
Future Generation Computer Systems 174 (2026) 108012

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Adaptive multi-objective swarm intelligence for containerized microservice

deployment
Jiaxian Zhu a, Weihua Bai a, Huibing Zhang b,∗, Weiwei Lin c , Teng Zhou d ,∗, Keqin Li e
a School of Computer Science, Zhaoqing University, Zhaoqing, China
b The Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, China
c School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
d School of Cyberspace Security (School of Cryptology), Hainan University, Haikou, China
e Department of Computer Science, State University of New York, New Paltz, NY, USA

A R T I C L E I N F O

Keywords:
Microservice deployment
Containerized microservice
Swarm intelligence optimization algorithms
Multi-objective optimization

 A B S T R A C T

Container-based microservice architecture is essential for modern applications. However, optimizing deploy-
ment remains critically challenging due to complex interdependencies among microservices. In this paper,
we propose a formalized deployment model by systematically analyzing the interdependencies within Service
Function Chains (SFCs). To achieve this, we design a novel swarm intelligence optimization algorithm, named
Multi-objective Sand Cat Swarm Optimization with Hybrid Strategies (MSCSO-HS), for multi-objective opti-
mization in microservice deployment. Our algorithm effectively optimizes inter-microservice communication
costs and enhances container aggregation density to improve application reliability and maximize resource
utilization. Extensive experiments demonstrate that MASCSO outperforms state-of-the-art algorithms for all
optimization metrics. Our model achieves improvements of 23.76% in communication latency, 47.51% in
deployment density, 38.70% in failure rate, 58.50% in CPU utilization, and 53.81% in RAM usage. The
MASCSO framework not only enhances microservice performance and reliability but also provides a robust
solution for resource scheduling in cloud environments for microservice deployment.
1. Introduction

Service Function Chains (SFCs) are a sequence of virtualized net-
work functions that are interconnected to provide specific services.
Container technology, integrated with microservice architecture, has
revolutionized the integration, deployment, and scheduling of service
function chains (SFCs) in modern applications, offering enhanced elas-
ticity, flexibility, and maintainability. This container-based microser-
vice deployment has emerged as a dominant paradigm in contemporary
application development and a cornerstone for resource allocation
and service scheduling across cloud, mobile edge, and fog computing
environments. The deployment of containerized microservices necessi-
tates addressing multiple objectives, such as optimizing performance,
ensuring energy efficiency, facilitating maintenance, achieving load
balancing, enhancing responsiveness, reducing costs, and enabling elas-
tic invocation. Microservice architecture breaks down coarse-grained
applications into fine-grained, functionally independent service units,
which can be deployed autonomously. These microservices collectively
form an SFC or business chain, representing a business workflow mod-
eled as a Directed Acyclic Graph (DAG) of interdependent invocations.

∗ Corresponding authors.
E-mail addresses: zhanghuibing@guet.edu.cn (H. Zhang), teng.zhou@hainanu.edu.cn (T. Zhou).

Container technology significantly improves efficiency by enabling re-
source sharing at both the operating system and image repository
levels, thereby streamlining application packaging, deployment, and
management.

Recent research advances container deployment and resource
scheduling in microservice architectures by introducing novel algo-
rithms and optimization strategies. Mendes et al. [1] enhance energy ef-
ficiency by integrating an on-demand oversubscription-based container
scheduling algorithm into Docker Swarm. Their approach significantly
improves resource utilization and reduces energy consumption, demon-
strating the effectiveness of adaptive scheduling techniques in dynamic
environments.

They allocate additional requests by oversubscribing CPU and mem-
ory resources, improving utilization and energy efficiency. Mao et al.
[2,3] propose a Dynamic and Resource-Aware Placement Scheme
(DRAPS) for Docker Containers to address system heterogeneity, re-
source utilization, and stability. However, DRAPS increases network
consumption. Lv et al. [4] design a two-stage scheduling approach
for container placement and reallocation in data centers, minimizing
https://doi.org/10.1016/j.future.2025.108012
Received 9 February 2025; Received in revised form 21 May 2025; Accepted 6 Jul
vailable online 21 July 2025
167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and
y 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0001-6876-1795
https://orcid.org/0000-0003-1920-8891
https://orcid.org/0000-0001-5224-4048
mailto:zhanghuibing@guet.edu.cn
mailto:teng.zhou@hainanu.edu.cn
https://doi.org/10.1016/j.future.2025.108012
https://doi.org/10.1016/j.future.2025.108012

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
communication costs and balancing resource usage to boost utilization.
While these studies advance deployment strategies and orchestration
techniques, they prioritize isolated objectives such as resource uti-
lization, energy efficiency, or performance. Existing approaches [5]
neglect critical challenges, including selective container deployment,
optimal microservice allocation, and dependency management between
microservices.

Microservices architectures employ containers as execution environ-
ments for microservices, where communication dependencies, service
interdependencies, and microservice failures critically influence system
performance, resource utilization, operational costs, and energy con-
sumption. Pallewatta et al. [6–8] propose a scalable, QoS-aware multi-
objective set-based Particle Swarm Optimization (QMPSO) strategy to
schedule microservices-based IoT applications in fog environments.
Their approach optimizes completion time, budget, and throughput
while maximizing limited fog resources through batch microservice
placement. Faticanti et al. [9] address locality challenges in fog com-
puting by proposing a heuristic approach to manage external object
and computational resource access for client microservices. These con-
tributions advance deployment strategies but require further integra-
tion of dependency management and failure resilience mechanisms to
holistically address system-wide tradeoffs. Current research prioritizes
addressing cross-domain containerized microservice dependencies to
enhance user experience, QoS, and resource utilization. However, exist-
ing approaches focus narrowly on singular optimization objectives and
neglect to unify critical factors such as data center performance, clus-
ter resource utilization, service fault tolerance, and resource provider
cost-profit dynamics within a holistic framework.

Determining how many instances each microservice needs and plac-
ing them on the right computational nodes requires understanding mi-
croservice dependencies and reducing communication overhead. In this
paper, we propose a Multi-Objective Aware Optimization Algorithm
(MASCSO) for container-based microservice placement. To achieve this,
we design a Multi-objective Sand Cat Swarm Optimization with Hy-
brid Strategies (MSCSO-HS). Our MASCSO balances multiple objectives
under limited resources, varying resource distributions, and diverse
application requirements. It manages combinatorial dependencies and
user demands in a Service Function Chain (SFC) by deciding the proper
number of microservice instances based on load and performance.
MASCSO optimizes microservice aggregation, reduces cross-container
communication overhead, and lowers microservice failure rates. It
then deploys these instances to appropriate containers, virtual ma-
chines, or physical servers. MASCSO improves resource utilization,
system responsiveness, load balancing, and the reliability of application
services.

The main contributions of this paper are as follows.

• We design a novel formal model for container-based microservice
deployment by analyzing microservice interdependencies within
Service Function Chains.

• We propose a novel swarm intelligence optimization algorithm,
named Multi-objective Sand Cat Swarm Optimization with Hy-
brid Strategies (MSCSO-HS), which serves as the foundation for
MASCSO to address multi-objective challenges in microservice
deployment.

• We validate MASCSO’s feasibility and effectiveness through ex-
tensive experiments, highlighting its potential to enhance re-
source utilization, improve system reliability, and optimize per-
formance across diverse runtime environments.

2. Related work

In cloud computing, container-based microservice deployment
strategies drive research and serve as a crucial technology. These
strategies directly influence cloud data center performance indicators,
such as system performance, resource efficiency, energy consumption,
and cost.
2
2.1. Heuristic-based method

We model container-based microservice deployment as an NP-hard
integer programming problem. Many researchers apply heuristic algo-
rithms to solve such problems, offering significant benefits for microser-
vice instance deployment.

Mahmoud et al. address system availability, scalability, resource
utilization, and power consumption by proposing a Many-Objective
Genetic Algorithm Scheduler (MOGAS) in [10]. This scheduler targets
multiple objectives to produce solutions with better performance. MO-
GAS outperforms the Ant Colony Optimization (ACO) algorithm by
allocating a higher proportion of tasks on average and reducing energy
consumption.

Omogbai et al. examine the container placement scheduling prob-
lem in edge computing and shows in [11] that many optimization mod-
eling frameworks convert the problem into multi-objective or graph
network models solvable by algorithms. Meanwhile, scheduling algo-
rithms use heuristic-based methods to rapidly find suboptimal solu-
tions.

Zhou et al. propose GGA-HLSA-RW (GHW) as a novel genetic
algorithm. GHW optimizes cloud utilization and energy consump-
tion to tackle the Multiple Dimensional Resources Scheduling Prob-
lem (MDRSP) [12,13] and MOEA/D [12,14] to yield GHW-NSGA II
and GHW-MOEA/D. Experimental results confirm the effectiveness of
GHW’s growth strategy and dimension-reduction approach in cloud
computing.

Heuristic optimization algorithms excel at multi-objective optimiza-
tion and demonstrate robust global search capabilities [15]. These
algorithms also maintain a simple and efficient structure. Inherent
randomness in parameter settings strongly influences performance, and
it often leads to non-reproducible results. These algorithms usually
produce near-optimal solutions, and the problem scale or encoding
method can affect solution quality.

2.2. Metaheuristic/swarm intelligence optimization methods

Researchers employ metaheuristic and swarm intelligence optimiza-
tion methods. These methods replicate biological evolution and group
behavior. They explore complex solution spaces and often produce
optimal or near-optimal solutions [16]. They also demonstrate strong
capabilities in multi-objective optimization tasks for cloud resource
scheduling [3].

Lin et al. introduced a multi-objective ant colony optimization algo-
rithm for microservice invocation. This method addresses resource uti-
lization, communication overhead, and service failure rate in
microservice-based applications [17].

Ouyang et al. devised a service deployment strategy based on Ac-
celerated Particle Swarm Optimization (APSO). This strategy enhances
efficiency in cloud data centers by optimizing resource allocation and
scheduling during service deployment [18,19]. Empirical results con-
firm that this model reduces system response times and improves
resource utilization in cloud data centers.

Researchers have proposed additional algorithms based on meta-
heuristic and group intelligence optimization. These methods address
microservice deployment and scheduling in cloud computing, the In-
ternet of Things, and fog computing. They include the Evolution-
ary Game Algorithm [20], Non-dominated Sorting Genetic Algorithm-
II (GA-NSGA-II) [21], the knowledge-driven evolutionary algorithm
(MGR-NSGA-III) [22]. Researchers report that meta-heuristic and group
intelligence algorithms provide strong advantages for complex and dy-
namically changing scheduling problems. Parameter tuning can unlock
each algorithm’s potential and mitigate its limitations.

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
2.3. Methods based on deep learning/reinforcement learning

Deep learning and reinforcement learning solutions for microservice
deployment and container orchestration have attracted considerable
attention, and many studies have examined these approaches.

Saravanan et al. introduced a hybrid optimum and deep learning
approach for dynamic, scalable task scheduling (DSTS). This method
addresses the task scheduling problem in cloud container environ-
ments [23]. Muthakshi proposed an Optimized Task Scheduling Al-
gorithm with Deep Learning (OTS-DL). This algorithm automatically
allocates containers [24]. Tom et al. presented a multi-agent environ-
ment with a deep reinforcement learning-based decision mechanism
(Multi-Agent Deep Reinforcement Learning). This environment deploys
containers to suitable cloud servers [25]. Cheng et al. developed a
task scheduling strategy optimization algorithm based on an improved
asynchronous advantage actor-critic (A3C). This algorithm tackles the
multi-objective problem of minimizing average response time and en-
ergy consumption [26]. Deep reinforcement learning methods for con-
tainer or microservice deployment offer strong decision-making capa-
bilities but are vulnerable to changes in the execution environment.
Their reliance on a specific training environment creates a significant
challenge.

Existing methods struggle to balance multiple conflicting objectives
in cloud-based environments. Communication overhead, container den-
sity, system failure rate, and CPU/RAM utilization often conflict, and
single-objective or fixed-weight approaches fail to maintain optimal
performance across all metrics. Many swarm intelligence algorithms
succumb to local optima and show limited robustness under boundary
conditions or dynamic changes. Most approaches also lack an efficient
solution archival mechanism, which hinders the real-time utilization of
nondominated solutions, especially in high-dimensional scenarios with
large solution sets.

We integrate a vigilance/random-walk mechanism into swarm in-
telligence algorithms and employ a Hypergrid-based external archiving
scheme. This adaptive scheduling framework addresses the challenges
of balancing diverse objectives, escaping local optima, and improving
scalable solution storage.

3. Designing the deployment problem formulation

The microservice architecture divides an application into small, in-
dependently deployable service units. These units form service function
chains (SFCs) according to invocation dependencies. A container-based
approach places the required instances on the appropriate virtual or
physical machines.

