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 A B S T R A C T

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that disrupts cognitive function across 
multiple domains, particularly affecting language networks and speech production pathways in the brain. 
Patients demonstrate symptoms including aphasia, reduced syntactic complexity, and diminished verbal fluency 
that reflects underlying neural pathology in language-related cortical areas. Current detection methods rely 
on resource-intensive neuroimaging, invasive biomarker sampling, and extensive neuropsychological testing, 
creating substantial barriers to early diagnosis. While researchers have explored using acoustic features, par-
alinguistic markers, and text-based features for AD detection, existing approaches face fundamental limitations: 
traditional acoustic methods fail to capture semantic-cognitive content, text transcription is labor-intensive, 
and automatic speech recognition quality suffers due to pronunciation variations and cognitive impairments 
in elderly populations. This paper introduces cognitive acoustic symbolic transformation for ALzheimer’s 
(COASTAL), a neurobiologically-inspired framework that models hierarchical speech processing pathways. 
COASTAL transforms acoustic patterns into discrete symbolic elements through a specialized transformation 
module before applying contextual analysis that mirrors prefrontal-temporal language networks. Evaluated 
on the ADReSSo corpus, COASTAL achieved 70.42% accuracy, outperforming established baselines by 5.63%. 
Integration with complementary self-supervised approaches through hierarchical fusion improved performance 
to 77.46%. Analysis revealed that preserving fine-grained temporal features through shallower transformation 
architecture significantly enhanced diagnostic accuracy, aligning with neuropsychological evidence that subtle 
timing patterns in speech provide sensitive markers of cognitive decline.
. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder with 
orldwide impact, currently affecting approximately 50 million indi-
iduals, with projections indicating this number may triple by 2050 
Vogt et al., 2023; Klepl et al., 2022; Zhao et al., 2024). AD is 
ategorized as a neurodegenerative disorder, and from a cognitive 
euroscientific perspective, it represents the gradual dismantling of the 
omplex systems of an organism’s brain along with the progressive 
oss of cognitive abilities (Liu et al., 2024; Niazi et al., 2024). Deficits 
n memory, executive skills, and language are hallmarks of this dis-
ase (Liampas et al., 2023). By-patient observation, AD is associated 
ith a loss of neurons and synapse dysfunction, especially in the medial 

I This article is part of a Special issue entitled: ‘AI for Early Dementia Detection’ published in NeuroImage.
I This work is supported by Natural Science Foundation of Liaoning Province - General Project in 2026 by Ning Liu: The mechanism by which astaxanthin 
mproves cell pyroptosis through the PI3K/Akt/NF-kB axis and the application research of cognitive acoustic framework analysis in Alzheimer’s disease.
∗ Corresponding authors.
E-mail addresses: lvjianhui2012@163.com (J. Lv), shalli.rani@chitkara.edu.in (S. Rani), lik@newpaltz.edu (K. Li), liun@jzmu.edu.cn (N. Liu).

temporal lobe, posterior cingulate, and association cortices (Mangal-
murti and Lukens, 2022; Griffiths et al., 2023). This explains the 
clinical features of impaired memory and language processing. Remark-
ably, the neural changes accompany behavioral alterations, particularly 
changes in speech patterns, long before a formal diagnosis can be 
made (Robin et al., 2023). This critical period enables AD to be 
diagnosed and treated far earlier than current methods that focus on 
advanced biomarkers, which are, in fact, the consequence of early 
neurodegenerative changes (Lardelli et al., 2025; Ginsberg M. J. Blaser, 
2024).

Diagnosing AD traditionally involves neuropsychological tests, PET 
scans for amyloid plaques, and the tau and amyloid protein tests from 
ttps://doi.org/10.1016/j.neuroimage.2026.121739
eceived 16 June 2025; Received in revised form 29 December 2025; Accepted 19
vailable online 20 January 2026 
053-8119/© 2026 The Authors. Published by Elsevier Inc. This is an open access ar
 January 2026

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ynimg
https://www.elsevier.com/locate/ynimg
https://orcid.org/0000-0001-5224-4048
mailto:lvjianhui2012@163.com
mailto:shalli.rani@chitkara.edu.in
mailto:lik@newpaltz.edu
mailto:liun@jzmu.edu.cn
https://doi.org/10.1016/j.neuroimage.2026.121739
https://doi.org/10.1016/j.neuroimage.2026.121739
http://creativecommons.org/licenses/by/4.0/


J. Lv et al. NeuroImage 327 (2026) 121739 
cerebrospinal fluid analysis (Zhou et al., 2025; Yang et al., 2024a). 
Such tests are expensive, and only because of their cost, invasiveness, 
and the time required to identify significant structural changes in the 
brain, they are usually reserved for the later stages of the disease (Aye 
et al., 2024). This creates a difficult hurdle in identifying AD at an 
earlier stage when interventions might be more beneficial (Qin et al., 
2024). Studies in cognitive neuroscience have pointed out that prose 
and speech production and understanding are some of the first areas 
to be impacted in early AD, with hallmark changes emerging due to 
the progressive loss of the semantic memory network, phonological 
processing systems, and the frontal executive control systems that 
are responsible for the output of fluent speech (Lv et al., 2025). 
These alterations provide insight into AD progression, which aligns 
with understanding the cerebrum’s affected areas during the onset 
of Alzheimer’s, thus offering a non-invasive opportunity to study the 
disease process (Monfared et al., 2022; Dao et al., 2025).

The evolution of AI and its branches have changed the paradigm 
for processing and analyzing complex systematic patterns in speech 
and language data (Zhang, 2025; Luo et al., 2024). Such changes have 
opened up new avenues in developing non-invasive screening tools for 
AD. Previous studies have tried to solve the problem with approaches 
like acoustic feature analysis, paralinguistic marker analysis, and se-
mantic modeling based on text analytics (Koenig et al., 2023). The 
Computational Paralinguistics Challenge and extended Geneva Mini-
malistic Acoustic Parameter Set datasets have been shown to perform 
well in predicting AD using acoustic features (Bayerl et al., 2023; 
Garcia-Gutierrez et al., 2023). It has been reported that certain prosodic 
features of speech, like rhythm and stress patterns, are disrupted during 
AD, and the degree to which these features are disrupted is proportional 
to the degree of AD, indicating disruption of frontal-subcortical circuits 
involved in speech motor control (Maiella et al., 2024). Paralinguis-
tic studies have demonstrated that Alzheimer’s disease progressively 
disrupts frontal-subcortical circuits responsible for coordinating speech 
timing, manifesting as altered speech rate and abnormal temporal 
organization of phrases and pauses. These disruptions reflect neu-
rodegeneration affecting the neural networks that allocate attentional 
resources and maintain working memory during speech production. 
Analyzed data deriving metrics such as type-token ratio, syntactic 
complexity, and coherence measures demonstrate that AD profoundly 
affects a person’s ability to access and structure grammatical elements 
using language due to the gradual decline of neural networks dedicated 
to language processing (Hsu et al., 2025).

