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Abstract—Federated learning is a distributed machine learning technology that can protect users’ data privacy, so it has attracted

more and more attention in the industry and academia. Nonetheless, most of the existing works focused on the cost optimization of the

entire process, while the cost of individual participants cannot be considered. In this article, we explore a min-max cost-optimal problem

to guarantee the convergence rate of federated learning in terms of cost in wireless edge networks. In particular, we minimize the cost

of the worst-case participant subject to the delay, local CPU-cycle frequency, power allocation, local accuracy, and subcarrier

assignment constraints. Considering that the formulated problem is a mixed-integer nonlinear programming problem, we decompose it

into several sub-problems to derive its solutions, in which the subcarrier assignment and power allocation are obtained by utilizing the

Lagrangian dual decomposition method, the CPU-cycle frequency is obtained by a heuristic algorithm, and the local accuracy is

obtained by an iteration algorithm. Simulation results show the convergence of the proposed algorithm and reveal that the proposed

scheme can accomplish a tradeoff between the cost and fairness by comparing the proposed scheme with the existing schemes.

Index Terms—CPU-cycle frequency, federated learning, local accuracy, min-max cost, wireless edge networks
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1 INTRODUCTION

WITH the unprecedented rapid development of smart
devices, they have become an indispensable part of

people’s daily life, and a massive amount of data is gener-
ated each day [1], [2], [3]. The rich data may provide sup-
port for machine learning (ML)-based application, such as
training the user activity models and predicting the health
events models. In the traditional centralized machine learn-
ing technology, smart devices (SDs) users upload their data
directly to the cloud server for model training. However,

since the data is uploaded to the centralized server, the pri-
vate information of users may be leaked.

Federated learning (FL) is deemed to be an effective tech-
nique, which trains an excellent global model at the cloud
server [4], [5]. FL is essentially a distributed machine learn-
ing, which allows users to train data locally without upload-
ing data directly to the cloud server. In FL, each local user
first acquires the current global model from the cloud server,
then the shared model is updated with local dataset, and
finally, the updated model is transmitted back to the server.
By avoiding the employment of centralized training, the
user’s privacy is effectively protected in the FL technique.

Some works have been done to research the privacy and
security of users in federated learning. The authors [6] pre-
sented a privacy-preserving and verifiable framework to
warrant the confidentially of user’s local gradients in feder-
ated learning. In [7], the authors explored user-level privacy
leakage from the perspective of malicious server attacks,
thereby analyzing the privacy leakage problem of federated
learning. The authors [8] presented a cryptographic tech-
nique that can protect the uploaded information before
averaging the parameters of the shared model. In [9], the
authors proposed a cost-effective and privacy-enhanced
technique for FL to avoid the compromise of adversaries to
the shared parameters.

Except for privacy issues, the resource optimization is a
challenge for federated learning [10], [11], [12]. Federated
learning requires a great many computing and radio resour-
ces because users need to train the global model with local
data and then sent the updated model back to the cloud
server. In [13], the authors proposed a federated averaging
algorithm, which can achieve efficient communication by
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increasing the frequency of local training or decreasing local
training minibatch sizes. The authors in [14] presented a
federated learning algorithm that can achieve the tradeoff
between the convergence time and the energy consumption
of local users. In [15], the authors investigated the applica-
tion of federated learning in realistic wireless networks and
formulated an optimization problem to minimize the loss
function of the federated learning.

Although some works have studied the resource optimi-
zation of federated learning, there exist new challenges to
address. On the one hand, the time of federated learning is
determined by two parts: the local computation time and
the communication time. Under the premise of the known
accuracy level, the learning time is one of the important per-
formance metrics of federated learning. Since the model
parameters of all participants can be aggregated only when
they are uploaded to the server at the same time, the time
for each participant to update the model parameters will
affect the convergence rate of federated learning. For this
reason, the learning time of individual smart devices needs
to be considered. On the other hand, due to the limited
energy of SDs, how to achieve optimal allocation of comput-
ing resources and radio resources to minimize energy con-
sumption is a major concern.

To tackle these problems, we formulate and investigate
the min-max cost problem that specifically minimize the
cost of the worst-case participant for federated learning.
The contributions of this paper are summarized as follows:

� We propose a hierarchical federated learning optimi-
zation framework over wireless edge networks to
study the problem of participant cost minimization
in the worst case.

� We formulate an optimization problem to accom-
plish the optimal performance of federated learning
by jointly optimizing the local accuracy, subcarrier
assignment, transmit power allocation, and compu-
tational resource allocation.

� Since the proposed optimization problem is a mixed-
integer nonlinear programming problem, it is diffi-
cult to obtain its solutions directly. Therefore, we

decomposed the original problem into several sub-
problems to solve. For subcarrier assignment and
power allocation, we develop an iteration algorithm
to derive the optimal solution. Besides, we design an
adaptive harmony search algorithm to obtain the
local CPU-cycle frequency and develop an iteration
algorithm to get the local accuracy of federated
learning.

� The extensive numerical simulation results show the
convergence performance of the proposed algorithm
and display a tradeoff between the cost and fairness.
Meanwhile, compared with the existing algorithms,
the performance of the proposed algorithm is better
in terms of the cost.

The remainder of this paper is organized as follows. In
Section 2, the system model is first minutely described and
then the proposed problem is formulated. In Section 3, we
design the radio resources allocation algorithm. The design
of computation resources allocation and local accuracy algo-
rithms are respectively described in Section 4. In Section 5,
we manifest the simulation results and discussions. Ulti-
mately, conclusions are displaced in Section 6.

2 SYSTEM MODEL

In this section, we first mention the description of the hierar-
chical federated learning over wireless edge networks, then
discuss the local computation model, edge aggregation
model, and cloud aggregation model. Finally, we formulate
an optimization problem to minimize the cost of the worst-
case user in the system.

2.1 Hierarchical Federated Learning Model in
Wireless Edge Networks

As shown in Fig. 1, we consider deploying hierarchical fed-
erated learning in wireless edge networks, which is com-
posed of a cloud server and M base stations (BS), indexed
by the set M¼ f1; 2; . . . ;Mg. Each BS m is equipped with
an edge server and serves Nm smart devices (SM). We let
Nm ¼ f1; 2; . . . ; Nmg denote the set of smart devices covered
by BS m . Then the total number of smart devices is N ¼

Fig. 1. The system framework.
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PM
m¼1 Nm. Assume that each participating smart device

nm 2 Nm has a local dataset Dnm , the size of which is
defined asDnm ¼ jDnm j.

