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THE BIGGER PICTURE Semantic segmentation is a process by which a computer assigns a label to each
pixel in an image, helping identify, for example, a road, pedestrian, tree, or tumor. These machine learning
methods are usually trained on annotated image datasets labeled by humans. Meticulous labeling by human
annotators, however, is often slow and costly, and existing annotated datasets may have errors or other flaws
that limit their usefulness. Re-annotating such image datasets is often prohibitively expensive. Here, we pre-
sent a method that can be used to automatically correct defective annotations. Methods such as this one
could reduce the time that humans spend on relabeling tasks and help advance the development of computer
vision applications, especially ones that require precise image segmentation.

SUMMARY

Recent studies have demonstrated that high-quality annotated data are crucial for segmentation perfor-
mance. However, incomplete or corrupted mask annotations remain common, limiting supervised learning.
To address this, we introduce a mask-reconstruction task, referred to as masked segmentation label
modeling (MSLM), which refines partially occluded labels by leveraging visible regions without manual anno-
tations. We further propose the label masked autoencoder (L-MAE), which identifies erroneous regions and
reconstructs them through contextual inference. The L-MAE fuses incomplete labels and corresponding
images into a unified map for reconstruction, and an image patch supplement (IPS) algorithm restores
missing image information, improving the average mean intersection over union (mloU) by 4.1%. To validate
the L-MAE, we train segmentation models on a degraded and L-MAE-enhanced Pascal VOC dataset, with the
latter achieving a 13.5% mloU improvement. The L-MAE attains predict area (PA)-mloU scores of 91.0% on
Pascal VOC 2012 and 86.4% on Cityscapes, outperforming state-of-the-art supervised segmentation
models.

INTRODUCTION

There has been a great deal of prior work on semantic segmen-
tation, both in deep learning research and in the context of spe-
cific applications such as medical imaging and remote sensing.
These models are tailored for pixel-level semantic analysis of
visual data, including images and videos, and offer technical
support for diverse applications. To achieve satisfactory
performance, large-scale semantic segmentation models rely
on extensive datasets, and the models related to professional
fields require professionals in the field to participate in creating
the datasets. However, compared with other tasks, the data-la-

beling work of semantic segmentation models is more complex
and challenging, so it is prone to labeling inaccuracies, leading
to broken labels. Semi-supervised semantic segmentation
methods leverage the synergistic potential between labeled
and unlabeled data to enhance model generalization.'™ This is
typically achieved through the implementation of self-supervised
learning mechanisms or consistency regularization strategies. A
widely adopted approach involves pseudo-label generation,
wherein an initial model is trained on the labeled dataset and
subsequently used to generate pseudo-labels for the unlabeled
data. These pseudo-labels are then combined with the original
labeled data to iteratively optimize the model. However, in
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scenarios involving imprecise annotations, the quality of the
generated pseudo-labels may degrade due to the influence of
noisy labels, thereby impairing the model’s learning effective-
ness and overall performance.

To solve this problem, in addition to re-labeling the data, the
following methods are included in the production of large data-
sets or datasets in specialized fields: (1) assigning an image to
multiple people for annotation and then checking the consis-
tency,”® (2) conducting error analysis on existing annotations
and then giving guidance to relevant workers,”® (3) using a
semi-supervised semantic segmentation model for dataset
amplification,®'® and (4) using the iterative annotation method
to first annotate a small part of the data. Then, a simple model
is trained with this part of the data, and the remaining unlabeled
pictures are preliminarily labeled with this model. Finally, the
areas mismarked are manually revised, and so on." ™" Among
the above methods, manual methods can significantly increase
the cost of producing datasets. In contrast, semi-supervised se-
mantic segmentation models and iterative labeling methods may
not optimally leverage labeled data with inaccuracies, so-called
“broken labels,” which may result in inefficient resource utiliza-
tion.'>”"> Alternatively, we may incorporate these imprecise
and precise annotated labels in the training dataset for a semi-
supervised semantic segmentation model. In that case, this
may lead to a decline in the model’s performance.

Our study primarily addresses the challenges posed by
incomplete or inaccurate annotations in the data-labeling
process, distinguishing itself from the traditional paradigm
of semi-supervised learning. Conventional semi-supervised
learning frameworks typically assume that datasets are
composed of two distinct subsets: one with fully labeled and
accurate annotations and the other entirely unlabeled. In
contrast, the scenarios we address involve labeled data that
may be incomplete and imprecise. These imperfect annotations
pose significant challenges for direct integration into standard
semi-supervised learning frameworks, as they can adversely
affect model performance. To tackle this issue, our research em-
phasizes leveraging the latent information embedded in these
incomplete annotations while preserving them. By integrating
advanced data augmentation strategies and algorithmic optimi-
zation techniques, we aim to enhance the training efficiency and
overall performance of models, addressing critical limitations in
existing approaches and broadening their applicability to real-
world datasets.

To fully use the existing broken labels, we propose a novel
task—masked segmentation label modeling (MSLM). Unlike
conventional approaches, MSLM performs masking and recon-
struction on the fuse map, which is generated by merging image
and label information. During the training phase, the proposed
method incorporates image context to comprehensively extract
the semantic features embedded in the labels during the recon-
struction process. In the inference phase, it further refines the
masked regions by leveraging both the unmasked label informa-
tion and the complete image data. With an appropriate selection
of masking regions, this approach enables a refined overall
labeling.

Our model design is divided into a training stage and an infer-
ence stage. In the training stage, the label masked autoencoder
(L-MAE) will mask and reconstruct the label. To cover the com-
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plex completion scenes in actual situations, we use a mixture
of three strategies: random mask, background-first mask, and
label-first mask for the masking strategy. Experiments have
shown that the effect of mixed use of the three strategies is
significantly better than that of using them alone. At the same
time, to allow the model to reconstruct the covered area based
on image information, we designed the stack fuse algorithm to
fuse label and image data. We use label classification based
on the layered design idea to highlight the label’s information af-
ter fusion.

