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SUMMARY

Recent studies have demonstrated that high-quality annotated data are crucial for segmentation perfor

mance. However, incomplete or corrupted mask annotations remain common, limiting supervised learning. 

To address this, we introduce a mask-reconstruction task, referred to as masked segmentation label 

modeling (MSLM), which refines partially occluded labels by leveraging visible regions without manual anno

tations. We further propose the label masked autoencoder (L-MAE), which identifies erroneous regions and 

reconstructs them through contextual inference. The L-MAE fuses incomplete labels and corresponding 

images into a unified map for reconstruction, and an image patch supplement (IPS) algorithm restores 

missing image information, improving the average mean intersection over union (mIoU) by 4.1%. To validate 

the L-MAE, we train segmentation models on a degraded and L-MAE-enhanced Pascal VOC dataset, with the 

latter achieving a 13.5% mIoU improvement. The L-MAE attains predict area (PA)-mIoU scores of 91.0% on 

Pascal VOC 2012 and 86.4% on Cityscapes, outperforming state-of-the-art supervised segmentation 

models.

INTRODUCTION

There has been a great deal of prior work on semantic segmen

tation, both in deep learning research and in the context of spe

cific applications such as medical imaging and remote sensing. 

These models are tailored for pixel-level semantic analysis of 

visual data, including images and videos, and offer technical 

support for diverse applications. To achieve satisfactory 

performance, large-scale semantic segmentation models rely 

on extensive datasets, and the models related to professional 

fields require professionals in the field to participate in creating 

the datasets. However, compared with other tasks, the data-la

beling work of semantic segmentation models is more complex 

and challenging, so it is prone to labeling inaccuracies, leading 

to broken labels. Semi-supervised semantic segmentation 

methods leverage the synergistic potential between labeled 

and unlabeled data to enhance model generalization.1–3 This is 

typically achieved through the implementation of self-supervised 

learning mechanisms or consistency regularization strategies. A 

widely adopted approach involves pseudo-label generation, 

wherein an initial model is trained on the labeled dataset and 

subsequently used to generate pseudo-labels for the unlabeled 

data. These pseudo-labels are then combined with the original 

labeled data to iteratively optimize the model. However, in 

THE BIGGER PICTURE Semantic segmentation is a process by which a computer assigns a label to each 

pixel in an image, helping identify, for example, a road, pedestrian, tree, or tumor. These machine learning 

methods are usually trained on annotated image datasets labeled by humans. Meticulous labeling by human 

annotators, however, is often slow and costly, and existing annotated datasets may have errors or other flaws 

that limit their usefulness. Re-annotating such image datasets is often prohibitively expensive. Here, we pre

sent a method that can be used to automatically correct defective annotations. Methods such as this one 

could reduce the time that humans spend on relabeling tasks and help advance the development of computer 

vision applications, especially ones that require precise image segmentation. 

Patterns 7, 101455, February 13, 2026 © 2025 The Author(s). Published by Elsevier Inc. 1 
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scenarios involving imprecise annotations, the quality of the 

generated pseudo-labels may degrade due to the influence of 

noisy labels, thereby impairing the model’s learning effective

ness and overall performance.

To solve this problem, in addition to re-labeling the data, the 

following methods are included in the production of large data

sets or datasets in specialized fields: (1) assigning an image to 

multiple people for annotation and then checking the consis

tency,4–6 (2) conducting error analysis on existing annotations 

and then giving guidance to relevant workers,7,8 (3) using a 

semi-supervised semantic segmentation model for dataset 

amplification,9,10 and (4) using the iterative annotation method 

to first annotate a small part of the data. Then, a simple model 

is trained with this part of the data, and the remaining unlabeled 

pictures are preliminarily labeled with this model. Finally, the 

areas mismarked are manually revised, and so on.1–3,11 Among 

the above methods, manual methods can significantly increase 

the cost of producing datasets. In contrast, semi-supervised se

mantic segmentation models and iterative labeling methods may 

not optimally leverage labeled data with inaccuracies, so-called 

‘‘broken labels,’’ which may result in inefficient resource utiliza

tion.12–15 Alternatively, we may incorporate these imprecise 

and precise annotated labels in the training dataset for a semi- 

supervised semantic segmentation model. In that case, this 

may lead to a decline in the model’s performance.

Our study primarily addresses the challenges posed by 

incomplete or inaccurate annotations in the data-labeling 

process, distinguishing itself from the traditional paradigm 

of semi-supervised learning. Conventional semi-supervised 

learning frameworks typically assume that datasets are 

composed of two distinct subsets: one with fully labeled and 

accurate annotations and the other entirely unlabeled. In 

contrast, the scenarios we address involve labeled data that 

may be incomplete and imprecise. These imperfect annotations 

pose significant challenges for direct integration into standard 

semi-supervised learning frameworks, as they can adversely 

affect model performance. To tackle this issue, our research em

phasizes leveraging the latent information embedded in these 

incomplete annotations while preserving them. By integrating 

advanced data augmentation strategies and algorithmic optimi

zation techniques, we aim to enhance the training efficiency and 

overall performance of models, addressing critical limitations in 

existing approaches and broadening their applicability to real- 

world datasets.

To fully use the existing broken labels, we propose a novel 

task—masked segmentation label modeling (MSLM). Unlike 

conventional approaches, MSLM performs masking and recon

struction on the fuse map, which is generated by merging image 

and label information. During the training phase, the proposed 

method incorporates image context to comprehensively extract 

the semantic features embedded in the labels during the recon

struction process. In the inference phase, it further refines the 

masked regions by leveraging both the unmasked label informa

tion and the complete image data. With an appropriate selection 

of masking regions, this approach enables a refined overall 

labeling.

Our model design is divided into a training stage and an infer

ence stage. In the training stage, the label masked autoencoder 

(L-MAE) will mask and reconstruct the label. To cover the com

plex completion scenes in actual situations, we use a mixture 

of three strategies: random mask, background-first mask, and 

label-first mask for the masking strategy. Experiments have 

shown that the effect of mixed use of the three strategies is 

significantly better than that of using them alone. At the same 

time, to allow the model to reconstruct the covered area based 

on image information, we designed the stack fuse algorithm to 

fuse label and image data. We use label classification based 

on the layered design idea to highlight the label’s information af

ter fusion.

