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 A B S T R A C T

Container-based microservice architecture is essential for modern applications. However, optimizing deploy-
ment remains critically challenging due to complex interdependencies among microservices. In this paper, 
we propose a formalized deployment model by systematically analyzing the interdependencies within Service 
Function Chains (SFCs). To achieve this, we design a novel swarm intelligence optimization algorithm, named 
Multi-objective Sand Cat Swarm Optimization with Hybrid Strategies (MSCSO-HS), for multi-objective opti-
mization in microservice deployment. Our algorithm effectively optimizes inter-microservice communication 
costs and enhances container aggregation density to improve application reliability and maximize resource 
utilization. Extensive experiments demonstrate that MASCSO outperforms state-of-the-art algorithms for all 
optimization metrics. Our model achieves improvements of 23.76% in communication latency, 47.51% in 
deployment density, 38.70% in failure rate, 58.50% in CPU utilization, and 53.81% in RAM usage. The 
MASCSO framework not only enhances microservice performance and reliability but also provides a robust 
solution for resource scheduling in cloud environments for microservice deployment.
1. Introduction

Service Function Chains (SFCs) are a sequence of virtualized net-
work functions that are interconnected to provide specific services. 
Container technology, integrated with microservice architecture, has 
revolutionized the integration, deployment, and scheduling of service 
function chains (SFCs) in modern applications, offering enhanced elas-
ticity, flexibility, and maintainability. This container-based microser-
vice deployment has emerged as a dominant paradigm in contemporary 
application development and a cornerstone for resource allocation 
and service scheduling across cloud, mobile edge, and fog computing 
environments. The deployment of containerized microservices necessi-
tates addressing multiple objectives, such as optimizing performance, 
ensuring energy efficiency, facilitating maintenance, achieving load 
balancing, enhancing responsiveness, reducing costs, and enabling elas-
tic invocation. Microservice architecture breaks down coarse-grained 
applications into fine-grained, functionally independent service units, 
which can be deployed autonomously. These microservices collectively 
form an SFC or business chain, representing a business workflow mod-
eled as a Directed Acyclic Graph (DAG) of interdependent invocations. 
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Container technology significantly improves efficiency by enabling re-
source sharing at both the operating system and image repository 
levels, thereby streamlining application packaging, deployment, and 
management.

Recent research advances container deployment and resource
scheduling in microservice architectures by introducing novel algo-
rithms and optimization strategies. Mendes et al. [1] enhance energy ef-
ficiency by integrating an on-demand oversubscription-based container 
scheduling algorithm into Docker Swarm. Their approach significantly 
improves resource utilization and reduces energy consumption, demon-
strating the effectiveness of adaptive scheduling techniques in dynamic 
environments.

They allocate additional requests by oversubscribing CPU and mem-
ory resources, improving utilization and energy efficiency. Mao et al.
[2,3] propose a Dynamic and Resource-Aware Placement Scheme
(DRAPS) for Docker Containers to address system heterogeneity, re-
source utilization, and stability. However, DRAPS increases network 
consumption. Lv et al. [4] design a two-stage scheduling approach 
for container placement and reallocation in data centers, minimizing 
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communication costs and balancing resource usage to boost utilization. 
While these studies advance deployment strategies and orchestration 
techniques, they prioritize isolated objectives such as resource uti-
lization, energy efficiency, or performance. Existing approaches [5] 
neglect critical challenges, including selective container deployment, 
optimal microservice allocation, and dependency management between 
microservices.

Microservices architectures employ containers as execution environ-
ments for microservices, where communication dependencies, service 
interdependencies, and microservice failures critically influence system 
performance, resource utilization, operational costs, and energy con-
sumption. Pallewatta et al. [6–8] propose a scalable, QoS-aware multi-
objective set-based Particle Swarm Optimization (QMPSO) strategy to 
schedule microservices-based IoT applications in fog environments. 
Their approach optimizes completion time, budget, and throughput 
while maximizing limited fog resources through batch microservice 
placement. Faticanti et al. [9] address locality challenges in fog com-
puting by proposing a heuristic approach to manage external object 
and computational resource access for client microservices. These con-
tributions advance deployment strategies but require further integra-
tion of dependency management and failure resilience mechanisms to 
holistically address system-wide tradeoffs. Current research prioritizes 
addressing cross-domain containerized microservice dependencies to 
enhance user experience, QoS, and resource utilization. However, exist-
ing approaches focus narrowly on singular optimization objectives and 
neglect to unify critical factors such as data center performance, clus-
ter resource utilization, service fault tolerance, and resource provider 
cost-profit dynamics within a holistic framework.

Determining how many instances each microservice needs and plac-
ing them on the right computational nodes requires understanding mi-
croservice dependencies and reducing communication overhead. In this 
paper, we propose a Multi-Objective Aware Optimization Algorithm 
(MASCSO) for container-based microservice placement. To achieve this, 
we design a Multi-objective Sand Cat Swarm Optimization with Hy-
brid Strategies (MSCSO-HS). Our MASCSO balances multiple objectives 
under limited resources, varying resource distributions, and diverse 
application requirements. It manages combinatorial dependencies and 
user demands in a Service Function Chain (SFC) by deciding the proper 
number of microservice instances based on load and performance. 
MASCSO optimizes microservice aggregation, reduces cross-container 
communication overhead, and lowers microservice failure rates. It 
then deploys these instances to appropriate containers, virtual ma-
chines, or physical servers. MASCSO improves resource utilization, 
system responsiveness, load balancing, and the reliability of application 
services.

The main contributions of this paper are as follows.

• We design a novel formal model for container-based microservice 
deployment by analyzing microservice interdependencies within 
Service Function Chains.

• We propose a novel swarm intelligence optimization algorithm, 
named Multi-objective Sand Cat Swarm Optimization with Hy-
brid Strategies (MSCSO-HS), which serves as the foundation for 
MASCSO to address multi-objective challenges in microservice 
deployment.

• We validate MASCSO’s feasibility and effectiveness through ex-
tensive experiments, highlighting its potential to enhance re-
source utilization, improve system reliability, and optimize per-
formance across diverse runtime environments.

2. Related work

In cloud computing, container-based microservice deployment
strategies drive research and serve as a crucial technology. These 
strategies directly influence cloud data center performance indicators, 
such as system performance, resource efficiency, energy consumption, 
and cost.
2 
2.1. Heuristic-based method

We model container-based microservice deployment as an NP-hard 
integer programming problem. Many researchers apply heuristic algo-
rithms to solve such problems, offering significant benefits for microser-
vice instance deployment.

Mahmoud et al. address system availability, scalability, resource 
utilization, and power consumption by proposing a Many-Objective 
Genetic Algorithm Scheduler (MOGAS) in [10]. This scheduler targets 
multiple objectives to produce solutions with better performance. MO-
GAS outperforms the Ant Colony Optimization (ACO) algorithm by 
allocating a higher proportion of tasks on average and reducing energy 
consumption.

Omogbai et al. examine the container placement scheduling prob-
lem in edge computing and shows in [11] that many optimization mod-
eling frameworks convert the problem into multi-objective or graph 
network models solvable by algorithms. Meanwhile, scheduling algo-
rithms use heuristic-based methods to rapidly find suboptimal solu-
tions.

Zhou et al. propose GGA-HLSA-RW (GHW) as a novel genetic 
algorithm. GHW optimizes cloud utilization and energy consump-
tion to tackle the Multiple Dimensional Resources Scheduling Prob-
lem (MDRSP) [12,13] and MOEA/D [12,14] to yield GHW-NSGA II 
and GHW-MOEA/D. Experimental results confirm the effectiveness of 
GHW’s growth strategy and dimension-reduction approach in cloud 
computing.

Heuristic optimization algorithms excel at multi-objective optimiza-
tion and demonstrate robust global search capabilities [15]. These 
algorithms also maintain a simple and efficient structure. Inherent 
randomness in parameter settings strongly influences performance, and 
it often leads to non-reproducible results. These algorithms usually 
produce near-optimal solutions, and the problem scale or encoding 
method can affect solution quality.

2.2. Metaheuristic/swarm intelligence optimization methods

Researchers employ metaheuristic and swarm intelligence optimiza-
tion methods. These methods replicate biological evolution and group 
behavior. They explore complex solution spaces and often produce 
optimal or near-optimal solutions [16]. They also demonstrate strong 
capabilities in multi-objective optimization tasks for cloud resource 
scheduling [3].

Lin et al. introduced a multi-objective ant colony optimization algo-
rithm for microservice invocation. This method addresses resource uti-
lization, communication overhead, and service failure rate in
microservice-based applications [17].

Ouyang et al. devised a service deployment strategy based on Ac-
celerated Particle Swarm Optimization (APSO). This strategy enhances 
efficiency in cloud data centers by optimizing resource allocation and 
scheduling during service deployment [18,19]. Empirical results con-
firm that this model reduces system response times and improves 
resource utilization in cloud data centers.

Researchers have proposed additional algorithms based on meta-
heuristic and group intelligence optimization. These methods address 
microservice deployment and scheduling in cloud computing, the In-
ternet of Things, and fog computing. They include the Evolution-
ary Game Algorithm [20], Non-dominated Sorting Genetic Algorithm-
II (GA-NSGA-II) [21], the knowledge-driven evolutionary algorithm 
(MGR-NSGA-III) [22]. Researchers report that meta-heuristic and group 
intelligence algorithms provide strong advantages for complex and dy-
namically changing scheduling problems. Parameter tuning can unlock 
each algorithm’s potential and mitigate its limitations.
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2.3. Methods based on deep learning/reinforcement learning

Deep learning and reinforcement learning solutions for microservice 
deployment and container orchestration have attracted considerable 
attention, and many studies have examined these approaches.

Saravanan et al. introduced a hybrid optimum and deep learning 
approach for dynamic, scalable task scheduling (DSTS). This method 
addresses the task scheduling problem in cloud container environ-
ments [23]. Muthakshi proposed an Optimized Task Scheduling Al-
gorithm with Deep Learning (OTS-DL). This algorithm automatically 
allocates containers [24]. Tom et al. presented a multi-agent environ-
ment with a deep reinforcement learning-based decision mechanism 
(Multi-Agent Deep Reinforcement Learning). This environment deploys 
containers to suitable cloud servers [25]. Cheng et al. developed a 
task scheduling strategy optimization algorithm based on an improved 
asynchronous advantage actor-critic (A3C). This algorithm tackles the 
multi-objective problem of minimizing average response time and en-
ergy consumption [26]. Deep reinforcement learning methods for con-
tainer or microservice deployment offer strong decision-making capa-
bilities but are vulnerable to changes in the execution environment. 
Their reliance on a specific training environment creates a significant 
challenge.

Existing methods struggle to balance multiple conflicting objectives 
in cloud-based environments. Communication overhead, container den-
sity, system failure rate, and CPU/RAM utilization often conflict, and 
single-objective or fixed-weight approaches fail to maintain optimal 
performance across all metrics. Many swarm intelligence algorithms 
succumb to local optima and show limited robustness under boundary 
conditions or dynamic changes. Most approaches also lack an efficient 
solution archival mechanism, which hinders the real-time utilization of 
nondominated solutions, especially in high-dimensional scenarios with 
large solution sets.

We integrate a vigilance/random-walk mechanism into swarm in-
telligence algorithms and employ a Hypergrid-based external archiving 
scheme. This adaptive scheduling framework addresses the challenges 
of balancing diverse objectives, escaping local optima, and improving 
scalable solution storage.

3. Designing the deployment problem formulation

The microservice architecture divides an application into small, in-
dependently deployable service units. These units form service function 
chains (SFCs) according to invocation dependencies. A container-based 
approach places the required instances on the appropriate virtual or 
physical machines.