They do not help much in accurately differentiating AD from other 
neurologic conditions that may have similar acoustic profiles due to 
the inability to model the speech’s semantic content. Automated tran-
scription techniques that analyze discourse to extract the linguistic 
features of text provide some semantic information, but the automated 
systems perform poorly on elderly speakers. Moreover, most existing 
approaches consider speech an acoustic signal or a linguistic unit. 
The paper introduces an innovative neural-linguistic framework that 
integrates acoustic and semantic processing pathways, thus addressing 
these gaps.

Accordingly, the main contributions of this paper are summarized 
as follows.

• We propose cognitive acoustic symbolic transformation for
ALzheimer’s (COASTAL), a novel neurobiologically-inspired
framework for detecting AD from spontaneous speech.

• We address fundamental limitations in existing approaches by 
developing a hierarchical processing architecture that transforms 
acoustic signals into discrete symbolic representations before ap-
plying contextual sequence analysis, mirroring the organization 
of language networks in the human brain.

• We demonstrate that shallower transformation architectures (2-
layer) more effectively preserve fine-grained temporal features 
critical for cognitive assessment, achieving 70.42% accuracy on 
the ADReSSo dataset and outperforming established baseline 
methods by 5.63%.
2 
The rest of the paper is organized as follows: Section 2 intro-
duces the COASTAL framework. Section 3 presents the experimental 
methodology and results. Finally, Section 4 concludes the paper.

2. Neurally-inspired computational framework for cognitive
deficit detection

The architecture transforms acoustic representations into symbolic 
linguistic elements through a cascade of processing steps that paral-
lel neural pathways in human speech understanding. This computa-
tional framework converts acoustic spectral patterns to quantized rep-
resentational tokens and subsequently analyzes temporal dependencies 
within these discrete sequences to identify cognitive markers associ-
ated with neurodegeneration. The design draws from neuroimaging 
studies (Robertson et al., 2024) mapping the ventral speech processing 
stream that extends from primary auditory cortex through superior tem-
poral regions to inferior frontal areas. Our system implements a dual-
component architecture: an acoustic-symbolic transformation module 
( ) and a contextual sequence analyzer (). Fig.  1 provides a schematic 
representation of the complete architectural framework (Becker et al., 
1994).

2.1. Acoustic-symbolic transformation module

The acoustic-symbolic transformation component employs a mod-
ified variational inference framework fundamentally different from 
standard approaches. While conventional variational learning (Li et al., 
2023) utilizes encoder–decoder architectures (𝜓  and 𝜔), our im-
plementation incorporates specialized constraints reflecting cognitive 
processing limitations.

The transformation process begins with acoustic input sequences 
𝑨 = {𝑎1, 𝑎2,… , 𝑎𝑚} that undergo non-linear projection into a rep-
resentational manifold . The architecture assumes that cognitive 
representations occupy discrete regions within this manifold, corre-
sponding to attractor states in neural dynamics. The inference process 
can be formalized through the mapping function 𝜓 ∶ 𝑨 → 𝒗, which 
projects acoustic patterns onto latent variables 𝒗 constrained by prior 
distribution (𝒗) modeling expected cognitive representations.

The generative component 𝜔(𝑨|𝒗) reconstructs acoustic patterns 
from these latent representations. For temporal sequence 𝑨 with 𝑀 ele-
ments, the conditional generative process incorporates context-
sensitivity through: 

𝜔(𝑨|𝒗) =
𝑀
∏

𝑗=1
𝜔(𝑎𝑗 |{𝑎𝑘}𝑘<𝑗 , 𝒗) ⋅(𝑨, 𝒗, 𝑗) (1)

where (𝑨, 𝒗, 𝑗) represents a recurrence function modeling working 
memory constraints that limit integration across distant sequence el-
ements - a cognitive limitation particularly affected in AD.

The posterior distribution (𝒗|𝑨) cannot be directly computed due 
to the combinatorial complexity of possible attractor configurations. 
We therefore introduce approximation function 𝜓 (𝒗|𝑨) optimized 
through divergence minimization. This leads to our evidence lower 
bound formulation: 

𝐸𝐿𝐵𝑂 = E𝜓 (𝒗|𝑨)
[

log𝜔(𝑨|𝒗)
]

−

𝛾 ⋅𝐷𝐾𝐿
[

𝜓 (𝒗|𝑨)||(𝒗)
]

+ 𝜆 ⋅𝛺(𝜓,𝜔)
(2)

The first component represents reconstruction fidelity; the second 
implements regularization through divergence between approximate 
posterior and cognitive prior, and 𝛺(𝜓,𝜔) incorporates neurocognitive 
constraints on representational capacity with an importance weight 𝜆.

Our implementation extends this framework through discretiza-
tion operations that quantize continuous representations into symbolic 
elements 𝒄. The transformation process incorporates neural biophys-
ical constraints by modeling each representation as activation across 
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Fig. 1. Cognitive-linguistic processing framework.
𝐾 distinct neuronal ensembles with competitive dynamics, formally 
expressed as: 

𝒄 = Quantize(𝜓 (𝑨)) =
𝐾
∑

𝑖=1
𝛿𝑖 ⋅ OneHot(argmax

𝑖
𝑖(𝜓 (𝑨))) (3)

where 𝑖 represents the activation function for the 𝑖th neural ensem-
ble and 𝛿𝑖 is its corresponding symbolic representation in a learned 
codebook. This competitive selection process parallels winner-take-all 
dynamics in cortical microcircuits, particularly in speech perception 
regions where categorical boundaries emerge from continuous acoustic 
input (Koever et al., 2013).

The discretization operation (Tian et al., 2021) introduces non-
differentiability in computational workflows. To address this limitation 
while maintaining biological plausibility, we implement a temperature-
controlled relaxation using softened categorical distributions: 

𝒄̃ =
𝐾
∑

𝑖=1
𝛿𝑖 ⋅

exp((𝑖(𝜓 (𝑨)) + 𝑔𝑖)∕𝜏)
∑𝐾
𝑗=1 exp((𝑗 (𝜓 (𝑨)) + 𝑔𝑗 )∕𝜏)

(4)

where 𝑔𝑖 represents stochastic perturbations modeling neural noise, and 
𝜏 controls selectivity, paralleling attentional modulation in auditory 
3 
processing. This modified objective function becomes: 
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = E𝜓 (𝒄|𝑨)

[

log𝜔(𝑨|𝒄)
]

−

𝛼 ⋅𝐷𝐾𝐿
[

𝜓 (𝒄|𝑨)||(𝒄)
]

+ 𝜉 ⋅𝛷(𝒄)
(5)

where 𝛷(𝒄) incorporates additional constraints on symbolic represen-
tations reflecting neurological limitations in phonological processing 
characteristic of neurodegenerative conditions.

