reward, and next state
are stored in a replay buffer and extracted randomly. To improve the training performance of this
model, they developed a DQN algorithm by sharing parameters among all the agents. To achieve
energy management of discrete manufacturing systems, Lu et al. [167] designed a multi-agent

deep deterministic policy gradient (MADDPG) algorithm, which learns a critic network for
each agent based on local rewards and derives a decentralized actor network using the central-
ized critic network. By formulating a demand response (DR) problem as a partially observable
Markov model, each agent maintains a separate policy network and takes an action based on its ob-
servation of corresponding machines’ energy consumption and buffer storage. Once all the agents
take actions, multi-agents cooperate to obtain shared rewards. For the complex industrial DR prob-
lem, the MADDPG algorithm can reduce the total electricity cost by 9.8% in a lithium-ion battery
assembly process.

6.2.3 Decentralized Training Decentralized Execution. In a DTDE architecture, each agent
makes decisions independently during the training and execution process based on their own
observed state, which will deteriorate the training performance of model. To improve training
performance, Gabel and Riedmiller [169] proposed a distributed approach by integrating multiple
learning agents, where independent agents try to improve their local policies with respect to a
common goal. To further enhance the ability of agents, they developed a lightweight communi-
cation mechanism to partially obtain the information of future arrival tasks in advance, rather
than just reactive task scheduling. Experiments prove that the proposed approach can effectively
handle both static and dynamic JSSPs. Moreover, Orhean et al. [171] proposed an RL algorithm
to address distributed scheduling problems. To support an agent in learning optimal scheduling
policies under different machine setups, they proposed a machine learning box (MBOX) us-
ing a BURLAP library, which offers a simple and configurable interface for the implementation of
various planning and learning algorithms. To respond to manufacturing requests, MBOX designs
a task scheduling method that in a timely manner notifies the system to update the processing
time of tasks. Based on comparison experiments, application models based on MBOX can be easily
mapped onto parallel scheduling systems to improve their overall efficiency.

6.3 Discussions

The dynamics of scheduling problems make it difficult for learning-enabled schedulers to obtain
the complete transition probabilities of complex manufacturing environments. To handle this
problem, learning-enabled schedulers use model-free RL rather than model-based RL for DSPs,
which can make full use of the state information explored for the environment [85]. Since DSPs
including service assignment and task sequencing select proper combined actions rather than
single actions at each decision point, the rapid increase in combined action space greatly affects
the convergence of learning-enabled schedulers. To accelerate convergence, learning-enabled
schedulers achieve effective scheduling control by designing multiple composite dispatching
rules as actions. However, limited composite dispatching rules cannot comprehensively cover
the relations between tasks and services, resulting in poor performance of scheduling policies.
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To cope with this issue, effective decision-making should pay more attention to end-to-end
policy network training to prevent excessive dependence on the quality of composite dispatching
rules. Moreover, during the training processes of policy networks, information (e.g., network
parameters, observed states) sharing between agents can effectively improve training efficiency,
while their communication will inevitably increase training time. In the future, more effective
learning-enabled schedulers are expected to be designed for complex DSPs, making it possible to
train a well-performed model with less training time.

7 CONCLUSIONS AND FUTURE OPPORTUNITIES

Due to ubiquitous uncertain disruptions in the real-world manufacturing environment, it is diffi-
cult for traditional scheduling methods to effectively solve complex DSPs, which are classic NP-
hard problems. Unlike traditional scheduling methods that spend a great deal of computation time
in pursuit of exact optimal solutions, AI-based methods can quickly achieve near-optimal solu-
tions. To understand the effectiveness of existing AI-based dynamic scheduling methods within
the uncertain manufacturing environment, this article introduced both their pros and cons in an
evolutionary manner, starting from directed heuristics to state-of-the-art autonomous learning
methods. The heuristic-enabled schedulers iteratively update solutions in combination with dy-
namic scheduling strategies to achieve dynamic adaptation to various uncertain disruptions, while
learning-enabled schedulers can perfectly adapt to dynamics based on their sequential decision-
making. Although both of these AI-enabled schedulers can address most complex DSPs in practice,
it is still difficult for them to reach safety-critical and environment-friendly massive manufactur-
ing, which poses stringent requirements for accuracy, responsiveness, and energy efficiency.

Along with the fast development of emerging AI techniques, manufacturing industries continue
to evolve rapidly, which in turn puts forward more unknown disruptions and corresponding re-
quirements for dynamic scheduling in modern manufacturing. To accommodate to such a new
manufacturing environment, the following topics are worth exploring further in the near future:

- Data-driven Scheduling. As a promising way to alleviate the “schedule nervousness” prob-
lem caused by notable scheduling fluctuations, data-driven predictive scheduling has been
increasingly studied at each decision point to enable the accurate prediction of various un-
certain information. Assuming that uncertainty information follows specific data distribu-
tions, traditional dynamic scheduling methods are too idealistic to achieve optimal schedul-
ing solutions in practice. This is mainly because an inaccurate decision-making process will
inevitably result in the degradation of scheduling efficacy. To address this issue, more and
more emerging dynamic scheduling methods resort to AI-enabled techniques, which can
naturally figure out accurate uncertainty information from some given historical manufac-
turing data, thus substantially improving the scheduling performance.

- Human-centric Scheduling. How to quickly and accurately adapt to various uncertain
manufacturing dynamics (e.g., the changes in customer needs or manufacturing capabili-
ties) in real time is becoming an important issue of human-centric scheduling. Since AI-
controlled intelligent manufacturing systems cannot fully handle unrecognized disruptions,
researchers should refocus on the interactions between humans and intelligent manufactur-
ing systems during scheduling processes. By leveraging human intelligence to intervene in
the identification of disruptions that cannot be recognized by machines, intelligent manu-
facturing systems will improve their ability to respond in a timely manner to various distur-
bances throughout the scheduling process.

- On-demand Scheduling. Due to the uncertain number of manufacturing tasks in different
scheduling periods, resources in manufacturing systems usually retain a large redundancy
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to cope with the sudden increase of manufacturing tasks, resulting in a waste of numerous
idle manufacturing resources. To improve the utilization of such manufacturing resources
and achieve the on-demand use of manufacturing resources, modern manufacturing systems
should support dynamic assessment of both the number and urgency of current manufac-
turing tasks to achieve an optimal allocation of manufacturing resources.

- Low-carbon Scheduling. Due to the increasing concerns on “carbon neutrality” and “peak
carbon dioxide emissions,” how to achieve energy-efficient schedules to support low-carbon
manufacturing is becoming an urgent issue in the field of manufacturing. Since carbon diox-
ide emissions are involved in different parts of manufacturing systems and different stages
of scheduling processes, there is a strong demand for appropriate dynamic service alloca-
tion of manufacturing tasks to minimize the overall carbon dioxide emissions, while other
optimization objectives should still be ensured.

Although the above topics (but not limited to) can substantially benefit the evolution of indus-
try 5.0, so far there is no work that takes all of them into account simultaneously. We believe that
dynamic schedulers will play a more important role in industry 5.0 to enable optimal decisions dur-
ing the scheduling process in a low-carbon manufacturing environment, which will significantly
contribute to the sustainability and resilience of our society’s development.
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