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a b s t r a c t 

Mobile edge computing (MEC) is a promising technology to support computation-intensive tasks for mo- 

bile devices which are usually associated with limited resources. Many researches from both scientific and 

industrial field have put focuses on MEC. However, most of them assume that in a MEC environment, the 

offloaded tasks are independent or that there is only one server in the MEC center. Nevertheless, in re- 

ality, tasks with dependencies take the majority and in a MEC center, there are usually multiple servers. 

Under this circumstance, previous methods no longer take effects. In this work, we consider offloading 

with precedence constraints among tasks, and try to minimize makespan over a MEC center with multi- 

ple servers. This problem becomes more complex given that a task can not start unless its predecessors 

are completed. To solve the problem, we jointly involve front end task offloading order and back end 

scheduling to optimize makespan, and propose a corresponding algorithm called joint re-ordering and 

frequency scaling (JRFS). Extensive experiments have been conducted. The results show that compared 

with several other methods, JRFS can achieve better makespan. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

1.1. Motivation 

In recent years, mobile devices (MDs) have become an indis-

pensable part of modern life, and have gained increasing popular-

ity. This also brings more demands for computation-intensive and

latency-sensitive applications, such as online gaming, gesture and

face recognition, and 3D modeling [1–5] . However, MDs are in gen-

eral resource-constrained, e.g., processing speed, memory size, and

battery energy. Mobile Edge computing (MEC) as a new technol-

ogy provides computing power for mobile devices with limited re-

sources to meet the needs of compute-intensive applications [6] .

Compared with cloud computing, MEC has the advantages of re-

ducing latency, saving power consumption for mobile devices, and

improving privacy and security for mobile applications. 
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MEC is a new layer of architecture between mobile devices and

loud computing with the purpose of further enhancing service

uality for mobile users [7] . MEC mainly involves two parts, i.e.,

n access point (AP) and a cloudlet. The latter can be viewed as

 small cloud center to serve nearby MDs. Specifically, in MEC en-

ironment, MDs can offload their computation-intensive tasks to

 nearby AP which covers it. Then, the tasks are executed in the

orresponding cloudlet. After execution, the results are returned to

he MDs. 

Presently, the MEC technique facilitates the service experi-

nce of jobs at large-scale low-power devices. Researchers from

cientific and commercial fields have been attracted to promote

EC technology. Numerous research work provide overviews of

EC with different aspects including system and network models,

ptimal control, and multi-user resource allocation [8–11] . About

he multi-user resource management and scheduling, existing

orks only focus on the sequential calls of tasks on the mobile

evice in the homogenous MEC servers [12–14] . Most of them

14–16] assume that in a MEC environment, the offloaded tasks are

ndependent or that there is only one server in the MEC center.

hese studies on MEC are still in their infancy [17] . In reality,

asks with dependencies take the majority. How to optimally
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ffload an application that are comprised of constraint tasks to

eterogenous remote computing servers is a difficult issue, such

s DAG-type tasks, because there exist a certain constraint among

asks and constraints among tasks impact the date transmission

nd job scheduling in the MEC center. For instance, a task must

e executed after all its predecessors for DAG-type applications. In

rder to solve this problem and make a supplement on this issue,

e consider offloading with precedence constraints among tasks

nd try to minimize makespan over a MEC center with multiple

ervers. On the heterogeneous MEC server side, we use dynamic

oltage and frequency scaling (DVFS) technology to select the best

xecution frequency. None of the above works [14–16] consider

oth the task precedence and CPU clock frequency of multi-servers

EC system in computation offloading policy. Specially, there are

ery few solutions proposed to realize DAG tasks scheduling un-

er multiple MEC servers heterogeneous environment, especially

ombined with DVFS technology for makespan consideration. In

his paper, we make some supplementations in this area to some

xtent. 

.2. Related work 

MEC provides cloud-like capabilities to address computation-

ntensive application, which reduce latency and prolong the bat-

ery lifetime of MDs [22] , which attracts a large number of re-

earch from industry [23,24] and academia [22,25,26] . 

During the past several years, many previous works focus on

ptimizing the MEC performance, such as offloading schemes in

EC, resource management and scheduling policies for simple

ingle-user MEC system [27,28] and multi-user MEC system [13,14] .

n the single MEC system, Mahnmoodi et al. [27] and Hong et al.

28] comprehensively optimized computational latency and power

onsumption, taking into account the reduction in average execu-

ion overhead. In [13] , Mahmoodi et al. further adopted JSCO al-

orithm for multi-component dependency applications. In [14] , a

euristic algorithm was proposed to deal with multi-user compu-

ation partitioning problem for multi-user MEC system. Different

evels of priorities among multi-users are also considered in [12] ,

here the sequential calls of functions in the MD are considered

nd the execution order is adaptively adjusted during the server

omputing process. 