Experiments have proven that the fusion strategy used in
the model is better than other strategies. Considering the uni-
formity of the input size to the encoder during the masking
step, the model can only mask the entire fused image and la-
bel. The circumstance will cover not only the label but also the
image. When the model uses zero values to pad the data and
restore the input size before passing them into the decoder,
the image information within the masked area may be lost dur-
ing the decoding process. This occurs because the decoder is
unable to discern whether the zero values in the masked area
originate from actual image content or are artificially intro-
duced placeholders. Consequently, when zeros are used to
pad the masked areas, the decoder may overly rely on the
contextual information from the surrounding non-masked re-
gions while reconstructing the image, leading to an inability
to accurately recover the content of the masked sections.
We introduce the image patch supplement (IPS) algorithm in
this context. Before transmitting data from the encoder to
the decoder, we employ the corresponding image patch to
restore the information to its original size. Empirical evidence
consistently demonstrates that models incorporating the IPS
algorithm outperform those that do not, particularly in terms
of completion performance.

Finally, to ensure fair and consistent comparison with existing
methods, we propose a novel evaluation metric termed predict
area mean intersection over union (PA-mloU), which specifically
measures the mloU within regions requiring reconstruction.
Given the varying degrees of label incompleteness encountered
during inference, it becomes necessary to adapt the training
process according to different mask ratios. It is observed that
regions lacking annotations predominantly correspond to
background areas. Consequently, after partitioning labels into
patches, we calculate the proportion of background pixels within
each patch and utilize these proportions to assign appropriate
mask ratios during L-MAE training. During inference, the hybrid
masking strategy adopted in training is replaced by a selective
masking approach, which preferentially masks patches contain-
ing higher proportions of background pixels for subsequent
reconstruction. The results are shown in Figure 1.

In summary, our contributions are 2-fold.

® We propose a mask-label enhancement method, the
L-MAE, which is able to augment the label quality of data-
sets with incomplete mask labels to improve the perfor-
mance of supervised semantic segmentation. Additionally,
we design a multi-mask ratio architecture in the inference
stage, which generates mask labels with varying ranges for
input samples, to accommodate diverse segmentation
task requirements.
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Pascal VOC 2012 Dataset, 8 Encoder Blocks, 6 Decoder Blocks, 1440 Encoder Embedding dim, 720 Decoder Embedding dim, 50% Mask Ratio

Masked Label Prediction

Image

Figure 1. The performance of the label masked autoencoder

Masked Label Prediction

“Masked label” denotes randomly masked complete label. As the “prediction” shows, the follow-up mask-reconstruct pipeline will complete the masked area.

® To enhance the performance of the model, we introduce
two core algorithms: stack fuse and IPS. The stack fuse al-
gorithm is designed to more effectively integrate image
and label information, while the IPS algorithm aims to
address the issue of supplementing image information
following the fusion of maps.

The rest of this paper is organized as follows. The second sec-
tion introduces recent related works. In the third section, we
describe the proposed method in detail. The fourth section pre-
sents the experimental results. The final section concludes
the paper.

RELATED WORK

Vision transformer and MAE

The vision transformer (ViT) architecture'® represents a seminal
advancement in the application of pure transformer models to vi-
sual recognition tasks. Unlike traditional convolutional neural
networks (CNNs), ViT processes input images by partitioning
them into a sequence of fixed-size, regularly spaced patches.
Each patch is then linearly embedded and augmented with
positional encoding to retain spatial information, after which
the resulting sequence is fed into a standard transformer
encoder. This architecture achieves a favorable trade-off be-
tween computational efficiency and predictive accuracy,
demonstrating competitive performance on image classification
benchmarks. Importantly, ViT addresses a long-standing chal-
lenge in computer vision: the effective integration of positional
awareness within transformer-based image representations.
Empirical results further suggest that ViT scales robustly with
increasing model capacity and dataset size. Nevertheless, its
reliance on large volumes of labeled training data poses practical
limitations in real-world applications.

To mitigate the dependence on extensive annotation, He
et al. proposed the MAE framework,'”'® drawing inspiration
from recent progress in self-supervised language modeling
techniques such as bidirectional encoder representations
from transformers (BERT).'® The MAE introduces a novel pre-
training paradigm in which the model learns visual representa-
tions by reconstructing randomly masked regions of input im-
ages. The architecture consists of two distinct modules: (1) a
high-capacity encoder that processes only the visible patches
and (2) a lightweight decoder that reconstructs the fullimage by
leveraging the latent representations in conjunction with mask
tokens. Experimental evaluations reveal that masking a sub-
stantial portion of the image—typically around 75% —consti-
tutes an effective pretext task for self-supervised learning.
This dual-module design offers several key advantages: signif-

icantly faster convergence during training (up to 3x speedup),
improved parameter efficiency, and superior performance on
downstream vision tasks compared to conventional supervised
methods.

In addition to random masking, recent studies have explored
more advanced masking strategies, including learning-based
adaptive masking and predefined multi-scale masking.?°>° Pre-
defined masking strategies rely on handcrafted rules or heuris-
tics, such as masking fixed spatial regions or selecting patches
based on saliency priors, which offer simplicity and controlla-
bility in specific domains. In contrast, learning-based methods
dynamically determine mask positions based on image content
or attention scores, while multi-scale masking divides image
patches at varying granularities to enhance semantic coverage.
For instance, refinement-based masking techniques, such as the
adaptive-masking-over-masking strategy proposed in Amom,*?
dynamically update masked regions to enhance decoder refine-
ment and improve encoder optimization. Additionally, multi-
scale or learning-based masking approaches, such as BUS-
M2AE (Breast UltraSound Multi-scale Masked AutoEncoder),’
further improve representation quality by targeting diverse
semantic granularities.

