
Journal of Systems Architecture 121 (2021) 102311

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Are task mappings with the highest frequency of servers so good? A case
study on Heterogeneous Earliest Finish Time (HEFT) algorithm
Jie Liang a,b,∗, Kenli Li a,b, Chubo Liu a,b, Keqin Li a,c

a School of Information Science and Engineering, Hunan University, Changshang, 410082, China
b National Supercomputing Center in Changsha, 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O

Keywords:
Task scheduling
Dynamic voltage/frequency scaling
Initial mapping frequency
Makespan
Heterogeneous computing

A B S T R A C T

In the current heterogeneous computing environment, scheduling strategies play a key role in achieving high
performance under current heterogeneous computing environment. Various algorithms have been proposed to
generate high-quality schedules. Nonetheless, all the existing methods initialize task mapping with the highest
frequencies of servers, creating significant effects on the results. Does mapping with the highest frequencies
of servers generate the best schedule? In this paper, an attempt has been made to answer this question by
investigating HEFT, which is a commonly used initial schedule method in scheduling the literature under DVFS
environments. In this work, the task mapping is initialized with different server frequency level, along with
investigating its impacts on the schedule results. Based on this concept, a corresponding Frequency Scaling
Algorithm (FSA) has been proposed. By applying FSA combined with three frequency levels mappings, it has
been observed that initial task mapping with middle server frequencies can generate much better results. When
the initial frequency is the highest, the scheduling result is not optimal. The proposed algorithm requires less
execution time and generates stable performance. Also, the proposed frequency scaling method is found to
mitigate the impacts of initial mappings to a certain extent.
1. Introduction

1.1. Motivations

With the development of High Performance Computing (HPC) sys-
tems, HPC clusters integrate and offer tremendous computing units to
deal with certain large-scale applications. A large number of calculation
methods and optimization models have been proposed to serve the
purpose. For example, a novel high-performance computing method
for big data from the perspective of multi-attributes is discussed, fol-
lowed by its improved version [1]. Also, an important corresponding
multi-objective optimization model for CPSS big data has been high-
lighted [2]. To improve the parallel capabilities of high performance
computing architectures, many architectures augmented with accelera-
tors like Graphic Processing Units (GPUs) have also been proposed and
have provided more computing resources for many applications. For
instance, FlinkCL, an OpenCL-based heterogeneous CPU–GPU cluster
memory computing architecture was proposed, enabling Flink to utilize
the massive parallel processing capabilities of GPUs [3]. Based on this,
GFlink was further proposed, and the original Flink was expanded from
a CPU cluster to a heterogeneous CPU–GPU cluster [4], which signif-
icantly improved Flink’s computing power. Computing architecture is

∗ Corresponding author at: School of Information Science and Engineering, Hunan University, Changshang, 410082, China.
E-mail address: lxj@hnu.edu.cn (J. Liang).

constantly updated and developed, which has brought great computing
power and parallel capabilities to HPC.

Under the HPC environment, for matching the computing resources
and applications’ demands with the objective of minimizing the cost,
many frameworks and heuristics involving execution efficiency and en-
ergy consumption are proposed [5–8]. Specifically, several algorithms
have been introduced for HPC, for example, Predict Earliest Finish
Time (PEFT) algorithm, Heterogeneous Earliest Finish Time (HEFT) al-
gorithm [9], Mapping Heuristic (MH) [10], Constrained Earliest Finish
Time (CEFT) algorithm [11] , and Critical-Path-On-a-Processor (CPOP)
algorithm [9]. Among these classic algorithms, Heterogeneous Earliest
Finish Time (HEFT) has proved to be one of the most promising
algorithms for makespan optimization.

Meanwhile, energy consumption is another critical issue in HPC
besides makespan [12,13]. To achieve considerable performance un-
der the energy limitation, several works leverage the Dynamic Volt-
age/Frequency Scaling (DVFS) technique, which can adjust the execu-
tion speed and corresponding energy consumption [14,15]. In all these
works, it has been observed that their task mappings are initialized with
the highest frequencies of servers. Nevertheless, this initial setting of
vailable online 23 October 2021
383-7621/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2021.102311
Received 17 December 2020; Received in revised form 6 September 2021; Accepte
d 8 October 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:lxj@hnu.edu.cn
https://doi.org/10.1016/j.sysarc.2021.102311
https://doi.org/10.1016/j.sysarc.2021.102311
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102311&domain=pdf

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Fig. 1. Initial Scheduling Frequency Illustration.
Table 1
The parameters of processors for the frequency settings with their associated power
consumption. The unit of frequency and power are MHz and W respectively.

Level M1 M2 M3

F P F P(W) F P

1 1000 7.2 1000 5.0 667 5.3
2 900 5.95 900 3.29 600 4.2
3 800 4.84 500 2.05 533 3.0
4 700 3.85 400 1.64 400 1.9
5 600 3 300 0.97 300 1.3
6 500 2.03 – – – –

the mapping frequency seriously affects the final scheduling result, as it
impacts the mapping relationship between the tasks and the hosts [16].
In Table 1, there is a set of the frequencies along with their corre-
sponding energy consumption of processors for three heterogeneous
machines. The high frequency and the low frequency correspond to
the maximum and minimum frequency of the corresponding processor,
respectively. The middle frequency refers to (the maximum+the min-
imum)/2. Since the processor frequencies are discrete over here, the
middle frequencies for M2 and M3 are 500 and 533, respectively. For
M1, the frequency of both 700 and 800 is calculated and compared.

Fig. 1 depicts an illustration with the impacts of initial mapping
under the DVFS environment for minimizing the makespan. There are
seven tasks in the Directed Acyclic Graph (DAG) needing to be deployed
on the heterogeneous machines (M1–M3), which are described in Ta-
ble 1. The execution overhead and data transfer cost are highlighted
in Fig. 1, which is with the highest frequency for the DAG application.
However, different initialization frequencies result in different mapping
results between the task and the processor. Firstly, the task selects
a processor based on the initial frequency. With different execution
frequencies, each processor has a different execution overhead for each
task. It can be noticed that the processors selected by task 3 differ in
the two schemes with different initial mappings, and the corresponding
final mapping results are different, as illustrated in Fig. 1.

After completing the initial mapping with the initial frequency, the
frequency of each processor is adjusted and scaled by DVFS technology
to minimize the schedule length. It can be observed that an initializa-
tion with low frequency causes higher execution overhead at first, and
then the execution time is reduced by stepwise frequency scaling for
the processor where each task is located. This process is not the same as
adjusting the execution frequency of each task to the highest. Also, the
optimal result might not be obtained with the highest initial frequency
2

mapping. The result illustrated in Fig. 1 shows that the lowest initial
frequency mapping outperforms the highest initial frequency mapping
on the scheduling result.

In addition to the execution overhead, the calculation overhead
includes the communication cost. Different initial frequencies lead to
different mapping relationships between tasks and processors. The com-
munication overhead changes when the mapping relationship changes
with the initial frequency.

This proves that the efficient selection of initial scheduling fre-
quency and the adjustment of frequency is important to generate better
task schedules under HPC environments. These two factors are exactly
what this article studies.

1.2. Related work

Though DAG scheduling is NP-hard, it has been widely studied and
many heuristics are proposed for various considerations. Among them,
makespan and energy efficiency are two of the most crucial metrics in
various applications [17–21]. Although this type of problem is classic,
it is still challenging, even considering the parallelism in the constantly
updated high-performance computing architecture.

For makespan minimization, many algorithms have been framed
and proposed [22,23], such as list scheduling algorithms, clustering al-
gorithms, and duplication-based algorithms. Among them, the principal
method used in list scheduling is determining the task’s priority and
selecting an appropriate processor for each task. Owing to its simplicity
and outstanding performance, HEFT is one of the most frequently used
list scheduling algorithms.

For energy saving, DVFS is a promising energy reduction technique
that has been used in many approaches [24–27]. DVFS technique can
reduce the energy consumption by allocating appropriate execution
frequencies to each task, i.e., reducing processor frequency at certain
times. The majority of DVFS-enabled heuristics are conducted on both
homogeneous [28] and heterogeneous [26,29,30] computing systems.
In this paper, only heterogeneous processors with DVFS are studied,
regardless of GPUS or FPGAs.