For the multi-user system, there are dependencies among tasks

hich seriously affect the process of executing and offloading in

any applications. For example, in an application, the output of

ome components is the input of other components, then the order

f execution of these components cannot be arbitrarily selected. As

nother example, due to software or hardware limitations, some

omputing components need to be offloaded to the remote server

or calculation, and some can be performed locally. In this case,

he task model that considered task precedence will be more com-

licated than the one mentioned earlier, which should capture the

ependencies among different computing tasks in the application

29] . Directed acyclic graph (DAG) is one of such task models.

n [18,20,21] , the application model is task-call graphs, which is

sed to specify the constraints and dependencies. Given an graph-

ype application, Jia et al. presented a heuristic program portioning

cheme to offload tasks to cloud for calculation [20] . Kao et al. find

ptimal task assignments for local and remote devices for depen-

ency graph applications [18] . A dynamic offloading and schedul-

ng strategy is presented to reduce the overhead of power con-

umption, under the constraints of deadlines for execution time

nd priority of the task [21] . These works discussed above are for

he single MEC server. There do also exist works referring to mul-

iple MEC servers environment [30,31] . Particle swarm optimiza-

ion is an efficient heuristic algorithm based on evolution intelli-

ence [32] , it has been adopted to solve all kinds of optimization
roblems [33] . For the moment, there have been more literatures

n MEC research, Guo et al. design a suboptimal algorithm named

s hierarchical GA and PSO-based computation algorithm to opti-

ize computation offloading model [34] . Rodrigues et al. propose a

euristic algorithm called Particle Swarm Optimization, to balance

he workload in MEC [35] . 

Some of multiple MEC servers system are in the homogeneous

nvironment, and the execution speed of MD and MEC server is

xed. However, in a heterogeneous environment, the execution

requency and speed can be different according to the calcula-

ion requirements. As the CPU frequency increases, the CPU power

onsumption will increase linearly. In the heterogeneous environ-

ent, some techniques can be adopted to obtain a desired perfor-

ance by adaptively adjusting its voltages and clock frequencies.

ynamic voltage frequency scaling (DVFS) is one of techniques that

re usually used to optimize energy consumption or computing

ost. Therefore, combining DVFS into computation offloading and

emote execution can provide more flexibility for multiple MEC

erver system. For example, transmission power and calculation

peed [15] , application execution time [21] and energy cost [16] are

ptimized by considering the clock frequency of mobile devices on

he MD side. In the literature [15] , the calculation speed and the

ransmission power of the MD are optimized by the DVFS technol-

gy. By considering the local computing clock frequency and the

emote transmission power allocation, both power cost and exe-

ution time are reduced [21] . In [16] , the problem of conserving

nergy of applications in mobile devices is studied by dynamically

etting CPU clock frequency on the MD side. However, these works

entioned in above tend to reduce the power consumption by ad-

usting the CPU clock frequency via DVFS technique on MD side,

nd performance optimization via DVFS technology on the MEC

ide is ignored. In the multiple heterogeneous server MEC system,

ifferent MEC servers have different set of frequencies, DVFS can

e used to adjust CPU clock frequency to make the application ex-

cution time and power consumption smaller, and the edge com-

utation resource can be efficiently utilized. 

Table 1 summarizes the comparisons between our work and the

elated works. As shown in Table 1 , none of current works simulta-

eously involve task precedence for MD applications and execution

requency scaling for multiple MEC servers. Specially, no existing

ork addresses the makespan minimization problem for the DAG

pplications via considering task constraints in offloading and con-

ider frequency scaling in remote execution through DVFS technol-

gy on the multiple heterogeneous MEC side. When incorporating

VFS technology on MEC server side, the problem becomes even

arder. To the best of our knowledge, for such category of issue,

his is the first dynamic offloading and resource scheduling work

hat minimize application completion time (makespan) for DAG-

ype task by considering the CPU clock frequency control in mobile

dge computing. 

In this paper, we assume that there is one DAG type task in

ach MD, and each task is totally offloaded to the MEC server

or execution base on the premise that the precedences among

asks can be satisfied. If the task is partially offloaded, the con-

traint relationship among DAG tasks will increase the computa-

ional complexity and increase the calculation time. Therefore, we

ssume that computational resource is sufficient at the MEC server

nd the tasks in the MD are all offloaded to the MEC for execu-

ion for simplicity and better results. MEC servers are heteroge-

eous, each server has a set of supply voltages and a set of corre-

ponding frequencies. The voltages and corresponding frequencies

re discrete. Each server supports DVFS regulation, which means

hat each server can run at different speeds with different frequen-

ies. Under this consideration, the execution cost of DAG task can

e minimized by adjusting the execution frequency and offloading

asks sequence order. 
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Table 1 

Comparisons between JRFS and the related existing schemes. 

Schemes Architecture characteristic(s) Dependency 

among tasks 

DVFS technique(s) Objective(s) Main technique(s) 

Kao et al. [18] Multiple MDs and single MEC 

server 

Subset of DAG None Latency minimum subject 

to a cost constraint 

Fully polynomial time 

approximation scheme 

Ra et al. [19] Two different MDs and single 

MEC server 

General None Makespan & throughput Greedy heuristic 

Jia et al. [20] Multiple application users and 

single MEC server 

Linear and 

general 

None Completion time of the 

application & Parallelism 

between MD and MEC 

Load-balancing heuristic 

Yang et al. [14] Single MD and single MEC 

server 

None Control CPU clock 

frequency in local 

computing (MD) 

Average application delay Heuristic 

Wang et al. [15] 1 © Single MD and single MEC 

server 2 © One MD and 

Multiple MEC servers 

None Control CPU clock 

frequency in local 

computing (MD) 

Energy consumption & 

latency 

Variable substitution 

technique & univariate 

search technique 

Zhang et al. [16] Single MD and single MEC 

server 

None Control CPU clock 

frequency in local 

computing (MD) 

Energy consumption Lagrangian multiplier 

method 

Guo et al. [21] Multiple MDs and single MEC 

server 

DAG Control CPU clock 

frequency in local 

computing (MD) 