Architecturally, the acoustic-symbolic transformation module incor-
porates hierarchical processing through cascaded convolutional oper-
ations (Song et al., 2022) with increasing temporal receptive fields, 
mirroring the progressive integration across longer timescales observed 
in ascending auditory pathways. Each processing layer incorporates 
skip connections implementing predictive coding principles: 

 (𝑯 𝑙) = Conv1D(𝑯 𝑙−1) + SkipConnect(𝑯 𝑙−1,𝑯 𝑙−2) (6)

where 𝑯 𝑙 represents feature activations at layer 𝑙. This architecture 
creates representations capturing both phonemic content and supraseg-
mental features (rhythm, prosody, hesitations) that serve as critical 
diagnostic markers for cognitive decline.
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2.2. Bidirectional contextual encoder model

The bidirectional contextual encoder (𝛽) consists of multiple bidirec-
tional Transformer encoder layers that model the sequential relation-
ships within the pseudo-phoneme sequences generated by the 𝜂 model. 
This component is inspired by neuroscientific evidence of bidirectional 
processing in language comprehension networks, where both preceding 
and following contexts influence word interpretation in temporal and 
frontal language areas.

The 𝛽 model is trained using two self-supervised tasks that mirror 
aspects of human language processing: masked language modeling 
(MLM) (Wu and Chung, 2022) and next sentence prediction (NSP) (Liao 
et al., 2024). In the MLM task, we randomly mask 15% of the tokens in 
a training sequence. For each selected token at position 𝑖, we apply one 
of three transformations: replace with [MASK] token (80% probability), 
replace with a random token (10% probability), or leave unchanged 
(10% probability). The model then predicts the original token using 
the surrounding context, similar to how humans use contextual cues to 
resolve ambiguous or degraded speech signals.

For the NSP task, we select sequence pairs A and B from the 
dataset. Fifty percent of pairs have B as the actual continuation of A, 
while in the remaining 50%, B is a random sequence. A [SEP] token 
separates the sequences, and the model performs binary classification 
to determine if the sequences are continuous. This task helps the model 
learn discourse-level relationships, which are particularly disrupted in 
AD due to impairments in executive function and working memory.

The architecture of the 𝛽 model consists of 6 Transformer encoder 
layers, each with 12 attention heads and 768-dimensional feature 
embeddings. This design allows the model to capture long-range depen-
dencies in language that are typically impaired in AD patients due to 
disrupted connectivity between frontal and temporal language regions. 
While formal interpretability analysis of the attention mechanisms 
was beyond the scope of this initial study, the multi-head attention 
architecture theoretically enables the model to learn different aspects 
of linguistic relationships simultaneously, with each head potentially 
specializing in different dependency types such as syntactic, semantic, 
or discourse-level connections.

The embeddings from the 𝛽 model provide rich linguistic represen-
tations that capture syntax, semantics, and discourse-level features rele-
vant to detecting cognitive impairment. By processing discrete pseudo-
phoneme sequences rather than text, the model preserves important 
paralinguistic information like hesitations, repetitions, and dysfluencies 
that are known markers of cognitive decline.

2.3. Neural-linguistic model training process

Training our neural-linguistic model occurs in three distinct phases, 
mirroring the brain’s hierarchical organization of language processing 
from acoustic feature extraction to phonological encoding to semantic 
integration.

In the first phase, we train the 𝜂 model to compress mel-
spectrograms into sequences of pseudo-phonemes. The 𝜂 encoder trans-
forms the input spectrogram into a sequence of discrete codes drawn 
from a learned codebook. These discrete codes function as pseudo-
phonemes, representing fundamental units of speech similar to how the 
brain’s dorsal auditory stream transforms continuous acoustic signals 
into discrete phonological representations.

The encoder architecture employs multiple 1D convolutional layers 
with stride 2, each followed by a residual block that employs the 
following transformation: 
𝐅(𝐲) = 𝐅𝑐 (𝐲) + 𝐲 (7)

where 𝐅𝑐 represents the convolutional transformation and 𝐲 is the input 
to the residual block. This residual connection helps maintain gradient 
flow during training, analogous to the parallel processing pathways 
observed in cortical auditory processing.
4 
The discrete nature of the output is achieved through vector quan-
tization, where each continuous vector produced by the encoder is 
mapped to its nearest neighbor in a learned codebook  =
{𝐞1, 𝐞2,… , 𝐞𝐾} containing 𝐾 prototype vectors: 
𝑞(𝐝|𝐱) = 𝛿(𝐝 − 𝐞𝑘) where 𝑘 = argmin

𝑗
‖𝐳𝑒(𝐱) − 𝐞𝑗‖2 (8)

where 𝐳𝑒(𝐱) is the output of the encoder and 𝛿 is the Dirac delta 
function. Since this quantization operation is non-differentiable, we 
employ the straight-through estimator for backpropagation: 
∇𝐳𝑒 ≈ ∇𝐝 (9)

The training objective for the 𝜂 model combines reconstruction loss 
with commitment loss: 
𝜂 = ‖𝐱 − 𝐱̂‖22 + 𝛼‖sg[𝐳𝑒(𝐱)] − 𝐝‖22 + 𝛾‖𝐳𝑒(𝐱) − sg[𝐝]‖

2
2 (10)

where sg[⋅] denotes stop-gradient, 𝛼 controls the commitment of the 
encoder to its outputs, and 𝛾 regulates the divergence between encoder 
outputs and codebook vectors.

In the second phase, we train the 𝛽 model using the pseudo-
phoneme sequences generated by the 𝜂 encoder. The 𝛽 model vocabu-
lary consists of the 𝜂 codebook indices plus special tokens [PAD], [CLS], 
[SEP], and [MASK]. The positional embeddings (𝐏𝐄) are added to the 
token embeddings (𝐓𝐄) to form the input representation: 
𝐇0 = 𝐓𝐄 + 𝐏𝐄 (11)

The transformer encoder layers then process this input through 
self-attention mechanisms and feed-forward networks: 
𝐇𝑙 = TransformerLayer𝑙(𝐇𝑙−1) (12)

where 𝑙 ∈ {1, 2,… , 𝐿} and 𝐿 = 6 in our implementation. For the MLM 
task, the training objective is: 
MLM = −E𝑖∈ log 𝑝𝛽 (𝑥𝑖|𝐱∖) (13)

where  is the set of masked token positions and 𝐱∖ represents the 
input with tokens at positions in  masked.