3.1. Microservice deployment based on service function chains (SFCs)

Fig.  1 illustrates an example of microservice deployment. The left 
section presents two service function chains: 𝑆𝐹1 ∶ {𝑚𝑠1, 𝑚𝑠2, 𝑚𝑠3, 𝑚𝑠4,
𝑚𝑠6} and 𝑆𝐹2 ∶ {𝑚𝑠1, 𝑚𝑠3, 𝑚𝑠4, 𝑚𝑠5}. The invocation dependencies are 
defined as: 𝐹1 ∶ {𝑚𝑠1 → 𝑚𝑠2, 𝑚𝑠2 → 𝑚𝑠3, 𝑚𝑠3 → 𝑚𝑠4, 𝑚𝑠4 → 𝑚𝑠6}
and 𝐹2 ∶ {𝑚𝑠1 → 𝑚𝑠4, 𝑚𝑠4 → 𝑚𝑠3, 𝑚𝑠3 → 𝑚𝑠5}. Users 𝑈𝑠𝑒𝑟1 and 𝑈𝑠𝑒𝑟2
access 𝑆𝐹1 and 𝑆𝐹2, respectively.

The orchestrator deploys microservice instances on specific nodes, 
such as: 𝑁𝑜𝑑𝑒1 ∶ {𝑚𝑠1, 𝑚𝑠3}, 𝑁𝑜𝑑𝑒2 ∶ {𝑚𝑠1,
𝑚𝑠4}, and 𝑁𝑜𝑑𝑒3 ∶ {𝑚𝑠2, 𝑚𝑠5, 𝑚𝑠6}. The deployment process consid-
ers constraints, including available resources such as CPU, memory, 
network bandwidth, and storage capacity. Communication latencies 
vary by node due to distinct network conditions and data transfer 
volumes. Each microservice has unique resource requirements that 
dictate container allocation.

The right section of Fig.  1 presents the logical architecture of the 
container-based microservice deployment model in a cloud environ-
ment. This model comprises four layers: the User Layer, Workload 
3 
Fig. 1. Microservice instance deployment application scenario.

Manager Layer, Resource Pool Control Layer, and Resource Infras-
tructure Layer. The Workload Manager Layer acquires microservice 
instances on demand, orchestrating containers based on user requests. 
The Resource Pool Control Layer employs the MASCSO algorithm to 
determine optimal deployment and scheduling plans executed in the 
Resource Infrastructure Layer.

3.2. Container-based microservice deployment model

The multi-objective-aware microservice deployment algorithm fa-
cilitates container-based deployment. Users submit requests, and the 
system evaluates the resource demands of SFC microservices. The al-
gorithm targets optimal configurations and quantities of microservices 
and execution containers while adhering to resource and deployment 
constraints. This approach minimizes system response times, enhances 
cluster resource utilization, and reduces service failure rates, ensuring 
a high-quality user experience.

Each service function chain consists of sequentially ordered mi-
croservices. Let 𝑆𝐹𝑖 represent the 𝑖th requested application, where 
1 ≤ 𝑖 ≤ 𝑀 , with 𝑀 denoting the total number of user-requested 
applications.

Each application 𝑆𝐹 𝑖 utilizes the tuple (𝑀𝑆,𝐹 ) to define its mi-
croservice composition:

• 𝑀𝑆 denotes the set of microservices within the service function 
chain, expressed as 𝑀𝑆 = {𝑚𝑠𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑛𝑆𝐹 𝑖}, where 𝑛𝑆𝐹 𝑖 =
|𝑀𝑆| represents the total number of microservices in 𝑆𝐹 𝑖.

• 𝐹  encapsulates the functional dependencies among these mi-
croservices, defined as
𝐹 = {⟨𝑚𝑠𝑖, 𝑚𝑠𝑗⟩ ∣ 𝑖, 𝑗 ∈ [1, 𝑛𝑆𝐹 𝑖], 𝑖 ≠ 𝑗}.

The notation ⟨𝑚𝑠𝑖, 𝑚𝑠𝑗⟩ indicates a call from microservice 𝑚𝑠𝑖
to microservice 𝑚𝑠𝑗 . These dependencies are stored within the 
matrix 𝐹 ′ ∈ R𝑛𝑆𝐹 𝑖×𝑛𝑆𝐹 𝑖 , where 𝑓𝑖𝑗 = 1 if the dependency ⟨𝑚𝑠𝑖, 𝑚𝑠𝑗⟩
exists.

The visual representation shows 𝑆𝐹𝑖 as a directed acyclic graph 
(DAG). The set 𝑀𝑆 forms the vertex set, and the function dependencies 
𝐹  produce the directed edges. Each application includes a group of 
microservices connected by call dependencies. This structure yields a 
DAG.

The system represents each microservice 𝑚𝑠𝑘 with a quadruple 
(

𝑟CPU𝑘 , 𝑟RAM𝑘 , 𝑣𝑘, 𝑣𝑇𝑘
)

:

• 𝑟CPU𝑘  and 𝑟RAM𝑘  denote the minimum CPU and RAM resources a 
server needs to handle 𝑚𝑠𝑘. The server must have at least 𝑟CPU𝑘
and 𝑟RAM𝑘  available.

• 𝑣𝑘 indicates the number of concurrent requests that 𝑚𝑠𝑘 can 
handle.

• 𝑣𝑇𝑘  specifies the threshold number of requests that 𝑚𝑠𝑘 can pro-
cess before reaching maximum concurrency limits imposed by its 
container.
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Each server node 𝑁𝑆𝑝 appears as a tuple (𝑅𝑠𝑝,Pos𝑝).

• 𝑅𝑠𝑝 = {(𝑟𝑠CPU𝑝 , 𝑟𝑠RAM𝑝 ) ∣ 1 ≤ 𝑝 ≤ 𝑀}, where 𝑀 indicates the 
number of server nodes. The parameters 𝑟𝑠CPU𝑝  and 𝑟𝑠RAM𝑝  specify 
the remaining CPU and RAM resources of 𝑁𝑆𝑝. The system en-
sures 𝑟𝑠CPU𝑝 ≤ 𝑅𝑠CPU𝑝  and 𝑟𝑠RAM𝑝 ≤ 𝑅𝑠RAM𝑝 , with 𝑅𝑠CPU𝑝  and 𝑅𝑠RAM𝑝
denoting the total resource allocations for 𝑁𝑆𝑝.

• Pos𝑝 marks the node’s network location and affects communi-
cation latency. The network distance between 𝑁𝑆𝑖 and 𝑁𝑆𝑗 is 
Ds𝑖𝑗 = ‖Pos𝑖 − Pos𝑗‖, which illustrates the latency coefficient 
between them.

Let 𝑈𝑟𝑚𝑠𝑘  denote the number of requests for microservice 𝑚𝑠𝑘. The 
system deploys and executes microservice instances within contain-
ers. The variable 𝑣𝑘 indicates the number of concurrent requests for 
𝑚𝑠𝑘, while 𝑣𝑇𝑘  represents the concurrency threshold of the deployed 
container. 

The container remains stable when the condition 𝑣𝑇𝑘 ≥ (𝑈𝑟𝑚𝑠𝑘 ⋅
𝑣𝑘) is satisfied. Conversely, it enters an overloaded state when 𝑣𝑇𝑘 <
(𝑈𝑟𝑚𝑠𝑘 ⋅ 𝑣𝑘). In response to overload conditions, the system dynamically 
scales the number of container instances to achieve load balancing. The 
number of container instances to be expanded, denoted as 𝐸𝑥𝐶𝐶𝑜𝑛𝑐 , is 
given by: 

𝐸𝑥𝐶𝐶𝑜𝑛𝑐 =

⌈

𝑈𝑟𝑚𝑠𝑘 ⋅ 𝑣𝑘
𝑣𝑇𝑘

⌉

. (1)

The container-based microservice deployment scheme 𝐶𝑆𝑝𝑠 ad-
dresses constraints for user-requested microservices, the resources they 
require, and the resources available on servers. This scheme is defined 
as follows: 

CSps =
[

X1,X2,… ,X𝑆
]𝑇 . (2)

In this model, let X𝑖 ∈ R1×𝑀  for 𝑖 = 1, 2,… , 𝑆. The term 𝑆, defined 
as 𝑆 =

∑𝑀
𝑘=1 𝑛𝑆𝐹𝑘 , represents the total number of microservices across 

all applications, where |𝑚𝑠| refers to the overall set of microservices. 
The system defines 𝑀 as the total number of server nodes available for 
hosting microservices. Thus, CSps ∈ R𝑆×𝑀 .

We define alloc(𝑚𝑠𝑗 ) as the set of nodes that are responsible for 
hosting the microservice 𝑚𝑠𝑗 along with its execution container Con𝑐 , 
thus enabling its operational functionality. The system applies relevant 
constraints when deciding whether 𝑁𝑆𝑝 belongs to alloc(𝑚𝑠𝑗 ). The node 
𝑁𝑆𝑝 appears in alloc(𝑚𝑠𝑗 ) when it hosts 𝑚𝑠𝑗 , and does not appear if it 
does not host 𝑚𝑠𝑗 . Each element 𝑥𝑖𝑗 of the matrix CSps characterizes 
the deployment status of microservice 𝑚𝑠𝑖 on node 𝑁𝑆𝑗 as follows: 

𝑥𝑖𝑗 =
{

1 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖)
0 𝑁𝑆𝑗 ∉ alloc(𝑚𝑠𝑖)

(3)

where the variable 𝑥𝑖𝑗 ∈ [0, 1] indicates whether the microservice 𝑚𝑠𝑖
is deployed (1) or not deployed (0) on node 𝑁𝑆𝑗 .

In this container-based microservice deployment model, we deploy 
𝑆 microservices  ms along with their corresponding containers from 
all applications 𝑆𝐹  across 𝑀 server nodes 𝑁𝑆. Each server node 
can host multiple microservices or container instances. We assert that 
identifying a valid container-based microservice deployment scheme 
𝐶𝑆𝑝𝑠 under these constraints is NP-hard. This claim is supported by 
reducing our problem to the well-known NP-hard problem of graph 
coloring, which establishes its computational complexity.

3.3. Objective evaluation function

We develop a multi-objective microservice deployment optimization 
algorithm. The algorithm targets four objectives: minimizing microser-
vice communication latency, maximizing container deployment den-
sity, enhancing resource utilization within the cluster, and reducing the 
microservice failure rate.
4 
3.3.1. Communication latency evaluation function for microservices
The cluster connects its nodes through high-speed networks, reduc-

ing communication latency among microservices, accelerating system 
response, and enhancing user experience. Index 𝑖 denotes microser-
vice 𝑚𝑠𝑖, while 𝑖′ refers to 𝑚𝑠𝑖′  called by 𝑚𝑠𝑖, and 𝑗 identifies server 
nodes. Microservice 𝑚𝑠𝑖 is hosted in container instance Con𝑖 with its 
container image sourced from node 𝑁𝑆𝑗 . The communication overhead 
comprises four factors: (1) container image size SiCon𝑖, (2) network 
distance 𝐷𝑠′𝑗𝑗 between nodes, (3) data volume 𝐷𝑑𝑖𝑖′  per interaction, and 
(4) access frequency 𝑣𝑖𝑖 for the invoked microservice.

Assuming alloc(𝑚𝑠𝑗 ) ≥ 1 implies that a microservice’s container 
instance can operate across multiple server nodes. The average data 
transmission time between container pairs influences overall commu-
nication latency. The call dependency matrix 𝐹 ′ ∈ R𝑆×𝑆 captures 
interdependencies among all microservices 𝑆𝐹 .