Then the dataset of an BS m is denoted by Dm ¼PNm
nm¼1 Dnm and the global aggregated dataset is defined as

D ¼PM
m¼1 Dm. In the supervised learning model, the local

data set Dnm of SD nm consists of a set of data samples. A
data sample i is made up of a vector xi and a scalar yi, where
xi and yi are the input and output of the supervised learning
model, respectively. The data is generated by the interaction
between the user and applications installed on the SD. By
using these data in SD, SDs can collaborate to train machine
learningmodels deployed inwireless edge networks.

For a given data sample i, there is a loss function giðwÞ,
wherew is themodel parameter in learningproblem. Typically,
xi 2 Rd (d denotes the features of input sample vector xi) and
yi 2 R or yi 2 f�1; 1g. Then simple examples of the loss func-
tion include linear regression, i.e., giðwÞ ¼ 1

2 ðxT
i w� yiÞ2; yi 2

R, support vector machines, i.e., maxf0; 1� yix
T
i wg; yi 2

f�1; 1g, and logistic regression, i.e., �log ð1þ expð�yixT
i wÞÞ,

yi 2 f�1; 1g. In federated learning, the iteration includes three
steps: 1) each SD learns the local model based on the training
data, 2) edge servers aggregate and update the local model
parameters and gradients at every communication round, and
3) the edge servers synchronously uploads their parameters to
the cloud server to aggregate the parameters at pre-determined
frequency.

In BS m, the local loss function on the dataset Dnm for SD
nm is

GnmðwÞ ¼
1

Dnm

X
i2Dnm

giðwÞ: (1)

Accordingly, the edge loss function at edge serverm is

GmðwÞ ¼ 1

Dm

XNm

nm¼1
DnmGnmðwÞ: (2)

Similar to [16], we assume that the upper bound of the
number of edge iterations is expressed as

Ið�; uÞ ¼ 1

1� u
Oðlog ð1=�ÞÞ; (3)

where � and u are the edge accuracy and local accuracy,
respectively. From (3), we can observe that the number of
Ið�; uÞ will increase sharply when u is big (i.e., u! 1).
Hence, it is very important to optimize the local accuracy
[16]. Similar to [12], we assume that the edge accuracy � is
fixed. For ease of presentation, Oðlog ð1=�ÞÞ is normalized to
1 [17], and then IðuÞ ¼ 1

1�u . In the hierarchical FL model,
each edge iteration is composed of computation time and
uplink and downlink communication time. In the paper, we
neglect the downlink time due to the high downlink band-
width and high BS power compared to uplink communica-
tion [12], [18], [19]. However, the computation time relies on
the number of local iterations, so the upper bound of the
number of local iterations is given by log ð1=uÞ.

Similarly, the global loss function on all distributed data-
sets is defined as

GðwÞ ¼ 1

D

XM
m¼1

DmGmðwÞ: (4)

Then, the learning problem is formulated as

min
w2R

GðwÞ: (5)

2.2 Local Computation Model

For edge server m, we let Cnm denote the number of CPU
cycles that is required by SD nm to handle a sample data.
We assume that all data samples in the system have the
same datasize [12]. Then the total number of CPU cycles
required by smart device nm in edge servermwhen running
one local iteration is CnmDnm . ff ¼ ðfnmÞ denotes the CPU-
cycles frequency required by smart device nm to execute
one local iteration. By adopting dynamic voltage and fre-
quency scaling (DVFS) technology, smart devices can adap-
tively change their computing speed to decrease power
consumption and shorten computing time [19]. Similar to
[20], the power consumption is modeled as Ploc

nm
¼ knmf

3
nm

,
where knm is the effective switched capacitance of the CPU
at smart device nm [21]. Then the computing time required
for each local iteration of smart device nm is given by

tlocnm
¼ CnmDnm

fnm
: (6)

Accordingly, the total computing time required for smart
device nm to update one local model is expressed as Tcmp

nm
¼

log ð1=uÞtlocnm
. The energy consumption for smart device nm

to update one local model is given by

Eloc
nm
¼ Tcmp

nm
P loc
nm
¼ log ð1=uÞknmCnmDnmf

2
nm

: (7)

2.3 Edge Computation Model

In hierarchical federated learning, we presume that the sys-
tem uses the frequency reuses technique. There are K sub-
carriers in the system, the set of which is denoted as
K ¼ f1; 2; . . . ; Kg, and the bandwidth of each subcarrier is
B0. Let PP ¼ ðPnm;kÞ and HH ¼ ðhnm;kÞ denote the transmit
power and the channel gain from BS m to smart device n on
subcarrier k, respectively. The channel-to-interference-plus-
noise of smart device nm on subcarrier k is given by

gnm;k ¼
Pnm;khnm;kP

j2M;i;j 6¼nm;m Pmaxgi;j þ s2
; (8)

where Pmax and gi;j are the maximum transmit power that
can be allocated on each smart device and the channel gain
of smart device i in BS j, respectively. Therefore, the trans-
mit rate of smart device nm on subcarrier k is expressed as

rnm;k ¼ B0log 2ð1þ gnm;kÞ ¼ B0log 2ð1þ Pnm
�hnm;kÞ; (9)

where

�hnm;k ¼ hnm;kP
j2M;i;j6¼nm;m Pmaxgi;j þ s2 (10)

and s is the noise power for each subcarrier.
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Then the total transmit rate and the sum transmit power
from smart device n to edge server m are respectively
expressed as

rnm ¼
X
k2K

xnm;krnm;k; (11)

pcomnm
¼
X
k2K

xnm;kPnm;k; (12)

where xx ¼ ðxnm;kÞ is the subcarrier variable, where xnm;k ¼ 1
means that the subcarrier k is assigned to smart device nm

and xnm;k ¼ 0 otherwise. Let Snm be the size of the local
model parameters (i.e., wn) updated by smart device nm. The
transmit time of smart device nm is Tcom

nm
¼ Snm=rnm . The

energy consumption of smart device nm can bewritten as

Ecom
nm
¼ pcomnm

Tcom
nm

: (13)

Correspondingly, the overall time and the total energy
consumption of smart device nm to complete one edge itera-
tion are respectively given by

Tnm ¼ Tcmp
nm
þ Tcom

nm
; (14)

Enm ¼ Eloc
nm
þ Ecom

nm
: (15)

The computation energy consumption and computation
time of edge serverm are respective denoted by Em and Tm.

2.4 Cloud Aggregation Model

Let rr ¼ ðrmÞ and pp ¼ ðpmÞ denote the transmit rate and
transmit power from edge server m to cloud server. Denote
by Um the model parameter size of edge server m. Then the
transmit time and the energy consumption of cloud server
m are respectively given by

Tcloud
m ¼ Um

rm
; (16)

Ecloud
m ¼ pmTm: (17)

Compared with communications, the computing time
and energy consumption of cloud server aggregation param-
eters can be ignored. Hence, we only pay attention to the
impact of the difference in communications quality on the
hierarchical federated learning.