Experiments have proven that the fusion strategy used in 

the model is better than other strategies. Considering the uni

formity of the input size to the encoder during the masking 

step, the model can only mask the entire fused image and la

bel. The circumstance will cover not only the label but also the 

image. When the model uses zero values to pad the data and 

restore the input size before passing them into the decoder, 

the image information within the masked area may be lost dur

ing the decoding process. This occurs because the decoder is 

unable to discern whether the zero values in the masked area 

originate from actual image content or are artificially intro

duced placeholders. Consequently, when zeros are used to 

pad the masked areas, the decoder may overly rely on the 

contextual information from the surrounding non-masked re

gions while reconstructing the image, leading to an inability 

to accurately recover the content of the masked sections. 

We introduce the image patch supplement (IPS) algorithm in 

this context. Before transmitting data from the encoder to 

the decoder, we employ the corresponding image patch to 

restore the information to its original size. Empirical evidence 

consistently demonstrates that models incorporating the IPS 

algorithm outperform those that do not, particularly in terms 

of completion performance.

Finally, to ensure fair and consistent comparison with existing 

methods, we propose a novel evaluation metric termed predict 

area mean intersection over union (PA-mIoU), which specifically 

measures the mIoU within regions requiring reconstruction. 

Given the varying degrees of label incompleteness encountered 

during inference, it becomes necessary to adapt the training 

process according to different mask ratios. It is observed that 

regions lacking annotations predominantly correspond to 

background areas. Consequently, after partitioning labels into 

patches, we calculate the proportion of background pixels within 

each patch and utilize these proportions to assign appropriate 

mask ratios during L-MAE training. During inference, the hybrid 

masking strategy adopted in training is replaced by a selective 

masking approach, which preferentially masks patches contain

ing higher proportions of background pixels for subsequent 

reconstruction. The results are shown in Figure 1.

In summary, our contributions are 2-fold.

• We propose a mask-label enhancement method, the 

L-MAE, which is able to augment the label quality of data

sets with incomplete mask labels to improve the perfor

mance of supervised semantic segmentation. Additionally, 

we design a multi-mask ratio architecture in the inference 

stage, which generates mask labels with varying ranges for 

input samples, to accommodate diverse segmentation 

task requirements.
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• To enhance the performance of the model, we introduce 

two core algorithms: stack fuse and IPS. The stack fuse al

gorithm is designed to more effectively integrate image 

and label information, while the IPS algorithm aims to 

address the issue of supplementing image information 

following the fusion of maps.

The rest of this paper is organized as follows. The second sec

tion introduces recent related works. In the third section, we 

describe the proposed method in detail. The fourth section pre

sents the experimental results. The final section concludes 

the paper.

RELATED WORK

Vision transformer and MAE

The vision transformer (ViT) architecture16 represents a seminal 

advancement in the application of pure transformer models to vi

sual recognition tasks. Unlike traditional convolutional neural 

networks (CNNs), ViT processes input images by partitioning 

them into a sequence of fixed-size, regularly spaced patches. 

Each patch is then linearly embedded and augmented with 

positional encoding to retain spatial information, after which 

the resulting sequence is fed into a standard transformer 

encoder. This architecture achieves a favorable trade-off be

tween computational efficiency and predictive accuracy, 

demonstrating competitive performance on image classification 

benchmarks. Importantly, ViT addresses a long-standing chal

lenge in computer vision: the effective integration of positional 

awareness within transformer-based image representations. 

Empirical results further suggest that ViT scales robustly with 

increasing model capacity and dataset size. Nevertheless, its 

reliance on large volumes of labeled training data poses practical 

limitations in real-world applications.

To mitigate the dependence on extensive annotation, He 

et al. proposed the MAE framework,17,18 drawing inspiration 

from recent progress in self-supervised language modeling 

techniques such as bidirectional encoder representations 

from transformers (BERT).19 The MAE introduces a novel pre- 

training paradigm in which the model learns visual representa

tions by reconstructing randomly masked regions of input im

ages. The architecture consists of two distinct modules: (1) a 

high-capacity encoder that processes only the visible patches 

and (2) a lightweight decoder that reconstructs the full image by 

leveraging the latent representations in conjunction with mask 

tokens. Experimental evaluations reveal that masking a sub

stantial portion of the image—typically around 75%—consti

tutes an effective pretext task for self-supervised learning. 

This dual-module design offers several key advantages: signif

icantly faster convergence during training (up to 3× speedup), 

improved parameter efficiency, and superior performance on 

downstream vision tasks compared to conventional supervised 

methods.

In addition to random masking, recent studies have explored 

more advanced masking strategies, including learning-based 

adaptive masking and predefined multi-scale masking.20–23 Pre

defined masking strategies rely on handcrafted rules or heuris

tics, such as masking fixed spatial regions or selecting patches 

based on saliency priors, which offer simplicity and controlla

bility in specific domains. In contrast, learning-based methods 

dynamically determine mask positions based on image content 

or attention scores, while multi-scale masking divides image 

patches at varying granularities to enhance semantic coverage. 

For instance, refinement-based masking techniques, such as the 

adaptive-masking-over-masking strategy proposed in Amom,22

dynamically update masked regions to enhance decoder refine

ment and improve encoder optimization. Additionally, multi- 

scale or learning-based masking approaches, such as BUS- 

M2AE (Breast UltraSound Multi-scale Masked AutoEncoder),21

further improve representation quality by targeting diverse 

semantic granularities.

Semantic segmentation and semi-supervised semantic 

segmentation model

Semantic segmentation integrates image classification, object 

detection, and image segmentation, aiming to partition an 

image into distinct regional blocks, each with a specific semantic 

meaning, achieved through dedicated techniques. Subse

quently, the semantic category of each regional block is deter

mined, facilitating the progression of semantic reasoning from 

low-level to high-level information. Ultimately, the result is a 

segmented image with pixel-wise semantic annotations. 

Presently, the most widely adopted methods for image semantic 

segmentation rely on CNNs. Notably, these networks predomi

nantly comprise convolutional layers with two prevalent archi

tectural paradigms: symmetric models (e.g., fully convolutional 

network [FCN],24 SegNet,25 and UNet26) and dilated architec

tures (e.g., RefineNet,27 PSPNet,28 and Deeplab series29–31). 

Numerous outstanding semantic segmentation models have 

emerged in the era of the transformer’s prominence. An exem

plar, SegNext,32 has garnered acclaim for surpassing its prede

cessors in semantic segmentation performance. This success 

can be attributed to its efficient computational design and utiliza

tion of the transformer’s encoder structure for feature extraction.