As the number of microservices increases, the frequency of com-
munication among them rises, resulting in higher network traffic and 
system load. Additionally, network latency may worsen due to com-
munications spanning multiple nodes. To evaluate this, we can apply 
the communication latency evaluation function (Eq. (4)) to quantify 
changes in communication costs with increasing microservice com-
plexity. Specifically, as 𝑆 increases, the call dependency matrix 𝐹 ′

leads to more interactions, thereby significantly increasing communi-
cation delays and overhead. The experimental section will provide spe-
cific results comparing communication costs for different microservice 
counts.

The communication latency evaluation function cde(𝑋), defined for 
deployment scheme 𝑋 ∈ CSps ⊂ R𝑆×𝑀 , quantifies communication 
latency as follows: 

cde (𝑋) =
𝑆
∑

𝑖=1

𝑀
∑

𝑗=1

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑥𝑖𝑗
𝐸𝑥𝐶Con 𝑖

⋅
𝑀
∑

𝑘∈𝐴𝑗

(

𝐷𝑠𝑗𝑘 ⋅ SiCon𝑖
)

⎞

⎟

⎟

⎠

+
𝑆
∑

𝑖′≠𝑖
𝑓𝑖𝑖′ ⋅

𝑥𝑖𝑗
𝐸𝑥𝐶Con 𝑖

⋅
⎛

⎜

⎜

⎝

𝑀
∑

𝑘∈𝐴𝑖′

(

𝐷𝑑𝑗𝑘 ⋅𝐷𝑠𝑗𝑘 ⋅ 𝑣𝑗𝑘
)

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (4)

where 𝐴𝑗 = {𝑘 ≠ 𝑗 ∣ 𝑁𝑆𝑘 ∈ alloc(𝑚𝑠𝑘)}, and 𝐴𝑖′ = {𝑘 ∣ 𝑁𝑆𝑘 ∈
alloc(𝑚𝑠𝑖′ )}.

3.3.2. Container deployment density evaluation function
Optimizing container deployment increases aggregation, leverages 

resources more effectively, and reduces dispersion. The extended call 
dependency matrix ∑𝐹 ′ ∈ R𝑆×𝑆 covers every microservice in 𝑆𝐹 . If 
𝑓𝑖𝑗 = 1, the directed edge weight becomes 𝑊𝑖𝑗 , and this value reflects 
the closeness of calls between the two microservices. These weights 
form the call dependency weight matrix 𝑊 ∈ R𝑆×𝑆 .

In cloud computing environments, deploying microservice contain-
ers from SFC applications on the same server node or within the same 
data center (CDC) aligns supply and demand more cost-effectively. 
This practice reduces data transmission costs between services and 
curbs network resource consumption. Centralized deployment boosts 
resource utilization on specific nodes. We measure edge distances 
between microservices to evaluate container aggregation and quantify 
microservice concentration. We define two scenarios to measure node 
edge distance. If 𝑓𝑖𝑖 = 1 and alloc(𝑚𝑠𝑖) ∩ alloc(𝑚𝑠𝑖) = 𝑁𝑆𝑘, then two 
microservices with a direct call dependency share the same server node 
𝑁𝑆𝑘 using containers, and the edge distance is 𝑊𝑖𝑖. If 𝑓𝑖𝑖 = 1 and 
alloc(𝑚𝑠𝑖) ∩ alloc(𝑚𝑠𝑖′ ) = ∅, we define the edge distance as follows: 

𝐷𝑘 =
𝑥𝑖𝑗

∏𝑆
𝑘=1
𝑘≠𝑗

𝑁𝑠𝑘∈alloc({𝑚𝑠𝑖})′

(𝑓𝑖𝑖′ ⋅𝐷𝑠𝑗𝑘)
𝑊𝑖𝑖′ .

(5)

Eq. (5) shows that a larger edge distance in a deployment scheme 
signifies higher container deployment density. We use the reciprocal of 
the sum of container edge distances as a quantification metric; smaller 
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values indicate better performance. We define the deployment intensity 
evaluation function for a deployment scheme, denoted as dei(𝑋), as 
follows: 

𝑑𝑒𝑖(𝑋) = 1∕
𝑆
∑

𝑖=1
𝑓𝑖𝑖′

(( 𝑀
∑

𝑗=1

𝑥𝑖𝑗
𝐴(𝑖, 𝑗)

𝑊𝑖𝑖′

)

+𝑊𝑖𝑖′

)

, (6)

where 𝐴(𝑖, 𝑗) = ∏𝑆
𝑘=1∧𝑘≠𝑗

∧𝑁𝑠𝑘∈alloc
(

𝑚𝑠𝑖′
)

(

𝑓𝑖𝑖′ ⋅𝐷𝑠𝑗𝑘
)

.

3.3.3. Cluster resource utilization evaluation function
Appropriate allocation and scheduling of computational resources, 

including CPU and memory, increase efficiency, reduce waste, and 
optimize system performance. The average utilization rates of these 
resources quantify the resource usage of a deployment scheme 𝑋 in the 
cluster. For optimization objectives, we define the evaluation functions 
𝑈𝐶𝑃𝑈 (𝑋) and 𝑈𝑅𝐴𝑀 (𝑋) as follows:

𝑈𝐶𝑃𝑈 (𝑋) =

∑𝑆
𝑖=1

𝑈𝑟𝑚𝑠𝑖 ⋅𝑣𝑘
𝐸𝑥𝐶𝐶𝑜𝑛𝑖

⋅ 𝑟𝐶𝑃𝑈
𝑖 ⋅ 𝑥𝑖𝑗

∑𝑀
𝑗=1 𝑟𝑠

𝐶𝑃𝑈
𝑗

, (7)

𝑈𝑅𝐴𝑀 (𝑋) =

∑𝑆
𝑖=1

𝑈𝑟𝑚𝑠𝑖 ⋅𝑣𝑘
𝐸𝑥𝐶𝐶𝑜𝑛𝑖

⋅ 𝑟𝑅𝐴𝑀𝑖 ⋅ 𝑥𝑖𝑗
∑𝑀

𝑗=1 𝑟𝑠
𝑅𝐴𝑀
𝑗

. (8)

3.3.4. Microservice failure rate evaluation function
Optimizing deployment strategies and enhancing fault-tolerance 

mechanisms lowers the failure probability in microservice operations 
and boosts reliability and stability. Common causes of microservice 
failures include (1) errors in execution containers and (2) failures 
in the server nodes hosting these containers. We denote the error 
probability of container instance Con𝑖 by 𝜌Con𝑖  and the failure rate of 
server node 𝑁𝑆𝑝 by 𝜌𝑁𝑆𝑝

. Let Con𝑖 be the execution container instance 
for microservice 𝑚𝑠𝑖 with 𝑁𝑆𝑝 ∈ alloc(𝑚𝑠𝑖). Then

𝜌Con𝑖 =
𝑣𝑇𝑖

𝐸𝑥𝐶Con𝑖
⋅ 𝜌𝑁𝑆𝑝

.

We define the failure rate evaluation function for a deployment plan 
𝑋, denoted by ineff (𝑋), as follows: 

ineff (𝑋) =
𝑆
∑

𝑖=1

𝑀
∑

𝑗=1

(

𝜌Con𝑖 + 𝜌𝑁𝑆𝑗

)

⋅ 𝑥𝑖𝑗 (9)

Substituting 𝜌Con𝑖  into Eq. (9) yields: 

ineff (𝑋) =
𝑆
∑

𝑖=1

𝑀
∑

𝑗=1

(( 𝑀
∑

𝐴𝑖

𝑣𝑇𝑖
𝐸𝑥𝐶Con 𝑖

⋅ 𝜌𝑁𝑆𝐾

)

+ 𝜌𝑁𝑆𝑗

)

⋅ 𝑥𝑖𝑗 (10)

where 𝐴𝑖 = {𝑘 ∣ 𝑘 = 1 and 𝑁𝑆𝑘 ∈ alloc(𝑚𝑠𝑖)}.

3.3.5. Objective function of the multi-objective awareness model
Optimizing container-based microservice deployment improves sys-

tem response time, resource utilization, and reduces service failure 
rates. We exclude 𝑈𝐶𝑃𝑈 (𝑋) and 𝑈𝑅𝐴𝑀 (𝑋) from the objective func-
tion, as they are influenced by container density. The final model’s 
objective function and constraints are defined as follows: 

𝐹min(𝑋) = min
𝑜𝑏∈{𝑐𝑑𝑒,𝑑𝑒𝑖,𝑖𝑛𝑒𝑓𝑓}

∑

𝐹𝑜𝑏(𝑋) (11)

Subject to:
𝑆
∑

𝑖=1
(𝑟CPU𝑖 ⋅ 𝑥𝑖𝑗 ) ≤ 𝑅𝑠CPU𝑗 , 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-1)

𝑆
∑

𝑖=1
(𝑟RAM𝑖 ⋅ 𝑥𝑖𝑗 ) ≤ 𝑅𝑠RAM𝑗 , 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-2)

𝑆
∑

(𝑈𝑟𝑚𝑠𝑖 ⋅ 𝑣𝑖) ⋅ 𝑥𝑖𝑗 ≤ 𝑣𝑇𝑖 , 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-3)

𝑖=1

5 
Fig. 2. Illustration of position update mechanisms for individuals in a sand cat swarm 
during a predation event.

𝑆
∑

𝑖=1
𝑥𝑖𝑗 = 1, 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-4)

𝑀
∑

𝑗=1
𝑥𝑖𝑗 ≥ 1, 𝑁𝑆𝑗 ∈ alloc(𝑚𝑠𝑖) (11-5)

Constraints (11-1) and (11-2) limit CPU and RAM usage by mi-
croservices on each server node to prevent exceeding capacity. Con-
straint (11-3) ensures stable execution containers during load balanc-
ing. Constraint (11-4) guarantees that microservice instances on the 
same server node remain distinct. Constraint (11-5) facilitates hosting 
of multiple microservices on a single server node.

These constraints necessitate a container-based microservice de-
ployment plan, constituting a multi-objective optimization problem. 
Section 2 reviews metaheuristic and population-based optimization 
algorithms that address these tasks and efficiently identify Pareto-
optimal solutions. We propose a new hybrid strategy-enhanced multi-
objective sand cat swarm optimization algorithm, which quickly identi-
fies multi-objective-aware deployment schemes with a problem size of 
R𝑆×𝑀  (i.e., 𝑆 microservices and 𝑀 server nodes), denoted as CSps =
[X1,X2,… ,X𝑆 ]𝑇 .

4. Multi-objective awareness solution-hybrid strategy enhanced 
multi-objective sand cat swarm optimization algorithm

4.1. Basic SCSO algorithm

SCSO, introduced by Seyyedabbasi et al. is a novel swarm intel-
ligence optimization algorithm inspired by the predation behavior of 
sand cats [27]. This algorithm effectively mimics the hunting behaviors 
of sand cats, showcasing significant optimization performance. Fig.  2 
illustrates the position-update mechanism among individuals in the 
sand cat swarm during predation.

The fundamental control parameters of the basic SCSO algorithm 
and their respective updating formulas are as follows:

⃖⃖⃖⃗𝑟𝐺 = 𝑆𝑀 −
(

𝑆𝑀 −  iter 𝑐
 iter Max 

)

, (12)

𝑅⃗ = 2 × ⃖⃖⃖⃗𝑟𝐺 × rand(0, 1) − ⃖⃖⃖⃗𝑟𝐺 , (13)

𝑟 = ⃖⃖⃖⃗𝑟𝐺 × rand(0, 1), (14)

where 𝑆𝑀  mimics the auditory sensitivity of sand cats, typically set 
at 𝑆𝑀 = 2.0; 𝑖𝑡𝑒𝑟𝑐 denotes the current iteration number; and 𝑖𝑡𝑒𝑟𝑀𝑎𝑥
represents the predetermined maximum number of iterations, usually 
set to 200 or 400. The parameter ⃖⃖⃖⃗𝑟𝐺 emulates the sensing range of 
sand cats during their prey hunting, which linearly decreases from 2 
to 0 as the iteration number 𝑖𝑡𝑒𝑟𝑐 increases. The control parameter 𝑅⃗ is 
utilized during the hunting or attacking phase. The variable ⃗𝑟 indicates 
the sensitivity range of the sand cats.
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Fig. 3. Example of initialized population and process solution matrix.