Energy consumption 

&application completion 

time 

Heuristic 

JRFS 1 © One MD with DAG-type 

task and multiple 

heteregeous MEC servers 2 ©
Full offloading 

DAG Control CPU clock 

frequency in mobile 

edge computing (MEC) 

Makespan Heuristic 
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1.3. Our contributions 

In this paper, we focus on task sequence offloading under task

dependency constraints and computing frequency scaling under

multiple MEC servers environment. Specifically, there is one MD

which is associated with a DAG-type task. In order to guarantee

priority, all of tasks are offloaded to remote execute according to

its own priority. Clock frequency were adjusted and compared step

by step on the MEC side, the optimal frequency configuration were

drew for Makepan minimum application execution. The aim of our

work is to find an optimal scheduling mechanism which guide the

tasks offloading under tasks dependency constraint and the set-

ting of the execution frequency of tasks on the MEC server, such

that Makespan of application is minimized. Main contributions are

listed as follows. 

• We propose a heuristic algorithm for offloading DAG applica-

tions and scaling frequencies on the multiple MEC servers en-

vironment. Under this circumstance, we jointly involve front

end task offloading order and back end scheduling to optimize

makespan. 

• We involve uneven arrivals and tasks precedences on MD to de-

cide mapping and execution order on the front end. The effect

of offloading transmission is added to the traditional HEFT al-

gorithm, which is also an application supplement of HEFT algo-

rithm in the mobile edge computing. 

• We involve DVFS technique for DAG application executed on

the back MEC server end. A desired performance is obtained by

adaptively adjusting its different clock frequencies in the het-

erogeneous environment. To our knowledge, other literatures

tend to optimize performance via DVFS technique on MD side.

Few works can be found for this on MEC server side. This work

may also make some supplementations in this area to some

extent. 

We perform extensive random experiments. The results show

the capability of the proposed algorithm in achieving a smaller

makespan compared to several other heuristics. 
.4. Paper outline 

The rest of this paper is organized as follows. In Section 2 ,

he models and problem formulation are presented. In Section 3 ,

e propose two heuristic algorithms. Extensive random experi-

ents are tested and the results of the experiments are analyzed

n Section 4 . The work is summarized in Section 5 . 

. Models and problem formulation 

This section introduces the system model used in this article,

ncluding the computational task model and the offloading execu-

ion model. 

.1. Architecture model 

The architecture of a single-user MEC system is presented in

ig. 1 . It contains two basic components: (1) a mobile device con-

ected to the network where user has a DAG-type task to be ex-

cuted. (2) MEC server which is a center that can provide re-

ote computing services. The MEC server is placed at the wire-

ess access point (AP), and can communicate with mobile devices

hrough the wireless channel, and perform remote operations to

alculate computing tasks on mobile devices. M is the number

f MEC servers and M = { 1 , . . . , M} be the corresponding servers

et. Each server has a set of supply voltages and a set of corre-

ponding frequencies, which are denoted as V j = { v j, 1 , . . . , v j,m j 
}

nd F j = { f j, 1 , . . . , f j,m j 
} , respectively, where m j is the number of

oltage (frequency) levels of the MEC server j ( j ∈ M ) . 

Tasks on mobile devices need to be transferred to an AP before

eing offloaded for remote execution, and then the corresponding

EC server perform the task execution. We assume that computa-

ional resource is sufficient at the MEC server, the execution delay

an be ignored. Because the computing resources in the hetero-

eneous MEC server system are relatively redundant compared to

he computing tasks of the DAG application. It is further assumed

hat the feedback delay is negligible because output data size is

ssumed to be small. 
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Fig. 1. Architecture model. 
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Table 2 

Notation. 

Notation Description 

M The number of MEC server 

f j Execution frequency of MEC server j 

V j , F j The set of supply voltage (frequency) of server j 

m j The number of voltage (frequency) levels of server j 

c i Workload of task i 

d i Input data of task i 

C i,i ′ The amount of data exchange between task i and i 
′ 

φ i The i th task being offloaded to the MEC system 

�i The transmission time of task i 

ϕ i The offloaded MEC server for executing task i 

f ϕ i The CPU-cycle frequency of processor executed by task i 

Ppred φi 
The front adjacent predecessor task of φ i on the same 

MEC server 

pred φi 
Predecessor task of φ i in DAG 

B ϕ i ,ϕ i ′ The average communication bandwidth among servers 

executing task φ i and φi ′ 
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.2. Computation task model 

Assuming there are N precedence constrained tasks in the MD

hat need to be executed. It is denoted as T = { T 1 , . . . , T N } . Each

omputation task is characterized by a two-tuple of parameters,

 d i , c i 〉 , where d i (in bits) is the amount of the task input data,

nd c i (in CPU cycles) is the workload. The values of d i and c i de-

end on the nature of the computation tasks and can be obtained

hrough off-line measurements [36] . 