Semantic segmentation and semi-supervised semantic
segmentation model
Semantic segmentation integrates image classification, object
detection, and image segmentation, aiming to partition an
image into distinct regional blocks, each with a specific semantic
meaning, achieved through dedicated techniques. Subse-
quently, the semantic category of each regional block is deter-
mined, facilitating the progression of semantic reasoning from
low-level to high-level information. Ultimately, the result is a
segmented image with pixel-wise semantic annotations.
Presently, the most widely adopted methods for image semantic
segmentation rely on CNNs. Notably, these networks predomi-
nantly comprise convolutional layers with two prevalent archi-
tectural paradigms: symmetric models (e.g., fully convolutional
network [FCN],>* SegNet,”® and UNet”®) and dilated architec-
tures (e.g., RefineNet,”” PSPNet,”® and Deeplab series®®").
Numerous outstanding semantic segmentation models have
emerged in the era of the transformer’s prominence. An exem-
plar, SegNext,*” has garnered acclaim for surpassing its prede-
cessors in semantic segmentation performance. This success
can be attributed to its efficient computational design and utiliza-
tion of the transformer’s encoder structure for feature extraction.
Semi-supervised semantic segmentation models extract
knowledge from labeled data in a supervised way and from un-
labeled data in an unsupervised manner, thus reducing the label-
ing effort required in the fully supervised scenario and achieving
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The proposed label masked autoencoder (L-MAE) framework is composed of four primary components: (1) a hierarchical fusion module for multimodal feature
integration (referred to as stack fuse), (2) a context-aware encoder (L-MAE encoder), (3) a reconstruction-oriented decoder (L-MAE decoder), and (4) an infor-
mation-recovery mechanism (image patch Supplement). The encoder selectively processes the visible regions of the fused feature representations, which are
obtained through the integration of label and image modalities. In contrast, the decoder is designed to reconstruct the complete sequence, including masked
regions, by leveraging spatial-temporal attention mechanisms. To mitigate the degradation of contextual information caused by occlusion operations from the
mask selector, the image patch supplement component reinserts selected original visual patches into the masked positions. This strategy effectively preserves
visual-semantic consistency and enhances the quality of the reconstructed output. Furthermore, the framework introduces a specialized L-MAE multi-head self-
attention (LMMSA) mechanism, which adaptively modulates attention weights based on the preservation status of semantic labels during feature propagation.

This targeted attention adjustment facilitates more effective representation learning under partially observable conditions.

better results than in the unsupervised scenario. The commonly
used methods include GAN (generative adversarial network)-like
structures and adversarial training between the two networks,
with one as the generator and the other as the discriminator.**°
There are also methods for consistency regularization that
include a regularization term in the loss function to minimize
the difference between different predictions for the same im-
age.** 8 There are also pseudo-labeling methods, which gener-
ally rely on predictions previously made on unlabeled data and a
model trained on labeled data to obtain pseudo-labels.***
There are also methods based on contrastive learning.
This learning paradigm groups and separates similar elements
from different elements in a particular representation space.*”*®
In contrast, our method does not rely on representation-level
discrimination but rather focuses on label reconstruction through
masked input modeling.

45,46

Augmentation methods
Various conventional data enhancement methods are commonly
employed to facilitate the training of highly accurate models on
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small, semantically split datasets. These methods typically
involve basic geometric operations such as flipping, cropping,
and random rotation.*®*° Another category of traditional trans-
formations aims to increase the model’s training challenge by
altering pixel values, including brightness, contrast, or color bal-
ance adjustments. In addition to these conventional transforma-
tions, alternative approaches involve applying different types of
filters for data enhancement.®">> Examples include the Sobel fil-
ter or the Canny filter for edge detection, which enhances the vis-
ibility of object edges. High-contrast vertical or horizontal edge
filters can sharpen images, while Gaussian filters induce image
blurring. Furthermore, adding Gaussian noise,*® salt-and-pep-
per noise, and speckle noise to images or implementing random
erasure is a common data augmentation technique. Employing
these methods enhances data diversity and strengthens the
model’s ability to extract features for target classification.
Beyond traditional augmentations, semantic-aware strategies
such as ClassMix®* and Copy-Paste®® have emerged as effec-
tive techniques for combining label-consistent regions across
samples. Additionally, region-level occlusion methods such
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Before the fuse map is sent to the decoder, we use the image’s corresponding patch information to complete the size of the fuse map instead of using 0. The
algorithm can avoid the loss of the image information at the corresponding position due to masking the fuse map by patch.

CutMix°® or Cutout®” serve as data augmentation strategies by
introducing structured perturbations in the input space, thereby
enriching training diversity and promoting robustness, particu-
larly under limited supervision.

As technology advances, researchers increasingly explore the
application of GANSs, diffusion models, and other generation
networks in data enhancement for semantic segmentation data-
sets. Examples include AdvChain®® and RRVS,*® which generate
datasets for training networks through the use of generative
networks. However, traditional and novel methods based on
generation networks struggle to fully utilize existing image-label
information when addressing incomplete image labeling,
warranting more precise enhancement effects.

METHODS

The conventional semantic segmentation model and the semi-
supervised variant, which enhances the dataset, fall short of
addressing potential information gaps within a single label. Our
proposed L-MAE model can serve both for completion and se-
mantic segmentation tasks.

This section presents detailed descriptions of the constituent
modules within the L-MAE framework. To enable effective label
completion, the L-MAE architecture incorporates three core in-
novations: (1) a hierarchical feature fusion mechanism (stack
fuse), (2) a context-aware image restoration module (IPS), and
(3) an adaptive inference protocol designed for scenarios
involving incomplete or partially annotated data. The model
architecture diagram is shown in Figure 2. The details will be
illustrated in the following subsections.

MSLM

We introduce a novel task, MSLM. Unlike conventional masked
image modeling approaches that extract semantic information
by masking and reconstructing images, MSLM focuses on the
fuse map derived from the integration of image and label data.
During training, the proposed method leverages image context
to effectively extract and enhance the semantic features
embedded within the label through a reconstruction process. In
the inference stage, it further refines the label by performing addi-
tional reasoning on the masked regions. Provided that an appro-
priate masking strategy is employed to target regions prone to
annotation errors and that the semantic information from the un-
masked regions is fully exploited, MSLM is capable of achieving
a refined and precise correction of the overall label.