The predation behavior consists of two phases: hunting prey and 
attacking. The corresponding mathematical models for these phases are 
defined as follows:

(a) Mathematical model for the hunting prey phase: 
⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐 = 𝑟 ⋅

(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐 − rand(0, 1) ⋅ ⃖⃖⃖⃖⃖⃖⃖⃗Pos𝑐
(𝑡))

, (15)

where ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑐  represents the current position of the individual within 
the population during this iteration; ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐  denotes the position of 
the best candidate individual within the population. Eq. (15) reflects 
the iterative formula for the searching behavior, with ⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐  indicat-
ing the updated position of the individual. The sensitivity 𝑟 ensures 
convergence effectiveness during the prey-hunting phase.

(b) Mathematical model for the attacking prey phase: 

⃖⃖⃖⃗𝑃𝑟 =
|

|

|

|

rand(0, 1) ⋅ ⃖⃖⃖⃖⃖⃖⃖⃗Pos𝑏
(𝑡)
𝑏 − ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑐

|

|

|

|

, (16)

⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐 = ⃖⃖⃖⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏 − 𝑟 ⋅ ⃖⃖⃖⃗𝑃𝑟 ⋅ cos(𝜃), (17)

where ⃖ ⃖⃖⃗𝑃𝑟 represents a random individual located near the combination 
of the optimal individual ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑏  (i.e., the optimal solution) and the 
current position ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑐 ; 𝜃 ∈ [0◦, 360◦] represents the directional angle 
of movement.

Combining Eqs. (15) to (17), based on the stage control parameter 
𝑅⃗, the strategy for updating positions in the next round, selecting either 
the hunting or attacking phase’s mathematical model, can be defined 
as follows: 

𝑋(𝑡+1) =

{

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑏 − 𝑟 ⋅ ⃖⃖⃖⃗𝑃𝑟 ⋅ cos(𝜃), |𝑅⃗| ≤ 1
𝑟 ⋅

(

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑜𝑠(𝑡)𝑏𝑐 − rand(0, 1) ⋅ ⃖⃖⃖⃗𝑃𝑐 (𝑡)
)

, |𝑅⃗| > 1
(18)

where 𝑋(𝑡+1) ∈ CSps represents the solution for iteration 𝑡 + 1.

4.2. Hybrid strategy enhanced MASCSO-HS algorithm

4.2.1. Optimizing population diversity
To maximize the diversity of the initial population, we carefully 

choose chaotic sequences with high positive Lyapunov exponents. It 
optimizes population diversity with the Circle map, a low-dimensional 
chaotic system. Fig.  3 illustrates an example of the initialized popula-
tion and a solution matrix during the solving process.

In the population initialization process, chaotic mappings with dif-
ferent coefficients are applied to each individual and across various 
dimensions within each individual, as shown in Fig.  4. The population 
initialization is strategically defined through the implementation of a 
dual-circle chaotic mapping: 

𝑥𝑖,1 = 𝑥𝑖−1,1 +𝛺1 −
K1
2𝜋

sin
(

2𝜋 ⋅ 𝑥𝑖−1,1
)

,

∀𝑖 ∈ population(2, 𝑛),
, (19)

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗−1 +𝛺2 −
K2
2𝜋

sin
(

2𝜋 ⋅ 𝑥𝑖,𝑗−1
)

,
(20)
∀𝑖 ∈ population(1, 𝑛),∀𝑗 ∈ dimension(2, 𝑑),

6 
Fig. 4. The distribution of the Circle chaos mapping.

where 𝑑 represents the dimension of the solution, and 𝑛, denotes the 
size of the population, that is, the number of individuals. 𝛺1, K1, 𝛺2,
K2 are the coefficients for the Circle chaotic mapping applied to the 
population and the individuals, respectively, with 𝑥1,1 = rand(0, 1). Fig. 
4 shows the frequency histogram of the scaled sequence values and the 
scatter plot of the population distribution.

In Fig.  4, the population distribution of the Circle chaos mapping 
initialization sequence is uniform, showing greater diversity compared 
to the basic SCSO algorithm. This is achieved through the initialization 
of dual circle chaos mapping.

4.2.2. Enhancing global search performance
The spiral search strategy enhances exploration efficiency in meta-

heuristic algorithms by simulating spiral motion, thus avoiding local 
optima and increasing the probability of finding global optima. The 
parameters relevant to the spiral search strategy are defined as follows:
⃖⃖⃖⃖⃗𝑙(𝑡) = 𝜌 ⋅

(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐 − ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

, (21)

𝑧(𝑡) = 𝑒𝜅⋅cos
(

2𝜋⋅
(

1−𝑡∕iterMax
))

, (22)

where ⃖⃖⃖⃖⃗𝑙(𝑡) denotes the differential operation between the position of 
an individual, ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏𝑐 , and the best individual’s position, ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏 , scaled 
by a factor 𝜌 ∈ [0.1, 4]. The function 𝑧(𝑡) combines a sinusoidal function 
with an exponential factor, facilitating exploration of new regions while 
revisiting previous ones in search of the global optimum. The parameter 
𝜅 controls the amplitude of the sinusoidal wave, with 𝜅 ∈ [3, 5].

Integrating the spiral search strategy into the prey-hunting phase of 
the basic SCSO algorithm results in the following mathematical model:

⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑐 = 𝑒𝑧
(𝑡)⋅⃖⃖⃖⃗𝑙(𝑡) ⋅ sin

( 1
3
𝜋 ⋅ ⃖⃖⃖⃖⃗𝑙(𝑡)

)

⋅ 𝑟

⋅
(

⃖⃖⃖⃖⃖⃗Pos𝑏𝑐
(𝑡)

− rand(0, 1) ⋅ ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑐
)

.
(23)

The inclusion of the spiral search strategy in the MASCSO-HS al-
gorithm improves its ability to explore unknown regions, escape local 
optima, and enhance overall global search performance compared to 
the basic SCSO algorithm.

4.2.3. Optimization of boundary convergence performance
During each iteration, some individuals may end up marginalized 

or in precarious states. Integrating a vigilance mechanism allows indi-
viduals to transition from ‘‘dangerous’’ to ‘‘safe’’ positions, facilitating 
random movements within the group. This process uses a sparrow 
vigilance mechanism to enhance boundary convergence performance.
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Fig. 5. The multi-objective function adaptive hypergrid Pareto front storage.

The mathematical model governing this process is defined as fol-
lows: 

⃖⃖⃖⃖⃖⃗Pos(𝑡+1)𝑟𝑠 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏 + rand(0, 1) ⋅ 𝑞 ⋅ ||
|

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠 − ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
|

|

|

if min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

> min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

,

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠 + 𝜏 ⋅

(

|

|

|

⃖⃖⃖⃗Pos(𝑡)𝑟𝑠− ⃖⃖⃖⃗Pos(𝑡)𝑤𝑠
|

|

|

(

min
(

⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

−min
(

⃖⃖⃖⃗Pos(𝑡)𝑤𝑠

)

+𝜀
)

)

if min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

= min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

,

(24)

where ⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠  represents the individuals randomly selected with a prob-
ability 𝑝𝑠, where 𝑟𝑠 ∈ select

(

𝑝𝑠 ⋅ 𝑛
)

, and 𝑝𝑠 ∈ [0.2, 0.4]. The function 
min

(

𝑋(𝑡)) ∈ R𝑑 denotes the objective function values of all individuals 
at the 𝑡th iteration, with min

(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑤𝑠

)

= max
(

min
(

𝑋(𝑡))). The step 
length control parameter 𝑞 ∈ R𝑑 , with 𝑞𝑖 ∼ 𝑁(0, 1), and the direction 
and step length control parameter 𝜏 ∈ [−1, 1], where 𝜀 = 1 × 10−50.

Eq. (24) describes a scenario where a randomly selected individual 
is in a marginal ‘‘dangerous’’ position when min(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

> min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

. In this case, the individual moves toward the 
best position to avoid danger. Conversely, when randomly selected 
individuals need to converge to avoid potential danger, specifically 
when min(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑟𝑠
)

= min
(

⃖⃖⃖⃖⃖⃗Pos(𝑡)𝑏
)

, they wander toward the vicinity of other 
individuals to mitigate risk.

4.2.4. Multi-objective adaptive hypergrid pareto front storage strategy
Adaptive grid strategies, as detailed in [28,29], utilize a hypergrid 

dimension value, denoted as 𝑛𝑔 ∈ [10, 30]. The value of 𝑛𝑔 affects the 
storage density of the Pareto solution set. A hypergrid is constructed 
for each objective function, with the grid dimension corresponding to 
the number of objective functions, |

|

𝑜𝑏
|

|

.
The storage strategy for each dimension of the hypergrid involves 

defining the maximum and minimum values of the objective function 
for the current non-dominated solution set as Cost𝑜𝑏

max and Cost𝑜𝑏
min, 

respectively. The hypergrid expansion amount, 𝐸𝑙, and the width of 
each grid segment, 𝑊𝑙, are given by:

Cost𝑜𝑏
max = max

|

|

𝑜𝑏||

(

Cost𝑜𝑏
(

ResulSet𝑡
))

, (25)

Cost𝑜𝑏
min = min

|

|

𝑜𝑏||

(

Cost𝑜𝑏
(

ResulSet𝑡
))

, (26)

𝐸𝑙 = 𝜂 ⋅
(

Cost𝑜𝑏
max −Cost𝑜𝑏

min

)

, (27)

𝑊𝑙 =
((

Cost𝑜𝑏
max +𝐸𝑙

)

−
(

Cost𝑜𝑏
min −𝐸𝑙

))

∕
(

𝑛𝑔 − 1
)

. (28)
7 
Fig.  5 illustrates the adaptive hypergrid storage for a Pareto front 
solution set with |

|

𝑜𝑏
|

|

= 𝑚, where each non-dominated solution is 
indexed to its grid number based on its values, allowing identification 
of the grid with the least solutions, optimal for the next iteration, as 
shown by the red arrows in Fig.  5. Given the independence of non-
dominated solutions, their positions in the hypergrid may cluster or 
disperse, with the strategy for selecting optimal individuals based on 
density accumulation and a threshold 𝜆 = 1∕3. If |ResulSet𝑡| > 𝜆 ⋅ 𝑛, 
individuals in sparse hypergrids are selected; otherwise, those in dense 
hypergrids are chosen. When 𝜆 = 1, dense hypergrids are prioritized, 
while 𝜆 = 0 favors sparse hypergrids. During this iterative search, 
new solutions 𝑛𝑒𝑤𝑃 𝑡+1 are integrated into the hypergrid to form the 
new solution set ResultSet𝑡+1, determined by their positions relative to 
existing solutions.