3.1. Microservice deployment based on service function chains (SFCs)

Fig. 1 illustrates an example of microservice deployment. The left
section presents two service function chains: 𝑆𝐹1 ∶ {𝑚𝑠1, 𝑚𝑠2, 𝑚𝑠3, 𝑚𝑠4,
𝑚𝑠6} and 𝑆𝐹2 ∶ {𝑚𝑠1, 𝑚𝑠3, 𝑚𝑠4, 𝑚𝑠5}. The invocation dependencies are
defined as: 𝐹1 ∶ {𝑚𝑠1 → 𝑚𝑠2, 𝑚𝑠2 → 𝑚𝑠3, 𝑚𝑠3 → 𝑚𝑠4, 𝑚𝑠4 → 𝑚𝑠6}
and 𝐹2 ∶ {𝑚𝑠1 → 𝑚𝑠4, 𝑚𝑠4 → 𝑚𝑠3, 𝑚𝑠3 → 𝑚𝑠5}. Users 𝑈𝑠𝑒𝑟1 and 𝑈𝑠𝑒𝑟2
access 𝑆𝐹1 and 𝑆𝐹2, respectively.

The orchestrator deploys microservice instances on specific nodes,
such as: 𝑁𝑜𝑑𝑒1 ∶ {𝑚𝑠1, 𝑚𝑠3}, 𝑁𝑜𝑑𝑒2 ∶ {𝑚𝑠1,
𝑚𝑠4}, and 𝑁𝑜𝑑𝑒3 ∶ {𝑚𝑠2, 𝑚𝑠5, 𝑚𝑠6}. The deployment process consid-
ers constraints, including available resources such as CPU, memory,
network bandwidth, and storage capacity. Communication latencies
vary by node due to distinct network conditions and data transfer
volumes. Each microservice has unique resource requirements that
dictate container allocation.

The right section of Fig. 1 presents the logical architecture of the
container-based microservice deployment model in a cloud environ-
ment. This model comprises four layers: the User Layer, Workload
3
Fig. 1. Microservice instance deployment application scenario.

Manager Layer, Resource Pool Control Layer, and Resource Infras-
tructure Layer. The Workload Manager Layer acquires microservice
instances on demand, orchestrating containers based on user requests.
The Resource Pool Control Layer employs the MASCSO algorithm to
determine optimal deployment and scheduling plans executed in the
Resource Infrastructure Layer.

3.2. Container-based microservice deployment model

The multi-objective-aware microservice deployment algorithm fa-
cilitates container-based deployment. Users submit requests, and the
system evaluates the resource demands of SFC microservices. The al-
gorithm targets optimal configurations and quantities of microservices
and execution containers while adhering to resource and deployment
constraints. This approach minimizes system response times, enhances
cluster resource utilization, and reduces service failure rates, ensuring
a high-quality user experience.

Each service function chain consists of sequentially ordered mi-
croservices. Let 𝑆𝐹𝑖 represent the 𝑖th requested application, where
1 ≤ 𝑖 ≤ 𝑀 , with 𝑀 denoting the total number of user-requested
applications.

Each application 𝑆𝐹 𝑖 utilizes the tuple (𝑀𝑆,𝐹) to define its mi-
croservice composition:

• 𝑀𝑆 denotes the set of microservices within the service function
chain, expressed as 𝑀𝑆 = {𝑚𝑠𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑛𝑆𝐹 𝑖}, where 𝑛𝑆𝐹 𝑖 =
|𝑀𝑆| represents the total number of microservices in 𝑆𝐹 𝑖.

• 𝐹 encapsulates the functional dependencies among these mi-
croservices, defined as
𝐹 = {⟨𝑚𝑠𝑖, 𝑚𝑠𝑗⟩ ∣ 𝑖, 𝑗 ∈ [1, 𝑛𝑆𝐹 𝑖], 𝑖 ≠ 𝑗}.

The notation ⟨𝑚𝑠𝑖, 𝑚𝑠𝑗⟩ indicates a call from microservice 𝑚𝑠𝑖
to microservice 𝑚𝑠𝑗 . These dependencies are stored within the
matrix 𝐹 ′ ∈ R𝑛𝑆𝐹 𝑖×𝑛𝑆𝐹 𝑖 , where 𝑓𝑖𝑗 = 1 if the dependency ⟨𝑚𝑠𝑖, 𝑚𝑠𝑗⟩
exists.

The visual representation shows 𝑆𝐹𝑖 as a directed acyclic graph
(DAG). The set 𝑀𝑆 forms the vertex set, and the function dependencies
𝐹 produce the directed edges. Each application includes a group of
microservices connected by call dependencies. This structure yields a
DAG.

The system represents each microservice 𝑚𝑠𝑘 with a quadruple
(

𝑟CPU𝑘 , 𝑟RAM𝑘 , 𝑣𝑘, 𝑣𝑇𝑘
)

:

• 𝑟CPU𝑘 and 𝑟RAM𝑘 denote the minimum CPU and RAM resources a
server needs to handle 𝑚𝑠𝑘. The server must have at least 𝑟CPU𝑘
and 𝑟RAM𝑘 available.

• 𝑣𝑘 indicates the number of concurrent requests that 𝑚𝑠𝑘 can
handle.

• 𝑣𝑇𝑘 specifies the threshold number of requests that 𝑚𝑠𝑘 can pro-
cess before reaching maximum concurrency limits imposed by its
container.

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Each server node 𝑁𝑆𝑝 appears as a tuple (𝑅𝑠𝑝,Pos𝑝).

• 𝑅𝑠𝑝 = {(𝑟𝑠CPU𝑝 , 𝑟𝑠RAM𝑝) ∣ 1 ≤ 𝑝 ≤ 𝑀}, where 𝑀 indicates the
number of server nodes. The parameters 𝑟𝑠CPU𝑝 and 𝑟𝑠RAM𝑝 specify
the remaining CPU and RAM resources of 𝑁𝑆𝑝. The system en-
sures 𝑟𝑠CPU𝑝 ≤ 𝑅𝑠CPU𝑝 and 𝑟𝑠RAM𝑝 ≤ 𝑅𝑠RAM𝑝 , with 𝑅𝑠CPU𝑝 and 𝑅𝑠RAM𝑝
denoting the total resource allocations for 𝑁𝑆𝑝.

• Pos𝑝 marks the node’s network location and affects communi-
cation latency. The network distance between 𝑁𝑆𝑖 and 𝑁𝑆𝑗 is
Ds𝑖𝑗 = ‖Pos𝑖 − Pos𝑗‖, which illustrates the latency coefficient
between them.

Let 𝑈𝑟𝑚𝑠𝑘 denote the number of requests for microservice 𝑚𝑠𝑘. The
system deploys and executes microservice instances within contain-
ers. The variable 𝑣𝑘 indicates the number of concurrent requests for
𝑚𝑠𝑘, while 𝑣𝑇𝑘 represents the concurrency threshold of the deployed
container.

The container remains stable when the condition 𝑣𝑇𝑘 ≥ (𝑈𝑟𝑚𝑠𝑘 ⋅
𝑣𝑘) is satisfied. Conversely, it enters an overloaded state when 𝑣𝑇𝑘 <
(𝑈𝑟𝑚𝑠𝑘 ⋅ 𝑣𝑘). In response to overload conditions, the system dynamically
scales the number of container instances to achieve load balancing. The
number of container instances to be expanded, denoted as 𝐸𝑥𝐶𝐶𝑜𝑛𝑐 , is
given by:

𝐸𝑥𝐶𝐶𝑜𝑛𝑐 =

⌈

𝑈𝑟𝑚𝑠𝑘 ⋅ 𝑣𝑘
𝑣𝑇𝑘

⌉

. (1)

The container-based microservice deployment scheme 𝐶𝑆𝑝𝑠 ad-
dresses constraints for user-requested microservices, the resources they
require, and the resources available on servers. This scheme is defined
as follows:

CSps =
[

X1,X2,… ,X𝑆
]𝑇 . (2)

In this model, let X𝑖 ∈ R1×𝑀 for 𝑖 = 1, 2,… , 𝑆. The term 𝑆, defined
as 𝑆 =

∑𝑀
𝑘=1 𝑛𝑆𝐹𝑘 , represents the total number of microservices across

all applications, where |𝑚𝑠| refers to the overall set of microservices.
The system defines 𝑀 as the total number of server nodes available for
hosting microservices. Thus, CSps ∈ R𝑆×𝑀 .

We define alloc(𝑚𝑠𝑗) as the set of nodes that are responsible for
hosting the microservice 𝑚𝑠𝑗 along with its execution container Con𝑐 ,
thus enabling its operational functionality. The system applies relevant
constraints when deciding whether 𝑁𝑆𝑝 belongs to alloc(𝑚𝑠𝑗). The node
𝑁𝑆𝑝 appears in alloc(𝑚𝑠𝑗) when it hosts 𝑚𝑠𝑗 , and does not appear if it
does not host 𝑚𝑠𝑗 . Each element 𝑥𝑖𝑗 of the matrix CSps characterizes
the deployment status of microservice 𝑚𝑠𝑖 on node 𝑁𝑆𝑗 as follows:

𝑥𝑖𝑗 =
{

1 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖)
0 𝑁𝑆𝑗 ∉ alloc(𝑚𝑠𝑖)

(3)

where the variable 𝑥𝑖𝑗 ∈ [0, 1] indicates whether the microservice 𝑚𝑠𝑖
is deployed (1) or not deployed (0) on node 𝑁𝑆𝑗 .

In this container-based microservice deployment model, we deploy
𝑆 microservices ms along with their corresponding containers from
all applications 𝑆𝐹 across 𝑀 server nodes 𝑁𝑆. Each server node
can host multiple microservices or container instances. We assert that
identifying a valid container-based microservice deployment scheme
𝐶𝑆𝑝𝑠 under these constraints is NP-hard. This claim is supported by
reducing our problem to the well-known NP-hard problem of graph
coloring, which establishes its computational complexity.

3.3. Objective evaluation function

We develop a multi-objective microservice deployment optimization
algorithm. The algorithm targets four objectives: minimizing microser-
vice communication latency, maximizing container deployment den-
sity, enhancing resource utilization within the cluster, and reducing the
microservice failure rate.
4
3.3.1. Communication latency evaluation function for microservices
The cluster connects its nodes through high-speed networks, reduc-

ing communication latency among microservices, accelerating system
response, and enhancing user experience. Index 𝑖 denotes microser-
vice 𝑚𝑠𝑖, while 𝑖′ refers to 𝑚𝑠𝑖′ called by 𝑚𝑠𝑖, and 𝑗 identifies server
nodes. Microservice 𝑚𝑠𝑖 is hosted in container instance Con𝑖 with its
container image sourced from node 𝑁𝑆𝑗 . The communication overhead
comprises four factors: (1) container image size SiCon𝑖, (2) network
distance 𝐷𝑠′𝑗𝑗 between nodes, (3) data volume 𝐷𝑑𝑖𝑖′ per interaction, and
(4) access frequency 𝑣𝑖𝑖 for the invoked microservice.

Assuming alloc(𝑚𝑠𝑗) ≥ 1 implies that a microservice’s container
instance can operate across multiple server nodes. The average data
transmission time between container pairs influences overall commu-
nication latency. The call dependency matrix 𝐹 ′ ∈ R𝑆×𝑆 captures
interdependencies among all microservices 𝑆𝐹 .

As the number of microservices increases, the frequency of com-
munication among them rises, resulting in higher network traffic and
system load. Additionally, network latency may worsen due to com-
munications spanning multiple nodes. To evaluate this, we can apply
the communication latency evaluation function (Eq. (4)) to quantify
changes in communication costs with increasing microservice com-
plexity. Specifically, as 𝑆 increases, the call dependency matrix 𝐹 ′

leads to more interactions, thereby significantly increasing communi-
cation delays and overhead. The experimental section will provide spe-
cific results comparing communication costs for different microservice
counts.

The communication latency evaluation function cde(𝑋), defined for
deployment scheme 𝑋 ∈ CSps ⊂ R𝑆×𝑀 , quantifies communication
latency as follows:

cde (𝑋) =
𝑆
∑

𝑖=1

𝑀
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑥𝑖𝑗
𝐸𝑥𝐶Con 𝑖

⋅
𝑀
∑

𝑘∈𝐴𝑗

(

𝐷𝑠𝑗𝑘 ⋅ SiCon𝑖
)

⎞

⎟

⎟

⎠

+
𝑆
∑

𝑖′≠𝑖
𝑓𝑖𝑖′ ⋅

𝑥𝑖𝑗
𝐸𝑥𝐶Con 𝑖

⋅
⎛

⎜

⎜

⎝

𝑀
∑

𝑘∈𝐴𝑖′

(

𝐷𝑑𝑗𝑘 ⋅𝐷𝑠𝑗𝑘 ⋅ 𝑣𝑗𝑘
)

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (4)

where 𝐴𝑗 = {𝑘 ≠ 𝑗 ∣ 𝑁𝑆𝑘 ∈ alloc(𝑚𝑠𝑘)}, and 𝐴𝑖′ = {𝑘 ∣ 𝑁𝑆𝑘 ∈
alloc(𝑚𝑠𝑖′)}.