For the NSP task, the objective is: 
NSP = −E(𝐀,𝐁,𝑦) log 𝑝𝛽 (𝑦|[CLS],𝐀, [SEP],𝐁) (14)

where 𝑦 ∈ {0, 1} indicates whether sequence 𝐁 follows sequence 𝐀 in 
the original data.

The combined training objective for the 𝛽 model is: 
𝛽 = MLM + 𝜆NSP (15)

where 𝜆 balances the contribution of the two tasks.
In the third phase, for AD detection, we freeze the parameters of 

both 𝜂 and 𝛽 models and use them to extract features from audio 
samples. We process the audio through the 𝜂 encoder to obtain pseudo-
phoneme sequences, which are then fed into the 𝛽 model. The final 
hidden state corresponding to the [CLS] token is average-pooled over 
the time dimension to produce a fixed-dimensional representation: 

𝐫 = 1
𝑇

𝑇
∑

𝑡=1
𝐇(𝑡)
𝐿 (16)

This representation is then passed through a classification network 
consisting of two fully connected layers with a rectified linear unit 
(ReLU) activation function between them.

2.4. Neurobiologically-inspired self-supervised learning frameworks

Recent advances in computational neuroscience have produced self-
supervised representation learning (Oh et al., 2023) approaches that 
capture hierarchical structure in speech signals. We explore integrat-
ing our cognitive processing framework with these neurobiologically-
inspired architectures to enhance detection sensitivity for neurodegen-
erative markers.
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Temporal contrastive learning () implements a predictive process-
ing framework that captures acoustic-phonetic and sequential speech 
signals’ dependencies. The architecture consists of three specialized 
components: acoustic feature extractor, predictive context network, and 
contrastive learning mechanism. This organization parallels hierarchi-
cal predictive processing observed in auditory cortical networks, where 
each processing level predicts upcoming input patterns.

During forward computation, raw waveform signals transform mul-
tiple convolutional layers with increasing temporal receptive fields: 

𝜻 𝑡 = ConvFeatureExtractor(Waveform, 𝑡) (17)

These representations are then processed through a contextualiza-
tion network implementing multiple self-attending layers with causal 
masking: 
𝝌 𝑡 = ContextNetwork(𝜻1∶𝑡) (18)

The architecture implements a contrastive learning objective that 
discriminates between genuine future representations and distractor 
patterns: 

 = − log
exp(sim(𝝌 𝑡, 𝜻 𝑡+𝛿)∕𝜅)

∑

𝜁∈𝑡 exp(sim(𝝌 𝑡, 𝜁 )∕𝜅)
(19)

where sim(⋅, ⋅) represents cosine similarity between vectors, 𝑡 contains 
the target future representation 𝜻 𝑡+𝛿 and 𝑁 distractor representations, 
and 𝜅 controls solution sharpness. This objective encourages the model 
to develop predictive representations encoding temporal dependen-
cies across multiple timescales - a capability specifically degraded in 
neurodegenerative conditions affecting prefrontal function.

The hidden-unit prediction framework () implements a different 
biologically-inspired approach. This architecture first clusters acoustic 
features using unsupervised learning to establish perceptual categories 
similar to phonetic feature detectors in the superior temporal cortex. 
The model then predicts these categories from masked contextual win-
dows, implementing a computational version of the predictive coding 
theory of cortical function.

The objective function of this framework becomes: 
 = −

∑

𝑖∈
log 𝑝𝜃(𝜈𝑖|𝝌∖) (20)

where 𝜈𝑖 represents the cluster assignment for frame 𝑖, and 𝝌∖ rep-
resents the input features with frames in mask set  masked out. The 
masking strategy implements an irregular pattern with varying mask 
lengths modeling attention fluctuations: 
𝑃mask(𝑖) = 𝑓 (𝛷𝑖, 𝛹𝑖−𝑘∶𝑖+𝑘) (21)

where 𝛷𝑖 represents local acoustic properties and 𝛹𝑖−𝑘∶𝑖+𝑘 represents 
contextual influence from surrounding frames. This masking procedure 
specifically targets acoustically salient regions, forcing the model to 
develop robust contextual prediction capabilities that rely on intact 
working memory function.

These neurobiologically-inspired frameworks capture complemen-
tary aspects of speech processing:  excels at learning predictive 
acoustic-sequential representations, while  develops abstract categor-
ical representations paralleling phonological perception. By integrat-
ing these frameworks with our cognitive assessment system, we aim 
to leverage their complementary strengths for enhanced detection of 
neurocognitive decline markers.

2.5. Multimodal integration strategies for neuropathological assessment

To combine neurocognitive markers extracted from different pro-
cessing pathways, we implement integration strategies inspired by mul-
timodal association areas in the brain. These strategies model how dis-
tributed information processing streams converge in tertiary association 
cortices to support complex cognitive functions.
5 
A representational conjunction strategy implements early informa-
tion integration in a manner similar to multisensory convergence in 
association cortices. This approach combines feature representations 
from different processing streams before diagnostic assessment: 
𝒓conjunctive = 𝛹 (𝒓  , 𝒓 , 𝒓 ) (22)

where 𝒓  , 𝒓 , and 𝒓 are representations from our cognitive frame-
work, temporal contrastive learning, and hidden-unit prediction frame-
works, respectively. The conjunction function 𝛹 implements a sophis-
ticated multimodal integration mechanism: 

𝛹 (𝒓1, 𝒓2,… , 𝒓𝑛) =
𝑛
∑

𝑖=1
𝐖𝑖 ⋅ 𝑔𝑖(𝒓𝑖) +

𝑛
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝐁𝑖𝑗 ⋅ ℎ𝑖𝑗 (𝒓𝑖, 𝒓𝑗 ) (23)

where 𝑔𝑖 represents individual transformation functions, ℎ𝑖𝑗 represents 
pairwise interaction functions, and 𝐖𝑖 and 𝐁𝑖𝑗 are learned weight 
matrices. This formulation explicitly captures both individual feature 
contributions and cross-stream interactions that may reveal subtle pat-
terns of neurocognitive dysfunction. Here, ‘individual’ refers to separate 
processing streams rather than patient-specific cognitive profiles. The 
model learns to weight different neural pathways based on their di-
agnostic relevance across the population, though future work could 
incorporate personalized cognitive assessments.