Then the total cost of individual link (i.e., individual
smart devices parameters transmission, individual edge
server parameter aggregation, and individual edge server
parameters transmission) in one global iteration is given by

Cost ¼ �eðIðuÞðEnm þ EmÞ þEcloud
m Þ

þ �tðIðuÞðTnm þ TmÞ þ Tcloud
m Þ; (18)

where �e and �t (�e; �t 2 ½0; 1�) denote the weights of the
energy consumption and the latency, respectively.

2.5 Problem Formulation

In the subsection, we formulate an optimization problem of
jointly optimizing local accuracy and resource allocation for

FL in mobile edge networks. We propose to minimize the
maximum cost of all individual links while meeting some
constraints. Especially, a joint optimization problem is for-
mulated by considering local accuracy u, local CPU-cycle
frequencies ff , subcarrier assignment xx, and transmit power
allocation PP as follows:

min
u;xx;ff;PP

max
n;m

Cost

s:t: ðC1Þ : 0 � fnm � fmax
nm

; 8n;m;

ðC2Þ : log ð1=uÞCnmDnm

fnm
� tmax; 8n;m;

ðC3Þ :
X
k2K

xnm;krn;k � Rr
nm

; 8n;m;

ðC4Þ :
XNm

nm¼1
xnm;k � 1; 8k;

ðC5Þ : xnm;k 2 f0; 1g; 8n; k;m;

ðC6Þ : 0 �
X
k2K

xnm;kPnm;k � Pmax
nm

; 8n;m;

ðC7Þ : 0 � u � 1; (19)

where Rr
nm

, Pmax
nm

, and tmax are the basic transmission rate, the
maximum transmission power of smart device nm when
uploading the updated local model parameters, and the maxi-
mum tolerable time, respectively. ðC1Þ is the CPU-cycles fre-
quency constraint of smart device nm. ðC2Þ indicates that the
computing time for smart device nm to update one local model
cannot exceed the maximum tolerable time. ðC3Þ ensures the
basic rate requirement of smart devices. ðC4Þ and ðC5Þ state
that one smart device can be assigned at most one subcarrier.
ðC6Þ is the transmit power constraint of smart devices. ðC7Þ is
the feasible region constraint of the local accuracy. Note that the
problem (19) is not convex so that it is difficult to solve directly.

All the notations used in the entire paper are listed in
Table 1.

3 DESIGN OF RADIO RESOURCES ALLOCATION

ALGORITHM

3.1 Problem Transformation

In the subsection, we transform the problem (19) by utiliz-
ing the fractional programs and the Lagrangian dual
decomposition and design an algorithm to obtain the opti-
mal subcarrier assignment and transmit power allocation
under the given CPU-cycles frequency ff and the local accu-
racy u. Then the optimal subcarrier assignment and power
allocation can be derived by settling the following problem:

min
xx;PP

max
nm

IðuÞSnm �e
P

k2K xnm;kPnm;k þ �t
� �P

k2K xnm;krnm;k

s:t: ðC3Þ :
X
k2K

xnm;krnm;k � Rr
nm

; 8n;m;

ðC4Þ :
XNm

nm¼1
xnm;k � 1; 8k;

ðC5Þ : xnm;k 2 f0; 1g; 8n; k;m;

ðC6Þ : 0 �
X
k2K

xnm;kPnm;k � Pmax
nm

; 8n;m: (20)
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Since IðuÞlog 1=uð Þ �eknmCnmDnmf
2
nm
þ �tCnmDnm=fnm

� �
þ

�eðIðuÞEm þ Ecloud
m Þ þ �tðIðuÞTm þ Tcloud

m Þ in (19) is a con-

stant, it has no effect on the solution of the subcarrier and

power allocation, so it is omitted in (20). We can easily see

that the objective function of (20) is non-convex, so (20) is a

non-convex optimization problem. However, we can group

the problem (20) into a nonlinear fractional programming

problem and solve it by using fractional optimization [22].

Let F denote the feasible region of ðC3Þ � ðC6Þ in the prob-
lem (20). Then, we have

V � ¼ min
fxx;PPg2F

max
nm

IðuÞSnm �e
P

k2K xnm;kPnm;k þ �t
� �P

k2K xnm;krnm;k

¼ max
nm

IðuÞSnm �e
P

k2K x
�
nm;kP

�
nm;k þ �t

� �
P

k2K x
�
nm;kr

�
nm;k

; (21)

where V �, as well as xx� and PP � are the optimal value and
optimal solution of problem (20), respectively.

To settle the problem (20), we give the following
theorem.

Theorem 1. The optimal solution fxx�; PP �g of problem (20) can
be achieved if and only if

min
fxx;PPg2F

max
nm

 
IðuÞSnm

 
�e
X
k2K

xnm;kPnm;k þ �t

!
� V �

X
k2K

xnm;krnm;k

!

¼ max
nm

 
IðuÞSnm

 
�e
X
k2K

x�nm;kP
�
nm;k þ �t

!
� V �

X
k2K

x�nm;kr
�
nm;k

!
¼ 0:

(22)

Proof. Similar to [23], we can prove it from sufficiency and
necessity. First, the proof of the sufficiency is given as
following.

Assume that xx�; PP � is the optimal solution of the prob-
lem (20), and xx0; PP 0 is its feasible solution, then we have

max
nm
IðuÞSnm �e

X
k2K

x�nm;kP
�
n;k þ �t

 !
� V �

X
k2K

x�nm;kr
�
n;k¼ 0

max
nm
IðuÞSnm �e

X
k2K

x0nm;kP
0
nm;k þ �t

 !
� V �

X
k2K

x0nm;kr
0
n;k � 0:

(23)

Then, from (43), we get

max
nm

IðuÞSnm �e
P

k2K x
�
nm;kP

�
nm;k þ �t

� �
P

k2K x
�
nm;kr

�
nm;k

¼ V �; (24)

TABLE 1
Key Notation Definitions in System Model

Symbol Definitions Symbol Definitions

N The total number of smart devices M The number of edge servers/BS
Nm The set of all smart devices in BSm Dnm The local data set of smart device nm

u=� The local accuracy/edge accuracy V The control parameter
Pnm;k The transmit power from smart device nm

on subcarrier
fnm The CPU-cycles frequency required by smart

device nm to execute one local iteration
Dnm The local data set of smart device nm hnm;k The channel gain of smart device nm on subcarrier k
K The number of subcarriers Cnm The number of CPU cycles of smart device nm

fnm The CPU-cycles frequency required by
device nm to execute one local iteration

xnm;k The subcarrier k is assigned to smart device nm

Pnm;k The transmit power from smart device nm

on subcarrier k
Elocal

nm
=Ecom

nm
The energy consumption for smart device nm in
local computation/communications process