Both makespan and energy saving are simultaneously studied and
many approaches are proposed for the same [18,20,31]. These al-
gorithms usually comprise two steps. The first step is to complete
the mapping the second step is DVFS scaling. The former is used to
mapping the tasks to processors, and the latter is used to optimize some
objectives. In the initial task mapping phase, besides HEFT algorithm
above [32–34], many methods are used, such as ETF algorithm [35]

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.

t
c
T
s
i
i
t
f
t
f
t
a
m
d
m
o
a
t
h
w
t
p
i
M
o

1

i
e

Table 2
Comparisons of how existing DAG task scheduling for DVFS-based heuristic cover target and design environment. Also, the specific benefits of FSA for each deployment type have
been enlisted.

Target Energy consumption under time constraints Energy consumption and completion time
[33–36,39–42] ⟋1⃝ [26,29,30] ⟋1⃝

Type of resources Multiple homogeneous processors Multiple heterogeneous processors Multiple heterogeneous processors
[35,36,39,40,42] ⟋2⃝ [33,34,41]

Initial mapping method ETF algorithm HEFT algorithm EDF algorithm Other list scheduling Not involved
[35,39] ⟋3⃝ [33,34] [36] ⟋3⃝ [40–42] ⟋3⃝

Initial mapping frequency Highest frequency Highest voltage value Not involved
[33–35,39] ⟋4⃝ [36,40,41] ⟋4⃝

CPU capacity Discrete Continuous Discrete
[33–35,39,41,42] [36,40] ⟋5⃝

Main design Slack time reclamation Linear programming [34], ⟋6⃝ Energy conscious scheduling heuristic(ECS)
[33,35,39–42] ⟋6⃝ Integer programming [36] ⟋6⃝
Benefits of the Frequency Scaling algorithm with different initial mapping frequency

Target Makespan under energy constraints 1⃝

Type of resources Multiple heterogeneous processors 2⃝

Initial mapping method HEFT algorithm 3⃝

Initial mapping frequency Different mapping frequency, from the lowest to highest 4⃝

CPU capacity d-DVFS 5⃝

Main design Path-based frequency scaling 6⃝
1

s
r
p
S
a
t

2

q
c
e

2

p
(
⟨

s
a
e
h
w

and EDF algorithm [36]. DVFS technique is chiefly involved in the
second phase [15,33–35,37,38].

Table 2 summarizes the existing related approaches for DAG
scheduling in reference to the proposed research work. In this work, a
frequency scaling algorithm with different initial mapping frequencies
has been adopted. There are six corresponding characteristics or bene-
fits (1⃝ 2⃝ 3⃝ 4⃝ 5⃝ 6⃝) of this method displayed on the bottom part of
he table. Some are crossed out with slashes (⟋1⃝ ⟋2⃝ ⟋3⃝ ⟋4⃝ ⟋5⃝ ⟋6⃝)when the
orresponding characteristics or benefits do not exist in the literature.
hrough such a table, the main work of this paper can be easily under-
tood, making its difference from the other related works. As depicted
n Table 2, no matter what (makespan or energy consumption) the work
s designed for, if their approaches involve a task mapping phase, all
he methods select the highest frequency of the server instead of per-
orming initial mapping based on different mapping frequencies from
he lowest to the highest frequencies. However, the initial mapping
requency has significant impacts on the matches between the tasks,
he processors, and the scheduling result (see example in Fig. 1), which
re ignored by the existing works. Hence, the impacts of different initial
apping frequencies have been investigated in this work. Specifically,
ifferent initial mapping frequency levels are adopted to explore the
apping relationship between tasks and hosts. In Table 2, it can be

bserved that some of the most suitable initial scheduling algorithms
re ETF and EDF algorithms. Since HEFT is frequently used in the
ask mapping phase owing to its simplicity and good performance, it
as been chosen here as a representative for the first step. Combined
ith the characteristics of this method and results obtained based on

his phase, a path-based Frequency Scaling Algorithm (FSA) has been
roposed for the second phase, i.e., frequency scaling. This is a key
nnovation that distinguishes this work from the other related works.
any other differences between the proposed method and those of the

thers are summarized in Table 2.

.3. Our contributions

In this work, the goal is to study and evaluate the impact of
nitialization frequency on the DAG mapping results under the DVFS
nvironment. The main contributions are listed below:

• For each execution, three levels of initial mapping frequency are
3

considered instead of the highest value. The mapping relationship f
between the tasks and the hosts with different initial frequencies
is explored. This work may make some supplements in this field.

• Based on the initial mapping, a Frequency Scaling Algorithm
(FSA) has been proposed for reducing the makespan.

• Extensive numerical experiments are conducted, and the results
show that mappings with middle-frequency levels are better than
the other two initial mappings. Besides, it can significantly reduce
the schedule length compared to other approaches.

• The parameters that affect the performance are also analyzed.
The results illustrate that FSA can mitigate the impacts of initial
mappings to a large extent.

.4. Organization

The article is divided into five sections. Section 2 elaborates the
ystem model and problem definition. Further, the initial mapping algo-
ithm has been introduced with different frequency levels, followed by
roposing the frequency scaling algorithm for heterogeneous systems in
ection 3. The experimental results and related analysis and discussion
re presented in Section 4. The last section of the article summarizes
he entire work and gives an outlook for future work.

. Models and problem formulation

This paper highlights the effect of initial mapping at different fre-
uency levels. It involves two target parameters: makespan and energy
onsumption. The application, heterogeneous system, makespan, and
nergy models are described as follows (see Table 5).

.1. Application model

The computing application includes multiple tasks, and there exist
riority constraint relationships among them. Directed Acyclic Graph
DAG) is applied to describe such applications, which is a two-tuple
 , 𝐸⟩. = {𝑡1, 𝑡2,… , 𝑡𝑛} represents the task set and 𝐸 indicates the
et of edges among the tasks. An edge (𝑖, 𝑗) ∈ 𝐸 signifies that 𝑡𝑗 is
successor of 𝑡𝑖. There are two special tasks in DAG: exit task and

ntry task. The entry task has no predecessor, and the existing task
as no successor. The calculation overhead of the task is denoted by
eighting parameter 𝑤𝑖. The path with the greatest overhead (length)
rom the entry task to the exit task is known as the Critical Path (CP).

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.

w
o
n
t
t

𝐸

w
p
t
A
i

𝑚

Table 3
Notation.

Notation Description

 A set of tasks

edge (𝑖, 𝑗) 𝑡𝑗 is a successor of 𝑡𝑖
𝐶𝑖,𝑗 Communication overhead between 𝑡𝑖 and 𝑡𝑗
𝑝 The number of heterogeneous processors

{𝑝𝑒1 ,… , 𝑝𝑒𝑘 ,… , 𝑝𝑒𝑝} A set of heterogeneous processors

{𝑣𝑘1 ,… , 𝑣𝑘,𝑚𝑘
} A set of executable supply voltages for 𝑝𝑒𝑘

{𝑓𝑘1 ,… , 𝑓𝑘,𝑚𝑘
} A set of supply frequencies for 𝑝𝑒𝑘

𝑚𝑘 Number of voltage/frequency levels for 𝑝𝑒𝑘
𝜙𝑖 The particular processor which execute task 𝑡𝑖
𝑙 The level of the frequency in the particular processor

𝑓𝜙𝑖 ,𝑙 The frequency of processor 𝜙𝑖 to execute 𝑡𝑖

𝑃𝑝𝑟𝑒𝑑(𝑡𝑖) A set of direct adjacent predecessors of 𝑡𝑖
𝑝𝑟𝑒𝑑(𝑡𝑖) A set of predecessors executed on different processes of 𝑡𝑖
𝑊𝑖(𝑓𝜙𝑖 ,𝑙) The execution overhead of 𝑡𝑖 executed on processor 𝜙𝑖

The path length is the sum of the weights of the edges along the
path. Another weighting parameter 𝐶𝑖,𝑗 indicates the communication
overhead between 𝑡𝑖 (executed on one processor) and 𝑡𝑗 (executed on
another processor). Tasks executed on different processors will produce
communication overhead.