(1) If the new solution 𝑛𝑒𝑤𝑃 𝑡+1 dominates any existing solution 
𝑜𝑙𝑑𝑃 ′𝑡, the dominated solutions are removed, and the new solution is 
added. The updated solution set is defined as 𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡+1 =
(

𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡 − 𝑜𝑙𝑑𝑃 ′𝑡) ∪ 𝑛𝑒𝑤𝑃 𝑡+1.
(2) If |𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡+1| > 𝑛𝑔 , then execute
select

(

maxcount
(

GridIndex
(

ResulSet𝑡
))) to remove a solution from 

the most densely mapped hypergrid.
(3) If |𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡+1| < 𝑛𝑔 , the new solutions are directly added, 

updating the hypergrid’s boundaries for the new iteration defined as:
Lower = Cost𝑜𝑏

min −𝐸𝑙 , (29)

Upper = Cost𝑜𝑏
max +𝐸𝑙 , (30)

GIndex(𝑋) =
⌈

Cost𝑜𝑏 (𝑋)
𝑊𝑙

⌉

∀𝑋 ∈ ResulSet𝑡+1. (31)

Eqs. (29) and (30) define the lower and upper bounds for the new 
hypergrid, while Eq. (31) refers to the mapping indices of individual 
solutions in the new set. The adaptive hypergrid storage strategy is 
a meta-heuristic approach designed to preserve elitism, with its size 
and shape adapting based on solution values to maintain diversity and 
leverage high-quality solutions in uncovering superior results.

This enables the use of high-quality solutions to uncover superior 
solutions.

4.3. Implementation and testing validation of MASCSO-HS algorithm

4.3.1. Implementation of MASCSO-HS algorithm
The algorithm integrates population diversity optimization, a spiral 

search strategy, a sparrow vigilance mechanism, and a multi-objective 
adaptive hypergrid storage strategy. The pseudocode for this algorithm 
is presented as Algorithm 1.

The original SCSO algorithm can be approximated as 𝑂(𝑛 ⋅ 𝑚), 
where 𝑛 is the population size and 𝑚 is the number of iterations. In 
our proposed MASCSO-HS, the integration of additional strategies for 
enhanced exploration and exploitation adds overhead. The complexity 
of MASCSO-HS can be represented as 𝑂(𝑛 ⋅𝑚+𝑘), where 𝑘 accounts for 
the additional computations introduced by the hybrid strategies, such 
as the spiral search strategy and the vigilance mechanism. Therefore, 
although MASCSO-HS has a slightly higher computational complexity, 
its superior performance in terms of convergence speed and solution 
quality positions it as a more effective approach in multi-objective 
optimization.

4.3.2. Validation and analysis of algorithm effectiveness
To validate the performance of the based algorithm of MASCSO-

HS (referred to as SCHS) against the original SCSO [27] algorithm and 
compare it with other recent swarm intelligence algorithms, such as 
HHO, YDSE, WOA, and COA, we utilized both the CEC 2019 and CEC 
2009 benchmark functions to comprehensively analyze SCHS’s capa-
bilities across different optimization scenarios. The experiments were 
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Table 1
Rank-sum test results for MASCSO-HS compared to other optimization algorithms on CEC 2019 functions.
 Function DBO POA SCSO HHO SABO GWO YDSE WOA PSO COA  
 F1 6.25E−10 1 0.000313 1 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1  
 F2 4.55E−09 2.43E−05 2.81E−05 1.72E−12 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.21E−12 
 F3 0.001003 0.055542 0.043581 0.000903 1.29E−06 0.061448 8.15E−11 0.000189 0.011227 3.59E−05 
 F4 0.000399 0.118812 0.090486 0.589446 0.133449 1.61E−10 1.96E−10 0.911708 3.33E−11 8.29E−06 
 F5 0.011228 3.69E−11 3.02E−11 3.02E−11 3.02E−11 5.49E−11 3.02E−11 3.02E−11 1 3.02E−11 
 F6 0.283778 0.864994 0.371077 9.51E−06 0.055546 1.43E−08 0.006972 9.06E−08 1.33E−10 8.15E−11 
 F7 0.12967 1.11E−06 0.074827 0.958731 8.15E−11 3.57E−06 0.002891 0.318304 2.49E−06 1.21E−10 
 F8 0.911709 0.000952 0.318304 0.000168 0.000141 9.21E−05 0.1809 0.000691 0.000117 1.11E−06 
 F9 0.10547 0.000189 0.258051 0.051877 0.559231 1.73E−06 0.318304 0.046756 9.83E−08 3.02E−11 
 F10 6.7E−11 4.69E−08 4.12E−06 1.16E−07 3.34E−11 3.02E−11 3.34E−11 1.21E−10 1.29E−09 5.49E−11 
Algorithm 1 MASCSO-HS Algorithm
Input min(𝑋),Dim; 
Initialize 𝑛, 𝑛𝑔 , 𝛼, 𝛽, 𝑝𝑠, 𝑆𝑀 , 𝜌, 𝜅, 𝜂; 
Initialize the population 𝑋𝑖(𝑖 = 1, 2,… , 𝑛) with Eq.  (19) and Eq.  (20); 

for each 𝑋𝑖 do 
ConstrainsTest 𝑋𝑖; 
CalculateCost 𝑋𝑖;

end for
DetermineDomination 𝑋0; 
CreateHyperGrid 𝑋0; Eq.(25) to Eq.(30); 
Save 𝑋0 → ResulSet0; 
while 𝑡 < iterMax do 
for each search agent do 
Update the position by Eqs. (12)–(14) and Eqs. (21)–(23); 
Update the position with 𝑝𝑠 and Eq.  (24);

end for
DetermineDomination(𝑋𝑡); 
CreateHyperGrid(𝑋𝑡); 
Save (𝑋𝑡 → ResulSet𝑡); 
𝑡 ← 𝑡 + 1;

end while
return 𝑅𝑒𝑠𝑢𝑙𝑆𝑒𝑡𝑡;

conducted using the publicly available CEC 2019 test suite, which pri-
marily assesses single-objective performance, alongside the CEC 2009 
test suite for multi-objective evaluation.

Based on the rank-sum test results presented in Table  1, the SCHS 
algorithm shows superior performance across various CEC 2019 func-
tions, especially in accuracy, stability, and convergence speed. For 
example, SCHS outperformed SCSO in functions F1 and F2, achieving 
error metrics of 6.25 × 10−10 and 4.55 × 10−09 respectively. This is 
substantiated by a comprehensive analysis of optimal values, averages, 
and standard deviations, highlighting SCHS’s rapid convergence to 
high-quality solutions and its strong adaptability in dynamic environ-
ments, making it well-suited for complex multi-objective optimization 
problems.

We verified the effectiveness of the MASCSO-HS algorithm in multi-
objective optimization using the 10-function multi-objective optimiza-
tion test benchmark set CEC 2009

[30]. Performance evaluation metrics such as Inverted Generational 
Distance (IGD) [28,31], Spacing (SP) [28,29], and Maximum Spread 
(MS) [29] were used as the assessment criteria. The detailed definitions 
of evaluation metrics can be found in Table  2.

The experimental data on the CEC 2009 Function shows that the 
MASCSO-HS algorithm has significant advantages over other algo-
rithms. The comparison graphs of the non-dominated Pareto front 
solution sets obtained by MASCSO-HS and the true solution sets for test 
functions UF5, UF7, UF8, and UF10 are shown in Fig.  6. The bar graphs 
for the values and the improvement line charts for UF5, UF7, UF8, and 

UF10 are also presented in Fig.  7. The values achieved the best results 
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Fig. 6. Non-dominated Pareto front solution sets obtained by MASCSO-HS on UF5, 
UF7, UF8, and UF10.

Fig. 7. Histograms of 𝐼𝐺𝐷 values for various algorithms and the performance 
improvement line chart for MASCSO-HS on UF5, UF7, UF8, and UF10.

in 9 out of the 10 test functions of CEC 2009, corresponding to a 90% 
success rate, despite the poorest performance on UF3. Particularly on 
UF5, UF7, UF8, and UF10, compared to other algorithms, the improve-
ments average 67.66%, 79.92%, 68.82%, and 66.32%, respectively. 
Since the MOEA/D algorithm is unable to solve UF8 and UF10, the 
improvements for these functions are reported as 0% in Fig.  7.

The experimental data suggest that MASCSO-HS outperforms other 
algorithms with faster convergence and solution speed. This paper has 
validated the effectiveness and superiority of MASCSO-HS compared to 
other recent and typical algorithms. Our ongoing research and exper-
imentation will continue to test further and fine-tune the algorithm’s 

performance.
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Table 2
Control parameters of meta-heuristics.
 Parameter Description Setting value 
 iter Max Number of iterations 200  
 𝑛 Population Size 100  
 𝛺1 , K1 Coefficient of Circle_1 chaos 0.259∕0.3  
 𝛺2 , K2 Coefficient of Circle_2 chaos 0.359∕0.559  
 𝑝𝑠 Probability of vigilance and random walk [0.2, 0.4]  
 𝑛𝑔 Size of hypergrid per dimension [10, 30]  
 𝜂 Grid expansion coefficient [0.05, 0.15]  
 𝜆 Pareto solution stacking density threshold 1∕3  
 𝜌 Step size scaling factor [0.1, 4]  

4.4. MASCSO-HS’s performance evaluation

Performance evaluation metrics such as Inverted Generational Dis-
tance (IGD) [28,31], Spacing (SP) [28,29], and Maximum Spread 
(MS) [29] were used as the assessment criteria. The 𝐼𝐺𝐷 formulas for 
these evaluation metrics are defined as follows: 

𝐼𝐺𝐷 =

√

∑𝑛
𝑖=1 𝑑

2
𝑖

𝑛
, (32)

where 𝑛 represents the size of the true Pareto solution set, and 𝑑𝑖 is the 
Euclidean distance between the 𝑖th solution in the true Pareto solution 
set and the nearest solution found by the algorithm. The Inverted 
Generational Distance (IGD) is thus calculated as the Euclidean distance 
between each solution in the true Pareto solution set and the obtained 
solution set. A smaller IGD value indicates that the obtained solution 
set is closer to the true one.

Note: Due to space limitations, the detailed formulations for assess-
ing the uniformity (Eq. (33)) and coverage (Eq. (34)) of the Pareto 
solution set have been omitted from the main text. Further details can 
be requested from the corresponding authors. 

𝑆𝑃 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1

(

𝑑 − 𝑑𝑖
)2, (33)

𝑀𝑆 =

√

√

√

√

𝑜
∑

𝑖=1
max

(

𝑑
(

𝑎𝑖 − 𝑏𝑖
)) (34)

The detailed configuration information for the parameters related 
to the MASCSO-HS algorithm used in the experiments is presented in 
Table  2. The experimental setup includes Processor: 12th Gen Intel(R) 
Core(TM) i7-12700 at 2.10 GHz, Memory: 32.0 GB RAM; utilizing 
MATLAB R2023b on the Windows 10 operating system. Each algorithm 
was executed 20 times, and the average values, standard deviation 
(SD), and the worst and best values of each metric (IGD, SP, and 𝑀𝑆) 
were subsequently calculated and recorded. Table  2 shows the control 
parameters of meta-heuristics derived from initial experience with the 
algorithm and optimized through testing experiments.

According to the configurations of related algorithms described in 
Ref. [32], a comparison was conducted with the latest and most classi-
cal multi-objective optimization algorithms: MOSFO, MOPSO, NSGA-II, 
MOGWO, and MOEA/D. The performance metrics of these algorithms 
on the CEC 2009 test benchmark set, along with the experimental data 
statistics of the MASCSO-HS algorithm in IGD results, are presented 
in Table  3 (The MS and SP results can be provided upon request, if 
necessary.).

From the comprehensive experimental data assessed, it can be 
concluded that MASCSO-HS performs the best among the comparison 
algorithms, demonstrating effective convergence and a faster solution 
speed than other algorithms.
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Fig. 8. The Improvements of each module in Ablation Studies on CEC2009 Test 
Functions.