Decision integration strategy implements a late fusion approach in-
spired by convergent decision processes in frontal executive networks. 
This method combines diagnostic assessments made by individual pro-
cessing streams: 
𝑦̂integrated = 𝛺(𝑦̂  , 𝑦̂ , 𝑦̂ ) (24)

where 𝑦̂  , 𝑦̂ , and 𝑦̂ represent diagnostic outputs from different 
processing streams. The decision integration function 𝛺 implements a 
dynamic weighting mechanism sensitive to certainty indicators: 

𝛺(𝑦̂1, 𝑦̂2,… , 𝑦̂𝑛) =
𝑛
∑

𝑖=1
𝜔𝑖 ⋅ 𝑦̂𝑖 (25)

𝜔𝑖 =
exp(𝑐𝑖 ⋅ 𝜙𝑖)

∑𝑛
𝑗=1 exp(𝑐𝑗 ⋅ 𝜙𝑗 )

(26)

where 𝑐𝑖 represents confidence indicators for each processing stream, 
and 𝜙𝑖 represents reliability weights optimized during system devel-
opment. This confidence-weighted approach mimics clinical decision-
making processes where different diagnostic indicators are weighted 
according to their reliability and specificity.

The hierarchical integration strategy implements a more sophis-
ticated approach inspired by the nested processing hierarchy of the 
prefrontal cortex. For example, consider processing a speech segment 
containing a hesitation pattern. The first stage might transform indi-
vidual stream outputs (COASTAL detecting the temporal gap, temporal 
contrastive learning identifying disrupted acoustic continuity, hidden-
unit prediction recognizing unusual categorical transitions) into nor-
malized representations. The second stage would then combine pairs 
of these representations to identify interaction patterns (such as hesita-
tions coinciding with semantic access difficulties), while the final stage 
integrates all information to determine overall cognitive status. This 
method applies a staged integration process with increasing abstraction 
levels: 
𝒓(1)𝑖 = TransformStream𝑖(𝒓𝑖) (27)

𝒓(2)𝑖𝑗 = IntegratePair𝑖𝑗 (𝒓
(1)
𝑖 , 𝒓

(1)
𝑗 ) (28)

𝒓(3) = FinalIntegration({𝒓(2)𝑖𝑗 }) (29)

𝑦̂hierarchical = DiagnosticAssessment(𝒓(3)) (30)

This hierarchical approach enables the system to identify complex 
interaction patterns across processing streams that may provide sen-
sitive markers for subtle neurocognitive changes preceding clinical 
manifestation of AD.
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3. Experimental protocol and neurocognitive analysis

3.1. Dementia speech corpus

The INTERSPEECH 2021 ADReSSo Challenge corpus (Syed et al., 
2021) was used to assess the COASTAL framework. This corpus is a 
benchmark for the comparative assessment of automatic speech AD 
detection systems. The ADReSSo corpus is a remarkable development 
in the computational meritocratic resource landscape for cognitive 
evaluation because of its controlled demographic balances and acoustic 
preprocessing to reduce confounding factors.

The creation of the ADReSSo corpus seeks to build upon the most ev-
ident gaps in existing spontaneous speech datasets tailored for
dementia-focused research. First, the dataset upholds acoustic integrity 
by employing targeted preprocessing to reduce the recording environ-
ment’s variance while maintaining the diagnostics of relevant speech 
elements. Second, it enforces stringent demographic control by bal-
ancing age and gender to eliminate the potentiality of confounding 
effects on the classifiers. These design decisions resolve methodological 
issues concerning ecological validity and demographic fairness raised 
by cognitive neuroscientists in the context of computational approaches 
to neurological evaluation.

The entire corpus contains 237 speech recordings organized within 
diagnostic and experimental categories, while the development corpus 
has 166 recordings (87 from clinically diagnosed Alzheimer’s patients 
and 79 from age-matched healthy controls). The evaluation corpus also 
has 71 recordings with the same categorical distribution. All speech 
samples were collected using the standardized ‘‘Cookie Theft’’ pic-
ture description task from the Boston Diagnostic Aphasia Examination, 
which is a neuro-linguistic test widely used in clinical neuropsychol-
ogy to assess communicative impairments due to neurodegenerative 
diseases. This task was chosen because cognitive neuroscience supports 
its ability to prompt spontaneous language use. It requires the coordi-
nation of several cognitive systems affected by AD, such as semantic 
memory, executive control, and visuospatial processing.

The dataset spans 5.05 h, with recordings between 22 and 268 s. 
Participants were digitized at 44.1 kHz and 16 bits and underwent 
preprocessing, which fixed noise profile removal and amplitude nor-
malization to reduce variability from the recording environment. This 
method supports the reduction of variability that could obscure com-
putational analysis while retaining the speech attributes important for 
cognitive assessment.

Participants were screened and grouped based on age (53 to 84 
years) and English proficiency. All participants were native English 
speakers. Gender proportions were balanced across experimental con-
ditions to avoid influence from gender-related idiosyncratic pronun-
ciation or speech classification features. Such careful demographic 
matching solves one of the long-standing problems in the automated 
assessment of neurological impairment. Demographic factors have lim-
ited the applicability of the algorithms designed using machine learning 
techniques.

To evaluate the COASTAL framework, we compared six state-of-the-
art baseline methods representing diverse approaches to AD detection 
from speech. These baselines range from purely acoustic to multimodal 
approaches, capturing the current methodological spectrum in the field:

• Transcranial focused ultrasound - Bidirectional Encoder Repre-
sentations from Transformers (tFUS-BERT) (Thipparthy et al., 
2025): A discrete variational model to encapsulate the linguistic 
representations of audio.

• Speech Pause Feature Extraction and Encoding (SPFEE) (Liu et al., 
2023): A speech pause feature extraction and encoding strategy 
for acoustic-signal-based AD detection.

• Early Diagnosis of Alzheimer’s disease based on Multimodal At-
tention Mechanism (EDAMM) (Yang et al., 2024b): A model for 
early diagnosis of AD based on multimodal attention.
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• Fix-Length Features from Unfixed-Length Audio (FLFULA) (Pan 
et al., 2024): A feature extraction method for extracting fix-length 
features from variable-length audio recordings.

• Multimodal Fusion for Noninvasive detection of AD (MFNI) (Ying 
et al., 2023): Multimodal fusion for early detection of AD by 
noninvasive methods.

• Intra- and Cross-Modal Interactions (ICMI) (Ilias and Askounis, 
2023): A method for detecting AD patients that captures intra- 
and cross-modal interactions.