2.2. Computing system model

There exist 𝑝 heterogeneous processors in the computing system,
denoted by 𝑃𝐸 = {𝑝𝑒1,… , 𝑝𝑒𝑘,… , 𝑝𝑒𝑝}. These processors are connected
with each other through a network. In this heterogeneous model, each
𝑝𝑒𝑘 (𝑝𝑒𝑘 ∈ 𝑃𝐸) comprises a set of executable supply voltages 𝑣𝑘 =
{𝑣𝑘1 ,… , 𝑣𝑘,𝑚𝑘

} and a set of supply frequencies 𝐹𝑘 = {𝑓𝑘1 ,… , 𝑓𝑘,𝑚𝑘
}. 𝑚𝑘

represents the number of voltage/frequency levels for 𝑝𝑒𝑘. 𝐿𝑘,𝑙𝑒𝑣𝑒𝑙 =
{1,… , 𝑚𝑘} indicates the voltage/frequency levels for 𝑝𝑒𝑘. Each proces-
sor can perform tasks at different speeds with different frequencies by
regulation.

The power is modeled as [43]:

𝑃 = 𝑃𝑠 + ℏ(𝑃𝑖𝑛𝑑 + 𝑃𝑑), (1)

There are three stages of power consumption: static power consump-
tion, frequency-independent active, and frequency-dependent dynamic
power, which are represented by 𝑃𝑠, 𝑃𝑖𝑛𝑑 and 𝑃𝑑 respectively. ℏ indi-
cates the occurrence of active power consumption (ℏ = 1 for active and
ℏ = 0 for sleep mode). 𝑃𝑑 is related to the voltage and frequency of
the system. In a CMOS-based processor, dynamic power consumption
is the primary part. It can be expressed as:

𝑃𝑑 = 𝐶𝑒𝑓𝑓𝑉
2
𝑑𝑑𝑓, (2)

where 𝐶𝑒𝑓𝑓 denotes the switch capacitance, 𝑉𝑑𝑑 represents the supply
voltage, and 𝑓 is the frequency. The relationship between voltage and
operating frequency is defined by the following equation [44]:

𝑓 =
(𝑉𝑑𝑑 − 𝑉𝑡ℎ)𝛼

𝐾𝐿𝑑
, (3)

or equivalently as:

𝑉𝑑𝑑 = 𝑉𝑡ℎ + (𝐾𝐿𝑑𝑓)
1
𝛼 , (4)

where 𝐾 and 𝛼 are the two constant values, 𝑉𝑡ℎ denotes the threshold
voltage, and 𝐿𝑑 represents the circuit logic depth. The frequency can
be scaled in the interval [0, 𝑓𝑚𝑎𝑥], while the value of voltage varies in
the range [𝑉𝑡ℎ, 𝑉𝑚𝑎𝑥]. During the process of frequency-changing, the
execution clock cycles of the task remain unchanged, but the execution
time of the task may vary. Let 𝜙 denote the particular processor,
4

𝑖

which executes the task 𝑡𝑖. Let 𝑙 represent the level of the frequency
in the processor. Thus, 𝑓𝜙𝑖 ,𝑙 represents the frequency of processor 𝜙𝑖 to
execute 𝑡𝑖.

The computation overhead of 𝑡𝑖 can be acquired by the following
equation:

𝑇 𝑖𝑚𝑒𝑡𝑖 = 𝑤𝑖∕𝑓𝜙𝑖 ,𝑙 . (5)

Thus, the energy consumption can be computed as follows:

𝐸𝑡𝑖 = 𝑃𝑑 × 𝑇 𝑖𝑚𝑒𝑡𝑖 = 𝐶𝑒𝑓𝑓𝑉
2
𝑑𝑑𝑓𝜙𝑖 ,𝑙 × 𝐶𝑖∕𝑓𝜙𝑖 ,𝑙 = 𝐶𝑒𝑓𝑓𝐶𝑖𝑉

2
𝑑𝑑 . (6)

From the above equation, it can be observed that the energy con-
sumed is proportional to the square of the voltage (𝐸 ∝ 𝑉 2

𝑑𝑑). By slightly
increasing or decreasing the voltage, a great impact on the energy
consumption can be observed.

2.3. Performance measurement

𝑊𝑖,𝑘 = 𝑤𝑖
𝑓max
𝑘

is denoted as the time overhead for executing on
processor 𝑝𝑒𝑘 with its highest frequency. The average execution cost
is calculated as:

𝑊𝑖 =
𝑝
∑

𝑘=1

𝑊𝑖,𝑘

𝑝
. (7)

The average communication overhead can be determined by the fol-
lowing equation:

𝐶𝑖,𝑗 =
𝑑𝑎𝑡𝑎𝑖,𝑗
𝐵

, (8)

where 𝐵 indicates the average communication bandwidth.
In this paper, the scheduling is static (executed during compilation).

The schedule length (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛) is selected as the main parameter for
performance evaluation. The scheduling length of DAG is determined
by the exit task, and the completion time of a task is determined by
the time when the task starts to execute and its execution time. The
Earliest Start Time (EST) is determined by the predecessors’ Earliest
Finish Times (EFTs). These variables are calculated recursively from
the previous entries [9]. Specifically, for the task 𝑡𝑒𝑛𝑡𝑟𝑦,

𝐸𝑆𝑇𝑡𝑒𝑛𝑡𝑟𝑦 = 0. (9)

EST of other tasks in the graph is expressed as:

𝐸𝑆𝑇 (𝑡𝑖, 𝑓𝜙𝑖 ,𝑙) =max
{

𝐸𝑆𝑇𝑃𝑝𝑟𝑒𝑑(𝑡𝑖) +𝑊𝑃𝑝𝑟𝑒𝑑(𝑡𝑖),

max
𝑡𝑗∈𝑝𝑟𝑒𝑑(𝑡𝑖)

(

𝐸𝑆𝑇𝑗 +𝑊𝑗 (𝑓𝜙𝑗 ,𝑙) +
𝑑𝑎𝑡𝑎𝑖,𝑗
𝐵𝜙𝑖 ,𝜙𝑗

) }

,
(10)

where 𝑃𝑝𝑟𝑒𝑑(𝑡𝑖) indicates a set of direct adjacent predecessors of 𝑡𝑖,
hich are executed on the same process, and 𝑝𝑟𝑒𝑑(𝑡𝑖) represents a set
f predecessors executed on different processes. In this case, commu-
ication is required. In the above EFT equation, the first term signifies
he earliest time that the processor is ready for a task, while the second
erm denotes the ready time.

Accordingly, EFT can be expressed as:

𝐹𝑇 (𝑡𝑖, 𝑓𝜙𝑖 ,𝑙) = 𝐸𝑆𝑇 (𝑡𝑖, 𝑓𝜙𝑖 ,𝑙) +𝑊𝑖(𝑓𝜙𝑖 ,𝑙), (11)

here 𝑊𝑖(𝑓𝜙𝑖 ,𝑙) represents the execution overhead of 𝑡𝑖 executed on the
rocessor 𝜙𝑖. These variables are calculated recursively from the top
o the bottom of DAG. When all tasks are mapped to processors, the
ctual Finish Time (AFT) of the exit task is defined as 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛, which

s represented as follows:

𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max{𝐴𝐹𝑇 (𝑡𝑒𝑥𝑖𝑡)}. (12)

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.

r
v
s
t
t
a
a
r

d
s
E
s

a
r
a
r
1
o

2.4. Problem formulation

The goal of this paper is to minimize the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 under the energy
supply constraints, particularly considering a DAG application and a
heterogeneous cluster which supports the DVFS technique. The aim
is to distribute the tasks to processors so that its 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 can be
minimized while ensuring that the power consumption is not greater
than a given value 𝐸∗.

minimize 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max{𝐴𝐹𝑇 (𝑡𝑒𝑥𝑖𝑡)}, (13)

s.t. 𝐸𝑡𝑜𝑡𝑎𝑙 ≤ 𝐸∗, (14)

where 𝐸𝑡𝑜𝑡𝑎𝑙 represents the total power consumption, including all the
servers’ consumption, whether or not performing the tasks.