Tcmp
nm

=Tcom
nm

The total computing/transmit time for
smart device nm

s The noise power

Snm The size of the local model parameters
update by smart device nm

tmax The tolerable maximum delay

fmax
nm

The maximum CPU-cycles frequency of
device nm

Pmax The maximum transmit power of smart device nm

Rr
nm

The basic transmit rate of smart device nm %, �; & The precision of algorithm
�e, �t The weight value of energy consumption

and delay
IðuÞ the number of edge model iterations

B0 The bandwidth of each subcarrier F The feasible region of constraints
giðvÞ=i The loss function/data sample v The parameter of learning model
GðvÞ The global loss function Um The model parameter size of edge server
Tcloud
m =Ecloud

m The transmit time and the energy
consumption of cloud server

knm The effective switched capacitance of the CPU at
smart device nm

tlocnm
The local computing time rm=pm The maximum transmit rate and transmit power in

cloud model
rnm;k The transmit rate of devices n in BSm on

subcarrier k
rnm=P

com
nm

The transmit rate/power of device n in BSm

DWmax=DWmin The maximum and minimum value o
distance bandwidth

mHMCRm

mHMCRm
The mean of normal distribution

NI The number of improvisations sPARm

sPARs
The standard deviation of normal distribution

FENG ET AL.: MIN-MAX COST OPTIMIZATION FOR EFFICIENT HIERARCHICAL FEDERATED LEARNING IN WIRELESS EDGE... 2691



max
nm

IðuÞSnm �e
P

k2K x
0
nm;kP

0
nm;k þ �t

� �
P

k2K x
0
nm;kr

0
nm;k

� V �; (25)

Therefore, we can obtain that xx0; PP 0 is also the optimal
solution of (14). Then the proof of sufficiency is
completed.

Next, let’s prove its necessity. For any feasible xx0; PP 0 in
the domain of (14), we have

max
nm

IðuÞSnm �e
P

k2K x
�
nm;kP

�
nm;k þ �t

� �
P

k2K x
�
nm;kr

�
nm;k

¼ V � ¼ 0;

max
nm

IðuÞSnm �e
P

k2K x
0
nm;kP

0
nm;k þ �t

� �
P

k2K x
0
nm;kr

0
nm;k

� V � ¼ 0; (26)

Hence, since the following equation holds

max
n
IðuÞSnm �e

X
k2K

x�nm;kP
�
nm;k þ �t

 ! 
�V �

X
k2K

x�nm;kr
�
nm;k

!
¼ 0;

(27)

we have that xx�; PP � is the optimal solution of (14). Then
the proof of necessity is completed. tu
Observing the above, the problem (20) can be solved by its

equivalent problem (22). Nevertheless, since the value of V �

is unknown in advance, we can solve problem (22) by replac-
ing V � with an update parameter V [23], thereby obtaining
the optimal solution of problem (20). Algorithm 1 describes
the details of the whole procedure, where the optimization
problem in line 2 is given by

min
fxx;PPg2F

max
nm

IðuÞSnm �e
X
k2K

xnm;kPnm;k þ �t

 ! 
�V

X
k2K

xnm;krnm;k

!

s:t: ðC3Þ � ðC6Þ: (28)

Algorithm 1. Iterative Radio Resource Allocation Algo-
rithm to Solve (20)

Input: the maximum number of iterations omax, the precision &,
the initial value V 0  0, and o 0.
Output: V .
1: while o4omax do
2: Solve problem (28) to obtain xxo and PPo under the given

V o.
3: if maxnm IðuÞSnm �e

P
k2K x

o
nm;kP

o
nm;k þ �t

� �����
�V o

P
k2K x

o
nm;kr

o
nm;k

���� < & then

4: xx�  xxo; PP �  PPo.

5: V �  maxnm
IðuÞSnm �e

P
k2K x�

nm;k
P�
nm;k
þ�t

� �
P

k2K x�
nm;k

r�
nm;k

.
6: break
7: else
8: V oþ1  maxnm

IðuÞSnm �e
P

k2K xo
nm;k

Po
nm;k
þ�t

� �
P

k2K xo
nm;k

ro
nm;k

.
9: end if
10: o oþ 1.
11: end while

To solve (28), we introduce a new variable z1 and let
maxnmCost ¼ z1. Then the original problem (28) is trans-
formed as

min
xx;PP

z1

s:t: ðC3Þ :
X
k2K

xnm;krnm;k � Rr
nm

; 8n;m;

ðC4Þ :
XNm

nm¼1
xnm;k � 1; 8k;

ðC5Þ : xnm;k 2 f0; 1g; 8n; k;m;

ðC6Þ : 0 �
X
k2K

xnm;kPnm;k � Pmax
nm

; 8n;m;

ðC8Þ : IðuÞSnm �e
X
k2K

xnm;kPnm;k þ �t

 !

� V
X
k2K

xnm;krnm;k � z1; 8n;m: (29)

From (22), we can observe that z1 � 0 when 0 � V � V �

for all feasible xx and PP . Observe (29), we can see that it is a
non-convex optimization problem. For this reason, we intro-
duce a new variable anm;k ¼ xnm;kPnm;k and relax the value
of xnm;k to the interval [0,1]. Particularly, xnm;krnm;k ¼ 0
when xnm;k ¼ 0. The problem (29) is rearranged as

min
xx;PP

z1

s:t: ðC3Þ :
X
k2K

xnm;kB0log 2 1þ anm;k
�hnm;k

xnm;k

� �
� Rr

n; 8n;m;

ðC4Þ :
XN
nm¼1

xnm;k � 1; 8k;

ðC5Þ : 0 � xnm;k � 1; 8n; k;m;

ðC6Þ : 0 �
X
k2K

anm;kPnm;k � Pmax
nm

; 8n;m;

ðC8Þ : IðuÞSnm �e
X
k2K

anm;k þ �t

 !

� V
X
k2K

xnm;klog 2 1þ anm;k
�hnm;k

xnm;k

� �
� z1; 8n;m: (30)

For optimization problem (30), we have the following
theorem to describe its attribute.

Theorem 2. Problem (30) is a convex problem in xx;aa, and z1.