Semi-supervised semantic segmentation models extract 

knowledge from labeled data in a supervised way and from un

labeled data in an unsupervised manner, thus reducing the label

ing effort required in the fully supervised scenario and achieving 

Figure 1. The performance of the label masked autoencoder 

‘‘Masked label’’ denotes randomly masked complete label. As the ‘‘prediction’’ shows, the follow-up mask-reconstruct pipeline will complete the masked area.
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better results than in the unsupervised scenario. The commonly 

used methods include GAN (generative adversarial network)-like 

structures and adversarial training between the two networks, 

with one as the generator and the other as the discriminator.33–35 

There are also methods for consistency regularization that 

include a regularization term in the loss function to minimize 

the difference between different predictions for the same im

age.36–38 There are also pseudo-labeling methods, which gener

ally rely on predictions previously made on unlabeled data and a 

model trained on labeled data to obtain pseudo-labels.39–44 

There are also methods based on contrastive learning.45,46

This learning paradigm groups and separates similar elements 

from different elements in a particular representation space.47,48

In contrast, our method does not rely on representation-level 

discrimination but rather focuses on label reconstruction through 

masked input modeling.

Augmentation methods

Various conventional data enhancement methods are commonly 

employed to facilitate the training of highly accurate models on 

small, semantically split datasets. These methods typically 

involve basic geometric operations such as flipping, cropping, 

and random rotation.49,50 Another category of traditional trans

formations aims to increase the model’s training challenge by 

altering pixel values, including brightness, contrast, or color bal

ance adjustments. In addition to these conventional transforma

tions, alternative approaches involve applying different types of 

filters for data enhancement.51,52 Examples include the Sobel fil

ter or the Canny filter for edge detection, which enhances the vis

ibility of object edges. High-contrast vertical or horizontal edge 

filters can sharpen images, while Gaussian filters induce image 

blurring. Furthermore, adding Gaussian noise,53 salt-and-pep

per noise, and speckle noise to images or implementing random 

erasure is a common data augmentation technique. Employing 

these methods enhances data diversity and strengthens the 

model’s ability to extract features for target classification. 

Beyond traditional augmentations, semantic-aware strategies 

such as ClassMix54 and Copy-Paste55 have emerged as effec

tive techniques for combining label-consistent regions across 

samples. Additionally, region-level occlusion methods such 

Figure 2. Architectural overview of the label masked autoencoder 

The proposed label masked autoencoder (L-MAE) framework is composed of four primary components: (1) a hierarchical fusion module for multimodal feature 

integration (referred to as stack fuse), (2) a context-aware encoder (L-MAE encoder), (3) a reconstruction-oriented decoder (L-MAE decoder), and (4) an infor

mation-recovery mechanism (image patch Supplement). The encoder selectively processes the visible regions of the fused feature representations, which are 

obtained through the integration of label and image modalities. In contrast, the decoder is designed to reconstruct the complete sequence, including masked 

regions, by leveraging spatial-temporal attention mechanisms. To mitigate the degradation of contextual information caused by occlusion operations from the 

mask selector, the image patch supplement component reinserts selected original visual patches into the masked positions. This strategy effectively preserves 

visual-semantic consistency and enhances the quality of the reconstructed output. Furthermore, the framework introduces a specialized L-MAE multi-head self- 

attention (LMMSA) mechanism, which adaptively modulates attention weights based on the preservation status of semantic labels during feature propagation. 

This targeted attention adjustment facilitates more effective representation learning under partially observable conditions.
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CutMix56 or Cutout57 serve as data augmentation strategies by 

introducing structured perturbations in the input space, thereby 

enriching training diversity and promoting robustness, particu

larly under limited supervision.

As technology advances, researchers increasingly explore the 

application of GANs, diffusion models, and other generation 

networks in data enhancement for semantic segmentation data

sets. Examples include AdvChain58 and RRVS,59 which generate 

datasets for training networks through the use of generative 

networks. However, traditional and novel methods based on 

generation networks struggle to fully utilize existing image-label 

information when addressing incomplete image labeling, 

warranting more precise enhancement effects.

METHODS

The conventional semantic segmentation model and the semi- 

supervised variant, which enhances the dataset, fall short of 

addressing potential information gaps within a single label. Our 

proposed L-MAE model can serve both for completion and se

mantic segmentation tasks.

This section presents detailed descriptions of the constituent 

modules within the L-MAE framework. To enable effective label 

completion, the L-MAE architecture incorporates three core in

novations: (1) a hierarchical feature fusion mechanism (stack 

fuse), (2) a context-aware image restoration module (IPS), and 

(3) an adaptive inference protocol designed for scenarios 

involving incomplete or partially annotated data. The model 

architecture diagram is shown in Figure 2. The details will be 

illustrated in the following subsections.

MSLM

We introduce a novel task, MSLM. Unlike conventional masked 

image modeling approaches that extract semantic information 

by masking and reconstructing images, MSLM focuses on the 

fuse map derived from the integration of image and label data. 

During training, the proposed method leverages image context 

to effectively extract and enhance the semantic features 

embedded within the label through a reconstruction process. In 

the inference stage, it further refines the label by performing addi

tional reasoning on the masked regions. Provided that an appro

priate masking strategy is employed to target regions prone to 

annotation errors and that the semantic information from the un

masked regions is fully exploited, MSLM is capable of achieving 

a refined and precise correction of the overall label.

Overall architecture

Images and labels are inherently complementary in semantic seg

mentation datasets. Accordingly, we input both into the L-MAE so 

that, during reconstruction, the model can reference the original 

image while generating labels. The first module, stack fuse, fuses 

the available label cues with image features to produce a fuse map. 

Subsequently, the mask selector determines the set of patches to 

be reconstructed according to a predefined mask strategy with a 

specified mask ratio. After patchification and serialization, we re

move the tokens corresponding to these patches and feed the re

maining tokens into the L-MAE encoder. Because token removal 

also discards the associated image information, we introduce an 

IPS module that restores the fuse map content at the recon

structed locations using the original image features. Finally, the 

L-MAE decoder consumes the L-MAE encoder features together 

with the IPS augmented context to produce refined labels. The 

following sections describe each module in the order of the 

data flow.

Stack fuse

To effectively incorporate label guidance into visual feature 

learning, we explored multiple fusion strategies. Initial ap

proaches, such as direct concatenation of label maps with 

RGB images, resulted in limited gains due to semantic dilution 

and feature misalignment. To address this, we propose class- 

aware label embedding, which projects label maps into a 

class-specific feature space before fusion. This alignment facili

tates more discriminative representation learning and adaptive 

attention allocation, leading to consistent improvements in seg

mentation performance with minimal computational overhead.