3. HEFT mapping with different frequency levels and a frequency
scaling algorithm

As mentioned earlier, approaches for DAG scheduling under DVFS
environments primarily include two phases: task mapping and later
frequency scaling. In this paper, the mapping relationship between the
tasks and hosts and the communication time among different processors
with different initial frequency mappings are explored. Three kinds of
initial mapping frequencies with the HEFT algorithm are considered.
Based on the initial mappings, a Frequency Scaling Algorithm (FSA)
has been proposed, which is a Critical Path (CP) based algorithm,
combining the DVFS technique to further optimize the makespan.

3.1. HEFT mapping

HEFT is one of the most well-known algorithms in scheduling
literature. It is frequently adopted to generate the initial schedule for
the time-oriented optimization in the first phase in some DVFS-based
heuristics. Meanwhile, many proposed algorithms are also developed
based on HEFT mapping. However, to the best of the authors′ knowl-
edge, in most previous heuristics that have adopted the HEFT algorithm
as an initial mapping method, the highest frequencies of the server are
often used for mapping.

In this paper, the frequencies of servers are classified into three
levels.

• Low. The mapping frequency of each server is set as its lowest
frequency level;

• Middle. The mapping frequency of each server is set as its middle
frequency level ((the lowest+the highest)/2);

• High. The mapping frequency of each server is set as its highest
frequency level.

Compared with the original HEFT algorithm [9], the selection of the
initial mapping frequency and the steps of the algorithm are outlined
in Algorithm 1.

Algorithm 1 HEFT Mapping under Different Frequency Levels
1: while (each of the three available frequencies in the heterogeneous system) do
2: Select one available frequency 𝑓 ∈ 𝐹𝑙 .
3: Assign the weights of the each node and edge in the DAG task graph adopting

arithmetic average method under the specific frequency respectively.
4: Calculate upward rank value of all tasks according to the weight of tasks and edges.

5: Generate the task scheduling list.
6: while (there exist tasks that need to be scheduled) do
7: Pick the first task 𝑡𝑖 in the task scheduling list according to decreasing rank value.

8: for (𝑝𝑒𝑘) do
9: Calculate 𝐸𝐹𝑇 (𝑡𝑖 , 𝑓𝑝𝑒𝑘,𝑙).
10: Distribute 𝑡𝑖 to the best processor 𝜙𝑖 to minimize EFT of 𝑡𝑖.
11: end for
12: end while
13: end while
5

Weight Assigning Phase. The weights of each node and edge are
assigned on the basis of the predicted execution cost of tasks and
communication time between the two adjacent nodes. In heterogeneous
environments, different machine resources lead to different reference
computing times for each task. Different data links also result in dif-
ferent communication times. In this paper, the weights in the DAG
adopt the arithmetic average of different processors calculated by the
maximum frequencies. As demonstrated in Fig. 1, the initial compu-
tational overhead of each task and the average transfer bandwidth
among the processors is calculated using the maximum frequencies. The
task execution time is affected by the frequency of the server. In this
paper, three initial frequencies are explored with the HEFT method to
investigate its effect on different scheduling results.

Task-prioritizing Phase. The main operation of this phase is to
prioritize the tasks by calculating tasks’ rank value through traversing
the entire DAG from the bottom of DAG in reverse.

𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = 𝜔𝑖,𝑙 + max
𝑡𝑗∈𝑠𝑢𝑐𝑐(𝑡𝑖)

(𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗)), (15)

where 𝜔𝑖,𝑙 represents the average execution overhead of 𝑡𝑖 with fre-
quency 𝑓𝜙𝑖 ,𝑙, 𝑠𝑢𝑐𝑐(𝑡𝑖) represents the direct successors of 𝑡𝑖, and 𝑐𝑖,𝑗
epresents the average communication overhead. The upward rank
alue represents the length of the critical path. The target in this
tep is to first schedule tasks with the highest rank value. Based on
he descending order of rank, a scheduling list is generated and a
opological order of the constrained tasks is formed. In this phase,
random selection strategy is adopted in the tie-breaking process to

void increasing the time complexity, i.e., if two nodes have the same
ank value, one of them is randomly selected for scheduling.
Processor Selection Phase. The task is scheduled according to the

ecreasing upward rank value in the above phase. The principle of
cheduling at each step of the above process is to minimize the tasks’
FT. The principle is to minimizes the task’s EFT at every step of
cheduling.

As an illustration, the execution overhead and data transfer cost
re mentioned in Fig. 1. This sample involves three heterogeneous
esources M1, M2, and M3. The corresponding rank value is computed
ccording to the calculated weights and transfer overhead, and the
esult is as follows: 55(T1), 43(T2), 37(T3), 44(T4), 20(T5), 28(T6),
0(T7). Based on the upward rank values, the scheduling order can be
btained by the HEFT algorithm, i.e., {𝑇1, 𝑇4, 𝑇2, 𝑇3, 𝑇6, 𝑇5, 𝑇7}. In this

order, the tasks are further scheduled onto different processors. Finally,
the initialization schedules results with the maximum frequencies for
this sample are highlighted in Fig. 1. In this case, the frequency cannot
be further scaled up. The initial schedule result is the same as the
final schedule results calculated by the proposed scaling method. The
schedule length is 37, which is longer than the value (35) that is
calculated with the lowest frequency initialization by FSA.

3.2. The frequency scaling algorithm

The Frequency Scaling Algorithm (FSA) has been proposed with
different initial frequency levels in this article. The initial phase and the
second frequency scaling phase are mutually influential with a mutual
connection relationship and not independent of each other in this
algorithm. In the second phase, frequency scaling has been invoked,
which leverages the DVFS technique on HEFT mappings using Low,
Middle, and High frequency levels.

The idea of FSA is somewhat motivated by a natural intuition. In
DAG, the shortest time to accomplish the scheduling is the length of the
longest path from the entry task to the exit task. As mentioned before,
the path with the longest path length is identified as the critical path.
It can be inferred from Fig. 2 that, after initial scheduling of the DAG
application with the lowest frequency level, 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 is determined by
the critical path and 𝑇7 is the last task of the critical path. The execution
time of the previous tasks in the critical path is exactly the time when

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.

𝑇
t
i
o
𝑚
w
F
b
𝑚
t
e
t

t
t
e
A
i

d
t
p
t
o
𝑇
e
t
𝑇
i
𝑇
t

t
S
𝑡

T
E

t
c

𝑆

T7 starts execution. Thus, 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 is determined by the EST and ET of
7. Hence, the execution time or start time of 𝑇7 can be scaled to reduce
he 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛. Notice that 𝑇6 is the predecessor of 𝑇7 in the critical path
n this DAG. The same can be obtained that the execution start time
f 𝑇7 is determined by 𝑇6. Hence, 𝑇6 can also be scaled to impact the
𝑎𝑘𝑒𝑠𝑝𝑎𝑛. Similarly, the execution start time of 𝑇6 is determined by 𝑇4,
here 𝑇4 is dominated by its predecessor 𝑇1, and 𝑇1 is the entry task.
rom this, we find the path 𝑇7 → 𝑇6 → 𝑇4 → 𝑇1, in which the tasks can
e scaled to impact the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛. The critical path, which determines
𝑎𝑘𝑒𝑠𝑝𝑎𝑛 in the DAG, is depicted, and then the task from the bottom

o the top of the path is chosen to adjust the execution frequency. At
ach iteration, the frequency is adjusted one level up to further reduce
he 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛.