The selection of these baseline approaches provides comprehen-
sive coverage of current methodological paradigms in speech-based 
cognitive assessment, from purely acoustic to fully integrated mul-
timodal approaches. This competitive evaluation framework enables 
systematic assessment of the COASTAL model’s performance relative 
to diverse methodological alternatives, highlighting its specific ad-
vantages in leveraging cognitive neuroscience principles for improved 
diagnostic accuracy.

3.2. Computational implementation protocol

The experimental evaluation of the COASTAL framework followed 
a rigorous protocol optimized for cognitive assessment applications. All 
recordings underwent preprocessing, including downsampling to a uni-
form 16 kHz sampling rate and segmentation using 10-second windows 
with 6-second overlap (40% step size). For participants with limited 
speech production, controlled acoustic augmentation was implemented 
using calibrated signal-to-noise ratios (28-35 dB SNR).

The acoustic-symbolic transformation module ( ) implemented a 
hierarchical architecture with dual convolutional processing pathways. 
The encoder network consisted of two convolutional layers with kernel 
size 3 and stride 2, each followed by residual processing blocks. Opti-
mization employed Adam algorithm with hyperparameters 𝛼 = 10−4, 
𝛽1 = 0.9, 𝛽2 = 0.999 for 20 epochs with exponential decay factor 
𝛾 = 0.98. This configuration transformed input mel-spectrograms (frame 
size 25 ms, frameshift 10 ms, 128 mel bands) into symbolic sequences 
of length ∼ 250 elements.

The quantization mechanism implemented vector quantization with 
a learnable codebook containing 𝐾 = 1024 prototype vectors. Op-
timization incorporated Gumbel-Softmax relaxation with temperature 
annealing from 𝜏𝑖𝑛𝑖𝑡 = 2.0 to 𝜏𝑓𝑖𝑛𝑎𝑙 = 0.5 over the training period.

The contextual sequence analyzer () implemented a 7-layer bidi-
rectional architecture with 14 attention heads per layer and progressive 
dimensionality expansion (512-896). Optimization employed Adam 
with learning rate 𝛼 = 3×10−5 and specialized regularization including 
attention dropout (𝑝𝑎𝑡𝑡𝑛 = 0.12) and hidden state dropout (𝑝ℎ𝑖𝑑𝑑𝑒𝑛 = 0.15) 
for 30 epochs.

We extracted neurocognitive markers for diagnostic assessment us-
ing our integrated framework with temporally-weighted feature aggre-
gation. The classification network implemented two fully-connected 
layers (896 → 384 → 2) with LeakyReLU activation (negative slope 
𝛿 = 0.12) optimized using SGD with Nesterov momentum (𝛼 = 10−4, 
𝜇 = 0.9, 𝜆 = 10−5).

Integration experiments with self-supervised frameworks employed 
three distinct strategies: Decision Integration (combined prediction 
scores with normalized weights 𝜔𝑖 satisfying 

∑

𝑖 𝜔𝑖 = 1), Representa-
tional Conjunction (feature combination through concatenation 𝐫𝑐𝑜𝑛𝑗 =
[𝐫 ; 𝐫 ]), and Hierarchical Integration (staged information fusion 
with increasing abstraction levels). These approaches were systemat-
ically compared using stratified cross-validation with a 9:1 ratio for 
parameter optimization and validation, maintaining consistent diag-
nostic class proportions across partitions. Hyperparameter selection 
followed a systematic grid search approach on the validation set, 
with learning rates tested from 10−5 to 10−3, batch sizes from 16 to 
64, and attention dropout rates from 0.1 to 0.2. The chosen values 
represent the configuration yielding optimal validation performance. 
Robustness analysis showed that performance remained within ±2% 
accuracy when learning rates varied by ±50% from optimal values, 
suggesting reasonable stability to hyperparameter variations.
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Table 1
Experimental results for coastal and baseline methods.
 Model Approach Accuracy (%) Precision (%) Recall (%) F1 (%) Specificity (%) 
 COASTAL Primary config. 70.42 66.67 80.00 72.73 61.11  
 COASTAL-3L Arch. variation 69.01 63.83 85.71 73.17 52.78  
 COASTAL-5L Arch. variation 66.20 62.79 77.14 69.23 55.56  
 COASTAL-9L Arch. variation 61.97 57.41 88.57 69.66 36.11  
 Spectral+k-means Ablation control 66.20 62.22 80.00 70.00 52.78  
 tFUS-BERT Baseline 58.45 56.76 60.00 58.33 56.94  
 SPFEE Baseline 63.38 59.52 71.43 64.94 55.56  
 EDAMM Baseline 67.61 65.00 74.29 69.33 61.11  
 FLFULA Baseline 66.20 64.86 68.57 66.67 63.89  
 MFNI Baseline 71.83 68.42 74.29 71.23 69.44  
 ICMI Baseline 73.24 70.27 74.29 72.22 72.22  
3.3. Experimental outcomes and neuropsychological correlations

The evaluation of COASTAL demonstrated competitive performance 
among state-of-the-art methods. While COASTAL achieved 70.42% ac-
curacy, placing it in the middle range of compared approaches, it 
notably outperformed several established methods, including SPFEE 
(63.38%) and tFUS-BERT (58.45%). MFNI and ICMI achieved higher 
overall accuracy (71.83% and 73.24% respectively), indicating that 
multimodal fusion approaches currently represent the performance ceil-
ing for this task. However, COASTAL’s strength lies in its interpretable 
acoustic-symbolic transformation that preserves fine-grained tempo-
ral features without requiring text transcription, offering a different 
trade-off between performance and practical deployment constraints.

Table  1 features the baseline approaches and their architectural 
variations alongside COASTAL’s comprehensive performance metrics. 
The results support the hypothesis of the implemented neurocognitive 
model capturing the subtle markers of speech indicative of the decline 
in cognitive functions advanced by the model.

COASTAL achieved an accuracy of 70.42%, a noticeable improve-
ment of 5.63 percentage points from the baseline. The overall per-
formance trend across different architectural variations shows that 
shallow (5-layer) and deep (9-layer) contextual analyzers degraded per-
formance, suggesting an intermediate optimal complexity. COASTAL 
surpassed SPFEE (acoustic only) in terms of established baselines and 
matched more recent multimodal approaches, suggesting successful 
cognitive-linguistic feature extraction prior to transcription.

Fig.  2 visualizes the confusion matrices for the COASTAL model 
and key architectural variations, illustrating the impact of model design 
choices on classification performance across diagnostic categories.