Because the outputs of some tasks in an application are the in-

uts of others, the dependency among different constraint tasks in

n application affects the procedure of execution and computation

ffloading. For capturing the inter-dependency among different

omputation tasks in an application, a directed acyclic graph (DAG)

odel is adopted. DAG is a directed graph with no directed cycles.

t consists of a set of vertices and directed edges, each of which

onnects one vertex to the other. DAG model is described by a two

uple G = { T , E } . Where T is the task set, T = 〈 T 1 , . . . , T N 〉 , which

onsists of different associated task in the application. E is the set

f edges between tasks denoting the execution order and commu-

ication between two adjacent tasks, which specifies their depen-

encies. Such as an edge (i, i 
′ 
) ∈ E between task nodes i and node

 

′ 
represents that task T i is the predecessors of task T 

i 
′ . Namely,

ask T i should complete its execution before task T 
i 
′ . The task with-

ut any predecessor is called an entry, and the task without any

uccessor is called an exit. The weight attached to each task T i rep-

esents the computation requirement, described by d i and c i . The

eight assigned to an edge represents the communication cost be-

ween two tasks T i and T 
i 
′ , denoted as C 

i,i 
′ = data (T i , T i ′ ) . The data

ransfer between two tasks is only required when the two tasks

re assigned to different processors in MEC server, namely com-

unication cost is negligible when the two tasks are executed on

he same processor. In this paper, all the computation tasks are of-

oaded to the MEC server for mobile-edge execution. 

.3. Task offloading and remote execution model 

Tasks on the mobile device need to be transferred to the MEC

erver before being executed. Task offloading decision for the N

asks is denoted as φ = ( φ1 , φ2 , . . . , φN ) . It is a permutation of the

ask order. φi is the i th task being offloaded to the MEC system.

ence, φi ∈ { T 1 , . . . , T N } and φi � = φ
i 
′ , i 

′ � = i, ∀ i, i 
′ ∈ { 1 , . . . , N } . 

Each MD has an antenna for transmitting data, and only one

ask is transmitted at each time. The transmission rate of the task

s as follows 

 ( p i ) = w log 2 

(
1 + 

g 0 ( L 0 /L ) 
θ p i 

N 0 w 

)
, (1) 

here p i is the task transmission power, g 0 and θ is the path-loss

onstant and the path-loss exponent, respectively. L 0 is the refer-

nce distance, and N 0 is the noise power spectral density ( Table 2 ).

or each task T , the transmit energy efficiency is convex with the
i 
ransmit power [37] . Therefore, the optimal transmission rate R ∗
i 

an be obtained by setting the suitable power supply. Then the

ransmission time can be obtained as 

i = 

d i 
R 

∗
i 

. (2) 

Denote ϕi as the sever for executing offloaded task T i . Then, the

xecution time of T i is given as 

 i = 

d i c i 
f ϕ i 

, (3) 

here f ϕ i (in Hz) is the CPU-cycle frequency for executing task T i . 

.4. Problem formulation 

.4.1. Performance metrics 

The schedule length, makespan , is chosen to be a metric to eval-

ate the performance in the mappings for DAG applications in mo-

ile device. It is the complete time of the exit task. For the mobile-

dge execution, the start execution time of a task is affected by

wo factors, the task’s ready time and the server’s ready time.

he former is affected by the DAG constraints and channel trans-

ission, while the latter is decided by the computing power and

ts current computation amount of server. Specifically, task’s ready

ime is the sum of transmission time of tasks offloaded previously

nd earliest start time (EST) depending on the earliest finish time

EFT) of the task being offloaded previously (i.e., its predecessor

ask in DAG). For the task T entry 

ST T entry 
= �φ1 

. (4) 

For other tasks in graph, the EST of task φi executed on MEC

erver can be obtained as 
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Fig. 2. Scheduling framework. 
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EST (φi , f ϕ φi 
,k ) = max 

{
i ∑ 

i =1 

�φi 
, EST Ppred(φi ) + E Ppred(φi ) , 

max 
φi ′ ∈ pred(φi ) 

(
EST φ

i 
′ + E φ

i 
′ ( f ϕ φ

i 
′ ,k ) + 

C φi ,φi ′ 
B ϕ φi 

,ϕ φ
i ′ 

)}
, (5)

where P pred φi 
and pred φi 

are the front adjacent predecessor task

on the same MEC server and a set of direct predecessor tasks of φi 

in DAG, respectively. The level of the frequency set by MEC server

is k , where f ϕ φi 
,k represents the k − th frequency of server ϕ φi 

.

B ϕ φi 
,ϕ φ

i ′ 
is the average communication bandwidth among servers

executing task φi and φ
i 
′ . 

Accordingly, the earliest execution complete time of a task is

the summation of its execution time and its earliest start time.

Thus, EFT can be expressed as 

EF T (φi , f ϕ φi 
,k ) = EST (φi , f ϕ φi 

,k ) + E φi 
( f ϕ φi 

,k ) , (6)

where E φi 
( f ϕ φi 

,k ) is the execution time of φi scheduled on server

ϕ φi 
with the k th level of frequency. The EFT and EST values are

computed recursively from the entry task to the exit task. After all

tasks in DAG are transmitted to the MEC and mapped on differ-

ent servers, the time overhead to complete all tasks is defined as

makespan by 

makespan = max { AF T (T exit ) } . (7)

2.4.2. Problem analysis 

As mentioned earlier, all the MD’s tasks are offloaded to MEC

server for its execution, and each server can run at different speeds

with different available frequency levels (AFLs). During the execu-

tion of the task in remote server, execution time of the task is

changed by scaling the CPU clock frequency. In the process of com-

putation offloading, the order of task sequence offloaded also af-

fects the mapping relationship on which server the task is sched-

uled. Thus, these two aspects affect the DAG’s makespan. In our

computing system, we try to minimize makespan through adjust-

ing offloading order and frequency scaling for mobile-edge execu-

tion. Specifically, given a DAG application G = 〈 T , E 〉 and a mo-

bile edge computing system, the goal is to offload MD’s tasks to

different MEC servers with “optimal combination” of execution

frequency and offloading sequence, such that its DAG’s makespan

is minimized while guaranteeing the constraint between tasks in

DAG application and that a task can only be offloaded to one

server, i.e., 

minimize makespan = max { AF T (T exit ) } , 
s.t. S j ∩ S j ′ = ∅ , ∀ j, j 

′ ∈ M , (8)

AF T T φ ′ , φi ′ ∈ P pred φi 
, (9)
i 
here S j is the set of tasks that are offloaded to MEC server j . 