Algorithm 2 Frequency Scaling Algorithm (FSA)
1: while (true) do
2: Set 𝑙𝑒𝑛 ← 0 and 𝑡 ← 𝑡𝑒𝑥𝑖𝑡
3: while (𝑡 is not an empty task) do
4: Put 𝑡 into the path, i.e., set 𝑃𝑎𝑡ℎ[𝑙𝑒𝑛 + +] ← 𝑡
5: Find the task 𝑡′ ∈ 𝑝𝑟𝑒𝑑(𝑡) which dominates the beginning of 𝑡 for execution, i.e.,

𝑡′ ← argmax𝑡∈𝑝𝑟𝑒𝑑(𝑡)(𝐴𝐹𝑇𝑡 + 𝐶𝑡,𝑡)

6: Set 𝑡 ← 𝑡′ ;
7: end while
8: Record 𝐀𝐅𝐓, i.e., set 𝐀𝐅𝐓old ← 𝐀𝐅𝐓
9: for (variable 𝑙 from 0 to 𝑙𝑒𝑛 − 1) do
10: Set 𝑡 ← 𝑃𝑎𝑡ℎ[𝑙] and 𝑓𝜙𝑡,𝑙𝑡 ← 𝑓𝜙𝑡,𝑙𝑡+1
11: if (𝑙𝑡 + 1 > 𝐿𝜙𝑡) then
12: continue;
13: end if
14: Build a stack 𝑆 and put task 𝑡 into 𝑆, i.e., 𝑆.𝑝𝑢𝑠ℎ(𝑡)
15: while (𝑆 is not empty) do
16: Set 𝑡′ ← 𝑆.𝑝𝑜𝑝() and calculate 𝐴𝐹𝑇

𝑡′

17: if (𝐴𝐹𝑇
𝑡′
is not equal to 𝐴𝐹𝑇 old

𝑡′
) then

18: for (each succeed task 𝑡 ∈ 𝑠𝑢𝑐𝑐𝑑(𝑡′)) do
19: Add task 𝑡 into 𝑆, i.e., 𝑆.𝑝𝑢𝑠ℎ(𝑡)
20: end for
21: end if
22: end while
23: Compute decreased makespan 𝛥𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑡 ← 𝐴𝐹𝑇𝑡exit −𝐴𝐹𝑇 old

𝑡exit
and the increased

power consumption 𝛥𝐸𝑡
24: end for
25: Choose the task 𝑡 ∈ 𝑃𝑎𝑡ℎ such that 𝛥𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑡

𝛥𝐸𝑡
is minimized

26: if (𝑡 is an empty task) then
27: break;
28: end if
29: end while

For each task in the path, the increased energy 𝛥𝐸 and the corre-
sponding decreased makespan 𝛥𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 due to execution frequency
adjustment operation can be computed. The task with maximal 𝛥𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝛥𝐸
o scale frequency has been chosen because the target of this work is
o optimize the makespan under energy constraints, namely minimum
xecution time under the premise of ensuring energy consumption.
fter accomplishing the scaling operation in a path, the critical path

s re-selected, and the above process continues to iterate.
Fig. 2 represents an illustration of the scaling process of FSA. As

isplayed in Fig. 2, after initial mapping with the lowest frequency,
he schedule length is 82.46. At the first iteration, FSA configures the
ath 𝑇7 → 𝑇6 → 𝑇2 → 𝑇1 and determines that scaling 𝑇7 maximizes
he value of 𝛥𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝛥𝐸 . Later, it scales the execution frequency of 𝑇7
ne level upwards. At the second iteration, the dominated path is still
7 → 𝑇6 → 𝑇2 → 𝑇1 and the chosen task is 𝑇6. Further, it scales its
xecution frequency one level upwards. At the third iteration, it learns
hat the dominated path becomes 𝑇7 → 𝑇5 → 𝑇3 → 𝑇1 and selects task
5 to scale one level upwards. The algorithm terminates when there
s no task to scale its execution frequency. At the sixth iteration, task
1 is selected to perform the scaling operation, and the iteration is
erminated at this moment with a schedule length of 35.

The entire concept is formulated in Algorithm 2. At each itera-
ion, the path which dominates the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 is identified (Steps 3–8).
pecifically, a queue 𝑃𝑎𝑡ℎ is used to record tasks in the path. At first,
6

𝑒𝑥𝑖𝑡 is added to the queue, followed by finding the task among its
able 4
xperiment parameters setting.
Experiment parameters (Fixed)–{Varied range}

Number of tasks (100)–{50,100,150,200,250,300,400,500}
Number of DAGs (100)–{50,100,200,300,400}
Number of processors (16)–{4,8,16,32,64}
CCR values (1)– {0.1,0.2,0.5,1.0,2.0,5.0,10.0}
Parallelism factor (1)–{0.5,1.0,2.0,5.0,10.0}
Initialization frequency {low,middle,high}

predecessors, which dominates the start time of 𝑡𝑒𝑥𝑖𝑡. Later, the dom-
inated predecessor is chosen, and similar actions are repeated till the
entry task. For each task in the path, its increased power consumption
and decreased makespan are calculated (Steps 10–23). Then, the task
with maximal 𝛥𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

𝛥𝐸 is chosen to scale its frequency level (Step 24).
The algorithm continues until there does not exist any such task (Step
25). In the proposed algorithm, the focus is to further minimize the
scheduling length with a constraint of energy, based on the initial time-
oriented optimization result obtained by HEFT with different frequency
levels.

4. Experimental evaluation

The evaluation of the performance under three heterogeneous pro-
cessors is considered in this section. Randomly generated and real-
world applications are evaluated. The comparisons of different algo-
rithms are mentioned, and quantitative results and qualitative analyses
are presented. The results are based on the two metrics, i.e., schedule
length and Schedule Length Ratio (SLR). The former is the key measure-
ment parameter of performance evaluation for the proposed algorithm
because the target of this work is to minimize the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛. SLR is used
o normalize the schedule length when some task graphs have different
haracteristics. It is defined by:

𝐿𝑅 =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

∑

𝑡𝑖∈𝐶𝑃 min𝑝𝑒𝑗∈𝑃𝐸{𝑊𝑖,𝑗}
. (16)

For any algorithm, the SLR of a graph will be greater than or equal
to one. For the scheduling algorithm, the smaller the SLR, the better
the performance. In this paper, since multiple frequency levels are
involved, high frequency for each processor is set for the critical path
calculation to ensure that the SLR is always greater than or equal to
one.

4.1. Processor heterogeneity models

Table 1 represents a set of simultaneous changes of frequency and
voltages, along with corresponding energy consumption [25].

In the experiments, 100 random task graphs generated by different
parameters are tested. These task sets are carried out in heterogeneous
processor environments. For each configuration, each processor can
perform tasks with different frequencies. For each processor, available
frequency and voltage follow a random yet uniform distribution. Some
variables adopted in the experiment are enlisted in Table 4. The same
number of tasks on seven sets of processors of 2𝑛 (𝑛 ranges from 1 to
7) is evaluated for each graph.

4.2. Randomly generated application graphs

Generating random DAGs involves different parameters such as the
ratio of communication to computation time and parallelism factor.
These parameters significantly affect the dependence between tasks and
communication costs. In the experiments, a large number of randomly

generated graphs are used for simulation.

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Fig. 2. An intuitive illustration and evolution for FSA of execution time (Makespan): The latest critical path is found in real-time, and the corresponding execution frequency is
scaled.
4.2.1. Random application graphs
To build different random graphs, the following different fundamen-

tal input parameters are required:

• DAG size 𝑛 : number of nodes.
• Communication to computation time ratio 𝐶𝐶𝑅 : average com-

munication overhead divided by the average computation over-
head.

• Parallelism factor 𝜆 : the height and the width of a graph is
generated randomly from a uniform distribution with a mean
value of

√

𝑛∕𝜆 and 𝜆
√

𝑛 respectively, and rounded up to the
nearest integer.

In the random application experiments, the combination of the
above parameters is recommended for generating the graphs. The value
of 𝑛 ranges from 20 to 500. Based on the value of 𝑛, the height of DAG
is formed for different 𝜆 (0.2, 0.5, 1.0, 2.0, 5.0, 10.0), and then the
width of this DAG is computed at each level. Moreover, each task is
assigned with the calculation overhead, and each edge is assigned with
the communication overhead. The selection of DAG’s communication
and computational costs follows a uniform distribution. The mean of
the communication cost depends on the CCR as well as the calculation
overhead. In this paper, 100 random application graphs are tested.
These graphs are generated using the above parameters. In each output,
the average value of these 100 test results is obtained as the output of
the experimental results.

4.2.2. Random application performance results
In this paper, different graph characteristics and input parameters

are used to evaluate and compare the performances of the algorithms.
The results with three different initialization frequencies and different
CCR values are compared with each other (refer to Fig. 3). Initialization
frequencies are the lowest, the highest, and the middle frequencies ((the
lowest+the highest)/2), respectively. The purpose of these experiments
is to evaluate the influence of different initialization frequencies on
performance.