3.3.2. Container deployment density evaluation function
Optimizing container deployment increases aggregation, leverages

resources more effectively, and reduces dispersion. The extended call
dependency matrix ∑𝐹 ′ ∈ R𝑆×𝑆 covers every microservice in 𝑆𝐹 . If
𝑓𝑖𝑗 = 1, the directed edge weight becomes 𝑊𝑖𝑗 , and this value reflects
the closeness of calls between the two microservices. These weights
form the call dependency weight matrix 𝑊 ∈ R𝑆×𝑆 .

In cloud computing environments, deploying microservice contain-
ers from SFC applications on the same server node or within the same
data center (CDC) aligns supply and demand more cost-effectively.
This practice reduces data transmission costs between services and
curbs network resource consumption. Centralized deployment boosts
resource utilization on specific nodes. We measure edge distances
between microservices to evaluate container aggregation and quantify
microservice concentration. We define two scenarios to measure node
edge distance. If 𝑓𝑖𝑖 = 1 and alloc(𝑚𝑠𝑖) ∩ alloc(𝑚𝑠𝑖) = 𝑁𝑆𝑘, then two
microservices with a direct call dependency share the same server node
𝑁𝑆𝑘 using containers, and the edge distance is 𝑊𝑖𝑖. If 𝑓𝑖𝑖 = 1 and
alloc(𝑚𝑠𝑖) ∩ alloc(𝑚𝑠𝑖′) = ∅, we define the edge distance as follows:

𝐷𝑘 =
𝑥𝑖𝑗

∏𝑆
𝑘=1
𝑘≠𝑗

𝑁𝑠𝑘∈alloc({𝑚𝑠𝑖})′

(𝑓𝑖𝑖′ ⋅𝐷𝑠𝑗𝑘)
𝑊𝑖𝑖′ .

(5)

Eq. (5) shows that a larger edge distance in a deployment scheme
signifies higher container deployment density. We use the reciprocal of
the sum of container edge distances as a quantification metric; smaller

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
values indicate better performance. We define the deployment intensity
evaluation function for a deployment scheme, denoted as dei(𝑋), as
follows:

𝑑𝑒𝑖(𝑋) = 1∕
𝑆
∑

𝑖=1
𝑓𝑖𝑖′

((𝑀
∑

𝑗=1

𝑥𝑖𝑗
𝐴(𝑖, 𝑗)

𝑊𝑖𝑖′

)

+𝑊𝑖𝑖′

)

, (6)

where 𝐴(𝑖, 𝑗) = ∏𝑆
𝑘=1∧𝑘≠𝑗

∧𝑁𝑠𝑘∈alloc
(

𝑚𝑠𝑖′
)

(

𝑓𝑖𝑖′ ⋅𝐷𝑠𝑗𝑘
)

.

3.3.3. Cluster resource utilization evaluation function
Appropriate allocation and scheduling of computational resources,

including CPU and memory, increase efficiency, reduce waste, and
optimize system performance. The average utilization rates of these
resources quantify the resource usage of a deployment scheme 𝑋 in the
cluster. For optimization objectives, we define the evaluation functions
𝑈𝐶𝑃𝑈 (𝑋) and 𝑈𝑅𝐴𝑀 (𝑋) as follows:

𝑈𝐶𝑃𝑈 (𝑋) =

∑𝑆
𝑖=1

𝑈𝑟𝑚𝑠𝑖 ⋅𝑣𝑘
𝐸𝑥𝐶𝐶𝑜𝑛𝑖

⋅ 𝑟𝐶𝑃𝑈
𝑖 ⋅ 𝑥𝑖𝑗

∑𝑀
𝑗=1 𝑟𝑠

𝐶𝑃𝑈
𝑗

, (7)

𝑈𝑅𝐴𝑀 (𝑋) =

∑𝑆
𝑖=1

𝑈𝑟𝑚𝑠𝑖 ⋅𝑣𝑘
𝐸𝑥𝐶𝐶𝑜𝑛𝑖

⋅ 𝑟𝑅𝐴𝑀𝑖 ⋅ 𝑥𝑖𝑗
∑𝑀

𝑗=1 𝑟𝑠
𝑅𝐴𝑀
𝑗

. (8)

3.3.4. Microservice failure rate evaluation function
Optimizing deployment strategies and enhancing fault-tolerance

mechanisms lowers the failure probability in microservice operations
and boosts reliability and stability. Common causes of microservice
failures include (1) errors in execution containers and (2) failures
in the server nodes hosting these containers. We denote the error
probability of container instance Con𝑖 by 𝜌Con𝑖 and the failure rate of
server node 𝑁𝑆𝑝 by 𝜌𝑁𝑆𝑝

. Let Con𝑖 be the execution container instance
for microservice 𝑚𝑠𝑖 with 𝑁𝑆𝑝 ∈ alloc(𝑚𝑠𝑖). Then

𝜌Con𝑖 =
𝑣𝑇𝑖

𝐸𝑥𝐶Con𝑖
⋅ 𝜌𝑁𝑆𝑝

.

We define the failure rate evaluation function for a deployment plan
𝑋, denoted by ineff (𝑋), as follows:

ineff (𝑋) =
𝑆
∑

𝑖=1

𝑀
∑

𝑗=1

(

𝜌Con𝑖 + 𝜌𝑁𝑆𝑗

)

⋅ 𝑥𝑖𝑗 (9)

Substituting 𝜌Con𝑖 into Eq. (9) yields:

ineff (𝑋) =
𝑆
∑

𝑖=1

𝑀
∑

𝑗=1

((𝑀
∑

𝐴𝑖

𝑣𝑇𝑖
𝐸𝑥𝐶Con 𝑖

⋅ 𝜌𝑁𝑆𝐾

)

+ 𝜌𝑁𝑆𝑗

)

⋅ 𝑥𝑖𝑗 (10)

where 𝐴𝑖 = {𝑘 ∣ 𝑘 = 1 and 𝑁𝑆𝑘 ∈ alloc(𝑚𝑠𝑖)}.

3.3.5. Objective function of the multi-objective awareness model
Optimizing container-based microservice deployment improves sys-

tem response time, resource utilization, and reduces service failure
rates. We exclude 𝑈𝐶𝑃𝑈 (𝑋) and 𝑈𝑅𝐴𝑀 (𝑋) from the objective func-
tion, as they are influenced by container density. The final model’s
objective function and constraints are defined as follows:

𝐹min(𝑋) = min
𝑜𝑏∈{𝑐𝑑𝑒,𝑑𝑒𝑖,𝑖𝑛𝑒𝑓𝑓}

∑

𝐹𝑜𝑏(𝑋) (11)

Subject to:
𝑆
∑

𝑖=1
(𝑟CPU𝑖 ⋅ 𝑥𝑖𝑗) ≤ 𝑅𝑠CPU𝑗 , 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-1)

𝑆
∑

𝑖=1
(𝑟RAM𝑖 ⋅ 𝑥𝑖𝑗) ≤ 𝑅𝑠RAM𝑗 , 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-2)

𝑆
∑

(𝑈𝑟𝑚𝑠𝑖 ⋅ 𝑣𝑖) ⋅ 𝑥𝑖𝑗 ≤ 𝑣𝑇𝑖 , 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-3)

𝑖=1

5
Fig. 2. Illustration of position update mechanisms for individuals in a sand cat swarm
during a predation event.

𝑆
∑

𝑖=1
𝑥𝑖𝑗 = 1, 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-4)

𝑀
∑

𝑗=1
𝑥𝑖𝑗 ≥ 1, 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-5)

Constraints (11-1) and (11-2) limit CPU and RAM usage by mi-
croservices on each server node to prevent exceeding capacity. Con-
straint (11-3) ensures stable execution containers during load balanc-
ing. Constraint (11-4) guarantees that microservice instances on the
same server node remain distinct. Constraint (11-5) facilitates hosting
of multiple microservices on a single server node.

These constraints necessitate a container-based microservice de-
ployment plan, constituting a multi-objective optimization problem.
Section 2 reviews metaheuristic and population-based optimization
algorithms that address these tasks and efficiently identify Pareto-
optimal solutions. We propose a new hybrid strategy-enhanced multi-
objective sand cat swarm optimization algorithm, which quickly identi-
fies multi-objective-aware deployment schemes with a problem size of
R𝑆×𝑀 (i.e., 𝑆 microservices and 𝑀 server nodes), denoted as CSps =
[X1,X2,… ,X𝑆]𝑇 .

4. Multi-objective awareness solution-hybrid strategy enhanced
multi-objective sand cat swarm optimization algorithm

4.1. Basic SCSO algorithm

SCSO, introduced by Seyyedabbasi et al. is a novel swarm intel-
ligence optimization algorithm inspired by the predation behavior of
sand cats [27]. This algorithm effectively mimics the hunting behaviors
of sand cats, showcasing significant optimization performance. Fig. 2
illustrates the position-update mechanism among individuals in the
sand cat swarm during predation.

The fundamental control parameters of the basic SCSO algorithm
and their respective updating formulas are as follows:

⃖⃖⃖⃗𝑟𝐺 = 𝑆𝑀 −
(

𝑆𝑀 − iter 𝑐
 iter Max

)

, (12)

𝑅⃗ = 2 × ⃖⃖⃖⃗𝑟𝐺 × rand(0, 1) − ⃖⃖⃖⃗𝑟𝐺 , (13)

𝑟 = ⃖⃖⃖⃗𝑟𝐺 × rand(0, 1), (14)

where 𝑆𝑀 mimics the auditory sensitivity of sand cats, typically set
at 𝑆𝑀 = 2.0; 𝑖𝑡𝑒𝑟𝑐 denotes the current iteration number; and 𝑖𝑡𝑒𝑟𝑀𝑎𝑥
represents the predetermined maximum number of iterations, usually
set to 200 or 400. The parameter ⃖⃖⃖⃗𝑟𝐺 emulates the sensing range of
sand cats during their prey hunting, which linearly decreases from 2
to 0 as the iteration number 𝑖𝑡𝑒𝑟𝑐 increases. The control parameter 𝑅⃗ is
utilized during the hunting or attacking phase. The variable ⃗𝑟 indicates
the sensitivity range of the sand cats.

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Fig. 3. Example of initialized population and process solution matrix.

The predation behavior consists of two phases: hunting prey and
attacking. The corresponding mathematical models for these phases are
defined as follows:

(a) Mathematical model for the hunting prey phase:
⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐 = 𝑟 ⋅

(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐 − rand(0, 1) ⋅ ⃖⃖⃖⃖⃖⃖⃖⃗Pos𝑐
(𝑡))

, (15)

where ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑐 represents the current position of the individual within
the population during this iteration; ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐 denotes the position of
the best candidate individual within the population. Eq. (15) reflects
the iterative formula for the searching behavior, with ⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐 indicat-
ing the updated position of the individual. The sensitivity 𝑟 ensures
convergence effectiveness during the prey-hunting phase.

(b) Mathematical model for the attacking prey phase:

⃖⃖⃖⃗𝑃𝑟 =
|

|

|

|

rand(0, 1) ⋅ ⃖⃖⃖⃖⃖⃖⃖⃗Pos𝑏
(𝑡)
𝑏 − ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑐

|

|

|

|

, (16)

⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐 = ⃖⃖⃖⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏 − 𝑟 ⋅ ⃖⃖⃖⃗𝑃𝑟 ⋅ cos(𝜃), (17)

where ⃖ ⃖⃖⃗𝑃𝑟 represents a random individual located near the combination
of the optimal individual ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑏 (i.e., the optimal solution) and the
current position ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑐 ; 𝜃 ∈ [0◦, 360◦] represents the directional angle
of movement.

Combining Eqs. (15) to (17), based on the stage control parameter
𝑅⃗, the strategy for updating positions in the next round, selecting either
the hunting or attacking phase’s mathematical model, can be defined
as follows:

𝑋(𝑡+1) =

{

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑏 − 𝑟 ⋅ ⃖⃖⃖⃗𝑃𝑟 ⋅ cos(𝜃), |𝑅⃗| ≤ 1
𝑟 ⋅

(

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑏𝑐 − rand(0, 1) ⋅ ⃖⃖⃖⃗𝑃𝑐 (𝑡)
)

, |𝑅⃗| > 1
(18)

where 𝑋(𝑡+1) ∈ CSps represents the solution for iteration 𝑡 + 1.

4.2. Hybrid strategy enhanced MASCSO-HS algorithm

4.2.1. Optimizing population diversity
To maximize the diversity of the initial population, we carefully

choose chaotic sequences with high positive Lyapunov exponents. It
optimizes population diversity with the Circle map, a low-dimensional
chaotic system. Fig. 3 illustrates an example of the initialized popula-
tion and a solution matrix during the solving process.