4.5. Ablation study on the impact of optimization strategies in MASCSO-HS

We systematically remove one optimization strategy at a time: Pop-
ulation Diversity, Spiral Search Strategy, and Pigeon Vigilance Mech-
anism, denoting these modified versions as MASCSO-HS-PD, MASCSO-
HS-SSS, and MASCSO-HS-PVM, respectively.

According to the tests, each optimization strategy module signifi-
cantly contributes to the algorithm’s performance. As shown in Fig.  8, 
average values after 20 runs for each test function reveal improvements 
in IGD, SP, and MS metrics, indicating the critical contribution of these 
modules to overall algorithm efficacy.

5. Multi-objective-aware container-based microservice
deployment solution

The MSCSO-HS algorithm optimizes container-based microservice 
deployment with multiple objectives. It aims to identify the opti-
mal deployment solution for container-based microservices in data 
centers, considering various optimization objectives and deployment 
constraints.

5.1. Definition of population encoding scheme

According to Eqs. (2) and (3), a container-based microservice de-
ployment solution CSps ∈ R𝑆×𝑀  can be represented as: 

[

X1,X2,… ,X𝑆
]𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓𝐶𝑆𝑝𝑠
(

𝑚𝑠1
)

𝑓𝐶𝑆𝑝𝑠
(

𝑚𝑠2
)

…
𝑓𝐶𝑆𝑝𝑠

(

𝑚𝑠𝑆
)

⎤

⎥

⎥

⎥

⎥

⎦

, (35)

where X𝑖(1 ≤ 𝑖 ≤ 𝑆) represents the deployment of 𝑚𝑠𝑖 on 𝑀 server 
nodes, and the solution function 𝑓𝐶𝑆𝑝𝑠

(

𝑚𝑠𝑖
)

=
(

𝑥𝑖1, 𝑥𝑖1,… , 𝑥𝑖𝑀
)

. Ac-
cording to Eqs. (2), (3), and (35), the deployment solution is an 𝑆 ×
𝑀 matrix, and 1 ≤

∑𝑀
𝑗=1 𝑥𝑖𝑗

(

𝑥𝑖𝑗 ∈ {0, 1}
)

, indicating that each 𝑚𝑠𝑖 is 
deployed on at least one server node. The population individual X𝑀𝑆
in the MSCSO-HS algorithm is designed as follows: 

X𝑀𝑆 =
[

𝑦1, 𝑦2,… , 𝑦𝑆
]

, (36)

where y𝑖(1 ≤ 𝑖 ≤ 𝑆) =
[

y𝑖1, y𝑖2,…y𝑖𝑀
]

, y𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑀) = {0, 1}. 
First, each server node is assigned a number-position encoding; that 
is, for a server node with number 𝑖, if the corresponding 𝑖th position 
is 1, it indicates the deployment of the corresponding microservice; 
if it is 0, the microservice is not deployed. Thus, in the MASCSO-HS 
algorithm, the dimension of the population individual is 𝑑 = 𝑆, and 
each dimension is an 𝑀-bit binary encoding.
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Table 3
IGD results of algorithms in the CEC2009 test functions.
Algorithm UF Average SD Worst Best UF Average SD Worst Best
MSCSO-HS 0.05713 0.00961 0.06935 0.04188 0.02990 0.00220 0.03310 0.02531
MOSFO 0.06078 0.01479 0.09472 0.03838 0.03061 0.00796 0.04438 0.01824
MOGWO 1 0.11442 0.01954 0.15774 0.08023 2 0.05825 0.00739 0.07322 0.04980
MOPSO 0.13700 0.04407 0.22786 0.08990 0.06040 0.02762 0.13051 0.03699
NSGA-II 0.18640 0.01911 0.22631 0.15440 0.04492 0.00772 0.05922 0.03284
MOEA/D 0.18710 0.05070 0.24640 0.12650 0.12230 0.01070 0.14370 0.10490
MSCSO-HS 0.38587 0.07175 0.63280 0.27049 0.04949 0.00161 0.05228 0.04631
MOSFO 0.30180 0.08028 0.49793 0.16237 0.05265 0.00478 0.06029 0.04478
MOGWO 3 0.25569 0.08070 0.36786 0.12950 4 0.05867 0.00048 0.05936 0.05797
MOPSO 0.31399 0.04473 0.37773 0.25648 0.13504 0.00739 0.15189 0.12733
NSGA-II 0.27400 0.03691 0.33351 0.21761 0.09661 0.01073 0.11812 0.07612
MOEA/D 0.28865 0.01592 0.31294 0.26342 0.06810 0.00210 0.07040 0.06470
MSCSO-HS 0.36522 0.13793 0.60985 0.17367 0.21702 0.07534 0.36620 0.11534
MOSFO 0.81965 0.28927 1.56396 0.47421 0.25152 0.27570 0.90277 0.13518
MOGWO 5 0.79707 0.37857 1.73857 0.46795 6 0.27937 0.10448 0.55036 0.19338
MOPSO 2.20237 0.55304 3.03836 1.46479 0.64752 0.26612 1.24281 0.37933
NSGA-II 1.37961 0.22912 2.1275 1.19324 0.51132 0.13572 0.80123 0.28420
MOEA/D 1.29145 0.13489 1.46746 1.12306 0.68812 0.05533 0.74011 0.55235
MSCSO-HS 0.04309 0.00978 0.06380 0.02691 0.21636 0.03531 0.31953 0.17225
MOSFO 0.12464 0.01015 0.15974 0.01903 0.36527 0.10864 0.59228 0.24561
MOGWO 7 0.16036 0.13911 0.40142 0.06275 8 2.05777 1.14552 3.87888 0.46131
MOPSO 0.35395 0.20442 0.61512 0.05402 0.53671 0.18257 0.79637 0.24530
NSGA-II 0.24872 0.09733 0.47301 0.04832 1.47756 0.37454 2.51525 1.10274
MOEA/D 0.45520 0.18980 0.67700 0.02900 - - - -
MSCSO-HS 0.18300 0.03327 0.22633 0.12977 0.60551 0.17034 0.92489 0.29982
MOSFO 0.18727 0.10286 0.35615 0.11626 0.89247 0.23098 1.96783 0.33503
MOGWO 9 0.19174 0.09250 0.44794 0.12910 10 3.59453 3.48829 12.9564 1.04314
MOPSO 0.48850 0.14449 0.72210 0.33355 1.63719 0.29879 2.16220 1.22008
NSGA-II 0.24162 0.15545 0.38176 0.16453 4.64931 1.10352 6.71283 2.56657
MOEA/D - - - - - - - -
5.2. The fitness function for the deployment model

According to Section 2, the MASCSO-HS algorithm deploys multiple 
container instances of microservices onto suitable server nodes to ob-
tain an optimal or sub-optimal deployment solution. To choose the best 
deployment solution from the non-dominated Pareto front, we process 
each objective function using max–min normalization: 

norm 𝑜𝑏 (𝑥) =
𝑜𝑏(𝑥) − min𝑥∈X𝑀𝑆

𝑜𝑏(𝑥)
max𝑥∈X𝑀𝑆

𝑜𝑏(𝑥) − min𝑥∈X𝑀𝑆
𝑜𝑏(𝑥)

,

𝑜𝑏 ∈ {𝑐𝑑𝑒,  dei, ineff },
(37)

where 𝑥 ∈ X𝑀𝑆 is a deployment solution obtained by the algorithm. 
max𝑥∈X𝑀𝑆

𝑜𝑏(𝑥) and min𝑥∈X𝑀𝑆
𝑜𝑏(𝑥) represent the maximum and min-

imum values of the corresponding objective function in the obtained 
non-dominated Pareto front, respectively. By normalizing each objec-
tive function according to Eq. (37), we can uniformly map the impact 
of each objective function to the domain [0, 1], ensuring fairness in their 
influence on the outcome.

5.3. MASCSO algorithm

MASCSO is a swarm intelligence-based multi-objective aware mi-
croservice deployment optimization algorithm. The algorithm is built 
upon the MSCSO-HS. The deployment model’s fitness function selects 
the optimal container-based microservice deployment solution from the 
non-dominated Pareto solutions in the adaptive hypergrid. Algorithm 2 
presents the pseudocode of the MASCSO algorithm. 

6. Experiments and discussions

We compare the MASCSO algorithm with other state-of-the-art and 
classical algorithms to assess its effectiveness in container-based mi-
croservice deployment. In the experiments, we use Alibaba Cloud’s 
V2018 [33] dataset as a benchmark to generate microservice sets based 
on functional chains as experimental data.
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Algorithm 2 MASCSO Algorithm
Input  , ,; 
Initialize X𝑀𝑆 = [𝑦1, 𝑦2,… , 𝑦𝑆 ]; 
Initialize  −(X0

𝑀𝑆 ); 
while 𝑡 < iterMax do 

ResultSet𝑡 =  −(X𝑡
𝑀𝑆 ); 

for each 𝑀𝑆 in ResultSet𝑡 do 
for each ⊋ in {cde,dei, ineff} do 
𝐹 norm𝑜𝑏 (𝑥) =

𝐹𝑜𝑏(𝑥)−min𝑥∈𝑋𝑀𝑆 𝐹𝑜𝑏(𝑥)
max𝑥∈𝑋𝑀𝑆 𝐹𝑜𝑏(𝑥)−min𝑥∈𝑋𝑀𝑆 𝐹𝑜𝑏(𝑥)

;
end for
if 𝐹min(𝑋𝑀𝑆 ) < resulmin then 
resulmin = 𝐹min(𝑋𝑀𝑆 ); 
resultMS = 𝑋𝑀𝑆 ;

end if
end for
𝑡 = 𝑡 + 1;

end while
Return resultMS;

6.1. Dataset and environment description

Based on the invocation dependency relationships among Job, Task, 
and Instance in the V2018 [33] dataset, we generate a dataset with 
3 SFCs in the 𝑆𝐹  set, containing a total of 18 microservices and 22 
invocation dependency edges. The corresponding 𝑆𝐹  sets are 
𝑆𝐹1 =

{

𝑚𝑠1, 𝑚𝑠2, 𝑚𝑠3, 𝑚𝑠7, 𝑚𝑠11
}

,

𝑆𝐹2 =
{

𝑚𝑠2, 𝑚𝑠3, 𝑚𝑠4, 𝑚𝑠5, 𝑚𝑠6, 𝑚𝑠7, 𝑚𝑠8, 𝑚𝑠9, 𝑚𝑠11
}

,

𝑆𝐹3 =
{

𝑚𝑠2, 𝑚𝑠7, 𝑚𝑠10, 𝑚𝑠12, 𝑚𝑠13, 𝑚𝑠14, 𝑚𝑠15, 𝑚𝑠16,

𝑚𝑠17, 𝑚𝑠18
}

(38)

The specific data configurations for all 𝑀𝑆 sets are shown in Tables 
4–5.