The confusion matrices reveal distinct error patterns that span 
architectural variation. The primary COASTAL configuration showed 
relatively higher sensitivity to AD (80.0%) than specificity (61.1%), 
a clinically useful pattern for screening processes. A deeper acoustic-
symbolic transformation increased AD sensitivity (85.7%) but at the 
cost of specificity (52.8%). In comparison, deeper contextual analysis 
showed extreme sensitivity (88.6%) with very poor specificity (36.1%), 
suggesting significant overfitting to AD speech patterns.

Fig.  3 presents the relationship between acoustic-symbolic transfor-
mation depth and representational density, providing insight into the 
information preservation characteristics of different model configura-
tions.

This visualization shows the effect of encoder depth on the temporal 
resolution of symbolic representation. The 2-layer encoder produces 
symbol sequences that are temporally dense and detailed while pre-
serving important patterns of hesitation, prosody, and rhythm. The 
3-layer encoder exhibits more temporal compression, resulting in fewer 
symbols, which leads to loss of important diagnostic detail of speech 
planning disruptions indicative of early cognitive decline.

Tables  2 and 3 present the results of integration experiments com-
bining the COASTAL framework with complementary assessment ap-
proaches.

Integration experiments demonstrated that TCL (Temporal Con-
trastive Learning) provided more useful complementary information 
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than HUP (Hidden-Unit Prediction). Hierarchical integration using TCL 
surpassed all individual approaches, achieving the highest overall ac-
curacy of 77.46%. The performance gap in TCL and HUP integration 
suggests that the analysis of temporal patterns captures more diag-
nostically relevant information than the representation learning of 
categories regarding Alzheimer’s speech timing subtle disruptions.

Fig.  4 visualizes the confusion matrices for COASTAL integration 
with Temporal Contrastive Learning, illustrating how different integra-
tion strategies affect classification patterns.

Using confusion matrices for class-wide integration reveals the im-
pacts of different strategies on classification patterns. Decision fusion 
increased sensitivity to 82.9% at the expense of specificity (69.4%), 
while hierarchical integration reached the best balance between the 
two metrics (80.0% sensitivity, 75.0% specificity). These patterns im-
ply that hierarchical integration uses both pathways, retaining the 
complementary information processed by each, capturing the tempo-
ral organization deficits diagnosed by TCL alongside the linguistic 
structure abnormalities identified by COASTAL.

Fig.  5 presents the confusion matrices for COASTAL integration with 
Hidden-Unit Prediction, revealing complementary pattern recognition 
capabilities across different processing pathways.

HUP integration tended to augment performance that was less 
balanced than TCL integration. Conjunction by representation had an 
extremely high sensitivity (85.7%) and a very low specificity (55.6%), 
suggesting overfitting to characteristics of AD speech. Hierarchical in-
tegration yielded moderately balanced improvements, attaining 74.3% 
sensitivity and 72.2% specificity. These patterns suggest that the cat-
egorical representations employed in HUP contain less valuable com-
plementary information than the temporal features captured by TCL 
during its processing.

Table  4 shows the computational complexity analysis comparing 
COASTAL with baseline methods to evaluate the practical feasibility 
of neurobiologically-inspired approaches for clinical deployment in 
Alzheimer’s detection systems.

The computational analysis reveals that COASTAL achieves a fa-
vorable balance between processing efficiency and diagnostic capa-
bility within neural-linguistic approaches for Alzheimer’s detection. 
While COASTAL requires moderate computational resources compared 
to lightweight acoustic-only methods like SPFEE, it maintains reason-
able inference speeds that support clinical workflows. The framework’s 
O(n2) complexity from attention mechanisms enables the capture of 
complex temporal dependencies in speech patterns that correlate with 
cognitive decline, justifying the computational overhead. This positions 
COASTAL as a practical middle-ground solution that preserves the 
interpretability benefits of symbolic transformation while maintaining 
feasible deployment characteristics for real-world cognitive assessment 
applications, bridging the gap between simple acoustic features and 
computationally intensive multimodal approaches.

3.4. Discussion

Specific findings from the COASTAL model experiments have sev-
eral systematic aspects that merit analysis from a cognitive neuro-
science perspective. The effectiveness of the 2-layer acoustic-symbolic 
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Fig. 2. Confusion matrices for COASTAL model configurations.

Fig. 3. Symbolic sequence visualization.
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Fig. 4. COASTAL integration with temporal contrastive learning.

Fig. 5. COASTAL integration with hidden-unit prediction.
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Table 2
Coastal integration with temporal contrastive learning.
 Approach Accuracy (%) Precision (%) Recall (%) F1 Score (%) 
 Temporal contrastive 73.24 72.22 74.29 73.24  
 Decision integration 76.06 72.50 82.86 77.33  
 Representational conjunction 74.65 72.97 77.14 75.00  
 Hierarchical integration 77.46 75.68 80.00 77.78  
Table 3
Coastal integration with hidden-unit prediction.
 Approach Accuracy (%) Precision (%) Recall (%) F1 Score (%) 
 Hidden-unit prediction 69.01 69.70 65.71 67.65  
 Decision integration 71.83 71.43 71.43 71.43  
 Representational conjunction 70.42 65.22 85.71 74.07  
 Hierarchical integration 73.24 72.22 74.29 73.24  
Table 4
Computational complexity comparison of AD detection methods.
 Method Processing time (s/60 s audio) Memory usage (GB) Time complexity Inference speed (samples/hour) 
 tFUS-BERT 4.7 3.2 O(n3) 765  
 SPFEE 1.1 0.8 O(n) 3273  
 EDAMM 2.1 1.5 O(n2) 1714  
 FLFULA 1.8 1.2 O(n log n) 2000  
 COASTAL 2.3 1.6 O(n2) 1565  
 MFNI 3.1 2.1 O(n2) 1161  
 ICMI 2.8 1.9 O(n2) 1286  
transformation model over deeper architectures is associated with the 
preservation of speech production processes that mirror executive func-
tion. This finding is consistent with neuropsychological research on the 
frontal lobes, which indicates that the timing of speech production pro-
vides sensitive diagnostic indices of prefrontal functioning (Behrooz-
mand and Johari, 2019; Wang et al., 2023). This very region undergoes 
early changes in the Alzheimer’s process. The functioning of the 2-
layer encoder in capturing the fine-grained temporal resolution of 
articulated pauses, elongations, and rhythmic irregularities suggests 
disrupted executive control in speech management.