Overall architecture

Images and labels are inherently complementary in semantic seg-
mentation datasets. Accordingly, we input both into the L-MAE so
that, during reconstruction, the model can reference the original
image while generating labels. The first module, stack fuse, fuses
the available label cues with image features to produce a fuse map.
Subsequently, the mask selector determines the set of patches to
be reconstructed according to a predefined mask strategy with a
specified mask ratio. After patchification and serialization, we re-
move the tokens corresponding to these patches and feed the re-
maining tokens into the L-MAE encoder. Because token removal
also discards the associated image information, we introduce an
IPS module that restores the fuse map content at the recon-
structed locations using the original image features. Finally, the
L-MAE decoder consumes the L-MAE encoder features together
with the IPS augmented context to produce refined labels. The
following sections describe each module in the order of the
data flow.

Stack fuse
To effectively incorporate label guidance into visual feature
learning, we explored multiple fusion strategies. Initial ap-
proaches, such as direct concatenation of label maps with
RGB images, resulted in limited gains due to semantic dilution
and feature misalignment. To address this, we propose class-
aware label embedding, which projects label maps into a
class-specific feature space before fusion. This alignment facili-
tates more discriminative representation learning and adaptive
attention allocation, leading to consistent improvements in seg-
mentation performance with minimal computational overhead.
In this study’s implementation, the single-channel label
L e RPWx1 is first divided according to all classes present in
the dataset. Let the dataset contain N classes denoted by c;
(i=1,2,...,N). For each class c;, we locate all pixels belonging
to that class in the original label and map them onto a new blank
label image with the same shape as the original label. Conse-
quently, an individual class-specific label image /; is obtained
for each class. These class-specific label images are then
concatenated with the original image, resulting in a fused map
F e RMP*WxN+3) The process can be formulated as follows:

F = Concat(l,/y, ...,Iy,image). (Equation 1)

Prior to subsequent processing stages, the fused feature map
undergoes patch embedding.®® Given a predefined patch
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dimension p, the input feature tensor F; € RE*N+3) s initially
derived through spatial discretization, where L = ;2‘” quantifies
the total patch count. This embedded representation is subse-
quently projected into a latent semantic space via learnable
linear transformation,®’ yielding dimensionally reduced features
Fr € R-*®, where e denotes the encoder's embedding
dimension. The positional encoding mechanism is formally ex-
pressed as

PE(pos, 2i) = Fi + sin(pos/100002’/6’>i =1,2,...e/2and
(Equation 2)

PE(pos,2i + 1) = Fl + cos(pos/mooo?"/e’) i=1,2,...e/2,
(Equation 3)

where i indexes the encoder embedding and pos indexes
each patch.

Mask strategy

To enable the model to learn completion methods in various
application scenarios, we design three different rules for mask-
ing labels during training, namely, random mask, background-
first mask, and label-first mask.

When performing the masking operation, this study divides the
image into multiple tokens based on the specified patch_size.
Each token is subsequently indexed from 0 to patch_size? in a
top-down, left-to-right sequence. The random strategy shuffles
these token indices and selects the first patch_size® x mask_
ratio tokens for masking, thereby covering a broad spectrum of
potential cases, which is conceptually consistent with the Patch-
Dropout,®? although the design motivation differs. PatchDropout
operates only on images, whereas our random masking is
applied to fused image-label blocks to preserve image-label cor-
respondence during reconstruction. However, in instances
where the majority of missing label information clusters around
a single object, the random strategy may necessitate additional
training epochs. To address this issue, the label-first strategy tar-
gets regions bearing a high proportion of object labels. Specif-
ically, it sorts tokens in descending order based on the quantity
of background-classified pixels, selects the top patch_size® x
mask_ratio tokens for masking, and subsequently reconstructs
them via the model. This approach ensures robust completion
even when most of an object’s label data are absent. Moreover,
during preliminary training and validation, the model was
observed to erroneously interpret the original background areas
as proximate objects, prompting the design of the background-
first strategy. This latter method prioritizes discarding tokens
with a high background proportion by reversing the sorting order
(i.e., ascending), thereby reinforcing the model’s capacity to
accurately represent background regions.

In the actual training process, in order to enable the model to
complete an object that is missing most of the annotation infor-
mation, to correctly predict the background part, and to gener-
alize to other common situations, we mixed the random mask
strategy, label-first mask strategy, and background-first mask
strategy at a ratio of 1:2:2. Experiments show that when using
a mixed strategy, the completion effect of labels is significantly
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better than the completion effect of using each of the above stra-
tegies alone.

L-MAE encoder and decoder

The proposed L-MAE model adopts an asymmetric encoder-
decoder architecture, where the encoder operates exclusively
on the visible patches, while the decoder processes features
corresponding to all patches, including both visible and masked
regions.

IPsS

The L-MAE uses the method of masking and reconstruction to
train and learn how to complete an incompletely labeled label.
To ensure the uniformity of size, the masking algorithm will be
directly based on the fuse map. Since both image and label infor-
mation are recorded in the fuse map, the direct covering will
cover up the label and image information simultaneously, which
results in a decrease in prediction accuracy due to missing
image information in subsequent completion operations. The
workflow is shown in Figure 3.

Unlike the MAE, which employs zero or normally distributed
padding,®® we propose a dedicated algorithm termed IPS to
mitigate information loss in masked regions. Specifically, each
image patch is first embedded via the patch-embedding
operation, mapping it to a vector Fy; € R-*Y, where o’ denotes
the decoder embedding dimension. Based on the indices of the
previously discarded patches, the corresponding vectors are
retrieved from F,; and subsequently inserted into the encoder
output Fo € RE—1%9 reconstructing a full sequence for the
decoder. This process has been empirically shown to substan-
tially improve the mloU within the prediction area.