Proof. According to the definition of the perspective function,
we conclude that if a function fðxÞ is convex, then its per-
spective function gðx; tÞ ¼ tfðx=tÞ is also convex [24].
According to the conclusion, xnm;klog 2 1þ anm;k

�hnm;k=
�

xnm;kÞ is concave. That is because its perspective function
log 2 anm;k

�hnm;k

� �
is concave. Since the sum of concave func-

tions is still concave,
P

k2K xnm;klog 2 1þð anm;k
�hnm;k=xnm;kÞ

preserves concavity. Based on the convex optimization
theorem [24], the superlevel set of a concave function is
convex, so the constraint ðC3Þ is convex. Since IðuÞSnm

�e
P

k2K anm;k þ �t
� �� V

P
k2K xnm;klog 2 1þ anm;k

�hnm;k=
�

xnm;kÞ is the sum of non-negative convex function, ðC8Þ is
convex. In addition, ðC4Þ � ðC6Þ are all linear constraints.
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Consequently, we can prove that problem (20) is convex
optimization problem. tu
Noting that (30) satisfies the Slater’s condition with

zero duality gap, the optimization solutions can be
derived via the Lagrangian dual decomposition. The
Lagrangian function of (30) is written as (31), shown at
the bottom of this page, which bb ¼ ðb1; . . . ;bnmÞ � 0, gg ¼
ðg1; . . . ; gkÞ � 0, nn ¼ ðn1; . . . ; nnmÞ � 0, and mm ¼
ðm1; . . . ;mnmÞ � 0 are the dual variables associated with
constraints ðC3Þ, ðC4Þ, ðC6Þ, and ðC8Þ in the order given.

Accordingly, the dual function is expressed as

Dðbb; gg; nn;mmÞ ¼ min
XX;aa;z12ðC5Þ

LðXX;aa; z1;bb; gg; nn;mmÞ: (32)

Observe (32), for a given set of dual variables bb; gg; nn;mm,
we can minimize LðXX;aa; z1;bb; gg; nn;mmÞ to obtain the resource
allocation strategy and z1 by solving the following two
subproblems.

3.2 Resource Allocation Strategy

In this subsection, we derive the optimal solutions of xx and
PP by solving the following problem:

min
xx;PP

X
n2N

bnm �
X
k2K

xnm;kB0log 2 1þ anm;k
�hnm;k

xnm;k

� � ! 

þ
X
k2K

gk

XN
n¼1

xnm;k þ
X

nm2Nm

nnm

X
k2K

anm;k

þ
X

nm2Nm

mnm IðuÞSnm �e
X
k2K

anm;k þ �t

 ! 

�V
X
k2K

xnm;kB0log 2 1þ anm;k
�hnm;k

xnm;k

� �!!

s:t: ðC5Þ : 0 � xnm;k � 1; 8n; k;m; (33)

^Optimal power allocation: For a given variable xx, since
the Karush-Kuhn-Tucker (KKT) conditions exist, we can
take the partial derivative of Lðxx;aa; z1;bb; gg; nn;mmÞ in (33) with
respect to Pn;k and make it equal to 0. Then the optimal
power allocation is given by

P �nm;k ¼
a�nm;k

xnm;k

¼ B0ðbnm þ VmnmÞ
ðnnm þ mnmIðuÞSnm�

eÞ ln 2�
1

�hnm;k

	 
þ
; 8n; k;m; (34)

where yþ , maxf0; yg.

^ Optimal subcarrier assignment: After the power allo-
cation strategy is known, we obtain the optimal subcarrier
assignment policy by calculating the partial derivative of
Lðxx;aa; z1;bb; gg; nn;mmÞwith respect to xnm;k as follows:

@Lðxx;aa; z1;bb; gg; nn;mmÞ=@xnm;k

¼ � ðB0ðbnm þ mnmV Þ log 2 1þ anm;k
�hnm;k

xnm;k

� ���

� anm;k
�hnm;k

ðxnm;k þ anm;k
�hnm;kÞ ln 2

�
� gk

�
: (35)

Let @Lðxx;aa; z1;bb; gg; nn;mmÞ=@xnm;k ¼ 0 and substitute (34)
into (35), we further get

x�nm;k ¼
0; Ynm;k > gk;

1; Ynm;k < gk;

�
(36)

where

Yn;k ¼ B0ðbnm þ mnmV Þ
�

log 2
�hnm;k

B0ðbnm þ VmnmÞ
ðnnm þ mnmIðuÞSnm�

eÞ ln 2
� �	 
þ 

� 1

ln 2
1� ðnnm þ mnmIðuÞSnm�

eÞ ln 2
�hnm;kB0ðbnm þ VmnmÞ

" #þ!!
: (37)

Since the channel conditions �hnm;k is mutually indepen-
dent random, Yn;k among different user n cannot be the
same for the specified subcarrier k. Therefore, we re-given
the subcarrier assignment policy, i.e.,

x�nm;k ¼
1; if nm ¼ argminnm2Nm

Ynm;k;

0; if nm 6¼ argminnm2Nm
Ynm;k:

�
(38)

3.3 Variable z1 Selection

From (30), we can observe that only under a given z1 can we
get the solutions of xx and PP . Therefore, we need to further
discuss the solution of z1 in the subsection as follows:

minz1 1�
XNm

nm¼1
mnm

 !
z1

s:t: ðC8Þ : IðuÞSnm �e
X
k2K

anm;k þ �t

 !

� V
X
k2K

xnm;kB0log 2 1þ anm;k
�hnm;k

xnm;k

� �
� z1 � 0; 8nm: (39)

LðXX;aa; z1;bb; gg; nn;mmÞ ¼ z1 þ
X

nm2Nm

bnm Rr
nm
�
X
k2K

xnm;kB0log 2 1þ anm;k
�hnm;k

xnm;k

� � !
þ
X
k2K

gk

XNm

nm¼1
xnm;k � 1

 !

þ
X

nm2Nm

nnm

X
k2K

anm;k � Pmax
nm

 !
þ

X
nm2Nm

mnm IðuÞSnm �e
X
k2K

anm;k þ �t

 ! 

�V
X
k2K

xnm;kB0log 2 1þ anm;k
�hnm;k

xnm;k

� �
� z1

!
(31)

FENG ET AL.: MIN-MAX COST OPTIMIZATION FOR EFFICIENT HIERARCHICAL FEDERATED LEARNING IN WIRELESS EDGE... 2693



From (39), we can observe that the optimal solution of z1,
i.e., z�1, can be given by

z�1 ¼
0; if

PNm
nm¼1 mnm < 1;

H�nm;k; if
PNm

nm¼1 mnm � 1;

(
(40)

where

H�nm;k ¼ max
nm

IðuÞSnm �e
X
k2K

a�nm;k þ �t

 ! 