The corresponding microservice invocation dependency DAG is 
shown in Fig.  9 (see Table  6).
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Table 4
The information of each 𝑚𝑠𝑖(𝑖 = 1, 2,… , 18) in 𝑀𝑆 set.
 MS set ms1 ms2 ms3 ms4 ms5 ms6 ms7 ms8 ms9 ms10 ms11 ms12 ms13 ms14 ms15 ms16 ms17 ms18 
 𝑟𝐶𝑃𝑈

𝑘 3.8 1.5 4.2 3.1 5 3.2 5.6 50 4.5 3.2 3.1 6.3 7 6.5 18 20 6.3 6.2  
 𝑟𝑅𝐴𝑀𝑘 1.5 13.6 5.7 6.5 7 5.1 1.6 55 4.3 2.5 4.3 4.5 6.8 7.5 50 50 3.5 2.1  
 𝑣𝑘 30 55 45 28 60 30 100 10 45 55 60 70 35 35 20 20 70 20  
 𝑣𝑇𝑘 10 11 9 7 10 6 10 2.5 9 5 10 7 6 5 2.5 6 8 7  
 𝑆𝑖𝐶𝑜𝑛𝑖 64.1 48.3 180.5 41.2 80.6 50 22.8 55.4 88.3 65 37.6 63.2 56.1 32.7 52.9 65.8 52.5 68.3  
Table 5
The edge information of 𝑚𝑠𝑖(𝑖 = 1, 2,… , 18) call dependency DAG graph.
 𝐸𝑑𝑔𝑒 𝑊𝑖𝑖 𝑣𝑖𝑖 𝐷𝑑𝑖𝑖′ 𝐸𝑑𝑔𝑒 𝑊𝑖𝑖 𝑣𝑖𝑖 𝐷𝑑𝑖𝑖′  
 (0, 𝑚𝑠1) 1 45 0

(

𝑚𝑠5 , 𝑚𝑠6
)

2 30 6.0  
 (𝑚𝑠1 , 𝑚𝑠2) 2 50 4.1

(

𝑚𝑠6 , 𝑚𝑠9
)

2 25 5.1  
 (𝑚𝑠1 , 𝑚𝑠7) 2 20 1.2

(

𝑚𝑠10 , 𝑚𝑠2
)

2 15 4.2  
 (𝑚𝑠2 , 𝑚𝑠3) 1 10 5.0

(

0, 𝑚𝑠10
)

1 25 0  
 (𝑚𝑠2 , 𝑚𝑠11) 1 6 4.2

(

𝑚𝑠10 , 𝑚𝑠12
)

2 55 4.6  
 (𝑚𝑠2 , 𝑚𝑠7) 1 13 2.3

(

𝑚𝑠12 , 𝑚𝑠13
)

2 35 2.3  
 (0, 𝑚𝑠3) 1 30 0

(

𝑚𝑠12 , 𝑚𝑠14
)

2 20 4.3  
 (𝑚𝑠3 , 𝑚𝑠4) 2 80 6.7

(

𝑚𝑠14 , 𝑚𝑠15
)

2 30 2.4  
 (𝑚𝑠3 , 𝑚𝑠11) 1 12 6.0

(

𝑚𝑠15 , 𝑚𝑠16
)

3 40 82  
 (𝑚𝑠4 , 𝑚𝑠5) 2 90 8.0

(

𝑚𝑠13 , 𝑚𝑠17
)

2 35 2.5  
 (𝑚𝑠5 , 𝑚𝑠8) 3 50 80

(

𝑚𝑠17 , 𝑚𝑠18
)

2 45 5.3  

Table 6
Configuration description of physical server nodes 𝑁𝑆𝑝.

 Parameter Description Values  
 𝑀 Number of Server Nodes 120∕240  
 𝑅𝑠𝐶𝑃𝑈

𝑝 Range of CPU Resource Capacity {200.0, 400.0, 800.0} 
 𝑅𝑠𝑅𝐴𝑀𝑝 Range of RAM Resource Capacity {200.0, 400.0, 800.0} 
 Ds𝑖𝑗 Inter-node Network Distance {1.0, 4.0, 8.0}  
 𝜌𝑁𝑆𝑝

Node Failure Rate (0.1%, 3.0%)  

Fig. 9. Microservice invocation dependency DAG.

In Table  5, Ds𝑖𝑗 = ‖

‖

‖

Pos𝑖 −Pos𝑗
‖

‖

‖

∈ {1.0, 4.0, 8.0}. When ‖‖
‖

Pos𝑖 −Pos𝑗
‖

‖

‖

= 0, i.e., 𝑖 = 𝑗, it represents the same node and is set to 1.0. When 𝑖 ≠ 𝑗
but ‖‖

‖

Pos𝑖 −Pos𝑗
‖

‖

‖

≤ 4, it indicates that the two different nodes are in 
the same CDC, and the value is set to 4.0. When 4.0 < ‖

‖

‖

Pos𝑖 −Pos𝑗
‖

‖

‖

, it 
means that the two nodes are in different CDCs, and the value is set to 
8.0. Table  2 shows the experimental environment and the configuration 
of the MASCSO (MASCSO-HS) algorithm.

Experimental description: To test the effectiveness of MASCSO un-
der different server cluster scales and user request pressures, the exper-
iments simulate multi-objective aware microservice deployment under 
two server cluster scales, as shown in Table  6, M = 120 and M = 240, 
with 6 types of user request numbers 𝑈𝑟𝑚𝑠𝑘 = {×1.0,×2.0,×3.0,×4.0,
×5.0,×6.0}, i.e., Experiment 1(M = 120) and Experiment 2(𝑀 = 240). In 
the multi-objective awareness, the weight coefficients of the objective 
functions are set as follows:
11 
{

𝑤𝑐𝑑𝑒, 𝑤dei , 𝑤ineff 
}

=
{

1
3 ,

1
3 ,

1
3

}

.

6.2. The deployment solution

Microservice deployment can be categorized into static and dynamic 
scenarios. Static deployment involves predefining the deployment strat-
egy before system startup, making it suitable for stable load conditions. 
In contrast, dynamic deployment adjusts the deployment strategy based 
on real-time operational states, which is ideal for fluctuating loads. The 
deployment solution primarily focuses on quasi-dynamic microservice 
deployment, aiming to optimize the initial deployment strategy to ac-
commodate moderate load variations and node failures while ensuring 
service quality and enhancing resource utilization.

Each normalized objective function is assigned a weight coeffi-
cient 𝑤𝑜𝑏(𝑜𝑏 ∈ {𝑐𝑑𝑒, dei, ineff }) to represent the importance of 
the corresponding objective function in the overall objective. Combin-
ing Eqs. (2), (36), and (37), the deployment model for solving the 
deployment solution can be defined as: 

Find
(

X𝑀𝑆
)

=
[

𝑦1, 𝑦2,… , 𝑦𝑆
]

(39)

Subject to:

min(𝑋) = min
𝑜𝑏∈{𝑐𝑑𝑒, dei,ineff }

∑

𝑤𝑜𝑏 ⋅ norm𝑜𝑏 (𝑋), 𝑤𝑜𝑏 ≥ 0,
∑

𝑜𝑏∈{𝑐𝑑𝑒, dei,ineff }
𝑤𝑜𝑏 = 1.

(39-1)

The experimental configuration validates the practical applicability 
of the MASCSO algorithm. All simulations focus on the configurations 
indicated by the Pareto front to ascertain their deployability in real 
cluster environments. We utilized the Alibaba Cloud V2018 dataset to 
generate microservice sets, with the deployment scheme based on the 
invocation dependencies among Job, Task, and Instance. Performance 
parameters for multiple server nodes were defined, including CPU and 
RAM capacities, inter-node network distances, and node failure rates, 
all adhering to current cloud computing standards.

The configurations generated by the MASCSO algorithm meet the 
needs of various server cluster scales (e.g., 𝑀 = 120 and 𝑀 =
240). By optimizing the fitness functions of the deployment model, 
we ensure that the microservice solutions satisfy multiple optimization 
objectives and are feasible for implementation in real cloud environ-
ments. This validates that our optimization method provides actionable 
solutions for real-world microservice architectures, optimizing resource 
utilization and achieving efficient management.

6.3. Experimental results data analysis and comparison

Using the aforementioned test dataset and simulation experiment 
settings, 20 experiments are conducted for each scenario using the algo-
rithms MASCSO, AF-CSDS [19], APSO-TSDS [18], MSG-NSGA-III [34], 
ACO-MCMS [17], and GA-NSGA-II [35]. The obtained experimental 
result data are statistically analyzed and compared based on 5 evalua-
tion indicators: communication delay cde (𝑋), container deployment 
density dei(𝑋), microservice failure rate ineff (𝑋), cluster resource 
utilization  (𝑋), and  (𝑋).
𝑈𝐶𝑃𝑈 URAM 
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Table 7
𝒄𝒅𝒆(𝑋) in Experiment 1 (M = 120).
 Algorithm X1.0 X2.0 X3.0 X4.0 X5.0 X6.0  
 MASCSO 𝟑𝟖.𝟐𝟔𝟒𝟖 𝟖𝟒.𝟓𝟖𝟕𝟔 𝟏𝟐𝟗.𝟏𝟑𝟐𝟔 𝟏𝟕𝟖.𝟐𝟒𝟏𝟓 𝟐𝟐𝟗.𝟖𝟔𝟒𝟓 𝟐𝟖𝟔.𝟏𝟒𝟐𝟗  
 AF-CSDS 41.24635 91.6312 142.2383 197.2654 𝟐𝟓𝟕.𝟓𝟗𝟏𝟕 308.7243 
 APSO-TSDS 43.6725 103.0629 168.4009 229.8420 302.4544 357.3990 
 MSG-NSGA-III 63.9962 126.8161 189.5266 251.5483 317.1417 387.6211 
 ACO-MCMS 48.7573 119.4410 184.3963 249.8399 320.9509 376.8277 
 GA-NSGA-II 50.9100 119.0349 185.6425 260.1502 315.7780 378.1257 

Table 8
𝒄𝒅𝒆(𝑋) in experiment 2 (M = 240).
 Algorithm X1.0 X2.0 X3.0 X4.0 X5.0 X6.0  
 MASCSO 39.9094 81.3603 129.3527 180.8494 226.8018 284.9376 
 AF-CSDS 44.4600 93.0183 144.3533 195.1785 256.7523 309.3256 
 APSO-TSDS 48.3544 104.4719 171.53029 242.2687 302.5902 359.3504 
 MSG-NSGA-III 70.1917 122.3831 194.9334 250.7215 322.8488 387.5925 
 ACO-MCMS 49.2449 122.1727 185.3435 252.6451 313.3203 384.0997 
 GA-NSGA-II 57.7841 124.7605 185.8094 259.6519 319.4655 388.6816 

Fig. 10. 𝒄𝒅𝒆(𝑋) Results and improvement by MASCSO (M = 120).

6.3.1. Microservice communication delay results 𝒄𝒅𝒆(𝑋)
Based on the deployment schemes obtained by the algorithm search, 

the results of Experiment 1 (M = 120) and Experiment 2(M = 120) are 
collected according to the microservice communication delay evalua-
tion function cde (𝑋), as shown in Table  7 and Table  8, respectively. 
The tables’ data with a gray background and bold font represent the 
best results among the 6 comparison algorithms.

Lower values of 𝑐𝑑𝑒(𝑋) signify enhanced communication delay 
performance among deployed microservices. The data in the table 
demonstrate that MASCSO consistently achieves the lowest communi-
cation delays across all scenarios, outperforming the other six algo-
rithms. Additionally, further analysis confirms that MASCSO excels in 
communication delay performance in both experiments, as illustrated 
in Figs.  10 and 11.

Figs.  10 and 11 show that MASCSO achieves an overall improve-
ment of more than 23% compared to the other five algorithms. The 
data from Tables  7 and 8 indicate that MASCSO reaches its best 
case in Experiment 1 (𝑀 = 120, 𝑈𝑟𝑚𝑠𝑘 = ×1.0) and Experiment 2 
(𝑀 = 240, 𝑈𝑟𝑚𝑠𝑘 = ×1.0), outperforming MSG-NSGA-III by 40.2% and 
43.1%, respectively. AF-CSDS ranks as the second-best algorithm, but 
MASCSO exceeds it by more than 7% in every scenario and pushes the 
improvement to over 12.5% in the highest case.

6.3.2. Container deployment density results 𝑑𝑒𝑖(𝑋)
Optimizing microservice resource demands can increase container 

deployment density and enhance resource utilization. The statistical re-
sults of container deployment density for each algorithm’s deployment 
solutions are presented in Figs.  12 and 13, and Table  9.