In the population initialization process, chaotic mappings with dif-
ferent coefficients are applied to each individual and across various
dimensions within each individual, as shown in Fig. 4. The population
initialization is strategically defined through the implementation of a
dual-circle chaotic mapping:

𝑥𝑖,1 = 𝑥𝑖−1,1 +𝛺1 −
K1
2𝜋

sin
(

2𝜋 ⋅ 𝑥𝑖−1,1
)

,

∀𝑖 ∈ population(2, 𝑛),
, (19)

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗−1 +𝛺2 −
K2
2𝜋

sin
(

2𝜋 ⋅ 𝑥𝑖,𝑗−1
)

,
(20)
∀𝑖 ∈ population(1, 𝑛),∀𝑗 ∈ dimension(2, 𝑑),

6
Fig. 4. The distribution of the Circle chaos mapping.

where 𝑑 represents the dimension of the solution, and 𝑛, denotes the
size of the population, that is, the number of individuals. 𝛺1, K1, 𝛺2,
K2 are the coefficients for the Circle chaotic mapping applied to the
population and the individuals, respectively, with 𝑥1,1 = rand(0, 1). Fig.
4 shows the frequency histogram of the scaled sequence values and the
scatter plot of the population distribution.

In Fig. 4, the population distribution of the Circle chaos mapping
initialization sequence is uniform, showing greater diversity compared
to the basic SCSO algorithm. This is achieved through the initialization
of dual circle chaos mapping.

4.2.2. Enhancing global search performance
The spiral search strategy enhances exploration efficiency in meta-

heuristic algorithms by simulating spiral motion, thus avoiding local
optima and increasing the probability of finding global optima. The
parameters relevant to the spiral search strategy are defined as follows:
⃖⃖⃖⃖⃗𝑙(𝑡) = 𝜌 ⋅

(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐 − ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

, (21)

𝑧(𝑡) = 𝑒𝜅⋅cos
(

2𝜋⋅
(

1−𝑡∕iterMax
))

, (22)

where ⃖⃖⃖⃖⃗𝑙(𝑡) denotes the differential operation between the position of
an individual, ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐 , and the best individual’s position, ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏 , scaled
by a factor 𝜌 ∈ [0.1, 4]. The function 𝑧(𝑡) combines a sinusoidal function
with an exponential factor, facilitating exploration of new regions while
revisiting previous ones in search of the global optimum. The parameter
𝜅 controls the amplitude of the sinusoidal wave, with 𝜅 ∈ [3, 5].

Integrating the spiral search strategy into the prey-hunting phase of
the basic SCSO algorithm results in the following mathematical model:

⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐 = 𝑒𝑧
(𝑡)⋅⃖⃖⃖⃗𝑙(𝑡) ⋅ sin

(1
3
𝜋 ⋅ ⃖⃖⃖⃖⃗𝑙(𝑡)

)

⋅ 𝑟

⋅
(

⃖⃖⃖⃖⃖⃗Pos𝑏𝑐
(𝑡)

− rand(0, 1) ⋅ ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑐
)

.
(23)

The inclusion of the spiral search strategy in the MASCSO-HS al-
gorithm improves its ability to explore unknown regions, escape local
optima, and enhance overall global search performance compared to
the basic SCSO algorithm.

4.2.3. Optimization of boundary convergence performance
During each iteration, some individuals may end up marginalized

or in precarious states. Integrating a vigilance mechanism allows indi-
viduals to transition from ‘‘dangerous’’ to ‘‘safe’’ positions, facilitating
random movements within the group. This process uses a sparrow
vigilance mechanism to enhance boundary convergence performance.

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Fig. 5. The multi-objective function adaptive hypergrid Pareto front storage.

The mathematical model governing this process is defined as fol-
lows:

⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑟𝑠 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏 + rand(0, 1) ⋅ 𝑞 ⋅ ||
|

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠 − ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
|

|

|

if min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

> min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

,

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠 + 𝜏 ⋅

(

|

|

|

⃖⃖⃖⃗Pos(𝑡)𝑟𝑠− ⃖⃖⃖⃗Pos(𝑡)𝑤𝑠
|

|

|

(

min
(

⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

−min
(

⃖⃖⃖⃗Pos(𝑡)𝑤𝑠

)

+𝜀
)

)

if min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

= min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

,

(24)

where ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠 represents the individuals randomly selected with a prob-
ability 𝑝𝑠, where 𝑟𝑠 ∈ select

(

𝑝𝑠 ⋅ 𝑛
)

, and 𝑝𝑠 ∈ [0.2, 0.4]. The function
min

(

𝑋(𝑡)) ∈ R𝑑 denotes the objective function values of all individuals
at the 𝑡th iteration, with min

(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑤𝑠

)

= max
(

min
(

𝑋(𝑡))). The step
length control parameter 𝑞 ∈ R𝑑 , with 𝑞𝑖 ∼ 𝑁(0, 1), and the direction
and step length control parameter 𝜏 ∈ [−1, 1], where 𝜀 = 1 × 10−50.

Eq. (24) describes a scenario where a randomly selected individual
is in a marginal ‘‘dangerous’’ position when min(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

> min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

. In this case, the individual moves toward the
best position to avoid danger. Conversely, when randomly selected
individuals need to converge to avoid potential danger, specifically
when min(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

= min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

, they wander toward the vicinity of other
individuals to mitigate risk.

4.2.4. Multi-objective adaptive hypergrid pareto front storage strategy
Adaptive grid strategies, as detailed in [28,29], utilize a hypergrid

dimension value, denoted as 𝑛𝑔 ∈ [10, 30]. The value of 𝑛𝑔 affects the
storage density of the Pareto solution set. A hypergrid is constructed
for each objective function, with the grid dimension corresponding to
the number of objective functions, |

|

𝑜𝑏
|

|

.
The storage strategy for each dimension of the hypergrid involves

defining the maximum and minimum values of the objective function
for the current non-dominated solution set as Cost𝑜𝑏

max and Cost𝑜𝑏
min,

respectively. The hypergrid expansion amount, 𝐸𝑙, and the width of
each grid segment, 𝑊𝑙, are given by:

Cost𝑜𝑏
max = max

|

|

𝑜𝑏||

(

Cost𝑜𝑏
(

ResulSet𝑡
))

, (25)

Cost𝑜𝑏
min = min

|

|

𝑜𝑏||

(

Cost𝑜𝑏
(

ResulSet𝑡
))

, (26)

𝐸𝑙 = 𝜂 ⋅
(

Cost𝑜𝑏
max −Cost𝑜𝑏

min

)

, (27)

𝑊𝑙 =
((

Cost𝑜𝑏
max +𝐸𝑙

)

−
(

Cost𝑜𝑏
min −𝐸𝑙

))

∕
(

𝑛𝑔 − 1
)

. (28)
7
Fig. 5 illustrates the adaptive hypergrid storage for a Pareto front
solution set with |

|

𝑜𝑏
|

|

= 𝑚, where each non-dominated solution is
indexed to its grid number based on its values, allowing identification
of the grid with the least solutions, optimal for the next iteration, as
shown by the red arrows in Fig. 5. Given the independence of non-
dominated solutions, their positions in the hypergrid may cluster or
disperse, with the strategy for selecting optimal individuals based on
density accumulation and a threshold 𝜆 = 1∕3. If |ResulSet𝑡| > 𝜆 ⋅ 𝑛,
individuals in sparse hypergrids are selected; otherwise, those in dense
hypergrids are chosen. When 𝜆 = 1, dense hypergrids are prioritized,
while 𝜆 = 0 favors sparse hypergrids. During this iterative search,
new solutions 𝑛𝑒𝑤𝑃 𝑡+1 are integrated into the hypergrid to form the
new solution set ResultSet𝑡+1, determined by their positions relative to
existing solutions.

(1) If the new solution 𝑛𝑒𝑤𝑃 𝑡+1 dominates any existing solution
𝑜𝑙𝑑𝑃 ′𝑡, the dominated solutions are removed, and the new solution is
added. The updated solution set is defined as 𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡+1 =
(

𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡 − 𝑜𝑙𝑑𝑃 ′𝑡) ∪ 𝑛𝑒𝑤𝑃 𝑡+1.
(2) If |𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡+1| > 𝑛𝑔 , then execute
select

(

maxcount
(

GridIndex
(

ResulSet𝑡
))) to remove a solution from

the most densely mapped hypergrid.
(3) If |𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡+1| < 𝑛𝑔 , the new solutions are directly added,

updating the hypergrid’s boundaries for the new iteration defined as:
Lower = Cost𝑜𝑏

min −𝐸𝑙 , (29)

Upper = Cost𝑜𝑏
max +𝐸𝑙 , (30)

GIndex(𝑋) =
⌈

Cost𝑜𝑏 (𝑋)
𝑊𝑙

⌉

∀𝑋 ∈ ResulSet𝑡+1. (31)

Eqs. (29) and (30) define the lower and upper bounds for the new
hypergrid, while Eq. (31) refers to the mapping indices of individual
solutions in the new set. The adaptive hypergrid storage strategy is
a meta-heuristic approach designed to preserve elitism, with its size
and shape adapting based on solution values to maintain diversity and
leverage high-quality solutions in uncovering superior results.

This enables the use of high-quality solutions to uncover superior
solutions.

4.3. Implementation and testing validation of MASCSO-HS algorithm

4.3.1. Implementation of MASCSO-HS algorithm
The algorithm integrates population diversity optimization, a spiral

search strategy, a sparrow vigilance mechanism, and a multi-objective
adaptive hypergrid storage strategy. The pseudocode for this algorithm
is presented as Algorithm 1.

The original SCSO algorithm can be approximated as 𝑂(𝑛 ⋅ 𝑚),
where 𝑛 is the population size and 𝑚 is the number of iterations. In
our proposed MASCSO-HS, the integration of additional strategies for
enhanced exploration and exploitation adds overhead. The complexity
of MASCSO-HS can be represented as 𝑂(𝑛 ⋅𝑚+𝑘), where 𝑘 accounts for
the additional computations introduced by the hybrid strategies, such
as the spiral search strategy and the vigilance mechanism. Therefore,
although MASCSO-HS has a slightly higher computational complexity,
its superior performance in terms of convergence speed and solution
quality positions it as a more effective approach in multi-objective
optimization.

4.3.2. Validation and analysis of algorithm effectiveness
To validate the performance of the based algorithm of MASCSO-

HS (referred to as SCHS) against the original SCSO [27] algorithm and
compare it with other recent swarm intelligence algorithms, such as
HHO, YDSE, WOA, and COA, we utilized both the CEC 2019 and CEC
2009 benchmark functions to comprehensively analyze SCHS’s capa-
bilities across different optimization scenarios. The experiments were

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Table 1
Rank-sum test results for MASCSO-HS compared to other optimization algorithms on CEC 2019 functions.
 Function DBO POA SCSO HHO SABO GWO YDSE WOA PSO COA
 F1 6.25E−10 1 0.000313 1 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1
 F2 4.55E−09 2.43E−05 2.81E−05 1.72E−12 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.21E−12
 F3 0.001003 0.055542 0.043581 0.000903 1.29E−06 0.061448 8.15E−11 0.000189 0.011227 3.59E−05
 F4 0.000399 0.118812 0.090486 0.589446 0.133449 1.61E−10 1.96E−10 0.911708 3.33E−11 8.29E−06
 F5 0.011228 3.69E−11 3.02E−11 3.02E−11 3.02E−11 5.49E−11 3.02E−11 3.02E−11 1 3.02E−11
 F6 0.283778 0.864994 0.371077 9.51E−06 0.055546 1.43E−08 0.006972 9.06E−08 1.33E−10 8.15E−11
 F7 0.12967 1.11E−06 0.074827 0.958731 8.15E−11 3.57E−06 0.002891 0.318304 2.49E−06 1.21E−10
 F8 0.911709 0.000952 0.318304 0.000168 0.000141 9.21E−05 0.1809 0.000691 0.000117 1.11E−06
 F9 0.10547 0.000189 0.258051 0.051877 0.559231 1.73E−06 0.318304 0.046756 9.83E−08 3.02E−11
 F10 6.7E−11 4.69E−08 4.12E−06 1.16E−07 3.34E−11 3.02E−11 3.34E−11 1.21E−10 1.29E−09 5.49E−11
Algorithm 1 MASCSO-HS Algorithm
Input min(𝑋),Dim;
Initialize 𝑛, 𝑛𝑔 , 𝛼, 𝛽, 𝑝𝑠, 𝑆𝑀 , 𝜌, 𝜅, 𝜂;
Initialize the population 𝑋𝑖(𝑖 = 1, 2,… , 𝑛) with Eq. (19) and Eq. (20);

for each 𝑋𝑖 do
ConstrainsTest 𝑋𝑖;
CalculateCost 𝑋𝑖;

end for
DetermineDomination 𝑋0;
CreateHyperGrid 𝑋0; Eq.(25) to Eq.(30);
Save 𝑋0 → ResulSet0;
while 𝑡 < iterMax do
for each search agent do
Update the position by Eqs. (12)–(14) and Eqs. (21)–(23);
Update the position with 𝑝𝑠 and Eq. (24);

end for
DetermineDomination(𝑋𝑡);
CreateHyperGrid(𝑋𝑡);
Save (𝑋𝑡 → ResulSet𝑡);
𝑡 ← 𝑡 + 1;

end while
return 𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡;

conducted using the publicly available CEC 2019 test suite, which pri-
marily assesses single-objective performance, alongside the CEC 2009
test suite for multi-objective evaluation.