. Scheduling scheme 

.1. Scheduling framework 

To find the optimal scheduling solution, the framework imple-

ents a centralized coordinator, which includes three modules:

ystem profiler, scheduling policy and job dispatcher. The frame-

ork is presented in Fig. 2 . 

System Profiler receives task information and MEC server cur-

ent capacity information and give corresponding response to min-

mize tasks’s earliest finish time. It is similar to the processor se-

ection phase in HEFT algorithm [38] . 

The scheduling process in policy is divided into three phases,

ask computation offloading, partitioning and frequency scaling.

he scheduling scheme at each iteration is obtained through three

hases and stored in the scheduling policy pool. In the first phase,

here are constraints between the tasks in the DAG-type applica-

ion. A task must be executed after all its predecessors have ex-

cuted it. Therefore, these tasks need to be transmitted over the

hannel to the AP and assigned to the machine on MEC under the

AG constraints. In the second phase, Eq. (5) and (6) are applied to

llocate the offloaded task onto the MEC server for makespan min-

mum. After the initial mapping of the entire DAG application, in

hich MEC servers each task is assigned to execute is determined.

n the third phase, we scale the CPU clock frequency of the server

xecuted by the offloaded task to further reduce makespan . 

Through transmission of the task sequence, the selection of

rocessors, the scaling of the frequency and re-ordering the se-

uence, a scheduling strategy scheme is finally obtained, labeled

s M (S, F , P, F ) . S and F are respectively the final sequence of-

oading order and initial frequency of servers. P is selected map-

ing relationship between processors and tasks. F is the final ex-

cution frequency of servers executed by offloaded tasks, which is

btained in frequency-scaling algorithm. We obtain one schedul-

ng mechanism at each iteration and this scheduling strategy is

tored in the scheduling policy pool. By continuous iterative op-

ration, another scheduling policy is obtained and stored in the

ool. Finally, the scheduler selects the optimal scheduling strategy

rom the scheduling policy pool and dispatches tasks to the corre-

ponding processors for execution with selected frequency under

he particular offloading order. 

.2. Optimization of task offloading scheduling 

In this work, task relationship in MD is described by DAG. At

he beginning, we perform the initial arrangement of the task of-

oading sequence according to the constraint relationship among
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Algorithm 1: Frequency scaling algorithm. 

1 Input: Available frequency levels for each processor m τ ={ m 0 , 

m 1 , . . . , m j }, ( j = M − 1 ); 

2 φi ← φTaskNum 

; 

3 while true do 

4 // The level of the frequency for task i set by MEC server 

is k ; 

5 if k < m j then 

6 f ϕ φi 
,k ← f ϕ φi 

,k +1 ; 

7 update AFT of the exist task; 

8 end 

9 else 

10 φi ← i 
′ ∈ pred(i ) which dominates the start time of 

task i ; 

11 continue; 

12 end 

13 if EST (φi ) == Ar r i v alT ime φi then 

14 return index ← i ; 

15 break; 

16 end 

17 end 

18 Return -1; 
AG tasks. Tasks are initially ordered by their offloading priorities

hat are based on upward ranking starting from the exit task to

eversely traverse the DAG graph. Based on the generated offload-

ng sequence with this method, the task that is assigned with the

ighest priority is ready to start earliest. 

The upward rank of a task is recursively calculated by 

ank u (T i ) = c i + max 
T i ′ ∈ succ(T i ) 

( C i,i ′ + rank u (T i ′ )) , (10)

here c i is the average execution cost of a task T i , succ ( T i ) is the

et of immediate successors of task T i , and C i,i ′ is the average com-

unication cost of edge ( i, i ′ ). The upward rank value is the length

f the critical path starting from that task to the exit task, which is

he maximum of the summations: successor execution time, com-

unication time of each edge, and the weight of each node. After

ask-prioritizing, we offload the task with the largest rank value

rst. By decreasing order of upward rank value, the task offload-

ng sequence meeting the constraints of the DAG is generated. It

resents a topological order of tasks [38] , which meet the con-

traints of the DAG task. 

When the task is achieved with topological offloading order, the

ask is assigned to the “best” processor according to EFT minimum

rinciple combining with task and machine information [39] , as

hown in Eqs. (5) and (6) . The earliest available time of a pro-

essor for a task execution is the task’s arrival time or the time

hen processor completes the execution of its last assigned task.

n this paper, it is assumed that one mobile device can only oc-

upy one subcarrier of an AP and only one task can be transferred

t a time. Besides, the scheduler assigns the computation task with

 first-come-first-serve (FCFS) fashion. The order in which tasks are

xecuted is the same as the order in which tasks are offloaded.

hen the order of tasks offloaded is different, the order of the

ask reaching changes, and the mapping relationship between task

nd server is different. Accordingly, the makepan will be affected.

herefore, we can adjust the order of task offloading to bring opti-

ization for makespan. 