The data highlighted in the simulation results of Fig. 3 are from the
average of 100 sets of random experiments. In a few of the subfigures of
Fig. 3, it can be observed that initialization with different frequencies
leads to different final optimization results. As mentioned in Section 3,
the initialization frequency determines the processor to which each task
will be assigned. Each task is thus scheduled to a different processor
at different initialization frequencies. When the number of tasks is
constant in HEFT, the makespan results are proportional to the fre-
quency. The higher the frequency, the lesser the execution time and
the smaller the makespan are. Therefore, makespan is minimal at the
highest frequency for HEFT. However, the optimized makespan results
for FSA are not related to the initialization frequency. The minimum
makespan does not appear at the highest frequency. As illustrated in
the figure, when initializing with the middle frequency, FSA leads to
7

the smallest makespan. On the contrary, its makespan is the largest for
the highest frequency. There are communication overheads in addition
to the computational overhead. With initial mapping at the highest
frequency, the calculation overhead is definitely the smallest, but the
corresponding communication overhead is not the case. When initial
mapping is performed at the middle frequency or the lowest frequency,
the mapping results and the communication overhead are different.
Considering the calculation cost and the communication cost compre-
hensively, the results prove that the experimental results obtained by
using middle frequency for initialization are the best.

It can be noticed that with an increase in the number of tasks, FSA
outperforms the HEFT significantly at low and middle frequencies in
Fig. 3. The presented algorithm is the same as HEFT in cases when
the initialization frequency is the highest. This is because, during the
frequency scaling in this algorithm, high frequency is selected to reduce
the makespan, but at this time, the initial frequency is already the
highest; thus, there is no higher frequency to use.

The gaps between the two algorithms lessen marginally with the
increase of CCR. Changes in CCR have no particular impact on the
experimental results. However, the results of makespan for HEFT differ
greatly when initialization mappings are between middle and low
frequencies, while the results of makespan for FSA are almost the
same. The results distinctly prove that this algorithm can reduce the
impact of initialization mappings with different frequencies. For FSA,
the difference between the two sets of makespan results is minimal.
This difference comes from the initialization mapping topology formed
by the initialization mapping with different frequencies.

The three figures in the first row of Fig. 3 reveal the performance
of the two algorithms for various number of processors with various
CCR. The makespan of the HEFT and FSA algorithms decreases with an
increase in the number of processors. The results for a diverse number
of processors are consistent with the results of a different numbers of
tasks. The makespan is minimized when initializing with the middle
frequency, and it is not optimized at the highest frequency.

Different effects of various initializing frequencies are considered
on the optimization results in the first set of simulations. From the
above experiments, it can be seen that the optimization is the best
with middle frequency. In the next sets of experiments, the SLR of the
algorithms with the middle initial frequency is compared with various
graph characteristics, which are represented in Fig. 3 and Table 4.

In Fig. 4(a), the SLRs of algorithms are compared with diverse
graph sizes. The proposed FSA outperforms the HEFT algorithm. From
Table 5, it can be noticed that the growth in the number of tasks has
a negligible effect on makespan with 32 processors. To make the trend
of performance change become more obvious with the increase in the
size of graphics, eight processors are used in another set of experiments.
The corresponding results are listed in Table 6. The performance of FSA
is better than the HEFT algorithm. The performance trends of the two
algorithms differ with an increase in the number of tasks.

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Fig. 3. Execution time (Makespan) of HEFT and Frequency Scaling Algorithms under different initialization frequencies with different CCR.
In Fig. 4(b), the SLRs of different algorithms are compared. The
average SLR of FSA compared to HEFT is 240%, 204%, 149%, 190%,
and 189%, when the number of processors increases by 2𝑛 (𝑛 ranges
from 2 to 6).

The comparisons for different CCR are illustrated in Fig. 4(c). The
gaps between the two algorithms reduce gradually with the increase
in CCR. Compared to higher CCR, a lower CCR can bring better ex-
perimental results for FSA. From Table 5, it can be seen that the best
performance occurs when the value of CCR is 0.2. This phenomenon
may be caused by the following reasons: When the CCR is low, the
cost of the computation part dominates the whole application. When
the CCR is high, the applications are prone to be communication-
intensive. Therefore, the proposed algorithm proves to be more suitable
for computation-intensive tasks.

The next experiment is about the effect of the graph structure on
the experimental results (see Fig. 4(d)). When the value of 𝜆 is 0.2,
8

the performance of FSA is 227 percent better than the HEFT algorithm.
When 𝜆 is equal to 0.5, 1.0, 5.0, and 10.0, the performance of the FSA
exceeds that of HEFT by 198%, 190%, 166%, and 161%, respectively
(see Table 7).

4.3. Real-world application graphs

In this paper, real-world application graphs are also added in addi-
tion to the random graphs. Two real-world graphs are simulated to test
the performance: the Gaussian elimination [45] and the Fast Fourier
Transformation (FFT) [46]. In these two applications, the number
of processors and CCR are chosen as parameter variables. Since the
structure of the real-world application graph is fixed, the parallelism
factor is not selected as a variable parameter.

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Fig. 4. Average SLR of random DAGs with middle initialization frequency.
Fig. 5. (a) Gaussian elimination algorithm, (b) task graph for a matrix of size 5.
Table 5
Makespan decrease for diverse characteristics.

Number of tasks 20 40 80 160 320

HEFT 𝑣𝑠. Frequency-Scaling 191% 193% 188% 190% 193%

Number of processors 4 8 16 32 64

HEFT 𝑣𝑠. Frequency-Scaling 240% 204% 149% 190% 189%

CCR 0.2 0.5 1 5 10

HEFT 𝑣𝑠. Frequency-Scaling 258% 226% 190% 125% 115%

Parallelism factor 0.2 0.5 1 5 10

HEFT 𝑣𝑠. Frequency-Scaling 227% 198% 190% 166% 161%
9

Table 6
Makespan decrease for 8 processors with respect to a different number of tasks.

Number of tasks 20 40 80 160 320

HEFT 𝑣𝑠. Frequency-Scaling 200% 200% 196% 204% 215%

4.3.1. Gaussian elimination
GE is an algorithm to solve the systems of linear equations in

mathematics. The sequential program for the GE algorithm is repre-
sented in Fig. 5(a) [45]. Fig. 5(b) indicates the data-flow graph for
the special case to solve a 5*5 matrix. 𝑇𝑘,𝑘 and 𝑇𝑘,𝑗 indicate a pivot
column operation and an update operation respectively. A parameter 𝑠
is applied which affects the DAG size S in experiments. The relationship

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Fig. 6. Average SLR of the Gaussian elimination task graph.
Table 7
Configurations for Gaussian elimination DAG generation.

Parameters Possible values

CCR 0.1, 0.5, 1, 2, 5, 10
Number of processors 2, 4, 8, 16, 32
Size 5, 6, 7, . . . , 20
10
between matrix size and DAG size is 𝑆 = 1
2 (𝑠

2+𝑠−2). Fig. 6b illustrates
a GE graph of matrix size 5. Table 6 enlists some variable parameters
applied in the GE graphs. When the matrix size varies from 5 to 20, the
number of tasks will increase from 14 to 209.

Fig. 6(a) highlights the average SLR results when matrix sizes
changes. Under these circumstances, the number of processors and
CCR is 5 and 1, respectively. Increasing the size of the matrix will
increase the number of tasks. This results in more tasks outside the

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Fig. 7. FFT task graph with 4 input points.

Table 8
Configurations for FFT DAG generation.

Parameters Possible values

CCR 0.1, 0.5, 1, 2, 5, 10
Number of processors 2, 4, 8, 16, 32

critical path, which increases the scheduling length. Fig. 6(b) demon-
strates the experiment results with the same CCR. As the processors
increase, FSA can obtain smaller SLR compared to HEFT. The in-
crease in CCR can transform an application from computation-intensive
to communication-intensive when the number of processors is the
same. In this case, it causes a greater makespan with greater SLR (see
Fig. 6(c)).