Based on the rank-sum test results presented in Table 1, the SCHS
algorithm shows superior performance across various CEC 2019 func-
tions, especially in accuracy, stability, and convergence speed. For
example, SCHS outperformed SCSO in functions F1 and F2, achieving
error metrics of 6.25 × 10−10 and 4.55 × 10−09 respectively. This is
substantiated by a comprehensive analysis of optimal values, averages,
and standard deviations, highlighting SCHS’s rapid convergence to
high-quality solutions and its strong adaptability in dynamic environ-
ments, making it well-suited for complex multi-objective optimization
problems.

We verified the effectiveness of the MASCSO-HS algorithm in multi-
objective optimization using the 10-function multi-objective optimiza-
tion test benchmark set CEC 2009

[30]. Performance evaluation metrics such as Inverted Generational
Distance (IGD) [28,31], Spacing (SP) [28,29], and Maximum Spread
(MS) [29] were used as the assessment criteria. The detailed definitions
of evaluation metrics can be found in Table 2.

The experimental data on the CEC 2009 Function shows that the
MASCSO-HS algorithm has significant advantages over other algo-
rithms. The comparison graphs of the non-dominated Pareto front
solution sets obtained by MASCSO-HS and the true solution sets for test
functions UF5, UF7, UF8, and UF10 are shown in Fig. 6. The bar graphs
for the values and the improvement line charts for UF5, UF7, UF8, and

UF10 are also presented in Fig. 7. The values achieved the best results

8
Fig. 6. Non-dominated Pareto front solution sets obtained by MASCSO-HS on UF5,
UF7, UF8, and UF10.

Fig. 7. Histograms of 𝐼𝐺𝐷 values for various algorithms and the performance
improvement line chart for MASCSO-HS on UF5, UF7, UF8, and UF10.

in 9 out of the 10 test functions of CEC 2009, corresponding to a 90%
success rate, despite the poorest performance on UF3. Particularly on
UF5, UF7, UF8, and UF10, compared to other algorithms, the improve-
ments average 67.66%, 79.92%, 68.82%, and 66.32%, respectively.
Since the MOEA/D algorithm is unable to solve UF8 and UF10, the
improvements for these functions are reported as 0% in Fig. 7.

The experimental data suggest that MASCSO-HS outperforms other
algorithms with faster convergence and solution speed. This paper has
validated the effectiveness and superiority of MASCSO-HS compared to
other recent and typical algorithms. Our ongoing research and exper-
imentation will continue to test further and fine-tune the algorithm’s

performance.

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Table 2
Control parameters of meta-heuristics.
 Parameter Description Setting value
 iter Max Number of iterations 200
 𝑛 Population Size 100
 𝛺1 , K1 Coefficient of Circle_1 chaos 0.259∕0.3
 𝛺2 , K2 Coefficient of Circle_2 chaos 0.359∕0.559
 𝑝𝑠 Probability of vigilance and random walk [0.2, 0.4]
 𝑛𝑔 Size of hypergrid per dimension [10, 30]
 𝜂 Grid expansion coefficient [0.05, 0.15]
 𝜆 Pareto solution stacking density threshold 1∕3
 𝜌 Step size scaling factor [0.1, 4]

4.4. MASCSO-HS’s performance evaluation

Performance evaluation metrics such as Inverted Generational Dis-
tance (IGD) [28,31], Spacing (SP) [28,29], and Maximum Spread
(MS) [29] were used as the assessment criteria. The 𝐼𝐺𝐷 formulas for
these evaluation metrics are defined as follows:

𝐼𝐺𝐷 =

√

∑𝑛
𝑖=1 𝑑

2
𝑖

𝑛
, (32)

where 𝑛 represents the size of the true Pareto solution set, and 𝑑𝑖 is the
Euclidean distance between the 𝑖th solution in the true Pareto solution
set and the nearest solution found by the algorithm. The Inverted
Generational Distance (IGD) is thus calculated as the Euclidean distance
between each solution in the true Pareto solution set and the obtained
solution set. A smaller IGD value indicates that the obtained solution
set is closer to the true one.

Note: Due to space limitations, the detailed formulations for assess-
ing the uniformity (Eq. (33)) and coverage (Eq. (34)) of the Pareto
solution set have been omitted from the main text. Further details can
be requested from the corresponding authors.

𝑆𝑃 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1

(

𝑑 − 𝑑𝑖
)2, (33)

𝑀𝑆 =

√

√

√

√

𝑜
∑

𝑖=1
max

(

𝑑
(

𝑎𝑖 − 𝑏𝑖
)) (34)

The detailed configuration information for the parameters related
to the MASCSO-HS algorithm used in the experiments is presented in
Table 2. The experimental setup includes Processor: 12th Gen Intel(R)
Core(TM) i7-12700 at 2.10 GHz, Memory: 32.0 GB RAM; utilizing
MATLAB R2023b on the Windows 10 operating system. Each algorithm
was executed 20 times, and the average values, standard deviation
(SD), and the worst and best values of each metric (IGD, SP, and 𝑀𝑆)
were subsequently calculated and recorded. Table 2 shows the control
parameters of meta-heuristics derived from initial experience with the
algorithm and optimized through testing experiments.

According to the configurations of related algorithms described in
Ref. [32], a comparison was conducted with the latest and most classi-
cal multi-objective optimization algorithms: MOSFO, MOPSO, NSGA-II,
MOGWO, and MOEA/D. The performance metrics of these algorithms
on the CEC 2009 test benchmark set, along with the experimental data
statistics of the MASCSO-HS algorithm in IGD results, are presented
in Table 3 (The MS and SP results can be provided upon request, if
necessary.).

From the comprehensive experimental data assessed, it can be
concluded that MASCSO-HS performs the best among the comparison
algorithms, demonstrating effective convergence and a faster solution
speed than other algorithms.
9
Fig. 8. The Improvements of each module in Ablation Studies on CEC2009 Test
Functions.

4.5. Ablation study on the impact of optimization strategies in MASCSO-HS

We systematically remove one optimization strategy at a time: Pop-
ulation Diversity, Spiral Search Strategy, and Pigeon Vigilance Mech-
anism, denoting these modified versions as MASCSO-HS-PD, MASCSO-
HS-SSS, and MASCSO-HS-PVM, respectively.

According to the tests, each optimization strategy module signifi-
cantly contributes to the algorithm’s performance. As shown in Fig. 8,
average values after 20 runs for each test function reveal improvements
in IGD, SP, and MS metrics, indicating the critical contribution of these
modules to overall algorithm efficacy.

5. Multi-objective-aware container-based microservice
deployment solution

The MSCSO-HS algorithm optimizes container-based microservice
deployment with multiple objectives. It aims to identify the opti-
mal deployment solution for container-based microservices in data
centers, considering various optimization objectives and deployment
constraints.

5.1. Definition of population encoding scheme

According to Eqs. (2) and (3), a container-based microservice de-
ployment solution CSps ∈ R𝑆×𝑀 can be represented as:

[

X1,X2,… ,X𝑆
]𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓𝐶𝑆𝑝𝑠
(

𝑚𝑠1
)

𝑓𝐶𝑆𝑝𝑠
(

𝑚𝑠2
)

…
𝑓𝐶𝑆𝑝𝑠

(

𝑚𝑠𝑆
)

⎤

⎥

⎥

⎥

⎥

⎦

, (35)

where X𝑖(1 ≤ 𝑖 ≤ 𝑆) represents the deployment of 𝑚𝑠𝑖 on 𝑀 server
nodes, and the solution function 𝑓𝐶𝑆𝑝𝑠

(

𝑚𝑠𝑖
)

=
(

𝑥𝑖1, 𝑥𝑖1,… , 𝑥𝑖𝑀
)

. Ac-
cording to Eqs. (2), (3), and (35), the deployment solution is an 𝑆 ×
𝑀 matrix, and 1 ≤

∑𝑀
𝑗=1 𝑥𝑖𝑗

(

𝑥𝑖𝑗 ∈ {0, 1}
)

, indicating that each 𝑚𝑠𝑖 is
deployed on at least one server node. The population individual X𝑀𝑆
in the MSCSO-HS algorithm is designed as follows:

X𝑀𝑆 =
[

𝑦1, 𝑦2,… , 𝑦𝑆
]

, (36)

where y𝑖(1 ≤ 𝑖 ≤ 𝑆) =
[

y𝑖1, y𝑖2,…y𝑖𝑀
]

, y𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑀) = {0, 1}.
First, each server node is assigned a number-position encoding; that
is, for a server node with number 𝑖, if the corresponding 𝑖th position
is 1, it indicates the deployment of the corresponding microservice;
if it is 0, the microservice is not deployed. Thus, in the MASCSO-HS
algorithm, the dimension of the population individual is 𝑑 = 𝑆, and
each dimension is an 𝑀-bit binary encoding.

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Table 3
IGD results of algorithms in the CEC2009 test functions.
Algorithm UF Average SD Worst Best UF Average SD Worst Best
MSCSO-HS 0.05713 0.00961 0.06935 0.04188 0.02990 0.00220 0.03310 0.02531
MOSFO 0.06078 0.01479 0.09472 0.03838 0.03061 0.00796 0.04438 0.01824
MOGWO 1 0.11442 0.01954 0.15774 0.08023 2 0.05825 0.00739 0.07322 0.04980
MOPSO 0.13700 0.04407 0.22786 0.08990 0.06040 0.02762 0.13051 0.03699
NSGA-II 0.18640 0.01911 0.22631 0.15440 0.04492 0.00772 0.05922 0.03284
MOEA/D 0.18710 0.05070 0.24640 0.12650 0.12230 0.01070 0.14370 0.10490
MSCSO-HS 0.38587 0.07175 0.63280 0.27049 0.04949 0.00161 0.05228 0.04631
MOSFO 0.30180 0.08028 0.49793 0.16237 0.05265 0.00478 0.06029 0.04478
MOGWO 3 0.25569 0.08070 0.36786 0.12950 4 0.05867 0.00048 0.05936 0.05797
MOPSO 0.31399 0.04473 0.37773 0.25648 0.13504 0.00739 0.15189 0.12733
NSGA-II 0.27400 0.03691 0.33351 0.21761 0.09661 0.01073 0.11812 0.07612
MOEA/D 0.28865 0.01592 0.31294 0.26342 0.06810 0.00210 0.07040 0.06470
MSCSO-HS 0.36522 0.13793 0.60985 0.17367 0.21702 0.07534 0.36620 0.11534
MOSFO 0.81965 0.28927 1.56396 0.47421 0.25152 0.27570 0.90277 0.13518
MOGWO 5 0.79707 0.37857 1.73857 0.46795 6 0.27937 0.10448 0.55036 0.19338
MOPSO 2.20237 0.55304 3.03836 1.46479 0.64752 0.26612 1.24281 0.37933
NSGA-II 1.37961 0.22912 2.1275 1.19324 0.51132 0.13572 0.80123 0.28420
MOEA/D 1.29145 0.13489 1.46746 1.12306 0.68812 0.05533 0.74011 0.55235
MSCSO-HS 0.04309 0.00978 0.06380 0.02691 0.21636 0.03531 0.31953 0.17225
MOSFO 0.12464 0.01015 0.15974 0.01903 0.36527 0.10864 0.59228 0.24561
MOGWO 7 0.16036 0.13911 0.40142 0.06275 8 2.05777 1.14552 3.87888 0.46131
MOPSO 0.35395 0.20442 0.61512 0.05402 0.53671 0.18257 0.79637 0.24530
NSGA-II 0.24872 0.09733 0.47301 0.04832 1.47756 0.37454 2.51525 1.10274
MOEA/D 0.45520 0.18980 0.67700 0.02900 - - - -
MSCSO-HS 0.18300 0.03327 0.22633 0.12977 0.60551 0.17034 0.92489 0.29982
MOSFO 0.18727 0.10286 0.35615 0.11626 0.89247 0.23098 1.96783 0.33503
MOGWO 9 0.19174 0.09250 0.44794 0.12910 10 3.59453 3.48829 12.9564 1.04314
MOPSO 0.48850 0.14449 0.72210 0.33355 1.63719 0.29879 2.16220 1.22008
NSGA-II 0.24162 0.15545 0.38176 0.16453 4.64931 1.10352 6.71283 2.56657
MOEA/D - - - - - - - -
5.2. The fitness function for the deployment model

According to Section 2, the MASCSO-HS algorithm deploys multiple
container instances of microservices onto suitable server nodes to ob-
tain an optimal or sub-optimal deployment solution. To choose the best
deployment solution from the non-dominated Pareto front, we process
each objective function using max–min normalization:

norm 𝑜𝑏 (𝑥) =
𝑜𝑏(𝑥) − min𝑥∈X𝑀𝑆

𝑜𝑏(𝑥)
max𝑥∈X𝑀𝑆

𝑜𝑏(𝑥) − min𝑥∈X𝑀𝑆
𝑜𝑏(𝑥)

,

𝑜𝑏 ∈ {𝑐𝑑𝑒, dei, ineff },
(37)

where 𝑥 ∈ X𝑀𝑆 is a deployment solution obtained by the algorithm.
max𝑥∈X𝑀𝑆

𝑜𝑏(𝑥) and min𝑥∈X𝑀𝑆
𝑜𝑏(𝑥) represent the maximum and min-

imum values of the corresponding objective function in the obtained
non-dominated Pareto front, respectively. By normalizing each objec-
tive function according to Eq. (37), we can uniformly map the impact
of each objective function to the domain [0, 1], ensuring fairness in their
influence on the outcome.