Encoder and decoder

The L-MAE framework adopts LMMSA (L-MAE multi-head
self-attention) blocks as the fundamental building unit. The
encoder comprises N LMMSA blocks (default: N = 12), while
the decoder consists of M LMMSA blocks (default: M = 8). Given
an input to either the encoder or decoder, each LMMSA block is
formulated as

x = input + DropPath(MSA (LayerNorm(input))) and
(Equation 4)

output = x + DropPath(FFN(LayerNorm(x))), (Equation 5)

where FFN denotes a feedforward neural network.

The multi-head attention module (MulAttn) performs multiple
self-attention operations in parallel, each corresponding to a
distinct attention head. The outputs from all heads are concate-
nated and linearly projected to yield the final representation.
Each head is defined by learnable weight matrices W<, WX, and
WY, which project the input X into query, key, and value matrices:

Q = WAX,K; = WX and V; = WYX. (Equation 6)
The attention mechanism computes the similarity between Q;

and K; via scaled dot-product attention, followed by softmax

normalization, and applies the resulting weights to V;:

T

1

QK
Z; = softmax
(\/ch

)V,-, and (Equation 7)
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Figure 4. Inference phase of label masked autoencoder
When an image-label pair is input, the proportion of the background part of the label will be calculated first, and according to the calculation results, the image-
label pair will be sent to the L-MAE with the corresponding mask ratio.

MSA(Q,K,V) = Concat(Zi, ..., Z,)WP°. (Equation 8) Each LMMSA block also includes a feedforward network

(FFN), which applies a two-layer MLP (multi-layer perceptron)

Here, h denotes the number of attention heads, and W° ¢  with rectified linear unit (ReLU) activation, followed by layer
RMdvxdmosel js the output projection matrix. The projection normalization®":

matrices satisfy W9, WX e R and W e Rmose FFN(x) = ReLU(W:x + b1)W, +bs. (Equation 9)
Each attention head outputs a vector Z,. In practice, as adop-
ted in the original ViT, we set h = 8 and use dx = d, = dmoger/h = While the same transformation is applied across spatial posi-

64. Despite using multiple heads, the computational tions, the parameters of FFNs are unique to each layer in the
complexity remains comparable to single-head attention. network.

Table 1. Comparison with supervised state-of-the-art semantic segmentation methods on Pascal VOC 2012 datasets

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV. mloU
RefineNet’” 95.0 73.2 93.5 78.1 84.8 95.6 89.8 94.1 43.7 92.0 77.2 90.8 93.4 886 88.1 70.1 929 64.3 87.7 78.8 84.2
ResNet38°® 96.2 75.2 95.4 74.4 81.7 93.7 89.9 92,5 482 92.0 79.9 90.1 955 91.8 912 73.0 90.5 654 88.7 80.6 84.9
PSPNet*® 95.8 72.7 95.0 78.9 84.4 94.7 92.0 95.7 43.1 91.0 80.3 91.3 96.3 923 90.1 715 944 66.9 88.8 82.0 85.4
Deeplabv3®' 96.4 76.6 92.7 77.8 87.6 96.7 90.2 95.4 47.5 93.4 763 91.4 972 91.0 921 713 90.9 689 90.8 79.3 85.7
EncNet®’ 95.3 76.9 94.2 80.2 85.3 96.5 90.8 96.3 47.9 93.9 80.0 92.4 96.6 90.5 91.5 70.9 93.6 66.5 87.7 80.8 85.9
DFN"° 96.4 78.6 95.5 79.1 86.4 97.1 91.4 95.0 47.7 929 772 91.0 96.7 922 917 76.5 93.1 64.4 88.3 81.2 86.2
SDN"" 96.9 78.6 96.0 79.6 84.1 97.1 91.9 96.6 48.5 94.3 78.9 93.6 955 921 91.1 75.0 93.8 64.8 89.0 84.6 86.6
Deeplabv3+'? 97.0 77.1 97.1 79.3 89.3 97.4 93.2 96.6 56.9 95.0 79.2 93.1 97.0 940 928 71.3 929 72.4 91.0 84.9 87.8
ExFuse’® 96.8 80.3 97.0 82.5 87.8 96.3 92.6 96.4 53.3 94.3 78.4 941 949 916 923 81.7 94.8 70.3 90.1 83.8 87.9

MscI’ 96.8 76.8 97.0 80.6 89.3 97.4 93.8 97.1 56.7 94.3 78.3 93.597.1 940 928 723 926 73.6 90.8 854 88.0
MARS"® 89.3 42.0 88.8 72.9 79.5 92.7 86.2 94.2 40.3 914 58.8 91.1 889 819 84.6 63.6 91.7 91.7 853 57.3 77.7
DHR’® 93.3 42.6 86.6 74.8 72.3 95.0 88.3 95.1 41.6 90.9 71.2 93.3 93.3 86.8 857 739 939 634 81.8 56.8 79.8
CoSA”’ 93.3 47.0 84.2 60.2 75.0 87.7 81.7 92.0 345 87.8 59.6 86.2 86.3 84.9 828 682 874 63.9 67.7 61.6 75.2
MRFM"® 97.1 78.6 97.1 80.6 89.7 97.3 93.6 96.7 59.0 95.4 81.1 93.2 975 942 929 723 93.1 742 91.0 85.0 88.4
L-MAE 89.5 58.8 92.3 86.4 91.3 94.9 89.6 95.3 79.1 93.7 89.6 93.4 91.0 905 894 856 96.1 93.0 96.0 87.5 89.1
w/m=0.6

L-MAE 89.9 64.5 91.4 89.2 92.1 95.9 90.6 96.4 82.1 94.6 91.2 94.7 943 924 91.1 87.8 97.8 94.0 96.5 93.4 91.0
w/m=0.5

For fair evaluation, the proposed method is assessed using the PA-mloU metric, and other models using the mloU metric. Here, “m” denotes the mask
ratio, and the optimal hyper-parameter configuration selected for L-MAE is as follows: Encoder Blocks = 8, Decoder Blocks = 6, Encoder Embedding
Dimension = 1440, and Decoder Embedding Dimension = 720.
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Inference phase

In the inference phase, as shown in Figure 4, we train various
mask ratio L-MAE models. When an image-label pair is input,
the label in it will be detected, and based on the proportion of
its background part, it will be input to the enhancement, which
is performed in the L-MAE of the mask ratio that conforms to
this ratio. During the enhancement process, the background-first
algorithm will be used to mask the blocks with a high background
proportion. After the features pass through the IPS module and
the decoder, the model can complete the initially missing parts.