In this study’s implementation, the single-channel label 

L ∈ ℝH×W×1 is first divided according to all classes present in 

the dataset. Let the dataset contain N classes denoted by ci 

(i = 1, 2, …, N). For each class ci, we locate all pixels belonging 

to that class in the original label and map them onto a new blank 

label image with the same shape as the original label. Conse

quently, an individual class-specific label image li is obtained 

for each class. These class-specific label images are then 

concatenated with the original image, resulting in a fused map 

F ∈ ℝH×W×(N+3). The process can be formulated as follows:

F = Concat(l1; l2;…; lN; image): (Equation 1) 

Prior to subsequent processing stages, the fused feature map 

undergoes patch embedding.60 Given a predefined patch 

Figure 3. The overview of the image patch supplement process 

Before the fuse map is sent to the decoder, we use the image’s corresponding patch information to complete the size of the fuse map instead of using 0. The 

algorithm can avoid the loss of the image information at the corresponding position due to masking the fuse map by patch.
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dimension p, the input feature tensor Ff ∈ ℝL×(N+3) is initially 

derived through spatial discretization, where L = H×W
p2 quantifies 

the total patch count. This embedded representation is subse

quently projected into a latent semantic space via learnable 

linear transformation,61 yielding dimensionally reduced features 

Ff ∈ ℝL×e′

, where e′ denotes the encoder’s embedding 

dimension. The positional encoding mechanism is formally ex

pressed as

PE(pos; 2i) = Fi
f + sin

(
pos

/
100002i=e′

)
i = 1;2;…; e =2 and

(Equation 2) 

PE(pos;2i + 1) = Fi
f + cos

(
pos

/
100002i=e′

)
i = 1;2;…; e =2;

(Equation 3) 

where i indexes the encoder embedding and pos indexes 

each patch.

Mask strategy

To enable the model to learn completion methods in various 

application scenarios, we design three different rules for mask

ing labels during training, namely, random mask, background- 

first mask, and label-first mask.

When performing the masking operation, this study divides the 

image into multiple tokens based on the specified patch_size. 

Each token is subsequently indexed from 0 to patch_size2 in a 

top-down, left-to-right sequence. The random strategy shuffles 

these token indices and selects the first patch_size2 × mask_ 

ratio tokens for masking, thereby covering a broad spectrum of 

potential cases, which is conceptually consistent with the Patch

Dropout,62 although the design motivation differs. PatchDropout 

operates only on images, whereas our random masking is 

applied to fused image-label blocks to preserve image-label cor

respondence during reconstruction. However, in instances 

where the majority of missing label information clusters around 

a single object, the random strategy may necessitate additional 

training epochs. To address this issue, the label-first strategy tar

gets regions bearing a high proportion of object labels. Specif

ically, it sorts tokens in descending order based on the quantity 

of background-classified pixels, selects the top patch_size2 ×

mask_ratio tokens for masking, and subsequently reconstructs 

them via the model. This approach ensures robust completion 

even when most of an object’s label data are absent. Moreover, 

during preliminary training and validation, the model was 

observed to erroneously interpret the original background areas 

as proximate objects, prompting the design of the background- 

first strategy. This latter method prioritizes discarding tokens 

with a high background proportion by reversing the sorting order 

(i.e., ascending), thereby reinforcing the model’s capacity to 

accurately represent background regions.

In the actual training process, in order to enable the model to 

complete an object that is missing most of the annotation infor

mation, to correctly predict the background part, and to gener

alize to other common situations, we mixed the random mask 

strategy, label-first mask strategy, and background-first mask 

strategy at a ratio of 1:2:2. Experiments show that when using 

a mixed strategy, the completion effect of labels is significantly 

better than the completion effect of using each of the above stra

tegies alone.

L-MAE encoder and decoder

The proposed L-MAE model adopts an asymmetric encoder- 

decoder architecture, where the encoder operates exclusively 

on the visible patches, while the decoder processes features 

corresponding to all patches, including both visible and masked 

regions.

IPS

The L-MAE uses the method of masking and reconstruction to 

train and learn how to complete an incompletely labeled label. 

To ensure the uniformity of size, the masking algorithm will be 

directly based on the fuse map. Since both image and label infor

mation are recorded in the fuse map, the direct covering will 

cover up the label and image information simultaneously, which 

results in a decrease in prediction accuracy due to missing 

image information in subsequent completion operations. The 

workflow is shown in Figure 3.

Unlike the MAE, which employs zero or normally distributed 

padding,63 we propose a dedicated algorithm termed IPS to 

mitigate information loss in masked regions. Specifically, each 

image patch is first embedded via the patch-embedding 

operation, mapping it to a vector Fdi ∈ ℝL×d′

, where d′ denotes 

the decoder embedding dimension. Based on the indices of the 

previously discarded patches, the corresponding vectors are 

retrieved from Fdi and subsequently inserted into the encoder 

output Fe ∈ ℝ(L − l)×d′

, reconstructing a full sequence for the 

decoder. This process has been empirically shown to substan

tially improve the mIoU within the prediction area.

Encoder and decoder

The L-MAE framework adopts LMMSA (L-MAE multi-head 

self-attention) blocks as the fundamental building unit. The 

encoder comprises N LMMSA blocks (default: N = 12), while 

the decoder consists of M LMMSA blocks (default: M = 8). Given 

an input to either the encoder or decoder, each LMMSA block is 

formulated as

x = input + DropPath(MSA(LayerNorm(input))) and

(Equation 4) 

output = x + DropPath(FFN(LayerNorm(x))); (Equation 5) 

where FFN denotes a feedforward neural network.

The multi-head attention module (MulAttn) performs multiple 

self-attention operations in parallel, each corresponding to a 

distinct attention head. The outputs from all heads are concate

nated and linearly projected to yield the final representation. 

Each head is defined by learnable weight matrices WQ, WK, and 

WV, which project the input X into query, key, and value matrices:

Qi = WQ
i X;Ki = WK

i X; and Vi = WV
i X: (Equation 6) 

The attention mechanism computes the similarity between Qi 

and Ki via scaled dot-product attention, followed by softmax 

normalization, and applies the resulting weights to Vi:

Zi = softmax

(
QiK

T
i̅̅̅̅̅

dk

√

)

Vi; and (Equation 7) 
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MSA(Q;K;V) = Concat(Z1;…;Zh)W
O: (Equation 8) 

Here, h denotes the number of attention heads, and WO ∈

ℝhdv×dmodel is the output projection matrix. The projection 

matrices satisfy WQ; WK ∈ ℝdmodel×dk , and WV
i ∈ ℝdmodel×dv . 