5.3. MASCSO algorithm

MASCSO is a swarm intelligence-based multi-objective aware mi-
croservice deployment optimization algorithm. The algorithm is built
upon the MSCSO-HS. The deployment model’s fitness function selects
the optimal container-based microservice deployment solution from the
non-dominated Pareto solutions in the adaptive hypergrid. Algorithm 2
presents the pseudocode of the MASCSO algorithm.

6. Experiments and discussions

We compare the MASCSO algorithm with other state-of-the-art and
classical algorithms to assess its effectiveness in container-based mi-
croservice deployment. In the experiments, we use Alibaba Cloud’s
V2018 [33] dataset as a benchmark to generate microservice sets based
on functional chains as experimental data.
10
Algorithm 2 MASCSO Algorithm
Input  , ,;
Initialize X𝑀𝑆 = [𝑦1, 𝑦2,… , 𝑦𝑆];
Initialize  −(X0

𝑀𝑆);
while 𝑡 < iterMax do

ResultSet𝑡 =  −(X𝑡
𝑀𝑆);

for each 𝑀𝑆 in ResultSet𝑡 do
for each ⊋ in {cde,dei, ineff} do
𝐹 norm𝑜𝑏 (𝑥) =

𝐹𝑜𝑏(𝑥)−min𝑥∈𝑋𝑀𝑆 𝐹𝑜𝑏(𝑥)
max𝑥∈𝑋𝑀𝑆 𝐹𝑜𝑏(𝑥)−min𝑥∈𝑋𝑀𝑆 𝐹𝑜𝑏(𝑥)

;
end for
if 𝐹min(𝑋𝑀𝑆) < resulmin then
resulmin = 𝐹min(𝑋𝑀𝑆);
resultMS = 𝑋𝑀𝑆 ;

end if
end for
𝑡 = 𝑡 + 1;

end while
Return resultMS;

6.1. Dataset and environment description

Based on the invocation dependency relationships among Job, Task,
and Instance in the V2018 [33] dataset, we generate a dataset with
3 SFCs in the 𝑆𝐹 set, containing a total of 18 microservices and 22
invocation dependency edges. The corresponding 𝑆𝐹 sets are
𝑆𝐹1 =

{

𝑚𝑠1, 𝑚𝑠2, 𝑚𝑠3, 𝑚𝑠7, 𝑚𝑠11
}

,

𝑆𝐹2 =
{

𝑚𝑠2, 𝑚𝑠3, 𝑚𝑠4, 𝑚𝑠5, 𝑚𝑠6, 𝑚𝑠7, 𝑚𝑠8, 𝑚𝑠9, 𝑚𝑠11
}

,

𝑆𝐹3 =
{

𝑚𝑠2, 𝑚𝑠7, 𝑚𝑠10, 𝑚𝑠12, 𝑚𝑠13, 𝑚𝑠14, 𝑚𝑠15, 𝑚𝑠16,

𝑚𝑠17, 𝑚𝑠18
}

(38)

The specific data configurations for all 𝑀𝑆 sets are shown in Tables
4–5.

The corresponding microservice invocation dependency DAG is
shown in Fig. 9 (see Table 6).

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Table 4
The information of each 𝑚𝑠𝑖(𝑖 = 1, 2,… , 18) in 𝑀𝑆 set.
 MS set ms1 ms2 ms3 ms4 ms5 ms6 ms7 ms8 ms9 ms10 ms11 ms12 ms13 ms14 ms15 ms16 ms17 ms18
 𝑟𝐶𝑃𝑈

𝑘 3.8 1.5 4.2 3.1 5 3.2 5.6 50 4.5 3.2 3.1 6.3 7 6.5 18 20 6.3 6.2
 𝑟𝑅𝐴𝑀𝑘 1.5 13.6 5.7 6.5 7 5.1 1.6 55 4.3 2.5 4.3 4.5 6.8 7.5 50 50 3.5 2.1
 𝑣𝑘 30 55 45 28 60 30 100 10 45 55 60 70 35 35 20 20 70 20
 𝑣𝑇𝑘 10 11 9 7 10 6 10 2.5 9 5 10 7 6 5 2.5 6 8 7
 𝑆𝑖𝐶𝑜𝑛𝑖 64.1 48.3 180.5 41.2 80.6 50 22.8 55.4 88.3 65 37.6 63.2 56.1 32.7 52.9 65.8 52.5 68.3
Table 5
The edge information of 𝑚𝑠𝑖(𝑖 = 1, 2,… , 18) call dependency DAG graph.
 𝐸𝑑𝑔𝑒 𝑊𝑖𝑖 𝑣𝑖𝑖 𝐷𝑑𝑖𝑖′ 𝐸𝑑𝑔𝑒 𝑊𝑖𝑖 𝑣𝑖𝑖 𝐷𝑑𝑖𝑖′
 (0, 𝑚𝑠1) 1 45 0

(

𝑚𝑠5 , 𝑚𝑠6
)

2 30 6.0
 (𝑚𝑠1 , 𝑚𝑠2) 2 50 4.1

(

𝑚𝑠6 , 𝑚𝑠9
)

2 25 5.1
 (𝑚𝑠1 , 𝑚𝑠7) 2 20 1.2

(

𝑚𝑠10 , 𝑚𝑠2
)

2 15 4.2
 (𝑚𝑠2 , 𝑚𝑠3) 1 10 5.0

(

0, 𝑚𝑠10
)

1 25 0
 (𝑚𝑠2 , 𝑚𝑠11) 1 6 4.2

(

𝑚𝑠10 , 𝑚𝑠12
)

2 55 4.6
 (𝑚𝑠2 , 𝑚𝑠7) 1 13 2.3

(

𝑚𝑠12 , 𝑚𝑠13
)

2 35 2.3
 (0, 𝑚𝑠3) 1 30 0

(

𝑚𝑠12 , 𝑚𝑠14
)

2 20 4.3
 (𝑚𝑠3 , 𝑚𝑠4) 2 80 6.7

(

𝑚𝑠14 , 𝑚𝑠15
)

2 30 2.4
 (𝑚𝑠3 , 𝑚𝑠11) 1 12 6.0

(

𝑚𝑠15 , 𝑚𝑠16
)

3 40 82
 (𝑚𝑠4 , 𝑚𝑠5) 2 90 8.0

(

𝑚𝑠13 , 𝑚𝑠17
)

2 35 2.5
 (𝑚𝑠5 , 𝑚𝑠8) 3 50 80

(

𝑚𝑠17 , 𝑚𝑠18
)

2 45 5.3

Table 6
Configuration description of physical server nodes 𝑁𝑆𝑝.

 Parameter Description Values
 𝑀 Number of Server Nodes 120∕240
 𝑅𝑠𝐶𝑃𝑈

𝑝 Range of CPU Resource Capacity {200.0, 400.0, 800.0}
 𝑅𝑠𝑅𝐴𝑀𝑝 Range of RAM Resource Capacity {200.0, 400.0, 800.0}
 Ds𝑖𝑗 Inter-node Network Distance {1.0, 4.0, 8.0}
 𝜌𝑁𝑆𝑝

Node Failure Rate (0.1%, 3.0%)

Fig. 9. Microservice invocation dependency DAG.

In Table 5, Ds𝑖𝑗 = ‖

‖

‖

Pos𝑖 −Pos𝑗
‖

‖

‖

∈ {1.0, 4.0, 8.0}. When ‖‖
‖

Pos𝑖 −Pos𝑗
‖

‖

‖

= 0, i.e., 𝑖 = 𝑗, it represents the same node and is set to 1.0. When 𝑖 ≠ 𝑗
but ‖‖

‖

Pos𝑖 −Pos𝑗
‖

‖

‖

≤ 4, it indicates that the two different nodes are in
the same CDC, and the value is set to 4.0. When 4.0 < ‖

‖

‖

Pos𝑖 −Pos𝑗
‖

‖

‖

, it
means that the two nodes are in different CDCs, and the value is set to
8.0. Table 2 shows the experimental environment and the configuration
of the MASCSO (MASCSO-HS) algorithm.

Experimental description: To test the effectiveness of MASCSO un-
der different server cluster scales and user request pressures, the exper-
iments simulate multi-objective aware microservice deployment under
two server cluster scales, as shown in Table 6, M = 120 and M = 240,
with 6 types of user request numbers 𝑈𝑟𝑚𝑠𝑘 = {×1.0,×2.0,×3.0,×4.0,
×5.0,×6.0}, i.e., Experiment 1(M = 120) and Experiment 2(𝑀 = 240). In
the multi-objective awareness, the weight coefficients of the objective
functions are set as follows:
11
{

𝑤𝑐𝑑𝑒, 𝑤dei , 𝑤ineff
}

=
{

1
3 ,

1
3 ,

1
3

}

.

6.2. The deployment solution

Microservice deployment can be categorized into static and dynamic
scenarios. Static deployment involves predefining the deployment strat-
egy before system startup, making it suitable for stable load conditions.
In contrast, dynamic deployment adjusts the deployment strategy based
on real-time operational states, which is ideal for fluctuating loads. The
deployment solution primarily focuses on quasi-dynamic microservice
deployment, aiming to optimize the initial deployment strategy to ac-
commodate moderate load variations and node failures while ensuring
service quality and enhancing resource utilization.

Each normalized objective function is assigned a weight coeffi-
cient 𝑤𝑜𝑏(𝑜𝑏 ∈ {𝑐𝑑𝑒, dei, ineff }) to represent the importance of
the corresponding objective function in the overall objective. Combin-
ing Eqs. (2), (36), and (37), the deployment model for solving the
deployment solution can be defined as:

Find
(

X𝑀𝑆
)

=
[

𝑦1, 𝑦2,… , 𝑦𝑆
]

(39)

Subject to:

min(𝑋) = min
𝑜𝑏∈{𝑐𝑑𝑒, dei,ineff }

∑

𝑤𝑜𝑏 ⋅ norm𝑜𝑏 (𝑋), 𝑤𝑜𝑏 ≥ 0,
∑

𝑜𝑏∈{𝑐𝑑𝑒, dei,ineff }
𝑤𝑜𝑏 = 1.

(39-1)

The experimental configuration validates the practical applicability
of the MASCSO algorithm. All simulations focus on the configurations
indicated by the Pareto front to ascertain their deployability in real
cluster environments. We utilized the Alibaba Cloud V2018 dataset to
generate microservice sets, with the deployment scheme based on the
invocation dependencies among Job, Task, and Instance. Performance
parameters for multiple server nodes were defined, including CPU and
RAM capacities, inter-node network distances, and node failure rates,
all adhering to current cloud computing standards.

The configurations generated by the MASCSO algorithm meet the
needs of various server cluster scales (e.g., 𝑀 = 120 and 𝑀 =
240). By optimizing the fitness functions of the deployment model,
we ensure that the microservice solutions satisfy multiple optimization
objectives and are feasible for implementation in real cloud environ-
ments. This validates that our optimization method provides actionable
solutions for real-world microservice architectures, optimizing resource
utilization and achieving efficient management.

6.3. Experimental results data analysis and comparison

Using the aforementioned test dataset and simulation experiment
settings, 20 experiments are conducted for each scenario using the algo-
rithms MASCSO, AF-CSDS [19], APSO-TSDS [18], MSG-NSGA-III [34],
ACO-MCMS [17], and GA-NSGA-II [35]. The obtained experimental
result data are statistically analyzed and compared based on 5 evalua-
tion indicators: communication delay cde (𝑋), container deployment
density dei(𝑋), microservice failure rate ineff (𝑋), cluster resource
utilization  (𝑋), and  (𝑋).
𝑈𝐶𝑃𝑈 URAM

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Table 7
𝒄𝒅𝒆(𝑋) in Experiment 1 (M = 120).
 Algorithm X1.0 X2.0 X3.0 X4.0 X5.0 X6.0
 MASCSO 𝟑𝟖.𝟐𝟔𝟒𝟖 𝟖𝟒.𝟓𝟖𝟕𝟔 𝟏𝟐𝟗.𝟏𝟑𝟐𝟔 𝟏𝟕𝟖.𝟐𝟒𝟏𝟓 𝟐𝟐𝟗.𝟖𝟔𝟒𝟓 𝟐𝟖𝟔.𝟏𝟒𝟐𝟗
 AF-CSDS 41.24635 91.6312 142.2383 197.2654 𝟐𝟓𝟕.𝟓𝟗𝟏𝟕 308.7243
 APSO-TSDS 43.6725 103.0629 168.4009 229.8420 302.4544 357.3990
 MSG-NSGA-III 63.9962 126.8161 189.5266 251.5483 317.1417 387.6211
 ACO-MCMS 48.7573 119.4410 184.3963 249.8399 320.9509 376.8277
 GA-NSGA-II 50.9100 119.0349 185.6425 260.1502 315.7780 378.1257

Table 8
𝒄𝒅𝒆(𝑋) in experiment 2 (M = 240).
 Algorithm X1.0 X2.0 X3.0 X4.0 X5.0 X6.0
 MASCSO 39.9094 81.3603 129.3527 180.8494 226.8018 284.9376
 AF-CSDS 44.4600 93.0183 144.3533 195.1785 256.7523 309.3256
 APSO-TSDS 48.3544 104.4719 171.53029 242.2687 302.5902 359.3504
 MSG-NSGA-III 70.1917 122.3831 194.9334 250.7215 322.8488 387.5925
 ACO-MCMS 49.2449 122.1727 185.3435 252.6451 313.3203 384.0997
 GA-NSGA-II 57.7841 124.7605 185.8094 259.6519 319.4655 388.6816

Fig. 10. 𝒄𝒅𝒆(𝑋) Results and improvement by MASCSO (M = 120).