Loss design

For the predicted label distribution x generated by the pipeline
and the corresponding ground-truth label y, we adopt a cross-
entropy loss function®® to optimize the alignment between the
two modalities. Specifically, the objective encourages similarity
between x and its matched label y while penalizing associations
with unrelated classes. To address class imbalance in semantic
segmentation, we introduce a dynamic weighting scheme that
adjusts the contribution of each class based on its relative
frequency in the dataset. The complete loss computation is
formulated as follows:

Qencoder = L | 4% (1 = 1)« Nxd? o2+ (1 — 1)° % N? % dinoger + 8% (1 — 1) % N x 02

Patterns

Stack fuse

A single-class label /; is extracted for each class c{i =
1, 2, ..., C). Since the original label of size H x W
must be traversed once per class, the time complexity is
given by

Qstack_ruse = HW x C, (Equation 13)

where H and W denote the label's height and width,
respectively.

Mask strategy

Computing the background-pixel ratio for each token requires
O(HW) operations. Subsequently, sorting N tokens incurs an
O(NIogN) cost. Therefore, the overall time complexity can be ex-
pressed as

Qupask = HW +Nlog N. (Equation 14)

Encoder

Assuming the masking ratio is r, the encoder processes only the
unmasked tokens, totaling (1 — r)N tokens. Considering that a
single transformer consists of a multi-head attention module fol-
lowed by an FFN, the overall time complexity of the encoder can
be expressed as follows:

(Equation 15)

model |

MSA

w=1-1/ (1+p-0 (-2 E)), Equation 10

exp (Xny, )

m‘1 {yn#¥,},and
i=1 ni

— w;-log (Equation 11)

I =

1

N+1
ex,y) = i — .
; ZN 1

— (Equation 12)
o1 Wy, Y0 # Y0}

Here, i € N denotes the class index, and y, represents
the ignore index, typically corresponding to the background
class, which is excluded from the loss calculation. The vari-
ables f and y are learnable hyperparameters controlling the
weight scaling behavior, while ¢ is a small constant to ensure
numerical stability. A denotes the number of semantic clas-
ses, such that the output dimension becomes N +1. The
terms x, and y, refer to the n-th component of the prediction
and ground-truth label, respectively. The weight wy, corre-
sponds to the importance assigned to class y, in the loss
aggregation.

Complexity analysis

In this section, we analyze the computational complexity of four
principal components within the proposed L-MAE framework:
stack fuse, mask strategy, encoder, and decoder.

8 Patterns 7, 101455, February 13, 2026

FFN

where dmogel is a fixed projection dimension, N represents the
number of tokens input to the model, and L denotes the number
of transformer layers.

Decoder

The decoder processes all N tokens, leading to a time
complexity of

4 % N * dﬁmde/_'—z * N2 * dmodel

MSA

Qpecoder = L *

(Equation 16)

model | -

+8xNxd?
—— —

FFN

RESULTS

In this section, we first present the implementation details of
the proposed L-MAE framework. Subsequently, we conduct
comprehensive comparative experiments on the Pascal VOC
2012 and Cityscapes datasets to evaluate the performance
of L-MAE against both supervised and semi-supervised se-
mantic segmentation models. Finally, we perform an extensive
set of ablation studies to investigate the impact of key archi-
tectural components—including the number of encoder and
decoder blocks (EBs and DBs, respectively), the dimensions
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segmentation methods. By contrasting the PA-mloU of the
L-MAE with the conventional mloU metric reported by compari-
son methods, we observe that PA-mloU consistently improves
as the mask ratio decreases. Specifically, when the mask ratio
reaches 50%, the L-MAE surpasses the performance of existing
state-of-the-art approaches.

Results on Pascal VOC 2012

The Pascal VOC 2012 dataset®” is an expanded version of the
original Pascal VOC 2007, comprising a total of 11,530 images.
For semantic segmentation, the training and validation sets of
VOC2012 aggregate images from the years 2007 through
2012, including 2,913 images divided into 2,513 for training
and 400 for validation. In comparison with current supervised
semantic segmentation models, our L-MAE achieves 94.6%
global mloU and 91.0% PA-mloU at a mask ratio of 50% and
92.6% global mloU and 89.1% PA-mloU at a mask ratio of
60%. As indicated at the top of Table 1, our method significantly
surpasses the existing state-of-the-art methods. Additionally,
we compare our approach with prominent semi-supervised seg-
mentation models, specifically U2PL (Using Unreliable Pseudo
Labels) and S4MC (Semi-Supervised Semantic Segmentation
via Marginal Contextual Information). As demonstrated in the
table, L-MAE consistently outperforms these semi-supervised
methods by a margin exceeding 5% mloU under similar masking
conditions, further validating the superior performance of our
proposed framework.

Results on Cityscapes

The Cityscapes dataset’® comprises 5,000 pixel-level annotated
images, covering semantic and instance labels from street
scenes collected across 50 cities in Germany and neighboring
countries during spring, summer, and autumn. For evaluation
purposes, experiments were conducted with mask ratios set to
50% and 60%, respectively. At a 50% mask ratio, our proposed
L-MAE achieves 90.5% global mloU and 86.4% PA-mloU,
whereas at a 60% mask ratio, it attains 89.0% global mloU

Table 4. Compare the performance difference between ordinary
semantic segmentation networks trained using the L-MAE
enhancement method and unenhanced ones

Network mloU w/L-MAE mloU w/o L-MAE
FCN 43.5% 57.9%
UNet 59.5% 71.2%
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and 85.6% PA-mloU. As illustrated at
the bottom of Table 2, the proposed
L-MAE significantly outperforms previ-
ous state-of-the-art methods. Addition-
ally, comparative experiments with the
semi-supervised semantic segmentation
method U2PL demonstrate the superior-
ity of our model. As shown in Table 3,
our approach exhibits consistent advantages in mloU perfor-
mance under both comparable mask ratios (87.5% versus
80% and 75% versus 70%) and identical masking condi-
tions (50%).