Each attention head outputs a vector Zi. In practice, as adop

ted in the original ViT, we set h = 8 and use dk = dv = dmodel/h = 

64. Despite using multiple heads, the computational 

complexity remains comparable to single-head attention. 

Each LMMSA block also includes a feedforward network 

(FFN), which applies a two-layer MLP (multi-layer perceptron) 

with rectified linear unit (ReLU) activation, followed by layer 

normalization64:

FFN(x) = ReLU(W1x + b1)W2 + b2: (Equation 9) 

While the same transformation is applied across spatial posi

tions, the parameters of FFNs are unique to each layer in the 

network.

Table 1. Comparison with supervised state-of-the-art semantic segmentation methods on Pascal VOC 2012 datasets

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV mIoU

RefineNet27 95.0 73.2 93.5 78.1 84.8 95.6 89.8 94.1 43.7 92.0 77.2 90.8 93.4 88.6 88.1 70.1 92.9 64.3 87.7 78.8 84.2

ResNet3868 96.2 75.2 95.4 74.4 81.7 93.7 89.9 92.5 48.2 92.0 79.9 90.1 95.5 91.8 91.2 73.0 90.5 65.4 88.7 80.6 84.9

PSPNet28 95.8 72.7 95.0 78.9 84.4 94.7 92.0 95.7 43.1 91.0 80.3 91.3 96.3 92.3 90.1 71.5 94.4 66.9 88.8 82.0 85.4

Deeplabv331 96.4 76.6 92.7 77.8 87.6 96.7 90.2 95.4 47.5 93.4 76.3 91.4 97.2 91.0 92.1 71.3 90.9 68.9 90.8 79.3 85.7

EncNet69 95.3 76.9 94.2 80.2 85.3 96.5 90.8 96.3 47.9 93.9 80.0 92.4 96.6 90.5 91.5 70.9 93.6 66.5 87.7 80.8 85.9

DFN70 96.4 78.6 95.5 79.1 86.4 97.1 91.4 95.0 47.7 92.9 77.2 91.0 96.7 92.2 91.7 76.5 93.1 64.4 88.3 81.2 86.2

SDN71 96.9 78.6 96.0 79.6 84.1 97.1 91.9 96.6 48.5 94.3 78.9 93.6 95.5 92.1 91.1 75.0 93.8 64.8 89.0 84.6 86.6

Deeplabv3+72 97.0 77.1 97.1 79.3 89.3 97.4 93.2 96.6 56.9 95.0 79.2 93.1 97.0 94.0 92.8 71.3 92.9 72.4 91.0 84.9 87.8

ExFuse73 96.8 80.3 97.0 82.5 87.8 96.3 92.6 96.4 53.3 94.3 78.4 94.1 94.9 91.6 92.3 81.7 94.8 70.3 90.1 83.8 87.9

MSCI74 96.8 76.8 97.0 80.6 89.3 97.4 93.8 97.1 56.7 94.3 78.3 93.5 97.1 94.0 92.8 72.3 92.6 73.6 90.8 85.4 88.0

MARS75 89.3 42.0 88.8 72.9 79.5 92.7 86.2 94.2 40.3 91.4 58.8 91.1 88.9 81.9 84.6 63.6 91.7 91.7 85.3 57.3 77.7

DHR76 93.3 42.6 86.6 74.8 72.3 95.0 88.3 95.1 41.6 90.9 71.2 93.3 93.3 86.8 85.7 73.9 93.9 63.4 81.8 56.8 79.8

CoSA77 93.3 47.0 84.2 60.2 75.0 87.7 81.7 92.0 34.5 87.8 59.6 86.2 86.3 84.9 82.8 68.2 87.4 63.9 67.7 61.6 75.2

MRFM78 97.1 78.6 97.1 80.6 89.7 97.3 93.6 96.7 59.0 95.4 81.1 93.2 97.5 94.2 92.9 72.3 93.1 74.2 91.0 85.0 88.4

L-MAE 

w/m=0.6

89.5 58.8 92.3 86.4 91.3 94.9 89.6 95.3 79.1 93.7 89.6 93.4 91.0 90.5 89.4 85.6 96.1 93.0 96.0 87.5 89.1

L-MAE 

w/m=0.5

89.9 64.5 91.4 89.2 92.1 95.9 90.6 96.4 82.1 94.6 91.2 94.7 94.3 92.4 91.1 87.8 97.8 94.0 96.5 93.4 91.0

For fair evaluation, the proposed method is assessed using the PA-mIoU metric, and other models using the mIoU metric. Here, ‘‘m’’ denotes the mask 

ratio, and the optimal hyper-parameter configuration selected for L-MAE is as follows: Encoder Blocks = 8, Decoder Blocks = 6, Encoder Embedding 

Dimension = 1440, and Decoder Embedding Dimension = 720.

Figure 4. Inference phase of label masked autoencoder 

When an image-label pair is input, the proportion of the background part of the label will be calculated first, and according to the calculation results, the image- 

label pair will be sent to the L-MAE with the corresponding mask ratio.
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Inference phase

In the inference phase, as shown in Figure 4, we train various 

mask ratio L-MAE models. When an image-label pair is input, 

the label in it will be detected, and based on the proportion of 

its background part, it will be input to the enhancement, which 

is performed in the L-MAE of the mask ratio that conforms to 

this ratio. During the enhancement process, the background-first 

algorithm will be used to mask the blocks with a high background 

proportion. After the features pass through the IPS module and 

the decoder, the model can complete the initially missing parts.

Loss design

For the predicted label distribution x generated by the pipeline 

and the corresponding ground-truth label y, we adopt a cross- 

entropy loss function65 to optimize the alignment between the 

two modalities. Specifically, the objective encourages similarity 

between x and its matched label y while penalizing associations 

with unrelated classes. To address class imbalance in semantic 

segmentation, we introduce a dynamic weighting scheme that 

adjusts the contribution of each class based on its relative 

frequency in the dataset. The complete loss computation is 

formulated as follows:

wi = 1 − 1

/(

1 + β ⋅ exp

(

−
xi − E(x)

V(x)+ξ

)γ)

; (Equation 10) 

ln = − wi ⋅ log
exp

(
xn;yn

)

∑C

i = 1 exp
(
xn;i

)⋅1{yn ∕= ŷn}; and (Equation 11) 

l(x; y) =
∑N+1

i = 1

li⋅
1

∑N+1

n = 1 wyn
⋅1{yn ∕= ŷn}

: (Equation 12) 

Here, i ∈ N denotes the class index, and ŷn represents 

the ignore index, typically corresponding to the background 

class, which is excluded from the loss calculation. The vari

ables β and γ are learnable hyperparameters controlling the 

weight scaling behavior, while ξ is a small constant to ensure 

numerical stability. N denotes the number of semantic clas

ses, such that the output dimension becomes N + 1. The 

terms xn and yn refer to the n-th component of the prediction 

and ground-truth label, respectively. The weight wyn 
corre

sponds to the importance assigned to class yn in the loss 

aggregation.