6.3.1. Microservice communication delay results 𝒄𝒅𝒆(𝑋)
Based on the deployment schemes obtained by the algorithm search,

the results of Experiment 1 (M = 120) and Experiment 2(M = 120) are
collected according to the microservice communication delay evalua-
tion function cde (𝑋), as shown in Table 7 and Table 8, respectively.
The tables’ data with a gray background and bold font represent the
best results among the 6 comparison algorithms.

Lower values of 𝑐𝑑𝑒(𝑋) signify enhanced communication delay
performance among deployed microservices. The data in the table
demonstrate that MASCSO consistently achieves the lowest communi-
cation delays across all scenarios, outperforming the other six algo-
rithms. Additionally, further analysis confirms that MASCSO excels in
communication delay performance in both experiments, as illustrated
in Figs. 10 and 11.

Figs. 10 and 11 show that MASCSO achieves an overall improve-
ment of more than 23% compared to the other five algorithms. The
data from Tables 7 and 8 indicate that MASCSO reaches its best
case in Experiment 1 (𝑀 = 120, 𝑈𝑟𝑚𝑠𝑘 = ×1.0) and Experiment 2
(𝑀 = 240, 𝑈𝑟𝑚𝑠𝑘 = ×1.0), outperforming MSG-NSGA-III by 40.2% and
43.1%, respectively. AF-CSDS ranks as the second-best algorithm, but
MASCSO exceeds it by more than 7% in every scenario and pushes the
improvement to over 12.5% in the highest case.

6.3.2. Container deployment density results 𝑑𝑒𝑖(𝑋)
Optimizing microservice resource demands can increase container

deployment density and enhance resource utilization. The statistical re-
sults of container deployment density for each algorithm’s deployment
solutions are presented in Figs. 12 and 13, and Table 9.

In Figs. 12–13, the line graphs show container deployment density
results obtained by six algorithms from two experiments. The box
12
Fig. 11. 𝒄𝒅𝒆(𝑋) Results and improvement by MASCSO (M = 240).

Fig. 12. 𝑑𝑒𝑖(𝑋) Results and improvement by MASCSO (M = 120).

Fig. 13. 𝑑𝑒𝑖(𝑋) Results and improvement by MASCSO (M = 240).

Table 9
The range of values of dei (𝑋).
 Algorithm Container deployment density range
 Experiment1 (M = 120) Experiment2 (M = 240)
 MASCSO 𝟎.𝟎𝟎𝟐𝟖𝟎𝟓 ∼ 𝟎.𝟎𝟑𝟎𝟏𝟐𝟔 𝟎.𝟎𝟎𝟔𝟓𝟑𝟏 𝟎.𝟎𝟒𝟓𝟎𝟔𝟏
 AF-CSDS 0.003552 ∼ 0.035881 0.007365 ∼ 0.050140
 APSO-TSDS 0.004839 ∼ 0.038777 0.008016 ∼ 0.056780
 MSG-NSGA-III 0.007265 ∼ 0.171087 0.013491 ∼ 0.321911
 ACO-MCMS 0.006286 ∼ 0.130777 0.010780 ∼ 0.227637
 GA-NSGA-II 0.004724 ∼ 0.092964 0.008647 ∼ 0.259413

plots illustrate MASCSO’s percentage improvement over the other five
algorithms across varying request counts. Fig. 14 shows the distribution
of container density results achieved by each algorithm in the two
experiments.

J. Zhu et al.

Future Generation Computer Systems 174 (2026) 108012
Fig. 14. Data distribution and result range of container deployment density for each
algorithm.

Fig. 15. Heatmap of microservice failure rate results for each algorithm.

Observations from these figures indicate that MASCSO exhibits a
significant overall improvement in Experiment 2. With user requests
𝑢𝑟𝑒𝑞𝑠 = {×1.0,×2.0,×3.0,×4.0}, MASCSO achieves an average improve-
ment of 50% over the other algorithms. Statistical analysis reveals that
MA- SCSO attains the highest container deployment density among the
six algorithms. The proposed algorithm achieves an average overall im-
provement of 75% compared to MSG-NSGA-III across both experiments
and a 50% improvement over ACO-MCMS. Even when compared to the
relatively better-performing AF-CSDS, MASCSO surpasses it by an aver-
age of more than 16%. MASCSO demonstrates a 47.51% improvement
compared to all other algorithms.

6.3.3. Microservice failure rate results ineff (𝑋)
Different deployment solutions result in varying microservice invo-

cation failure rates, which affect SFCs’ performance, including service
waiting time, response time, and resource utilization. Based on the
calculation Eq. (10), the resulting data for the microservice failure rate
ineff (𝑋) of each deployment solution is presented in the heatmap of
Fig. 15.

The smaller the ineff (𝑋) result, the better. In Fig. 15, darker colors
indicate lower microservice failure rates.

Upon observing Fig. 15, it is clear that MASCSO’s results have the
darkest color within each column, indicating that the ineff (𝑋) values
from MASCSO’s solutions are the smallest and best among the six
algorithms.

As shown in Fig. 16, MASCSO’s overall average improvement in
 (𝑋) exceeds 38% compared to the other algorithms. Specifically,
ineff

13
Fig. 16. MASCSO’s improvement in ineff (𝑋) and result ranges of each algorithm.

Fig. 17. Heatmap of 𝑈𝐶𝑃𝑈 (𝑋) and improvement by MASCSO.

it achieves a 30.24% improvement over AF-CSDS and a maximum
of 41.83% over MSG-NSGA-III. The distribution of the percentage
improvement data indicates that the minimum improvement over AF-
CSDS is still over 10%. The range of ineff (𝑋) values obtained by
each algorithm reveals that MASCSO’s ineff (𝑋) ∈ [2.817, 17.218].

6.3.4. Cluster resource utilization rates 𝑈𝐶𝑃𝑈 (𝑋) and URAM (𝑋)
Different microservice deployment schemes have varying impacts

on resource utilization rates. When deploying microservices, co-locating
those with non-conflicting resource demands on the same server can
improve resource utilization and system responsiveness. The goal of
increasing container deployment density in the deployment process
inherently involves this complementary deployment heuristic rule.
By using Eqs. (7)–(8), 𝑈𝐶𝑃𝑈 (𝑋) and 𝑈𝑅𝐴𝑀 (𝑋) are calculated to
determine the CPU and RAM utilization rates in the cluster, enabling a
comparison of algorithm performance in terms of resource utilization.
Figs. 17 and 18 display CPU and RAM utilization heatmaps for all al-
gorithms in various scenarios, along with box plots showing MASCSO’s
percentage improvement compared to other algorithms.

Higher resource utilization rates are desirable. As observed in
Figs. 17–18, the microservice deployment solutions derived from the
MASCSO algorithm exhibit the highest color values in the CPU and
RAM utilization rate heatmaps, indicating superior utilization rates.

The CPU and RAM improvement percentage plots show that
MASCSO achieves the maximum improvement over ACO-MCMSA.
Specifically, MASCSO improves CPU utilization by 57.97%(𝑀 = 120)
and 100.07%(𝑀 = 240), and RAM utilization by 71.23%(𝑀 = 120)
and 96.56%(M = 240). The improvement over AF-CSDS is relatively
smaller, with CPU utilization improvements of 15.40%(M = 120) and
35.87%(M = 240), and RAM utilization improvements of 19.23%(M =
120) and 21.94%(M = 240). To summarize the results, the CPU and
RAM utilization rates obtained across all scenarios are presented in

J. Zhu et al.

T
R

T
f
c

C
c
3

c
c
p
a

6

m
p
r
w

s
C
{
i
u
a

Future Generation Computer Systems 174 (2026) 108012
Fig. 18. Heatmap of 𝑈𝑅𝐴𝑀 (𝑋) and improvement by MASCSO.

Table 10
Resource (CPU/RAM) utilization results for all algorithms.
 Algorithms 𝑀 = 120 𝑀 = 240

CPU RAM CPU RAM
MASCSO 31.54% 39.13% 23.20% 25.03%
AF-CSDS 27.88% 32.68% 16.84% 20.43%
APSO-CDSM 23.48% 27.37% 12.68% 16.55%
MSGA-NSGAIII 22.43% 25.59% 12.36% 14.69%
ACO-MCMSA 20.46% 23.26% 11.45% 12.95%
GA-NSGAII 21.41% 25.20% 11.44% 14.71%

able 11
esource utilization results with difference 𝑤𝑜𝑏.
𝑤𝑜𝑏 𝑀 = 120 𝑀 = 240

CPU RAM CPU RAM
{0.4, 0.4, 0.2} 29.36% 40.62% 22.48% 25.97%
{0.5, 0.2, 0.3} 27.61% 41.23% 20.82% 26.71%
{1/3, 1/3, 1/3} 31.54% 39.13% 23.20% 25.03%
{0.2, 0.5, 0.3} 33.42% 33.84% 24.13% 22.54%

able 10. The table displays average CPU and RAM utilization rates
or each algorithm’s deployment solutions under two different cluster
onfigurations.
As shown in Table 10, the MASCSO algorithm achieves the highest

PU and RAM utilization rates among all the algorithms. Specifi-
ally, the average CPU and RAM utilization rates reach 31.54% and
9.13%(M = 120), and 23.20% and 25.03%, respectively.
The MASCSO algorithm outperforms all six algorithms across mi-

roservice communication latency, container deployment density, mi-
roservice failure rate, and cluster resource utilization metrics. The pro-
osed multi-objective-aware container-based microservice deployment
lgorithm has been validated for its effectiveness and superiority.

.3.5. Discussion on alternative multi-objective optimization techniques
To investigate the impact of the proposed MASCSO algorithm on
ulti-objective optimization in container-based microservices, we com-
ared it with the Differential Group-Based Whale Optimization Algo-
ithm (DGWO). The resource utilization results (CPU/RAM) for various
eight configurations are summarized in Table 11.
The results show that varying the weights significantly affects re-

ource utilization. For example, in the 𝑀 = 120 scenario, the highest
PU utilization (33.42%) was achieved with the weight configuration
0.2, 0.5, 0.3}, favoring density and failure rate over latency. Conversely,
n 𝑀 = 240, the configuration {0.4, 0.4, 0.2} yielded the lowest CPU
tilization (22.48%), highlighting the importance of optimal weight
ssignment in achieving desired performance metrics.
14
In addition to MASCSO, alternative techniques such as the Weighted
Fitness Function method (e.g., DGWO) and distributed approaches (e.g.,
DiCSPM) are noteworthy. DGWO dynamically adjusts weights based
on current performance metrics, enhancing resource allocation under
varying workloads. Meanwhile, DiCSPM allows for decentralized task
distribution, improving scalability and resilience in cloud environ-
ments.

7. Conclusions and future work

Container-based microservices architecture is a major paradigm for
modern application development to form microservices within the same
SFC. To tackle challenges in deployment, we propose the MASCSO
algorithm, which optimizes for multiple objectives. Existing models
often inadequately address cloud complexities, focusing on isolated
goals like resource utilization and performance, while neglecting in-
terdependencies and communication delays among microservices. This
leads to inefficiencies under fluctuating workloads. Our proposed Con-
tainerized Microservice Deployment Model offers a robust solution to
improve resource scheduling and has shown superior performance in
9 out of 10 CEC 2009 benchmark tests. Additionally, the MASCSO
algorithm promotes efficient resource management in real-world appli-
cations such as e-commerce, healthcare, and IoT ecosystems, enhancing
user experience and operational reliability. This research can signifi-
cantly influence the deployment and management of microservices in
increasingly cloud-based environments.

Overall, this paper presents a robust model targeting quasi-dynamic
microservice deployment scenarios. Key contributions include: (1) a
novel formal model that analyzes microservice interdependencies
within Service Function Chains, (2) the development of the Multi-
objective Sand Cat Swarm Optimization with Hybrid Strategies (MA
SCSO-HS) algorithm, and (3) extensive validation of the MASCSO algo-
rithm, demonstrating significant improvements in resource utilization,
system responsiveness, and application reliability across diverse envi-
ronments. By optimizing deployment strategies, our model achieves
enhancements of 23.76% in communication latency, 47.51% in de-
ployment density, 38.70% in failure rate, 58.50% in CPU utilization,
and 53.81% in RAM utilization. These contributions not only advance
theoretical understanding but also provide actionable solutions for
practical applications in cloud environments.