4.3.2. Fast Fourier transformation
FFT [46] is an algorithm for calculating discrete Fourier transform

and its inverse transform. It comprises two operations: the input vector
and butterfly operation. The one-dimensional four-point recursive FFT
graph in Fig. 7 is considered as an example. The parameters applied in
the experiment are illustrated in Table 8. For FFT tasks, the calculation
cost and communication cost of each task are equal. Thus, each path is
11
a critical path. Only the CCR is selected as a parameter for performance
evaluation. The total number of tasks 𝑆 and the number of FFT layers
𝑛 follow this relationship, 𝑆2𝑛 = 22𝑛(𝑛 ≥ 2). With the change of 𝑛, the
input FFT points change in step 4.

Fig. 8 indicates the average SLR results with a diverse numbers of
processors and CCR. The number of processors is varied by the power of
2 from 2 to 64, and six different values are set for CCR. In Fig. 8, it can
be observed that the performance of the FSA exceeds the performance
of HEFT in all the cases. Fig. 8(a) displays that the increasing number
of processors will not improve the performance because four processors
are enough to execute the FFT graph of four parallel data points. For
FFT, the performance improvement brought by frequency scaling is
151%, 153%, 173%, 202%, and 244% better than the HEFT algorithm
when the CCR is 10, 5, 2, 1, 0.5, and 0.1, respectively.

5. Conclusions

In this paper, the influence of various initial frequency levels on
the scheduling performance is assessed. Three kinds of initial mapping
frequencies are considered with HEFT algorithm in each execution for
time-efficient performance. Based on the initial mapping, a Frequency
Scaling Algorithm (FSA) has been proposed to further optimize the
makespan under the energy constraint while meeting the precedence
constraint. This algorithm combines the HEFT algorithm and DVFS
technique, and a new method is studied for processor selection and
frequency scaling phases. It achieves high performance for the tested
applications as well as energy efficiency.

Based on a large number of graphs, the experimental results are
somehow unexpected. The mappings with middle frequencies are better
than those with the other two initial mappings, including the highest
frequencies. Besides, it has also been noticed that the proposed fre-
quency scaling method can mitigate the impacts of initial mappings to
a certain extent.

FSA can provide less execution time and stable performance. It is
a feasible solution to the DAG scheduling problem in heterogeneous
computing systems. Migration methods are introduced to deal with
the trade-off between energy conservation and scheduling length in
the next work. Furthermore, this algorithm can be extended to edge
computing systems and also further critical issues such as system
reliability.
Fig. 8. Average SLR for the FFT graph with middle initialization frequency.

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The research was partially funded by the Key Program of Na-
tional Natural Science Foundation of China (Grant Nos. 61133005,
61432005) and the National Outstanding Youth Science Program of
National Natural Science Foundation of China (Grant No. 61625202).

References

[1] L.T. Yang, X. Wang, X. Chen, L. Wang, R. Ranjan, X. Chen, M.J. Deen, A multi-
order distributed HOSVD with its incremental computing for big services in
cyber-physical-social systems, IEEE Trans. Big Data (2018) 1.

[2] X. Wang, L.T. Yang, X. Chen, J.J. Han, J. Feng, A tensor computation and
optimization model for cyber-physical-social big data, IEEE Trans. Sustain.
Comput. 4 (4) (2019) 326–339.

[3] C. Chen, K. Li, A. Ouyang, Z. Tang, K. Li, GFlink: An in-memory computing
architecture on heterogeneous CPU-GPU clusters for big data, in: International
Conference on Parallel Processing, 2016.

[4] Cen, Chen, Kenli, Li, Aijia, Ouyang, Keqin, Li, Flinkcl: An opencl-based in-
memory computing architecture on heterogeneous CPU-GPU clusters for big data,
IEEE Trans. Comput. 67 (12) (2018) 1765–1779.

[5] K. Fox, S. Im, B. Moseley, Energy efficient scheduling of parallelizable jobs,
Theoret. Comput. Sci. 726 (2018) 948–957.

[6] Calore, Enrico, Gabbana, Alessandro, Schifano, Sebastiano, Fabio, Tripiccione,
Raffaele, Software and DVFS tuning for performance and energy-efficiency on
intel KNL processors, J. Low Power Electron. Appl. (2018).

[7] F. Juarez, J. Ejarque, R.M. Badia, Dynamic energy-aware scheduling for parallel
task-based application in cloud computing, Future Gener. Comput. Syst. 78 (pt.1)
(2018) 257–271.

[8] P. Chaudhuri, J. Elcock, Task scheduling in multiprocessing systems using
duplication, J. Syst. Archit. 54 (5) (2008) 519–529.

[9] H. Topcuoglu, S. Hariri, M.Y. Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst. 13
(3) (2002) 260–274.

[10] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2010) 1374–1381.

[11] M.A. Khan, Scheduling for heterogeneous systems using constrained critical
paths, Parallel Comput. 38 (4–5) (2012) 175–193.

[12] D. Guo, Q. Xiao, X.U. Jianxin, Cloud computing energy consumption optimization
model research based on Weibull distribution, Comput. Eng. Appl. (2017).

[13] S. Vila, F. Guirado, J.L. Lerida, F. Cores, Energy-saving scheduling on laas
HPC cloud environments based on a multi-objective genetic algorithm, J.
Supercomput. 75 (3) (2019) 1483–1495.

[14] R. Garg, N. Shukla, Energy efficient level by level scheduling for multiple
workflows in cloud, Int. J. Softw. Innov. 7 (3) (2019) 102–117.

[15] W. Zheng, S. Huang, An Adaptive Deadline Constrained Energy-Efficient Schedul-
ing Heuristic for Workflows in Clouds, John Wiley and Sons Ltd., 2015, pp.
5590–5605.

[16] W. Zheng, S. Huang, Deadline constrained energy-efficient scheduling for work-
flows in clouds, in: International Conference on Advanced Cloud & Big Data,
2014, pp. 69–76.

[17] L. Marchal, B. Simon, O. Sinnen, F. Vivien, Malleable task-graph scheduling with
a practical speed-up model, IEEE Trans. Parallel Distrib. Syst. (2018) 1357–1370.

[18] B. Young, S. Pasricha, A.A. Maciejewski, H.J. Siegel, J.T. Smith, Heterogeneous
makespan and energy-constrained DAG scheduling, ACM (2013).

[19] H.F. Sheikh, I. Ahmad, Simultaneous optimization of performance, energy and
temperature for DAG scheduling in multi-core processors, in: Green Computing
Conference, 2012.

[20] U.G. Joo, Makespan minimization scheduling problem with energy-efficient
turning On/Off mechanism, J. Korean Inst. Ind. Eng. 44 (1) (2018) 1–8.

[21] M. Aitaba, L. Zaourar, A. Munier, Efficient algorithm for scheduling parallel
applications on hybrid multicore machines with communications delays and
energy constraint, Concurr. Comput. Pract. Exp. (6) (2020) e5573.

[22] V. Kachitvichyanukul, K. Sethanan, P. Golinska-Dawson, Makespan minimization
for scheduling unrelated parallel machine with sequence-dependent setup time,
10.1007/978-3-319-19006-8, (Chapter 17) 2015, pp. 253–264.
12
[23] N. Hashemian, C. Diallo, B. Vizvari, Makespan minimization for parallel ma-
chines scheduling with multiple availability constraints, Ann. Oper. Res. 213
(feb.) (2014) 173–186.

[24] Kahng, B. A., Kang, S., Kumar, R., Sartori, J., Enhancing the efficiency of energy-
constrained DVFS designs, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21
(10) (2013) 1769–1782.

[25] N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Some observations on optimal frequency
selection in DVFS-based energy consumption minimization, J. Parallel Distrib.
Comput. 71 (8) (2011) 1154–1164.

[26] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2011) 1374–1381.

[27] M. Qiu, Z. Ming, S. Liu, S. Liu, B. Wang, Z. Lu, Three-phase time-aware energy
minimization with DVFS and unrolling for chip multiprocessors, J. Syst. Archit.
58 (10) (2012) 439–445.