Complexity analysis

In this section, we analyze the computational complexity of four 

principal components within the proposed L-MAE framework: 

stack fuse, mask strategy, encoder, and decoder.

Stack fuse

A single-class label li is extracted for each class ci(i = 

1, 2, …, C). Since the original label of size H × W 

must be traversed once per class, the time complexity is 

given by

ΩStack Fuse = HW × C; (Equation 13) 

where H and W denote the label’s height and width, 

respectively.

Mask strategy

Computing the background-pixel ratio for each token requires 

O(HW) operations. Subsequently, sorting N tokens incurs an 

O(NlogN) cost. Therefore, the overall time complexity can be ex

pressed as

ΩMask = HW + N log N: (Equation 14) 

Encoder

Assuming the masking ratio is r, the encoder processes only the 

unmasked tokens, totaling (1 − r)N tokens. Considering that a 

single transformer consists of a multi-head attention module fol

lowed by an FFN, the overall time complexity of the encoder can 

be expressed as follows: 

where dmodel is a fixed projection dimension, N represents the 

number of tokens input to the model, and L denotes the number 

of transformer layers.

Decoder

The decoder processes all N tokens, leading to a time 

complexity of

ΩDecoder = L ∗

⎛

⎜
⎝4 ∗ N ∗ d2

model+2 ∗ N2 ∗ dmodel
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

MSA

+ 8 ∗ N ∗ d2
model⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

FFN

⎞

⎟
⎠:

(Equation 16) 

RESULTS

In this section, we first present the implementation details of 

the proposed L-MAE framework. Subsequently, we conduct 

comprehensive comparative experiments on the Pascal VOC 

2012 and Cityscapes datasets to evaluate the performance 

of L-MAE against both supervised and semi-supervised se

mantic segmentation models. Finally, we perform an extensive 

set of ablation studies to investigate the impact of key archi

tectural components—including the number of encoder and 

decoder blocks (EBs and DBs, respectively), the dimensions 

ΩEncoder = L ∗

⎛

⎜
⎝4 ∗ (1 − r) ∗ N ∗ d2

model+2 ∗ (1 − r)
2
∗ N2 ∗ dmodel

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
MSA

+ 8 ∗ (1 − r) ∗ N ∗ d2
model⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

FFN

⎞

⎟
⎠; (Equation 15) 
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of encoder and decoder embeddings, and the masking ratio— 

on the overall performance of the L-MAE.

Experimental setup and evaluation metrics

Setup

The proposed L-MAE framework is implemented using the Py

Torch library and optimized with the Adam optimizer,66 config

ured with a momentum of 0.9 and a weight decay of 0.0001. 

To facilitate stable convergence, we employ a learning rate 

scheduling strategy based on ReduceLROnPlateau with min 

mode, which reduces the learning rate by a specified factor 

when the validation loss fails to improve over a predefined num

ber of patience epochs. Specifically, we set the patience to 5 

epochs, the loss reduction threshold to 0.001, and the learning 

rate reduction factor to 0.8.

All experiments are conducted on an NVIDIA Tesla A40 GPU, 

and each model is trained for 400 epochs on both the Pascal 

VOC 2012 and Cityscapes datasets. For Pascal VOC, images 

and labels are randomly cropped to 448 × 448 and subsequently 

resized to 224 × 224. For Cityscapes, inputs are randomly crop

ped to 448 × 448 without further resizing. During training, we use 

a batch size of 24 for Pascal VOC and 48 for Cityscapes.

Metrics

Employing the conventional global mIoU metric alone for 

comparative evaluation of semantic segmentation models may 

introduce bias and inefficiency, particularly due to differing su

pervision strategies. Since our method operates on partially 

labeled data, while comparison models typically utilize unlabeled 

datasets, evaluating performance solely on global metrics is 

inadequate. To enable fair comparisons, we propose a novel 

metric named PA-mIoU, which specifically evaluates segmenta

tion accuracy within masked (discarded) regions. In practice, 

patches selected for masking by the mask selector are indexed 

in a list i ∈ ℝl, generating a binary mask m ∈ ℝH×W indicating 

masked (value = 1) and unmasked (value = 0) regions. The PA- 

mIoU metric exclusively calculates performance in regions 

where m = 1, thereby objectively assessing the segmentation 

quality in occluded label areas.

Comparative experiments

In comparative experiments, we evaluate the proposed L-MAE 

against several state-of-the-art supervised semantic T
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Table 3. Comparison with semi-supervised semantic 

segmentation state-of-the-art U2PL on Pascal VOC 2012

Method Mask ratio mIoU / PA-mIoU

U2PL 87.5% 79.01

75% 79.30

50% 80.5

S4MC 87.5% 79.67

75% 79.85

50% 81.1

L-MAE(w/IPS) 

(Measured with 

PA-mIoU)

80.0% 85.5

70% 90.1

50% 91.3

The metric mIoU for the L-MAE is PA-mIoU for fairly.
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segmentation methods. By contrasting the PA-mIoU of the 

L-MAE with the conventional mIoU metric reported by compari

son methods, we observe that PA-mIoU consistently improves 

as the mask ratio decreases. Specifically, when the mask ratio 

reaches 50%, the L-MAE surpasses the performance of existing 

state-of-the-art approaches.

Results on Pascal VOC 2012

The Pascal VOC 2012 dataset67 is an expanded version of the 

original Pascal VOC 2007, comprising a total of 11,530 images. 

For semantic segmentation, the training and validation sets of 

VOC2012 aggregate images from the years 2007 through 

2012, including 2,913 images divided into 2,513 for training 

and 400 for validation. In comparison with current supervised 

semantic segmentation models, our L-MAE achieves 94.6% 

global mIoU and 91.0% PA-mIoU at a mask ratio of 50% and 

92.6% global mIoU and 89.1% PA-mIoU at a mask ratio of 

60%. As indicated at the top of Table 1, our method significantly 

surpasses the existing state-of-the-art methods. Additionally, 

we compare our approach with prominent semi-supervised seg

mentation models, specifically U2PL (Using Unreliable Pseudo 

Labels) and S4MC (Semi-Supervised Semantic Segmentation 

via Marginal Contextual Information). As demonstrated in the 

table, L-MAE consistently outperforms these semi-supervised 

methods by a margin exceeding 5% mIoU under similar masking 

conditions, further validating the superior performance of our 

proposed framework.