Different offloading sequences lead to different task execution

rders, which affects makespan. In order to reduce the comple-

ion time of application, to adjust the order of offloading is one

f the optimization methods. When the start time of an offloaded

ask depends on its arrival time, this means that the task can be

elected in the process of sequence re-ordering. The mapping re-

ationship between task and server can be changed by adjusting

ffloading order of this task, resulting in influence of makespan.

n this case, the selected task is moved one step forward in the

riginal offloading sequence. And then we make a judgement on

hether the new offloading sequence satisfies all the partial orders

f the DAG. If it is satisfied, the offloading sequence is re-ordered.

therwise, the re-ordering cancels. The re-ordering mechanism is

ased on the judgment of the execution start time of the task, re-

ulting in a new offloading sequence. This is a guided and directed

equence re-ordering technique, which guides a certain task to ad-

ust the location and derives a new offloading sequence. 

As mentioned above, the offloading sequence that satisfies the

AG constraint is not unique. Therefore, a large number of offload-

ng sequences under the DAG constraint can be generated ran-

omly, and then these sequences are initialized and offloaded. This

s another way to affect makespan by re-ordering the offloading se-

uence. The output is obtained through partitioning and frequency

caling. Finally the offloading sequence that produces the mini-

al makespan is found in these sequences. This is a random re-

rdering approach. 

.3. Optimization of execution frequency selection 

Based on the generated execution schedule from the phases of

ask computation offloading and partitioning, each selected task is
cheduled to the server which leads to earliest finish time. We all

now that, makespan is dominated by the start time and execution

ime of exit task in the DAG application. The start time of exit task

s dominated by one of T exit 

′ 
predecessors or its arrival time. Simi-

arly, the start time of certain task is dominated by its predecessor

r its arrival time and so on until the entry task. Hence, we can

rstly scale the execution frequency of the server executed by exit

ask to decrease makespan . 

To further minimize the execution cost, we adjust the execution

requency of the server that executed the task, starting from the

rocessor where the exit task is located to reversely traverse the

AG graph. Before each step of frequency scaling, the constraints

etween tasks need to make a judgment that if the start time of

ask is dominated by the arrival time or its predecessor. If the start

ime of task is affected by its predecessor, we adopt the frequency

caling approach to further decrease makespan and record the cur-

ent smaller makespan. 

As shown in Algorithm 1 , at each iteration of frequency-scaling,

e firstly adjust the frequency from the exit task at the bottom of

he DAG, and scale its execution frequency one level up and the

orresponding decreased makespan resulted by this scaling opera-

ion is recorded. As first step, we find the exit task’s predecessor

hat dominates the exit task, and scaling its execution frequency

evel when it has an influence on makepan. If the start time of

ask is dominated by itself, namely its arrival time, the frequency

caling process can not perform. To use an analogy, we do simi-

ar operations till there does not exist such a task that can further

cale frequency of its server or find a certain task that its execution

ime depends on itself. The frequency scaling process terminates. 

From the above, it can be seen that the goal is to optimally set

he clock frequency of the MEC server selected to minimize the

ompletion time. 

.4. The makespan minimization algorithm 

In the first proposed algorithm, the offloading sequence adjust-

ent and the task’s execution frequency scaling are alternately

pdated. The key steps of this algorithm are demonstrated in

lgorithm 2 . As shown in Eq. (5) in Section 2 , it can be seen
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Algorithm 2: Joint re-ordering and frequency scaling algo- 

rithm (JRFS). 

1 Input: the number of re-ordering T hreshold R eorder, G(V,E), 

Available frequency levels for each processor m τ ={ m 0 , m 1 , 

. . . , m j }; 

2 //Initialize the transmission order based on the priority of the 

rank value; 

3 while T hreshold R eorder > 0 do 

4 for variable i from 1 to T askNum do 

5 φ ← Order[ i ] ; 

6 for each processor P j in processor set P do 

7 Calculate EF T (φ, f ϕ φ , k ) p j ; 

8 end 

9 Schedule Task φ on processor P j such that 

EF T (φ, f ϕ φ , k ) p j � EF T (φ, f ϕ φ , k ) p q , ∀ P q ∈ P ; 

10 end 

11 FrequencyScaling(); 

12 i ← F requencySacling() ; 

13 Record the updated Makespan ; 

14 Record the current scheduling scheme M (S, F , P, F ) ; 

15 if i ! = −1 then 

16 Adjust the transmission order of task i under the DAG 

constraint; 

17 end 

18 end 

19 Select the scheduling scheme and transmission sequence that 

the makespan is minimum; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3: Hierarchical re-ordering and frequency scaling 

algorithm (HRFS). 

1 Input: Number of transmission sequences N, Number of tasks 

T askNum ; 

2 while N > 0 do 

3 //Generate a DAG topology sort sequence as the transfer 

order; 

4 Order(τ ) = { φ1 , . . . , φTaskNum 

} ; 
5 //Initial scheduling based on the EFT minimum principle 

according to the transmission sequence; 

6 for variable i from 1 to T askNum do 

7 φ ← Order[ i ] ; 

8 for each processor P j in processor set P do 

9 Calculate EF T (φ, f ϕ φ , k ) p j according to Eq.(6); 

10 end 

11 Schedule Task φ on processor P j such that 

EF T (φ, f ϕ φ , k ) p j � EF T (φ, f ϕ φ , k ) p i , ∀ P i ∈ P ; 

12 end 

13 //Frequency Scaling Algorithm; 

14 FrequencyScaling (); 

15 Record the updated Makespan ; 

16 Record the current scheduling scheme M (S, F , P, F ) ; 

17 N − −; 

18 end 

19 Select the scheduling scheme and transmission sequence that 

the makespan is minimum; 
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that the execution time of the task depends on frequency level on

the scheduled processor. Accordingly, the mapping relationship be-

tween task and processor will also be different with different ini-

tial frequencies. In this paper, middle frequency levels are set as

initial frequency to execute processor selection phase. 