Label augmentation experiment

We conducted the label augmentation experiment to assess
whether enhancing the dataset with the L-MAE yields perfor-
mance improvements in conventional semantic segmentation
models, as illustrated in Figure 5. Within this experiment, we
intentionally degraded the Pascal VOC dataset by randomly
obscuring 50% of the data. We then employed this degraded da-
taset to train FCN and UNet models for 300 iterations. Subse-
quently, we applied the L-MAE to enhance the degraded dataset
and employed this improved dataset to retrain the FCN and UNet
models for another 300 iterations. As shown in Table 4, the re-
sults demonstrate notable enhancements in the performance
of the trained FCN and UNet models on the test set, with im-
provements of 13.4% and 11.7%, respectively, compared to
the original dataset. These findings strongly affirm the effective-
ness of the L-MAE in practical scenarios.

Ablation study

To assess the contribution and performance impact of individual
components within our proposed model, we conduct a detailed
ablation study in this section. Experiments are performed using
the Pascal VOC dataset with an input size of 224 x 224.
Parameter setting analysis

As illustrated in Table 5, we investigate the performance of the
proposed L-MAE under various hyperparameter configurations.
Specifically, four key hyperparameters are analyzed: the number
of encoder blocks (EBs), the number of decoder blocks (DBs),
the encoder embedding dimension (ED), and the decoder
embedding dimension (DD). Results indicate that performance
generally declines as embedding dimensions decrease, given
a fixed number of EBs and DBs. Notably, an exception occurs
in the case of EB = 12 and DB = 8, where setting ED = 1,440
and DD = 720 results in a lower PA-mloU compared to ED =
1,024 and DD = 512, although the global mloU remains un-
changed. This observation suggests improved accuracy within
the unmasked regions. Based on these experimental outcomes,
we select the configuration of EB = 8, DB = 6, ED = 1,440, and
DD = 720 for subsequent analyses.
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Table 5. Comparisons across different hyperparameter configurations

EB DB ED DD #Parameters (M) FLOPs (G) mloU PA-mloU

12 8 1,024 512 186 M 21G 94.1 90.5
1,440 720 362 M 42 G 94.1 90.4]

8 6 1,024 512 129 M 15G 941 90.3
1,440 720 250 M 29G 94.61 91.31

6 4 1,024 512 98 M 111G 94.2 90.4
1,440 720 188 M 22G 94.61 91.21

We report the corresponding model parameters (in M) and computational complexity in terms of FLOPs (in G). All reported mloU and PA-mloU metrics
include the background class. EB, the number of encoder blocks; DB, decoder blocks; ED, encoder embedding dimension; DD, decoder embedding

dimension; M, millions; FLOPs, floating-point operations; G, billions.

Masking strategy

To validate the effectiveness of our masking strategies, we evalu-
ated four settings: random masking, label-first masking, back-
ground-first masking, and a mixed scheme that combines them
in a 1:2:2 ratio. The results are summarized in Table 6. We report
both mloU and PA-mloU. The results show that the mixed scheme
performs the best, improving over random masking by 0.9% on
Pascal VOC and 1.3% on Cityscapes, indicating a clear advan-
tage. In contrast, background-first masking alone yields the
weakest performance, likely because masking only background
regions provides insufficient semantic perturbation on labeled
objects, limiting the model’s ability to learn robust label-recon-
struction behavior. We also compared our method with the mask-
ing strategy used in BUS-M2AE for medical imaging. As shown in
Table 7, under matched datasets and training schedules, the
mixed strategy in the L-MAE exceeds the TMM (token-level
multi-scale masking) + FMM (feature-level multi-scale masking)
combination in BUS-M2AE by 1.2% and 1.7% mloU and by
0.9% and 1.4% PA-mloU on Pascal VOC and Cityscapes, respec-
tively. We attribute these gains to combining random masking,
label-first masking, and background-first masking in a 1:2:2 ratio,
which mitigates background-biased predictions while placing
greater emphasis on labeled regions. Compared with BUS-
M2AE’s image-centric multi-scale masking, our approach offers
better efficiency and stronger task-specific adaptability.

Mask ratio and IPS

We investigate the effectiveness of the proposed IPS algorithm
and the influence of different mask ratios. As depicted in
Figure 6, after applying the IPS algorithm, the average mloU de-

creases by 3.0%, whereas the average PA-mloU declines by
4.1%. Notably, the impact of IPS varies with the mask ratio: a
higher mask ratio results in a more pronounced improvement in
PA-mloU. Additionally, IPS exhibits distinct influences on mloU
and PA-mloU; for instance, at a mask ratio of 0.7, the reduction
in mloU is smaller than that in PA-mloU. These results
indicate that IPS significantly enhances segmentation accuracy
within masked regions, effectively supplementing the missing vi-
sual information at appropriate model positions. We further
compare the training efficiency across different mask ratios,
measured in time per batch (TPB), which denotes the training
time required for each batch. As presented in Table 8, the results
demonstrate that as the mask ratio increases, the TPB gradually
decreases, primarily due to the reduced computational load in
the encoder stage.

Stack fuse

As shown in Table 9, we compared the performance impact of
three different image-label fusion methods on the model. Under
the premise that the parameters are set to EB = 8, DB = 6, ED =
1,440, and DD = 720 and the patch training strategy is randomly
discarded. The fusion method that is directly concatenating the
label to the image, which is called directly concat, has 72.4%
PA-mloU and 74.8% mloU. The fusion method, in which the label
is replicated and inserted into each of the three RGB channels of
the image, which is called insert concat, has 75.6% PA-mloU
and 77.9% mloU. In comparison, the method used in this article
to layer labels by category, which is called layer concat, can
achieve 94.6% PA-mloU and 91.3% mloU, fully proving the ad-
vantages of fusion strategies.