In Figs.  12–13, the line graphs show container deployment density 
results obtained by six algorithms from two experiments. The box 
12 
Fig. 11. 𝒄𝒅𝒆(𝑋) Results and improvement by MASCSO (M = 240).

Fig. 12. 𝑑𝑒𝑖(𝑋) Results and improvement by MASCSO (M = 120).

Fig. 13. 𝑑𝑒𝑖(𝑋) Results and improvement by MASCSO (M = 240).

Table 9
The range of values of dei (𝑋).
 Algorithm Container deployment density range
 Experiment1 (M = 120) Experiment2 (M = 240) 
 MASCSO 𝟎.𝟎𝟎𝟐𝟖𝟎𝟓 ∼ 𝟎.𝟎𝟑𝟎𝟏𝟐𝟔 𝟎.𝟎𝟎𝟔𝟓𝟑𝟏 𝟎.𝟎𝟒𝟓𝟎𝟔𝟏  
 AF-CSDS 0.003552 ∼ 0.035881 0.007365 ∼ 0.050140  
 APSO-TSDS 0.004839 ∼ 0.038777 0.008016 ∼ 0.056780  
 MSG-NSGA-III 0.007265 ∼ 0.171087 0.013491 ∼ 0.321911  
 ACO-MCMS 0.006286 ∼ 0.130777 0.010780 ∼ 0.227637  
 GA-NSGA-II 0.004724 ∼ 0.092964 0.008647 ∼ 0.259413  

plots illustrate MASCSO’s percentage improvement over the other five 
algorithms across varying request counts. Fig.  14 shows the distribution 
of container density results achieved by each algorithm in the two 
experiments.
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Fig. 14. Data distribution and result range of container deployment density for each 
algorithm.

Fig. 15. Heatmap of microservice failure rate results for each algorithm.

Observations from these figures indicate that MASCSO exhibits a 
significant overall improvement in Experiment 2. With user requests 
𝑢𝑟𝑒𝑞𝑠 = {×1.0,×2.0,×3.0,×4.0}, MASCSO achieves an average improve-
ment of 50% over the other algorithms. Statistical analysis reveals that 
MA- SCSO attains the highest container deployment density among the 
six algorithms. The proposed algorithm achieves an average overall im-
provement of 75% compared to MSG-NSGA-III across both experiments 
and a 50% improvement over ACO-MCMS. Even when compared to the 
relatively better-performing AF-CSDS, MASCSO surpasses it by an aver-
age of more than 16%. MASCSO demonstrates a 47.51% improvement 
compared to all other algorithms.

6.3.3. Microservice failure rate results ineff (𝑋)
Different deployment solutions result in varying microservice invo-

cation failure rates, which affect SFCs’ performance, including service 
waiting time, response time, and resource utilization. Based on the 
calculation Eq. (10), the resulting data for the microservice failure rate 
ineff (𝑋) of each deployment solution is presented in the heatmap of 
Fig.  15.

The smaller the ineff (𝑋) result, the better. In Fig.  15, darker colors 
indicate lower microservice failure rates.

Upon observing Fig.  15, it is clear that MASCSO’s results have the 
darkest color within each column, indicating that the ineff (𝑋) values 
from MASCSO’s solutions are the smallest and best among the six 
algorithms.

As shown in Fig.  16, MASCSO’s overall average improvement in 
 (𝑋) exceeds 38% compared to the other algorithms. Specifically, 
ineff 

13 
Fig. 16. MASCSO’s improvement in ineff (𝑋) and result ranges of each algorithm.

Fig. 17. Heatmap of 𝑈𝐶𝑃𝑈 (𝑋) and improvement by MASCSO.

it achieves a 30.24% improvement over AF-CSDS and a maximum 
of 41.83% over MSG-NSGA-III. The distribution of the percentage 
improvement data indicates that the minimum improvement over AF-
CSDS is still over 10%. The range of ineff (𝑋)  values obtained by 
each algorithm reveals that MASCSO’s ineff (𝑋) ∈ [2.817, 17.218].

6.3.4. Cluster resource utilization rates 𝑈𝐶𝑃𝑈 (𝑋) and URAM (𝑋)
Different microservice deployment schemes have varying impacts 

on resource utilization rates. When deploying microservices, co-locating
those with non-conflicting resource demands on the same server can 
improve resource utilization and system responsiveness. The goal of 
increasing container deployment density in the deployment process 
inherently involves this complementary deployment heuristic rule. 
By using Eqs. (7)–(8), 𝑈𝐶𝑃𝑈 (𝑋) and 𝑈𝑅𝐴𝑀 (𝑋) are calculated to 
determine the CPU and RAM utilization rates in the cluster, enabling a 
comparison of algorithm performance in terms of resource utilization. 
Figs.  17 and 18 display CPU and RAM utilization heatmaps for all al-
gorithms in various scenarios, along with box plots showing MASCSO’s 
percentage improvement compared to other algorithms.

Higher resource utilization rates are desirable. As observed in 
Figs.  17–18, the microservice deployment solutions derived from the 
MASCSO algorithm exhibit the highest color values in the CPU and 
RAM utilization rate heatmaps, indicating superior utilization rates.

The CPU and RAM improvement percentage plots show that
MASCSO achieves the maximum improvement over ACO-MCMSA.
Specifically, MASCSO improves CPU utilization by 57.97%(𝑀 = 120)
and 100.07%(𝑀 = 240), and RAM utilization by 71.23%(𝑀 = 120)
and 96.56%(M = 240). The improvement over AF-CSDS is relatively 
smaller, with CPU utilization improvements of 15.40%(M = 120) and 
35.87%(M = 240), and RAM utilization improvements of 19.23%(M =
120) and 21.94%(M = 240). To summarize the results, the CPU and 
RAM utilization rates obtained across all scenarios are presented in 
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Fig. 18. Heatmap of 𝑈𝑅𝐴𝑀 (𝑋) and improvement by MASCSO.

Table 10
Resource (CPU/RAM) utilization results for all algorithms.
 Algorithms 𝑀 = 120 𝑀 = 240

CPU RAM CPU RAM  
MASCSO 31.54% 39.13% 23.20% 25.03% 
AF-CSDS 27.88% 32.68% 16.84% 20.43% 
APSO-CDSM 23.48% 27.37% 12.68% 16.55% 
MSGA-NSGAIII 22.43% 25.59% 12.36% 14.69% 
ACO-MCMSA 20.46% 23.26% 11.45% 12.95% 
GA-NSGAII 21.41% 25.20% 11.44% 14.71% 

able 11
esource utilization results with difference 𝑤𝑜𝑏.
𝑤𝑜𝑏 𝑀 = 120 𝑀 = 240

CPU RAM CPU RAM  
{0.4, 0.4, 0.2} 29.36% 40.62% 22.48% 25.97% 
{0.5, 0.2, 0.3} 27.61% 41.23% 20.82% 26.71% 
{1/3, 1/3, 1/3} 31.54% 39.13% 23.20% 25.03% 
{0.2, 0.5, 0.3} 33.42% 33.84% 24.13% 22.54% 

able  10. The table displays average CPU and RAM utilization rates 
or each algorithm’s deployment solutions under two different cluster 
onfigurations.
As shown in Table  10, the MASCSO algorithm achieves the highest 

PU and RAM utilization rates among all the algorithms. Specifi-
ally, the average CPU and RAM utilization rates reach 31.54% and 
9.13%(M = 120), and 23.20% and 25.03%, respectively.
The MASCSO algorithm outperforms all six algorithms across mi-

roservice communication latency, container deployment density, mi-
roservice failure rate, and cluster resource utilization metrics. The pro-
osed multi-objective-aware container-based microservice deployment 
lgorithm has been validated for its effectiveness and superiority.

.3.5. Discussion on alternative multi-objective optimization techniques
To investigate the impact of the proposed MASCSO algorithm on 
ulti-objective optimization in container-based microservices, we com-
ared it with the Differential Group-Based Whale Optimization Algo-
ithm (DGWO). The resource utilization results (CPU/RAM) for various 
eight configurations are summarized in Table  11.
The results show that varying the weights significantly affects re-

ource utilization. For example, in the 𝑀 = 120 scenario, the highest 
PU utilization (33.42%) was achieved with the weight configuration 
0.2, 0.5, 0.3}, favoring density and failure rate over latency. Conversely, 
n 𝑀 = 240, the configuration {0.4, 0.4, 0.2} yielded the lowest CPU 
tilization (22.48%), highlighting the importance of optimal weight 
ssignment in achieving desired performance metrics.
14 
In addition to MASCSO, alternative techniques such as the Weighted 
Fitness Function method (e.g., DGWO) and distributed approaches (e.g., 
DiCSPM) are noteworthy. DGWO dynamically adjusts weights based 
on current performance metrics, enhancing resource allocation under 
varying workloads. Meanwhile, DiCSPM allows for decentralized task 
distribution, improving scalability and resilience in cloud environ-
ments.

7. Conclusions and future work

Container-based microservices architecture is a major paradigm for 
modern application development to form microservices within the same 
SFC. To tackle challenges in deployment, we propose the MASCSO 
algorithm, which optimizes for multiple objectives. Existing models 
often inadequately address cloud complexities, focusing on isolated 
goals like resource utilization and performance, while neglecting in-
terdependencies and communication delays among microservices. This 
leads to inefficiencies under fluctuating workloads. Our proposed Con-
tainerized Microservice Deployment Model offers a robust solution to 
improve resource scheduling and has shown superior performance in 
9 out of 10 CEC 2009 benchmark tests. Additionally, the MASCSO 
algorithm promotes efficient resource management in real-world appli-
cations such as e-commerce, healthcare, and IoT ecosystems, enhancing 
user experience and operational reliability. This research can signifi-
cantly influence the deployment and management of microservices in 
increasingly cloud-based environments.

Overall, this paper presents a robust model targeting quasi-dynamic 
microservice deployment scenarios. Key contributions include: (1) a 
novel formal model that analyzes microservice interdependencies
within Service Function Chains, (2) the development of the Multi-
objective Sand Cat Swarm Optimization with Hybrid Strategies (MA 
SCSO-HS) algorithm, and (3) extensive validation of the MASCSO algo-
rithm, demonstrating significant improvements in resource utilization, 
system responsiveness, and application reliability across diverse envi-
ronments. By optimizing deployment strategies, our model achieves 
enhancements of 23.76% in communication latency, 47.51% in de-
ployment density, 38.70% in failure rate, 58.50% in CPU utilization, 
and 53.81% in RAM utilization. These contributions not only advance 
theoretical understanding but also provide actionable solutions for 
practical applications in cloud environments.

However, it is important to acknowledge some limitations of the 
MASCSO algorithm. While it performs well in optimizing microservice 
deployment, its scalability in handling very large or rapidly changing 
service chains may present challenges. Additionally, the algorithm’s 
effectiveness can be influenced by specific application constraints, such 
as varying resource availability and the nature of interdependencies 
among microservices. Future work should focus on addressing these 
limitations to enhance the algorithm’s robustness in diverse operational 
scenarios.

In future research, we aim to apply the MSCSO-HS algorithm to 
address the large-scale multi-objective cost-aware microservice opti-
mization scheduling problem in heterogeneous cloud data centers. We 
will specifically focus on: (1) enhancing the scalability of MASCSO 
for dynamic environments by integrating adaptive resource allocation 
techniques, (2) developing a framework to model and mitigate resource 
availability variability, and (3) implementing case studies in real-world 
applications to validate the algorithm’s effectiveness under varying in-
terdependency conditions. By pursuing these goals, we hope to further 
refine our model and improve its applicability to diverse microservices 
architectures.
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