At first, initial offloading sequence is generated based on up-

ward ranking value starting from the exit task to reversely traverse

the DAG graph. Tasks in DAG are initially transmitted and offloaded

by their priorities. And then the tasks offloaded are scheduled to

MEC server by the minimum EFT principle, resulting in that which

server each task is assigned to is determined. In the frequency-

scaling phase, we adjust the execution time or start time of task

through frequency scaling to decrease makespan until the entry

task or certain task that its EST is dominated by arrival time, start-

ing from the exit task to reversely traverse the DAG graph. When

the start execution time of certain task is dominated by its pre-

decessor, we adjust the frequency of the server executed by the

task. While when the start time of an scheduled task depends on

itself, we invoke the re-ordering offloading sequence, the offload-

ing sequence is rearranged to adjust the arrival time of the task

for makespan decrease. The new offloading sequence is generated,

which is guided by the frequency scaling process. In this algorithm,

these two processes interact with each other. 

Through the transmission of the task sequence, the selection of

processors and the scaling of the frequency, one scheduling strat-

egy scheme M is finally obtained. At each iteration, the schedul-

ing strategy obtained is stored in the scheduling policy pool. Fi-

nally, the scheduler selects the optimal scheduling strategy from

the scheduling policy pool and dispatch tasks to the corresponding

processor with selected frequency under the particular offloading

order. This is a algorithm that integrates adjustment of offloading

sequence and frequency scaling in the scheduler. The idea is visu-

alized in Algorithm 2 . 

Taking the DAG in Fig. 1 as an example, Fig. 3 presents cor-

responding illustration for the process of adjustment of offload-
ng sequence and frequency scaling in the scheduler. As shown

n Fig. 3 , the tasks are initially offloaded in descending order of

ank values. Then with the principle of minimum execution fin-

sh time, the processor are selected for each task according to the

ask’s information. We assume that the execution start time of T 6 
s governed by the its arrival time. After the initial mapping of

he DAG application, we scale the execution time of T 7 to decrease

akespan . Notice that, the start time of T 7 is dominated by one of

ts predecessors T 6 . Hence, we scale the execution frequency of T 6 
ne level up to impact the makespan . However, the start time of T 6 

s dominated by its arrival time, not by its predecessors. Therefore,

his frequency-scaled path is interrupted. We turn to re-order the

ffloading sequence by adjusting the position of T 6 in the trans-

ission sequence, T 6 is moved forward one step to the front of

 5 . Then the new offloading sequence that meets all the DAG con-

traints continues to be offloaded and scheduled. 

In addition, we proposed another algorithm where adjustment

f offloading sequence and execution frequency are two separate

ndependent processes, as shown in Algorithm 3 . The order of

ffloading sequence is randomly generated at each time, and the

esults of frequency scaling have no effect on the adjustment of

ffloading sequence order. At each iteration, the frequency scaling

s terminated till it can not continue, at this time the schedul-

ng scheme and the corresponding makespan are recorded. And

hen another offloading transmission sequence is randomly gen-

rated, the remaining phases are executed in the same manner

bove, and another scheduling policy is obtained and stored in the

ool. Finally, the optimal scheduling strategy among all scheduling

trategies is selected and tasks are dispatched to the corresponding

rocessor with selected frequency under the particular offloading

rder. 

Whichever of the two algorithms, the ultimate goal is make

akespan minimum under the DAG constraint based on task

ffloading scheduling and execution frequency selection. Specifi-

ally, the EFT minimum principle is used to impact the mapping

elationship between tasks and servers by adjusting the sequence
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Fig. 3. Scheduler together with frequency scaling and offloading sequence re-order. 

Fig. 4. Convergence performance of the two proposed algorithm. 
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ffloading order, meanwhile the DVFS technology is adopted to

cale the frequency of the server executed by tasks. 

. Experiment evaluation 

The performance of the proposed two algorithms are evaluated

nd discussed. To our knowledge, few works that consider both

he task precedence in MD and CPU clock frequency of MEC server

n computation offloading policy can be found. Hence, we imple-

ent two heuristics and compare the two algorithms. In addition,

e also compare the performance of the JRFS scheme with the

EFT with a lookahead in [40] . To further understand the adapt-

bility and scalability of our proposed algorithm, we considered

ome randomly generated DAGs whose degree of parallelism and

omputation/communication ratio could be controlled. Finally, we

ade real data measurements based on two real applications, FFT

nd gaussian elimination. 
In the proposed two algorithms, the number of iterations is the

umber of sequence re-ordring for JRFS and the number of se-

uences generation for HRFS. To show the overall convergence of

wo algorithms, we display the convergence evolution of two al-

orithms. In Fig. 4 , it can be seen that as the number of itera-

ions increases, the makepan gradually decreases. For JRFS, when

he number of iterations reaches a certain amount, makepan does

ot change. This time indicates that the optimization effect of the

RFS algorithm reaches the maximum. When the number of itera-

ions for HRFS increases gradually, it will tend to the effect of JRFS,

nd as the number of iterations increases, the makepan will gradu-

lly decrease. JRFS gained a better makepan while sacrificing com-

utational complexity. 