[28] D. Zhu, R. Melhem, B. Childers, Scheduling with dynamic voltage/speed adjust-
ment using slack reclamation in multi-processor real-time systems, IEEE Trans.
Parallel Distrib. Syst. 14 (7) (2003) 686–700.

[29] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.G. Talbi, A.Y. Zomaya, D. Tuyttens,
A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for
cloud computing systems, J. Parallel Distrib. Comput. 71 (11) (2011) 1497–1508.

[30] A. To, An efficient biobjective heuristic for scheduling workflows on heteroge-
neous DVS-enabled processors, J. Appl. Math.,2014,(2014-7-7) 2014 (12) (2014)
1–15.

[31] Tarplee, Kyle, M, Friese, Ryan, Maciejewski, Anthony, A, Siegel, Howard, Energy
and makespan tradeoffs in heterogeneous computing systems using efficient
linear programming techniques, IEEE Trans. Parallel Distrib. Syst. (2016).

[32] L.F. Bittencourt, R. Sakellariou, E. Madeira, DAG scheduling using a lookahead
variant of the heterogeneous earliest finish time algorithm, in: 2010 18th
Euromicro Conference on Parallel, Distributed and Network-Based Processing,
2010.

[33] Z. Tang, L. Qi, Z. Cheng, K. Li, S.U. Khan, K. Li, An energy-efficient task
scheduling algorithm in DVFS-enabled cloud environment, J. Grid Comput. 14
(1) (2016) 55–74.

[34] Y. Zhang, Y. Wang, H. Wang, Energy-efficient task scheduling for DVFS-enabled
heterogeneous computing systems using a linear programming approach, in:
Performance Computing and Communications Conference, 2017, pp. 1–8.

[35] X. Chen, K. Li, C. Liu, SLA-based energy aware scheduling of precedence-
constrained applications on DVFS-enabled clusters, in: IEEE International
Conference on Parallel and Distributed Systems, 2014, pp. 336–343.

[36] Y. Zhang, X.S. Hu, D.Z. Chen, Task scheduling and voltage selection for energy
minimization, 2002, pp. 183–188.

[37] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heterogeneous
computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014) 2867–2876.

[38] Y. Zhang, Y. Wang, C. Hu, CloudFreq: Elastic energy-efficient bag-of-tasks
scheduling in DVFS-enabled clouds, in: IEEE International Conference on Parallel
and Distributed Systems, 2016, pp. 585–592.

[39] L. Wang, G.V. Laszewski, J. Dayal, F. Wang, Towards energy aware scheduling
for precedence constrained parallel tasks in a cluster with DVFS, in: Ieee/Acm
International Conference on Cluster, Cloud and Grid Computing, 2010, pp.
368–377.

[40] J. Kang, S. Ranka, Slack allocation algorithm for parallel machines, J. Parallel
Distrib. Comput. 70 (1) (2010) 23–34.

[41] H. Kimura, M. Sato, Y. Hotta, T. Boku, Emprical study on reducing energy of
parallel programs using slack reclamation by DVFS in a power-scalable high
performance cluster, in: IEEE International Conference on CLUSTER Computing,
2006, pp. 1–10.

[42] N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Y.C. Lee, Linear combinations of DVFS-
enabled processor frequencies to modify the energy-aware scheduling algorithms,
in: Ieee/Acm International Conference on Cluster, Cloud and Grid Computing,
2010, pp. 388–397.

[43] D. Zhu, R. Melhem, D. Mosse, The effects of energy management on reliabil-
ity in real-time embedded systems, in: Ieee/Acm International Conference on
Computer-Aided Design, 2004, pp. 35–40.

[44] A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design,
IEEE J. Solid-State Circuits 27 (4) (1995) 473–484.

[45] M.Y. Wu, D.D. Gajski, Hypertool: A programming aid for message-passing
systems, Parallel Distrib. Syst. IEEE Trans. 1 (3) (1990) 330–343.

[46] Y.C. Chung, S. Ranka, Applications and performance analysis of a compile-time
optimization approach for list scheduling algorithms on distributed mem-
ory multiprocessors, in: ACM/IEEE Conference on Supercomputing, 1992, pp.
512–521.

http://refhub.elsevier.com/S1383-7621(21)00213-7/sb1
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb1
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb1
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb1
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb1
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb4
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb4
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb4
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb4
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb4
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb5
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb5
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb5
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb8
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb8
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb8
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb9
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb9
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb9
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb9
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb9
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb10
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb10
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb10
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb10
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb10
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb12
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb12
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb12
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb13
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb13
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb13
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb13
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb13
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb14
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb14
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb14
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb20
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb20
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb20
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb24
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb25
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb25
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb25
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb25
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb25
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb26
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb27
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb27
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb27
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb27
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb27
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb33
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb33
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb33
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb33
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb33
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb37
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb37
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb37
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb40
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb40
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb40
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb45
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb45
http://refhub.elsevier.com/S1383-7621(21)00213-7/sb45

Journal of Systems Architecture 121 (2021) 102311J. Liang et al.
Jie Liang received the B.S. degree in communication en-
gineering from Henan normal university in 2011, and the
M.S. degree in information and communication engineering
from Hunan university in 2014. She is currently working
toward the Ph.D. degree at Hunan University, China. Her
research interests are mainly in modeling and scheduling
of distributed computing systems, optimization and parallel
algorithms, game theory, grid and cloud computing.

Kenli Li received the Ph.D. degree in computer science from
Huazhong University of Science and Technology, China, in
2003. He was a visiting scholar with the University of
Illinois at Urbana-Champaign from 2004 to 2005. He is
currently the dean and a full professor of computer science
and technology with Hunan University and deputy director
of National Supercomputing Center in Changsha. His major
research areas include parallel computing, high-performance
computing, grid, and cloud computing. He has published
more than 150 research papers in international conferences
and journals such as the IEEE Transactions on Computers, the
IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Signal Processing, the Journal of Parallel and
Distributed Computing, ICPP, and CCGrid. He serves on the
editorial board of the Transactions on Computers. He is an
outstanding member of the CCF. He is a senior member of
the IEEE.
13
Chubo Liu received the B.S. degree and Ph.D. degree in
computer science and technology from Hunan University,
China, in 2011 and 2016, respectively. He is currently an
associate professor of computer science and technology at
Hunan University. His research interests are mainly in game
theory, approximation and randomized algorithms, cloud
and edge computing. He has published over 8 papers in
journals and conferences such as the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on
Cloud Computing, the ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, the Theoretical
Computer Science, and ICPADS.

Keqin Li is a SUNY Distinguished Professor of computer
science with the State University of New York. He is
also a National Distinguished Professor with Hunan Uni-
versity, China. His current research interests include cloud
computing, fog computing and mobile edge computing,
energy-efficient computing and communication, embedded
systems and cyber–physical systems, heterogeneous com-
puting systems, big data computing, high performance
computing, CPU–GPU hybrid and cooperative computing,
computer architectures and systems, computer networking,
machine learning, intelligent and soft computing. He has
authored or coauthored more than 770 journal articles, book
chapters, and refereed conference papers, and has received
several best paper awards. He holds nearly 60 patents an-
nounced or authorized by the Chinese National Intellectual
Property Administration. He has chaired many international
conferences. He is currently an associate editor of the ACM
Computing Surveys and the CCF Transactions on High Per-
formance Computing. He has served on the editorial boards
of the IEEE Transactions on Parallel and Distributed Systems,
the IEEE Transactions on Computers, the IEEE Transactions on
Cloud Computing, the IEEE Transactions on Services Computing,
and the IEEE Transactions on Sustainable Computing. He is an
IEEE Fellow.

	Are task mappings with the highest frequency of servers so good? A case study on Heterogeneous Earliest Finish Time (HEFT) algorithm
	Introduction
	Motivations
	Related work
	Our contributions
	Organization

	Models and problem formulation
	Application model
	Computing system model
	Performance measurement
	Problem formulation

	HEFT mapping with different frequency levels and a frequency scaling algorithm
	HEFT mapping
	The frequency scaling algorithm

	Experimental evaluation
	Processor heterogeneity models
	Randomly generated application graphs
	Random application graphs
	Random application performance results

	Real-world application graphs
	Gaussian elimination
	Fast Fourier transformation

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