�V
X
k2K

x�nm;kB0log 2 1þ a�nm;k
�hnm;k

x�nm;k

 !!
: (41)

From (34) and (38), we can find that only by knowing
the dual variable bb; nn;mm in advance can we obtain the
optimal resource allocation strategy. To obtain the dual
variable bb; nn;mm, we give the dual problem of (30) as fol-
lows:

maxDðbb; gg; nn;mmÞ
s:t: bb � 0; gg � 0; nn � 0;mm � 0: (42)

Observe that, from (31) and (32), (42) is always convex,
because the objective function and the constraint of (42) is
linear. Consequently, we can address (42) by employing the
subgradient projection method. We first give the following
theorem to obtain a subgradient ofDðbb; gg; nn;mmÞ.
Theorem 3. For the dual problem (42) defined by the original

problem (30), the update of the dual variable is given by

bnmðlþ 1Þ ¼ ½bnmðlÞ þ oðlÞDbnmðlÞ�þ; (43)

nnmðlþ 1Þ ¼ ½nnmðlÞ þ qðlÞDnnmðlÞ�þ; (44)

mnmðlþ 1Þ ¼ ½mnmðlÞ þ gðlÞDmnmðlÞ�þ; (45)

where

Dbnm ¼ Rr
nm
�
X
k2K

x�nm;kB0log 2 1þ a�nm;k
�hnm;k

x�nm;k

 !
; (46)

Dnnm ¼
X
k2K

a�nm;k � Pmax
nm

; (47)

Dmnm ¼ IðuÞSnm �e
X
k2K

a�nm;k þ �t

 !

� V
X
k2K

x�nm;kB0log 2 1þ a�nm;k
�hnm;k

x�nm;k

 !
� z�1; (48)

and l is the index of iteration and oðlÞ, qðlÞ, and gðlÞ are very
small positive step size. We set oðlÞ ¼ qðlÞ ¼ 0:1=l, gðlÞ ¼
0:01=l [24], [25]. gg is set a constant in this paper.

Proof. According to the definition ofDðbb; gg; nn;mmÞ in (21), we
can get

Dðbb0; gg; nn0;mm0Þ � z1 þ
X

nm2Nm

b0nm

 
Rr

nm

�
X
k2K

xnm;kB0log 2

 
1þ anm;k

�hnm;k

xnm;k

!!

þ
X
k2K

gk
XNm

nm¼1
xnm;k � 1

 !
þ

X
nm2Nm

n0nm

 X
k2K

anm;k � Pmax
nm

!

þ
X

nm2Nm

m0nm IðuÞSnm

 
�e
X
k2K

anm;k þ �t

 !

�V
X
k2K

xnm;kB0log 2

 
1þ anm;k

�hnm;k

xnm;k

!
� z1

!
; (49)

where the reason for the inequality is the fact that xx� and
PP � are the optimal solutions corresponding to bb, gg, nn, and
mm.

Then, we rearrange (49) as

Dðbb0; gg; nn0;mm0Þ � Dðbb; gg; nn;mmÞ

þ
X

nm2Nm

ðb0nm� bnmÞ
 
Rr

n �
X
k2K

xnm;kB0log 2

 
1 þ anm;k

�hnm;k

xnm;k

!!

þ
X

nm2Nm

ðn0nm � nnmÞ
 X

k2K
anm;k � Pmax

nm

!

þ
X

nm2Nm

ðm0nm � mnmÞ
 
IðuÞSnm

 
�e
X
k2K

anm;k þ �t

!

� V
X
k2K

xnm;kB0log 2 1þð Þanm;k
�hnm;k

xnm;k

!
� z1: (50)

Note that i is a subgradient of a convex function gð	Þ if
gðxÞ � gðyÞ þ iT ðx� yÞ hold for all x and y in the domain.
Hence, Theorem 3 holds. tu
To solve (30), we develop an algorithm to obtain the opti-

mal solution, as shown in Algorithm 2.

Algorithm 2. Power Allocation and Subcarrier Assign-
ment Algorithm

Input: Dual variable bbð0Þ, nnð0Þ, mmð0Þ, the maximum number of
iteration lmax, l 0, and the precision %.
Output: Subcarrier assignment xx and transmit power PP .
1: while l4lmax do
2: Obtain power allocation Pnm;k according to (34).
3: Assign subcarrier xnm;k according to (38).
4: Obtain bbðlþ 1Þ, nnðlþ 1Þ, and mmðlþ 1Þ based on (43),

(44), and (45), respectively.
5: Compute iðlÞ  bbðlþ 1Þ � bbðlÞ, jðlÞ  nnðlþ 1Þ � nnðlÞ,

and zðlÞ  mmðlþ 1Þ � mmðlÞ, respectively.
6: if jjiðlÞjj2 < %, jjjðlÞjj2 < % and jjzðlÞjj2 < % then
7: x�nm;k  xnm;kðlÞ, P �nm;k  Pnm;kðlÞ.
8: break.
9: else
10: l lþ 1.
11: end if
12: end while
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4 DESIGN OF COMPUTATION RESOURCE

ALLOCATION AND LOCAL ACCURACY

ALGORITHM

4.1 Computation Resource Allocation Algorithm

In this subsection, we develop a heuristic search algorithm
to obtain the optimal computing resource allocation policy
under given radio resource allocation strategy fxx; PPg and
the local accuracy u. Then the optimization problem of com-
puting resource allocation is given by

min
ff

max
nm
IðuÞlog ð1=uÞ �eknmCnmDnmf

2
nm
þ �t CnmDnm

fnm

� �
þBnm

s:t: ðC1Þ : 0 � fnm � fmax
nm

; 8n;m;

ðC2Þ : log ð1=uÞCnmDnm

fnm
� tmax; 8n;m;

(51)

where

Bnm ¼ IðuÞSnmð�e
nPn þ �t

nÞ=rn þ �eðIðuÞEm þ Ecloud
m Þ

þ �tðIðuÞTm þ Tcloud
m Þ; (52)

and it is a constant.
Since the problem (51) is a continuous optimization prob-

lem, we propose an adaptive harmony search (AHS) algo-
rithm [26] to obtain the optimal solution of the problem.
The problem (51) includes the following constraints.

� Boundary constraint: 0 � fnm � fmax
nm

; 8nm.

� Performance constraint: log 1
u

� � CnmDnm
fnm

� tmax; 8nm.

By employing a penalty function, the problem is rear-
ranged as

min
ff

FðffÞ
s:t: 0 � fnm � fmax

nm
; 8n; (53)

where

FðffÞ ¼ Bnm þ
1

#

XNm

nm¼1
max 0; log

1

u

� �
CnmDnm

fnm
� tmax

� �

þmax
nm
IðuÞlog 1

u

� �
�eknmCnmDnmf

2
nm
þ �t CnmDnm

fnm

� �
;

(54)

and 1=#�!0 [27]. Observe that, from the problem (53), it
and the problem (51) have the same optimal solution.