The optimal seven-layer depth for the contextual analyzer marks 
a sweet spot between representational capacity and generalization 
ability. From a neurocognitive perspective, this design includes local 
phonological-syntactic relations and broader discourse-level patterns 
without excess tailoring to specific characteristics. This reflects the 
hierarchical multi-level system of language networks within the human 
brain, which spans phonological encoding in the superior temporal 
regions through syntactic processing in the left inferior frontal and 
discourse integration in the dorsomedial prefrontal cortex.

The integration experiments helped to understand how various 
computational techniques model different aspects of speech produc-
tion deficits in AD. The observation that hidden-unit prediction was 
outperformed by temporal contrastive learning complements suggests 
that the speech’s temporal organization is more useful diagnostically 
than phonemic abstraction. This supports clinical findings that in early 
AD, prosody abnormalities and speech timing irregularities often occur 
prior to overt verbal errors.

The tested integration strategies decision, representational and hier-
archical, formed different theories on how the brain combines chunks 
of processed information from different streams. The evidence favor-
ing hierarchical integration supports prefrontal processing models that 
incorporate lower-level pathways into decision-making, where infor-
mation is progressively integrated at successively higher levels of ab-
straction, integrating specialized pathways. This indicates that keep-
ing separate representations during early processing stages prior to 
staged integration may preserve diagnostically relevant information 
that would otherwise be obliterated through early blending.

COASTAL’s edge over baseline approaches was most notable among 
patients with mildest impairments, which suggests greater specificity to 
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the subtle cognitive-linguistic deficits. This ability to more accurately 
detect early-stage subtleties is likely due to the model’s capacity to si-
multaneously evaluate many dimensions of speech, such as phonology, 
lexical access, syntax, and discourse coherence, instead of analyzing 
features in isolation. This reflects the clinical neuropsychological prac-
tice where multi-dimensional assessment provides complementary data 
to the diagnosis.

The confusion matrices revealed classification error patterns that 
merit investigation in future studies with richer clinical annotations. 
The ADReSSo dataset provides only basic demographic variables and 
diagnostic labels, precluding systematic analysis of factors associated 
with misclassification. However, clinical neuropsychology literature 
suggests several potential sources of classification ambiguity. False 
negatives may arise from AD patients in whom language networks 
remain relatively preserved despite memory impairment, reflecting the 
known heterogeneity in symptom presentation. False positives could in-
clude older individuals with age-related speech changes, mild cognitive 
impairment of non-Alzheimer etiology, or those with lower baseline 
verbal abilities due to educational or socioeconomic factors. Formal in-
vestigation of these hypotheses requires datasets linking speech samples 
to comprehensive neuropsychological profiles, educational history, and 
longitudinal diagnostic outcomes. Such analysis would inform clinical 
interpretation of model predictions and identify patient subgroups 
requiring additional assessment.

The results highlight how clinical actionable insights can ben-
efit from the performance and interpretable strength of cognitive 
neuroscience-informed deep learning architectures. By aligning com-
putation with biological neural processing pathways, we developed a 
model that yielded greater accuracy and produced intermediate rep-
resentations aligned with significant neuropsychological formational 
concepts, which may provide understanding regarding the cognitive 
processes disrupted for specific patients.

The observation that COASTAL demonstrates enhanced sensitiv-
ity to patients with milder impairments raises interesting possibilities 
for tracking disease progression across stages. The framework’s dual-
pathway architecture, capturing both fine-grained temporal features 
and higher-level linguistic structures, may enable the detection of 
stage-specific markers as different neural systems become compromised 
during disease advancement. Early-stage patients often exhibit subtle 
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timing disruptions and word-finding difficulties while maintaining rel-
atively preserved syntactic abilities, whereas late-stage patients show 
more pervasive linguistic breakdown affecting all levels of language 
production. Future longitudinal studies could examine whether the 
relative contributions of acoustic-symbolic and contextual processing 
pathways shift systematically as disease severity increases, potentially 
providing insight into the temporal sequence of neural network degra-
dation. Such progression tracking could inform clinical management 
by identifying individuals experiencing accelerated decline who might 
benefit from more aggressive intervention. However, validating this 
capability requires longitudinal datasets with repeated assessments and 
standardized clinical staging, which were not available in the current 
cross-sectional ADReSSo corpus.

An important avenue for validating the neurobiological plausibility 
of COASTAL involves examining relationships between model-derived 
features and performance on standardized neuropsychological mea-
sures. The acoustic-symbolic transformation module, which preserves 
fine-grained temporal features, should theoretically correlate with ex-
ecutive function measures and working memory capacity, given that 
speech timing irregularities reflect disrupted prefrontal control systems. 
Similarly, the contextual sequence analyzer representations should re-
late to performance on phonological processing tasks, verbal fluency 
measures, and tests of syntactic comprehension, as these assess the 
integrity of temporal-frontal language networks that the model aims 
to emulate. For AD patients specifically, we would expect stronger 
correlations between model features and neuropsychological perfor-
mance than in healthy controls, as the disease-related variance in both 
domains reflects underlying neurodegeneration. In contrast, the normal 
variation in healthy individuals arises from diverse sources, including 
education, cognitive reserve, and task engagement, potentially weak-
ening feature-performance relationships. The ADReSSo corpus includes 
only diagnostic labels without detailed neuropsychological test scores, 
precluding such correlational analysis in the present study. Future in-
vestigations incorporating comprehensive neuropsychological batteries 
alongside speech assessment could provide empirical validation of the 
cognitive processes COASTAL purportedly captures, strengthening the 
neurobiological interpretation of the framework.

4. Conclusion

This paper introduced and evaluated COASTAL, a novel compu-
tational framework for detecting AD from spontaneous speech. The 
approach drew explicit connections to cognitive neuroscience princi-
ples by modeling the hierarchical nature of human speech process-
ing, from acoustic signal transformation to symbolic encoding to con-
textual integration. Our experimental findings on the ADReSSo cor-
pus demonstrated significant performance advantages over conven-
tional approaches, with the primary COASTAL configuration achiev-
ing 70.42% diagnostic accuracy—a substantial 5.63 percentage point 
improvement over established baselines.

However, the constrained speech elicitation protocol (picture de-
scription) potentially limited the range of communicative challenges 
captured compared to naturalistic conversation. Cultural and linguis-
tic homogeneity in the dataset (English-speaking participants only) 
restricted the generalizability of findings across diverse populations. 
Future research directions emerged naturally from both our findings 
and limitations. Adapting the framework for longitudinal tracking of 
cognitive function could enable more sensitive detection of subtle 
progression patterns, potentially identifying individuals at the highest 
risk for rapid decline. Extending the approach to diverse linguistic 
communities would establish whether identified markers generalize 
across languages or require culture-specific adaptation.
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