Table 6. Ablation studies on the Pascal VOC 2012 and Cityscapes datasets using three mask strategies: Random mask, background-

first mask, and label-first mask

Dataset Mask ratio Mask strategy mloU PA-mloU AmloU APA-mloU
Pascal VOC 2012 50% random mask 93.7 90.2 0.0 0.0
label first 94.3 90.6 +0.6 +0.4
background first 87.8 82.1 -5.9 -8.1
mixed (1:2:2) 94.6 91.0 +0.9 +0.8
Cityscapes 50% random mask 89.2 84.9 0.0 0.0
label first 90.1 85.7 +0.9 +0.8
background first 86.9 81.3 —-2.3 -3.6
mixed (1:2:2) 90.5 86.4 +1.3 +1.5

We report mloU, PA-mloU, and the performance gains AmloU and APA-mloU over the random mask baseline with the mask ratio fixed at 50%. Bold-

ing represents the method we ultimately adopted.
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Table 7. Comparison of masking methods on Pascal VOC 2012 and Cityscapes datasets under a fixed mask ratio of 50%

Dataset Method mloU PA-mloU AmloU APA-mloU

Pascal VOC 2012 L-MAE: mixed (1:2:2) 94.6 91.0 +1.2 +0.9
BUS-M2AE (TMM only) 93.0 89.5 -0.4 -0.6
BUS-M2AE (FMM only) 92.9 89.4 -0.5 -0.3
BUS-M2AE (TMM+FMM) 93.4 90.1 0.0 0.0

Cityscapes L-MAE: mixed (1:2:2) 90.5 86.4 +1.7 +1.4
BUS-M2AE (TMM only) 88.4 84.3 -0.4 -0.7
BUS-M2AE (FMM only) 88.3 84.2 -0.5 -0.8
BUS-M2AE (TMM+FMM) 88.8 85.0 0.0 0.0

AmloU and APA-mloU denote the performance gains compared to BUS-M2AE (TMM+FMM) on the same dataset. Bold numbers indicate the best

performance for each dataset.

Qualitative study

Visualization

Visualization results under different experimental settings are pre-
sented in Figure 7 toillustrate the effectiveness of each component
within our proposed approach. First, compared to the L-MAE
without the IPS, the version employing the IPS achieves notably
better performance across various mask ratios. This discrepancy
arises because masking operations remove both labels and corre-
sponding image regions, hindering the effective use of local image
information in subsequent stages. Second, we observe that model
performance remains relatively robust as the mask ratio increases,
highlighting the stability of our framework. Finally, our model
consistently produces high-quality segmentation masks, vali-
dating the overall effectiveness of the proposed L-MAE method.
Failure cases

Figure 8 presents several representative failure cases that pro-
vide valuable insights into the limitations of the proposed
method. One notable type of failure occurs when reconstructing

objects characterized by elongated or tubular structures. As
illustrated in the left example of Figure 8, the predicted “green”
region inadequately represents the complete structure of the bi-
cycle. Another failure scenario arises from ambiguity between
masked regions and complex background information, leading
to confusion in segmentation. Additionally, our analysis indicates
that the reconstruction accuracy of the L-MAE is reduced for
small target objects due to excessive masking of fine-grained
details. Although reducing the grid size could alleviate this issue,
it would concurrently increase the model’s parameter count and
computational overhead.

DISCUSSION

In this paper, we have explored the potential of leveraging MAE
models for pixel-level label completion. We propose an end-to-
end framework, termed the L-MAE, to effectively transfer the
mask-and-reconstruct capabilities of the MAE to semantic
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Figure 6. Ablation study evaluating the impact of varying mask ratios and the presence or absence of the IPS algorithm
All reported mloU and PA-mloU metrics include the background class. Here, “m” denotes the mask ratio.
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Table 8. Training time per batch (s/batch) for L-MAE at different
mask ratios on the Pascal VOC datasets, using 224 x 224 inputs

Dataset Mask ratio TPB

Pascal VOC 2012 30% 3.694
50% 3.328
60% 3.124
70% 2.917

The batch size is 24. Measurements were taken on a single NVIDIA A40
GPU. TPB, training time per batch.

segmentation tasks. Compared with conventional methods, the
proposed L-MAE inherits the MAE’s robust pixel reconstruction
ability, allowing for effective reconstruction of unknown pixel la-
bels based on partially available annotations. The proposed IPS
algorithm further enriches image features at masked regions,
thereby preserving information integrity during the completion
process. Additionally, the designed fusion training approach
generalizes well across diverse completion scenarios, enabling
the L-MAE to effectively restore missing labels under various
conditions. Extensive comparative experiments and compre-
hensive ablation studies conducted on two widely used
segmentation datasets demonstrate the effectiveness of each
proposed component, verifying that our L-MAE substantially
outperforms existing methods without relying on pre-trained
weights.

In our analysis of the L-MAE, we have also identified some of its
limitations. For instance, the model sometimes results in rough
edges or excessive annotations when processing smaller objects.
Moreover, attempts to generate markings for completely unanno-
tated objects occasionally lead to significant errors. These issues
may stem from the fact that, while the transformer’s attention
mechanism excels at extracting global features, it overlooks
smaller, localized areas, leading to deviations in handling details.
To address this issue, we plan to develop a new structure focusing
on global features and accurately capturing details in smaller re-
gions. At the same time, since the L-MAE uses the transformer
structure, its global context modeling capability is also valuable
in 3D tasks. Next, we consider adapting the L-MAE to point-cloud
or voxel-level semantic segmentation tasks, capturing long-range
spatial dependencies through the transformer, and improving the
understanding of complex 3D scenes.
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Table 9. Comparison with several different stack fuse methods

Method mloU PA-mloU
Directly concat 72.4% 74.8%
Insert concat 75.6% 77.9%
Directly concat 94.6% 91.3%

Directly concat concatenates the label map directly with the RGB image;
insert concat involves replicating the label map and appending it to each
of the three RGB channels individually; layer concat separates the label
map into category-specific channels before concatenation.
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