The proposed AHS algorithm mainly includes the fol-
lowing basic parameters.

� The number of improvisations (NI): it presents the
maximum iteration number of the algorithm;

� Pitch adjusting rate (PAR): the parameter is the pitch
adjustment rate selected from the harmony vector;

� Distance bandwidth (DW): the parameter is the
adjustment range of the continuous variable;

� Harmony memory consideration rate (HMCR): it
indicates the probability of selecting one harmony
vector (HV) from the harmony memory;

� Harmony memory size (HMS): the harmony mem-
ory is regarded as a HMS 
N matrix, in which each
row represents the solution of the problem (53).

We take several dynamic parameters to balance the
exploration and exploitation of search process. Particularly,
HMCR and PAR are adaptively generated, where the value
of HMCR (PAR) is normal distributed with mean mHMCRm

(mPARm) and standard deviation sHMCRs (sPARs). Besides,
the value of DW is set as a dynamically decreasing function
as the number of iteration increase as follows:

DW ðIÞ ¼ DWmax � 2I DWmax�DWmin

NI ; if I < NI=2;

DWmin; if I � NI=2;

(
(55)

where DWmax and DWmin indicate the maximum and mini-
mum value of distance bandwidth, respectively.

Let Fd ¼ ðfdÞ denote the dth row of the HM, where d 2
f1; 2; . . . ; HMSg. FU and FL are respectively the upper and
lower bounds of optimal variable f . i.e., FU ¼ fmax

nm
; 8n and

FL ¼ 0. The detail of the proposed algorithm is shown in
Algorithm 3. In algorithm, r1, r2, and r3 are the uniform ran-
dom number generated in the interval [0,1], respectively.

Algorithm 3. AdaptiveHarmony Search (AHS)Algorithm

Input: Parameters DWmax, DWmin, NI, W , mHMCR, mPARm,
sHMCRs, sPARs, FðffÞ, the initial value of HM, the maxi-
mum iteration number I and iteration index w 1.

Output: the optimal computing resource allocation ff .
1: for I from 1 to NI do
2: Generate HMCR and PAR based on mHMCR, mPARm,

sHMCRs, and sPARs.
3: Compute the distance bandwidth DWðIÞ according to

(55).
4: for j from 1 to N do
5: if r1 < HMCR then
6: FnewðjÞ  FiðjÞ � r2 
DWðIÞ, where

i 2 f1; 2; . . . ; HMSg.
7: if r3 < PAR then
8: FnewðjÞ  FBðjÞ, where FB is the best HV.
9: end if
10: else
11: FnewðjÞ  FLðjÞ þ r2 
 ðFUðjÞ � FLðjÞÞ.
12: end if
13: end for
14: if FðFnewÞ < FðFDÞ then
15: Update the HM as FD  Fnew and preserve the

HMCR and PAR values, where FD is worst har-
mony vector.

16: end if
17: if w ¼W then
18: Recompute the values of mHMCR and mPARm based on

the saved HMCR and PAR values. Reset w 1.
19: else
20: w wþ 1.
21: end if
22: end for

4.2 Local Accuracy Optimization Algorithm

After we obtain xx, PP , and ff , the local accuracy optimization
problem becomes
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min
u

max
nm

log 1
u

� �
Fnm þ ~Enm

1� u

s:t: ðC2Þ : log
1

u

� �
CnmDnm

fnm
� tmax; 8n;

ðC7Þ : 0 � u � 1; (56)

where

Fnm ¼ �eknmCnmDnmf
2
nm
þ �t CnmDnm

fnm
; (57)

and ~Enm ¼ Snmð�ePnm þ �tÞ=rnm are constants. Z ¼
�eEcloud

m þ �tT cloud
m is a constant that does not affect the solu-

tion of the above problem, so we ignore it in (56).
To obtain the local accuracy u, we have

h ¼ min
u

max
nm

log ð1
u
ÞFnm þ ~Enm

1� u
: (58)

Then, the optimization problem (56) is recast as

min
u

max
nm

log 1=uð ÞFnm þ ~Enm � hð1� uÞ
s:t: ðC2Þ; ðC7Þ: (59)

To solve the problem (59), we propose an iterative algo-
rithm to obtain the optimal local accuracy. The detail of the
proposed algorithm is shown in Algorithm 4.

Algorithm 4. Iteration Local Accuracy Optimization
Algorithm

Input: The maximum iteration number Vmax, the precision �,
the minimum value h 0, and v 0.
Output: h�, u�.
1: while v � Vmax do
2: Solve (60) for a given hv to obtain the local accuracy.
3: if maxnm ~Enm � Fnm log ðuvÞ � hvð1� uvÞ� ��� �� � � then
4: u�  uv:
5: break
6: else
7: hvþ1  hv � maxnm

~Enm�Fnm log ðuvÞ�hvð1�uvÞð Þ
uv�1 .

8: v vþ 1.
9: end if
10: end while

For a given h, we introduce a new variable z2 to rear-
ranged the originally optimization problem (59) as follows:

min
u

z2

s:t: ðC2Þ; ðC7Þ;

ðC8Þ : log 1

u

� �
Fnm þ ~Enm � hð1� uÞ � z2; 8n;m: (60)

From (60), we observe that it is a convex optimization
problem and the solution can be easily obtain.

5 SIMULATION RESULTS

In this section, a larger number of simulation results are dis-
played to evaluate the performance of the proposed scheme.

5.1 Simulation Parameters

For our simulations, we consider a cellular network that
consists of 8 smart devices and 3 BSs scattering over a 1
 1
km2. The other simulation parameters are listed in Table 2.
The channel is modelled as a frequency-selective channel
that is composed of twelve independent Rayleigh multi-
paths. We adopt the Clarkes flat fading model as the
component of the twelve multipaths. The relative power
of the component of the twelve multipaths are set
½�2:5;�4;�3:2; 0;�5:2;�7:5;�5:5;�2:8;�10;�8:7;�12;
�11� dB. We consider the two baseline schemes to verify the
performance of the proposed schemes. The first scheme is
that focuses on the cost of the entire system, and do not con-
sider the cost of individual smart devices. This scheme is
called the network cost optimization scheme (NCS). The
second scheme is that focuses on minimizing the training
time of the system subject to a total power constraint, which
is called the training time minimization scheme (TTS).