.1. Simulations for the random DAG application 

In the following, to evaluate the detail of the two algorithms,

e implemented a directed acyclic taskgraph generator. In the ran-
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Fig. 5. Random simulation results. 
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dom DAG experiments, graph are generated based on the var-

ious fundamental input parameters. The first parameter is the

communication to computation time ratio (CCR). It is computed

by the average communication cost divided by the average compu-

tation cost of an application DAG. The second characteristic is its

parallelism factor, which is the height and the width of an appli-

cation DAG. And the third is DAG size, which is the number of DAG

nodes. we implemented a set of experiments to evaluate the effect
f the taskgraphs characteristics on the completion time of the ap-

lication for different algorithms. We compare the performance of

RFS and HRFS algorithms against the HEFT with lookahead [40] . In

ach simulation experiment set, there is only one variable, and the

ther parameters are fixed constants. 

Fig. 5 (a) shows makespan against the number of tasks

n the DAG. The performance of the two proposed algo-

ithms is better than the HEFT with a lookahead algo-
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Fig. 6. Results for the FFT graph. 

Fig. 7. Results for the Gaussian elimination. 
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ithm. The results of the makespan reduced that com-

aring the two algorithms to HEFT with a lookahead are

hown in Fig. 5 (b). Compared with the HEFT with ahead

lgorithm, the JRFS algorithm has the best optimization when

he number of tasks is equal to 32. The HRFS algorithm works

est when the number of tasks is equal to 64. Optimization of

oth algorithms reduce in a large taskgraph, such as 128 tasks.

hat is because as the size of the task graph increases, the tasks

o be unloaded are more dispersed, and the frequency scaling

nd sequence re-ordering are affected, resulting in performance

egradation. 

Figs. 5 (c) and (f) show makespan against the parallel factor and

CR of the DAG, respectively. The performance of the two proposed

lgorithms are better than the HEET with a lookahead algorithm.

n Fig. 5 (d), it can be found the JRFS algorithm has the best opti-

ization when the parallel factor is equal to 0.5. For CCR, the JRFS

nd the HRFS algorithm has the best optimization when the CCR

s equal to 5, which is shown in Fig. 5 (f). 

.2. Simulations for the real DAG application 

.2.1. Fast Fourier transformation 

A fast Fourier transform (FFT) is an algorithm for calculating the

iscrete fourier transform and its inverse transformation. The input

ector size of FFT in Fig. 6 (a) is 4. It includes two parts: recursive

all tasks (above the dashed line) and the butterfly operation tasks

ones below the line). 

For the FFT-related experiments, only the CCR and range per-

entage parameters were used. Fig. 6 shows the results for FFT

raphs of six different CCR values when the number of proces-

ors is set as 16. As can be observed from these two figures, the

RFS slightly outperforms the HRFS algorithm in all cases. In the
ig. 6 (c), we can observe that the performance improvement of

he HRFS algorithm compared with HEFT with a lookahead for FFT

raphs gradually increase with the increase of CCR, while the per-

ormance improvement for JRFS reaches the maximum value when

he CCR is 5. 

.2.2. Gaussian elimination 

Gaussian elimination is an algorithm for solving systems of lin-

ar equations in mathematics, which is also regarded as a se-

uence of operations performed on the associated matrix of coeffi-

ients. For the experiments of gaussian elimination application, the

ame CCR and number of processors and range percentage values

ere used. Since the structure of the application graph is known,

arallelism factor does not need to be considered. Matrix size s is

sed to describe DAG size S, S represents the number of tasks in

he DAG graph. The total number of tasks in a gaussian elimina-

ion graph is equal to S = 

1 
2 (s 2 + s − 2) . Fig. 7 (a) shows a gaussian

limination graph with matrix size 5. Each T k,k represents a pivot

olumn operation and each T k,j represents an update operation. 

Fig. 7 (b) gives the average makespan values of two proposed

lgorithms at various matrix sizes from 5 to 20, with an increment

f one, when the number of processors is equal to 16 and CCR is

qual to 1. As the size of a matrix varies from 5 to 20 with an

ncrement step by 1, the total number of task nodes ranges from

4 to 209. It can seen that JRFS performs slightly better than HRFS

or gaussian elimination. In Fig. 7 (c), we can observe that the per-

ormance improvement of the two proposed algorithms compared

ith HEFT with a lookahead for gaussian elimination gradually in-

rease to a maximum and then gradually decrease with the in-

rease of DAG size. 
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5. Conclusions 

In this paper, we focus on task sequence offloading under

task dependency constraints and computing frequency adjusting

in MEC. The aim of our work is to find an optimized scheduling

mechanism such that makespan is minimized. In our work, the

EFT minimum principle is used to impact the mapping relation-

ship between tasks and servers by adjusting the sequence offload-

ing order, and the DVFS technology is adopted to scale frequencies

of servers in the MEC center. The results show the capability of the

proposed algorithm in achieving a smaller makespan compared to

several other heuristics. In the future work, we will committed to

the development and research of PSO algorithm and adopt it to

solve MEC problems, and other application research [41,42] will be

studied in the future. 
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