Results on Cityscapes

The Cityscapes dataset79 comprises 5,000 pixel-level annotated 

images, covering semantic and instance labels from street 

scenes collected across 50 cities in Germany and neighboring 

countries during spring, summer, and autumn. For evaluation 

purposes, experiments were conducted with mask ratios set to 

50% and 60%, respectively. At a 50% mask ratio, our proposed 

L-MAE achieves 90.5% global mIoU and 86.4% PA-mIoU, 

whereas at a 60% mask ratio, it attains 89.0% global mIoU 

Figure 5. Label augmentation experiment 

study pipeline 

The plain semantic segmentation network 

will calculate the loss with the L-MAE- 

regenerated label.

Table 4. Compare the performance difference between ordinary 

semantic segmentation networks trained using the L-MAE 

enhancement method and unenhanced ones

Network mIoU w/L-MAE mIoU w/o L-MAE

FCN 43.5% 57.9%

UNet 59.5% 71.2%

and 85.6% PA-mIoU. As illustrated at 

the bottom of Table 2, the proposed 

L-MAE significantly outperforms previ

ous state-of-the-art methods. Addition

ally, comparative experiments with the 

semi-supervised semantic segmentation 

method U2PL demonstrate the superior

ity of our model. As shown in Table 3, 

our approach exhibits consistent advantages in mIoU perfor

mance under both comparable mask ratios (87.5% versus 

80% and 75% versus 70%) and identical masking condi

tions (50%).

Label augmentation experiment

We conducted the label augmentation experiment to assess 

whether enhancing the dataset with the L-MAE yields perfor

mance improvements in conventional semantic segmentation 

models, as illustrated in Figure 5. Within this experiment, we 

intentionally degraded the Pascal VOC dataset by randomly 

obscuring 50% of the data. We then employed this degraded da

taset to train FCN and UNet models for 300 iterations. Subse

quently, we applied the L-MAE to enhance the degraded dataset 

and employed this improved dataset to retrain the FCN and UNet 

models for another 300 iterations. As shown in Table 4, the re

sults demonstrate notable enhancements in the performance 

of the trained FCN and UNet models on the test set, with im

provements of 13.4% and 11.7%, respectively, compared to 

the original dataset. These findings strongly affirm the effective

ness of the L-MAE in practical scenarios.

Ablation study

To assess the contribution and performance impact of individual 

components within our proposed model, we conduct a detailed 

ablation study in this section. Experiments are performed using 

the Pascal VOC dataset with an input size of 224 × 224.

Parameter setting analysis

As illustrated in Table 5, we investigate the performance of the 

proposed L-MAE under various hyperparameter configurations. 

Specifically, four key hyperparameters are analyzed: the number 

of encoder blocks (EBs), the number of decoder blocks (DBs), 

the encoder embedding dimension (ED), and the decoder 

embedding dimension (DD). Results indicate that performance 

generally declines as embedding dimensions decrease, given 

a fixed number of EBs and DBs. Notably, an exception occurs 

in the case of EB = 12 and DB = 8, where setting ED = 1,440 

and DD = 720 results in a lower PA-mIoU compared to ED = 

1,024 and DD = 512, although the global mIoU remains un

changed. This observation suggests improved accuracy within 

the unmasked regions. Based on these experimental outcomes, 

we select the configuration of EB = 8, DB = 6, ED = 1,440, and 

DD = 720 for subsequent analyses.
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Masking strategy

To validate the effectiveness of our masking strategies, we evalu

ated four settings: random masking, label-first masking, back

ground-first masking, and a mixed scheme that combines them 

in a 1:2:2 ratio. The results are summarized in Table 6. We report 

both mIoU and PA-mIoU. The results show that the mixed scheme 

performs the best, improving over random masking by 0.9% on 

Pascal VOC and 1.3% on Cityscapes, indicating a clear advan

tage. In contrast, background-first masking alone yields the 

weakest performance, likely because masking only background 

regions provides insufficient semantic perturbation on labeled 

objects, limiting the model’s ability to learn robust label-recon

struction behavior. We also compared our method with the mask

ing strategy used in BUS-M2AE for medical imaging. As shown in 

Table 7, under matched datasets and training schedules, the 

mixed strategy in the L-MAE exceeds the TMM (token-level 

multi-scale masking) + FMM (feature-level multi-scale masking) 

combination in BUS-M2AE by 1.2% and 1.7% mIoU and by 

0.9% and 1.4% PA-mIoU on Pascal VOC and Cityscapes, respec

tively. We attribute these gains to combining random masking, 

label-first masking, and background-first masking in a 1:2:2 ratio, 

which mitigates background-biased predictions while placing 

greater emphasis on labeled regions. Compared with BUS- 

M2AE’s image-centric multi-scale masking, our approach offers 

better efficiency and stronger task-specific adaptability.

Mask ratio and IPS

We investigate the effectiveness of the proposed IPS algorithm 

and the influence of different mask ratios. As depicted in 

Figure 6, after applying the IPS algorithm, the average mIoU de

creases by 3.0%, whereas the average PA-mIoU declines by 

4.1%. Notably, the impact of IPS varies with the mask ratio: a 

higher mask ratio results in a more pronounced improvement in 

PA-mIoU. Additionally, IPS exhibits distinct influences on mIoU 

and PA-mIoU; for instance, at a mask ratio of 0.7, the reduction 

in mIoU is smaller than that in PA-mIoU. These results 

indicate that IPS significantly enhances segmentation accuracy 

within masked regions, effectively supplementing the missing vi

sual information at appropriate model positions. We further 

compare the training efficiency across different mask ratios, 

measured in time per batch (TPB), which denotes the training 

time required for each batch. As presented in Table 8, the results 

demonstrate that as the mask ratio increases, the TPB gradually 

decreases, primarily due to the reduced computational load in 

the encoder stage.

Stack fuse

As shown in Table 9, we compared the performance impact of 

three different image-label fusion methods on the model. Under 

the premise that the parameters are set to EB = 8, DB = 6, ED = 

1,440, and DD = 720 and the patch training strategy is randomly 

discarded. The fusion method that is directly concatenating the 

label to the image, which is called directly concat, has 72.4% 

PA-mIoU and 74.8% mIoU. The fusion method, in which the label 

is replicated and inserted into each of the three RGB channels of 

the image, which is called insert concat, has 75.6% PA-mIoU 

and 77.9% mIoU. In comparison, the method used in this article 

to layer labels by category, which is called layer concat, can 

achieve 94.6% PA-mIoU and 91.3% mIoU, fully proving the ad

vantages of fusion strategies.