5.2 Convergence Performance

Fig. 2 shows the convergence of the outer loop of Algorithm
1, where V is the optimal value of problem (20). We can

TABLE 2
Summary of The Simulation Parameters

Parameters Values

Total bandwidth, B 1 MHz
Maximum computing capacity, fmax

nm
2 GHz

Processing density, Cnm 273.5 cycle/bit
Noise power density,N0 �174 dBm/Hz
Training size,Dnm 40 KB
Tolerable maximum delay, tmax 0.5 s
Required transmit rate, Rr

nm
2 � 104 bit/s

Maximum transmit power, Pmax 2 W
kser;m 10�27
Harmony memory size ,HMS 5
mHMCRmðmPARmÞ 0.95(0.3)
sHMCRmðsPARmÞ 0.01(0.05)
DWmaxðDWminÞ ðFU � FLÞ=20ð0:0005Þ
The number improvisations NI 6000

Fig. 2. Convergence of Algorithm 1.

2696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022



observe that it converges normally in six steps. In order to
display the overall convergence rate of Algorithm 1, we fur-
ther plot the dual variable bb versus the iteration number to
show the convergence of its inner loop, as shown in Fig. 3.
From Fig. 3, it is observed that Algorithm 2 has a fast con-
vergence rate. Therefore, Algorithm 1 is cost-effective in
terms of computation complexity. Furthermore, we can
detect that, from Fig. 2, the cost of the worst-case smart
device decreases as the number of subcarrier K increases
for a given the number of smart devices N . The reason is
that smart devices with good channel conditions are more
likely to be assigned subcarriers, and the transmit power
allocation is optimized. In Fig. 4, we show the convergence
evolution of Algorithm 4, where h is the optimal value of
problem (58). It is observe that it has a relatively fast conver-
gence rate, and converges in twenty steps.

5.3 Performance of the Proposed Algorithm

Fig. 5 illustrates how the weight value �e affects the local accu-
racy u. The local accuracy increases when tmax increases. Fur-
ther, it is observed that local accuracy increases rapidly with �e

only when �e is below a certain threshold and then keeps

growing slowly once �e is larger than this threshold. This
is because the increase in �e will increase the overhead
of power consumption (see Cost ¼ �eðIðuÞðEnm þ EmÞ þ
Ecloud

m Þ þ �tðIðuÞ ðTnm þ TmÞ þ Tcloud
m Þ). Therefore, to balance

the overhead between the power consumption and delay, the
local accuracy doesn’t increase quickly as �e increases.

In Figs. 6 and 7, we give performance comparisons
among the three schemes, namely the NCS [12], the pro-
posed scheme, and the TTS [10], in terms of the system cost
from different perspectives.

Fig. 6 shows the cost of the system and each smart device
among the above three schemes. We can observe that the
NCS saves the overhead of system at the cost of each smart
device efficiency in bad channel conditions and limited
computing resource. On the other hand, the proposed
scheme can balance the cost of each smart device.

In Fig. 7, we further compare the system performance
among the schemes from three aspects: the system cost, the
worst cost, and the best cost. It is observed that there is a sub-
stantial difference in the cost between the worst and the best
cost in the NCS and the TTS, while the cost of each smart
device in the proposed scheme is well-balanced with a
slightly increased in the system cost. This tradeoff between

Fig. 3. Convergence of Algorithm 2.

Fig. 4. Convergence of Algorithm 4.

Fig. 5. Local accuracy versus �e.

Fig. 6. Comparisons of the cost of the system and each SD.
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the system cost and individual smart device fairness is simi-
lar to the tradeoff between the throughput and fairness [28].

Fig. 8 shows the impact of the number of smart devices
on the cost. Observe that, the cost slowly decreases with the
increase in the number of smart devices, then the perfor-
mance of the proposed scheme is the best, followed by the
NCS, and the TTS is the worst. This is because the greater
the number of smart devices increases, the more accurate
the network trained model, and thus the lower the cost.

In Fig. 9, we investigate the impact the weight value �t on
the energy consumption and the learning time. Accord-
ingly, we set three weights parameters to display the perfor-
mance of the proposed scheme, where the three parameters
are set to �t ¼ 0:2, �t ¼ 0:4, and �t ¼ 0:6, respectively.
Observe that, for a given data size, the energy consumption
and the learning time decrease as �t increases. Besides, for a
given �t, it is observed that the values of the power con-
sumption and the learning time increase with the increase
in data size Dnm . However, the learning time slowly grows
when the data size exceeds a certain value. The reason is
that the proposed scheme can achieve the tradeoff between
energy consumption and the learning time.

Fig. 10 examines the energy consumption under different
maximum transmit power Pmax

nm
. It can be observed that the

larger the maximum transmit power, the greater the energy

consumption. That is because a looser transmit power constraint
will cause a big transmit power, then the corresponding energy
consumption will be big. However, observe that, the growth of

Fig. 7. Comparisons of the system cost, the worst cost, and the best
cost.

Fig. 8. Cost under different number of smart devicesN.

Fig. 9. Power consumption/training time under different data sizeDnm .

Fig. 10. Power consumption under different maximum transmit power
Pmax
nm

.

Fig. 11. Training time under different maximum computing capacity of
smart devices fmax

nm
.
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energy consumption does not increases indefinitely with the
increase of Pmax

nm
, but keeps unchanged once Pmax

nm
is larger than

this threshold. That is because the learning time must be
ensured. In addition, the performance of the proposed scheme
is the best, followed by theNCS, and the TTS is theworst.

In Fig. 11, we show the impact of the maximum comput-
ing capacity fmax

nm
on the learning time. From Fig. 11, we can

observe that the learning time of all schemes decreases with
the increase in the maximum computing capacity of smart
device. That is because the computing time is monotonically
decreasing in the the CPU-cycles frequency (see (6)).
Besides, it is observed that the proposed scheme performs
better than other schemes.

6 CONCLUSION

In this paper, we have considered a wireless edge network
and investigated the energy consumption and the learning
time of hierarchical federated learning by a formulated opti-
mization problem. To meet the performance requirements of
the system, we have jointly optimized local accuracy, subcar-
rier assignment, transmit power allocation, and local CPU-
cycle frequency. Furthermore, we have decomposed the origi-
nal problem into several sub-problem to solve, aiming to
reduce the computing complexity of straight settle the formu-
lated problem. Particularly, the subcarrier assignment and the
transmit power are obtained by an iteration algorithm, the
CPU-cycle frequency is obtained by an adaptive harmony
search algorithm, and we have developed an iteration algo-
rithm to obtain the local accuracy. Finally, the simulation
results have revealed the performance of the proposed scheme
and shown that the proposed method can provide fairness to
all smart devices in terms of the cost.
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