However, it is important to acknowledge some limitations of the
MASCSO algorithm. While it performs well in optimizing microservice
deployment, its scalability in handling very large or rapidly changing
service chains may present challenges. Additionally, the algorithm’s
effectiveness can be influenced by specific application constraints, such
as varying resource availability and the nature of interdependencies
among microservices. Future work should focus on addressing these
limitations to enhance the algorithm’s robustness in diverse operational
scenarios.

In future research, we aim to apply the MSCSO-HS algorithm to
address the large-scale multi-objective cost-aware microservice opti-
mization scheduling problem in heterogeneous cloud data centers. We
will specifically focus on: (1) enhancing the scalability of MASCSO
for dynamic environments by integrating adaptive resource allocation
techniques, (2) developing a framework to model and mitigate resource
availability variability, and (3) implementing case studies in real-world
applications to validate the algorithm’s effectiveness under varying in-
terdependency conditions. By pursuing these goals, we hope to further
refine our model and improve its applicability to diverse microservices
architectures.

CRediT authorship contribution statement

Jiaxian Zhu: Writing – original draft, Methodology. Weihua Bai:
Methodology, Conceptualization. Huibing Zhang: Investigation. Wei-
wei Lin: Validation. Teng Zhou: Writing – review & editing, Project
administration. Keqin Li: Supervision.

J. Zhu et al. Future Generation Computer Systems 174 (2026) 108012
Declaration of competing interest

The authors declare that they have no conflict of interest.

Acknowledgments

The research was supported by National Natural Science Founda-
tion of China (No. 62267003, No. 62462021), Philosophy and Social
Sciences Planning Project of Zhejiang Province (No. 25JCXK006YB),
Hainan Provincial Natural Science Foundation (No. 625RC716), Guang-
dong Basic and Applied Basic Research Foundation (No.
2025A1515010197, No. 2025A1515010113), The Innovative Develop-
ment Joint Fund of Natural Science foundation in Shandong Province
(No. ZR2024LZH012), Special Fund for Guangdong Province University
Key Field (No. 2023ZDZX 3041), Innovation Research Team Project
of Zhaoqing University, Innovation Project of Guangdong Province
University (No. 2024K QNCX023), and Innovation Project of Zhaoqing
City (No. 24121215 4168613).

Data availability

Data will be made available on request.

References

[1] S. Mendes, J. Simão, L. Veiga, Oversubscribing micro-clouds with energy-aware
containers scheduling, in: Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, 2019, pp. 130–137.

[2] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, P. Hu, Draps: Dynamic and resource-
aware placement scheme for docker containers in a heterogeneous cluster,
in: 2017 IEEE 36th International Performance Computing and Communications
Conference, IPCCC, IEEE, 2017, pp. 1–8.

[3] I. Ahmad, M.G. AlFailakawi, A. AlMutawa, L. Alsalman, Container scheduling
techniques: A survey and assessment, J. King Saud Univ- Comput. Inf. Sci. 34
(7) (2022) 3934–3947.

[4] L. Lv, Y. Zhang, Y. Li, K. Xu, D. Wang, W. Wang, M. Li, X. Cao, Q. Liang,
Communication-aware container placement and reassignment in large-scale
internet data centers, IEEE J. Sel. Areas Commun. 37 (3) (2019) 540–555.

[5] W. Bai, J. Zhu, S. Huang, H. Zhang, A queue waiting cost-aware control model
for large scale heterogeneous cloud datacenter, IEEE Trans. Cloud Comput. 10
(2) (2020) 849–862.

[6] S. Pallewatta, V. Kostakos, R. Buyya, Placement of microservices-based iot
applications in fog computing: A taxonomy and future directions, ACM Comput.
Surv. 55 (14s) (2023) 1–43.

[7] S. Pallewatta, V. Kostakos, R. Buyya, QoS-aware placement of microservices-
based IoT applications in Fog computing environments, Future Gener. Comput.
Syst. 131 (2022) 121–136.

[8] S. Pallewatta, V. Kostakos, R. Buyya, MicroFog: A framework for scalable place-
ment of microservices-based IoT applications in federated Fog environments, J.
Syst. Softw. 209 (2024) 111910.

[9] F. Faticanti, M. Savi, F. De Pellegrini, D. Siracusa, Locality-aware deployment
of application microservices for multi-domain fog computing, Comput. Commun.
203 (2023) 180–191.

[10] M. Imdoukh, I. Ahmad, M. Alfailakawi, Optimizing scheduling decisions of
container management tool using many-objective genetic algorithm, Concurr.
Comput.: Pr. Exp. 32 (5) (2020) e5536.

[11] O. Oleghe, Container placement and migration in edge computing: Concept and
scheduling models, IEEE Access 9 (2021) 68028–68043.
15
[12] H. Li, Q. Zhang, Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput. 13 (2) (2008) 284–302.

[13] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[14] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on
decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731.

[15] Z. Lin, D. Wang, C. Cao, H. Xie, T. Zhou, C. Cao, GSA-KAN: A hybrid model for
short-term traffic forecasting, Mathematics 13 (7) (2025) 1158.

[16] L. Bianchi, M. Dorigo, L.M. Gambardella, W.J. Gutjahr, A survey on meta-
heuristics for stochastic combinatorial optimization, Nat. Comput. 8 (2009)
239–287.

[17] M. Lin, J. Xi, W. Bai, J. Wu, Ant colony algorithm for multi-objective optimiza-
tion of container-based microservice scheduling in cloud, IEEE Access 7 (2019)
83088–83100.

[18] M. Ouyang, J. Xi, W. Bai, K. Li, Band-area resource management platform and
accelerated particle swarm optimization algorithm for container deployment in
internet-of-things cloud, IEEE Access 10 (2022) 86844–86863.

[19] M. Ouyang, J. Xi, W. Bai, K. Li, A container deployment strategy for server
clusters with different resource types, Concurr. Comput.: Pr. Exp. 35 (10) (2023)
e7665.

[20] D. Liu, A. Hafid, L. Khoukhi, Workload balancing in mobile edge computing for
internet of things: A population game approach, IEEE Trans. Netw. Sci. Eng. 9
(3) (2022) 1726–1739.

[21] H. Zhao, C. Zhang, An ant colony optimization algorithm with evolu-
tionary experience-guided pheromone updating strategies for multi-objective
optimization, Expert Syst. Appl. 201 (2022) 117151.

[22] K. Dubey, S.C. Sharma, A novel multi-objective CR-PSO task scheduling algorithm
with deadline constraint in cloud computing, Sustain. Comput.: Inform. Syst. 32
(2021) 100605.

[23] S. Muniswamy, R. Vignesh, DSTS: A hybrid optimal and deep learning for
dynamic scalable task scheduling on container cloud environment, J. Cloud
Comput. 11 (1) (2022) 33.

[24] O.T.S.T. Deep, Long-term container allocation via optimized task scheduling
through deep learning (OTS-DL) and high-level security, KSII Trans. Internet Inf.
Syst. 17 (4) (2023) 1258–1275.

[25] T. Danino, Y. Ben-Shimol, S. Greenberg, Container allocation in cloud environ-
ment using multi-agent deep reinforcement learning, Electronics 12 (12) (2023)
2614.

[26] Y. Cheng, Z. Cao, X. Zhang, Q. Cao, D. Zhang, Multi objective dynamic task
scheduling optimization algorithm based on deep reinforcement learning, J.
Supercomput. 80 (5) (2024) 6917–6945.

[27] A. Seyyedabbasi, F. Kiani, Sand Cat swarm optimization: A nature-inspired
algorithm to solve global optimization problems, Eng. Comput. 39 (4) (2023)
2627–2651.

[28] S. Mirjalili, S. Saremi, S.M. Mirjalili, L.d.S. Coelho, Multi-objective grey wolf
optimizer: a novel algorithm for multi-criterion optimization, Expert Syst. Appl.
47 (2016) 106–119.

[29] C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with
particle swarm optimization, IEEE Trans. Evol. Comput. 8 (3) (2004) 256–279.

[30] Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, et al., Mul-
tiobjective Optimization Test Instances for the CEC 2009 Special Session and
Competition, Technical Report 264, 2008, pp. 1–30.

[31] M.R. Sierra, C.A. Coello Coello, Improving PSO-based multi-objective optimiza-
tion using crowding, mutation and ∈-dominance, in: International Conference on
Evolutionary Multi-Criterion Optimization, Springer, 2005, pp. 505–519.

[32] J.L.J. Pereira, G.F. Gomes, Multi-objective sunflower optimization: A new hyper-
cubic meta-heuristic for constrained engineering problems, Expert Syst. 40 (8)
(2023) e13331.

[33] A. Corp, Alibaba cluster trace V2018, 2021, Online, URL https://github.com/
alibaba/clusterdata.

[34] W. Ma, R. Wang, Y. Gu, Q. Meng, H. Huang, S. Deng, Y. Wu, Multi-objective
microservice deployment optimization via a knowledge-driven evolutionary
algorithm, Complex Intell. Syst. 7 (2021) 1153–1171.

[35] C. Guerrero, I. Lera, C. Juiz, Genetic algorithm for multi-objective optimization of
container allocation in cloud architecture, J. Grid Comput. 16 (2018) 113–135.

http://refhub.elsevier.com/S0167-739X(25)00307-3/sb1
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb1
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb1
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb1
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb1
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb2
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb2
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb2
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb2
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb2
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb2
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb2
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb3
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb3
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb3
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb3
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb3
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb4
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb4
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb4
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb4
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb4
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb5
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb5
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb5
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb5
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb5
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb6
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb6
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb6
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb6
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb6
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb7
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb7
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb7
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb7
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb7
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb8
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb8
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb8
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb8
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb8
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb9
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb9
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb9
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb9
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb9
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb10
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb10
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb10
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb10
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb10
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb11
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb11
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb11
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb12
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb12
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb12
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb13
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb13
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb13
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb14
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb15
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb15
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb15
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb16
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb16
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb16
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb16
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb16
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb17
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb17
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb17
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb17
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb17
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb18
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb18
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb18
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb18
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb18
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb19
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb19
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb19
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb19
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb19
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb20
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb20
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb20
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb20
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb20
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb21
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb21
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb21
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb21
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb21
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb22
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb22
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb22
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb22
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb22
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb23
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb23
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb23
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb23
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb23
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb24
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb24
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb24
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb24
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb24
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb25
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb25
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb25
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb25
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb25
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb26
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb26
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb26
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb26
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb26
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb27
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb27
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb27
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb27
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb27
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb28
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb28
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb28
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb28
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb28
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb29
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb29
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb29
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb30
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb30
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb30
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb30
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb30
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb31
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb31
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb31
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb31
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb31
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb32
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb32
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb32
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb32
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb32
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb34
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb34
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb34
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb34
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb34
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb35
http://refhub.elsevier.com/S0167-739X(25)00307-3/sb35

	Adaptive multi-objective swarm intelligence for containerized microservice deployment
	Introduction
	Related Work
	Heuristic-Based Method
	Metaheuristic/Swarm Intelligence Optimization Methods
	Methods Based on Deep Learning/Reinforcement Learning

	Designing the Deployment Problem Formulation
	Microservice Deployment Based on Service Function Chains (SFCs)
	Container-Based Microservice Deployment Model
	Objective Evaluation Function
	Communication Latency Evaluation Function for Microservices
	Container Deployment Density Evaluation Function
	Cluster Resource Utilization Evaluation Function
	Microservice Failure Rate Evaluation Function
	Objective Function of the Multi-objective Awareness Model

	Multi-objective Awareness Solution-Hybrid Strategy Enhanced Multi-objective Sand Cat Swarm Optimization Algorithm
	Basic SCSO Algorithm
	Hybrid Strategy Enhanced MASCSO-HS Algorithm
	Optimizing Population Diversity
	Enhancing Global Search Performance
	Optimization of Boundary Convergence Performance
	Multi-Objective Adaptive Hypergrid Pareto Front Storage Strategy

	Implementation and Testing Validation of MASCSO-HS Algorithm
	Implementation of MASCSO-HS Algorithm
	Validation and Analysis of Algorithm Effectiveness

	MASCSO-HS's performance evaluation
	Ablation Study on the Impact of Optimization Strategies in MASCSO-HS

	Multi-objective-aware Container-based Microservice Deployment Solution
	Definition of Population Encoding Scheme
	The Fitness Function for the Deployment Model
	MASCSO Algorithm

	Experiments and Discussions
	Dataset and Environment Description
	The deployment solution
	Experimental Results Data Analysis and Comparison
	Microservice Communication Delay Results Fcde(X)
	Container Deployment Density Results Fdei(X)
	Microservice Failure Rate Results Fineff (X)
	Cluster Resource Utilization Rates FU C P U(X) and FURAM (X)
	Discussion on Alternative Multi-Objective Optimization Techniques

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