Table 5. Comparisons across different hyperparameter configurations

EB DB ED DD #Parameters (M) FLOPs (G) mIoU PA-mIoU

12 8 1,024 512 186 M 21 G 94.1 90.5

1,440 720 362 M 42 G 94.1 90.4↓
8 6 1,024 512 129 M 15 G 94.1 90.3

1,440 720 250 M 29 G 94.6↑ 91.3↑

6 4 1,024 512 98 M 11 G 94.2 90.4

1,440 720 188 M 22 G 94.6↑ 91.2↑
We report the corresponding model parameters (in M) and computational complexity in terms of FLOPs (in G). All reported mIoU and PA-mIoU metrics 

include the background class. EB, the number of encoder blocks; DB, decoder blocks; ED, encoder embedding dimension; DD, decoder embedding 

dimension; M, millions; FLOPs, floating-point operations; G, billions.

Table 6. Ablation studies on the Pascal VOC 2012 and Cityscapes datasets using three mask strategies: Random mask, background- 

first mask, and label-first mask

Dataset Mask ratio Mask strategy mIoU PA-mIoU ΔmIoU ΔPA-mIoU

Pascal VOC 2012 50% random mask 93.7 90.2 0.0 0.0

label first 94.3 90.6 +0.6 +0.4

background first 87.8 82.1 − 5.9 − 8.1

mixed (1:2:2) 94.6 91.0 +0.9 +0.8

Cityscapes 50% random mask 89.2 84.9 0.0 0.0

label first 90.1 85.7 +0.9 +0.8

background first 86.9 81.3 − 2.3 − 3.6

mixed (1:2:2) 90.5 86.4 +1.3 +1.5

We report mIoU, PA-mIoU, and the performance gains ΔmIoU and ΔPA-mIoU over the random mask baseline with the mask ratio fixed at 50%. Bold

ing represents the method we ultimately adopted.
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Qualitative study

Visualization

Visualization results under different experimental settings are pre

sented in Figure 7 to illustrate the effectiveness of each component 

within our proposed approach. First, compared to the L-MAE 

without the IPS, the version employing the IPS achieves notably 

better performance across various mask ratios. This discrepancy 

arises because masking operations remove both labels and corre

sponding image regions, hindering the effective use of local image 

information in subsequent stages. Second, we observe that model 

performance remains relatively robust as the mask ratio increases, 

highlighting the stability of our framework. Finally, our model 

consistently produces high-quality segmentation masks, vali

dating the overall effectiveness of the proposed L-MAE method.

Failure cases

Figure 8 presents several representative failure cases that pro

vide valuable insights into the limitations of the proposed 

method. One notable type of failure occurs when reconstructing 

objects characterized by elongated or tubular structures. As 

illustrated in the left example of Figure 8, the predicted ‘‘green’’ 

region inadequately represents the complete structure of the bi

cycle. Another failure scenario arises from ambiguity between 

masked regions and complex background information, leading 

to confusion in segmentation. Additionally, our analysis indicates 

that the reconstruction accuracy of the L-MAE is reduced for 

small target objects due to excessive masking of fine-grained 

details. Although reducing the grid size could alleviate this issue, 

it would concurrently increase the model’s parameter count and 

computational overhead.

DISCUSSION

In this paper, we have explored the potential of leveraging MAE 

models for pixel-level label completion. We propose an end-to- 

end framework, termed the L-MAE, to effectively transfer the 

mask-and-reconstruct capabilities of the MAE to semantic 

Table 7. Comparison of masking methods on Pascal VOC 2012 and Cityscapes datasets under a fixed mask ratio of 50%

Dataset Method mIoU PA-mIoU ΔmIoU ΔPA-mIoU

Pascal VOC 2012 L-MAE: mixed (1:2:2) 94.6 91.0 +1.2 +0.9

BUS-M2AE (TMM only) 93.0 89.5 − 0.4 − 0.6

BUS-M2AE (FMM only) 92.9 89.4 − 0.5 − 0.3

BUS-M2AE (TMM+FMM) 93.4 90.1 0.0 0.0

Cityscapes L-MAE: mixed (1:2:2) 90.5 86.4 +1.7 +1.4

BUS-M2AE (TMM only) 88.4 84.3 − 0.4 − 0.7

BUS-M2AE (FMM only) 88.3 84.2 − 0.5 − 0.8

BUS-M2AE (TMM+FMM) 88.8 85.0 0.0 0.0

ΔmIoU and ΔPA-mIoU denote the performance gains compared to BUS-M2AE (TMM+FMM) on the same dataset. Bold numbers indicate the best 

performance for each dataset.

Figure 6. Ablation study evaluating the impact of varying mask ratios and the presence or absence of the IPS algorithm 

All reported mIoU and PA-mIoU metrics include the background class. Here, ‘‘m’’ denotes the mask ratio.
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segmentation tasks. Compared with conventional methods, the 

proposed L-MAE inherits the MAE’s robust pixel reconstruction 

ability, allowing for effective reconstruction of unknown pixel la

bels based on partially available annotations. The proposed IPS 

algorithm further enriches image features at masked regions, 

thereby preserving information integrity during the completion 

process. Additionally, the designed fusion training approach 

generalizes well across diverse completion scenarios, enabling 

the L-MAE to effectively restore missing labels under various 

conditions. Extensive comparative experiments and compre

hensive ablation studies conducted on two widely used 

segmentation datasets demonstrate the effectiveness of each 

proposed component, verifying that our L-MAE substantially 

outperforms existing methods without relying on pre-trained 

weights.

In our analysis of the L-MAE, we have also identified some of its 

limitations. For instance, the model sometimes results in rough 

edges or excessive annotations when processing smaller objects. 

Moreover, attempts to generate markings for completely unanno

tated objects occasionally lead to significant errors. These issues 

may stem from the fact that, while the transformer’s attention 

mechanism excels at extracting global features, it overlooks 

smaller, localized areas, leading to deviations in handling details. 

To address this issue, we plan to develop a new structure focusing 

on global features and accurately capturing details in smaller re

gions. At the same time, since the L-MAE uses the transformer 

structure, its global context modeling capability is also valuable 

in 3D tasks. Next, we consider adapting the L-MAE to point-cloud 

or voxel-level semantic segmentation tasks, capturing long-range 

spatial dependencies through the transformer, and improving the 

understanding of complex 3D scenes.
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