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ARTICLE INFO ABSTRACT

Keywords: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that disrupts cognitive function across
Alzheimer’s disease detection multiple domains, particularly affecting language networks and speech production pathways in the brain.
Cognitive neuroscience Patients demonstrate symptoms including aphasia, reduced syntactic complexity, and diminished verbal fluency

Neural-linguistic feature

) . . that reflects underlying neural pathology in language-related cortical areas. Current detection methods rely
Acoustic-symbolic transformation

on resource-intensive neuroimaging, invasive biomarker sampling, and extensive neuropsychological testing,
creating substantial barriers to early diagnosis. While researchers have explored using acoustic features, par-
alinguistic markers, and text-based features for AD detection, existing approaches face fundamental limitations:
traditional acoustic methods fail to capture semantic-cognitive content, text transcription is labor-intensive,
and automatic speech recognition quality suffers due to pronunciation variations and cognitive impairments
in elderly populations. This paper introduces cognitive acoustic symbolic transformation for ALzheimer’s
(COASTAL), a neurobiologically-inspired framework that models hierarchical speech processing pathways.
COASTAL transforms acoustic patterns into discrete symbolic elements through a specialized transformation
module before applying contextual analysis that mirrors prefrontal-temporal language networks. Evaluated
on the ADReSSo corpus, COASTAL achieved 70.42% accuracy, outperforming established baselines by 5.63%.
Integration with complementary self-supervised approaches through hierarchical fusion improved performance
to 77.46%. Analysis revealed that preserving fine-grained temporal features through shallower transformation
architecture significantly enhanced diagnostic accuracy, aligning with neuropsychological evidence that subtle
timing patterns in speech provide sensitive markers of cognitive decline.

1. Introduction temporal lobe, posterior cingulate, and association cortices (Mangal-
murti and Lukens, 2022; Griffiths et al., 2023). This explains the

Alzheimer’s disease (AD) is a neurodegenerative disorder with clinical features of impaired memory and language processing. Remark-
worldwide impact, currently affecting approximately 50 million indi- ably, the neural changes accompany behavioral alterations, particularly
viduals, with projections indicating this number may triple by 2050 changes in speech patterns, long before a formal diagnosis can be

(Vogt et al., 2023; Klepl et al, 2022; Zhao et al, 2024). AD is made (Robin et al,, 2023). This critical period enables AD to be
categorized as a neurodegenerative disorder, and from a cognitive

neuroscientific perspective, it represents the gradual dismantling of the
complex systems of an organism’s brain along with the progressive
loss of cognitive abilities (Liu et al., 2024; Niazi et al., 2024). Deficits
in memory, executive skills, and language are hallmarks of this dis-
ease (Liampas et al., 2023). By-patient observation, AD is associated
with a loss of neurons and synapse dysfunction, especially in the medial

diagnosed and treated far earlier than current methods that focus on
advanced biomarkers, which are, in fact, the consequence of early
neurodegenerative changes (Lardelli et al., 2025; Ginsberg M. J. Blaser,
2024).

Diagnosing AD traditionally involves neuropsychological tests, PET
scans for amyloid plaques, and the tau and amyloid protein tests from
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cerebrospinal fluid analysis (Zhou et al., 2025; Yang et al., 2024a).
Such tests are expensive, and only because of their cost, invasiveness,
and the time required to identify significant structural changes in the
brain, they are usually reserved for the later stages of the disease (Aye
et al., 2024). This creates a difficult hurdle in identifying AD at an
earlier stage when interventions might be more beneficial (Qin et al.,
2024). Studies in cognitive neuroscience have pointed out that prose
and speech production and understanding are some of the first areas
to be impacted in early AD, with hallmark changes emerging due to
the progressive loss of the semantic memory network, phonological
processing systems, and the frontal executive control systems that
are responsible for the output of fluent speech (Lv et al., 2025).
These alterations provide insight into AD progression, which aligns
with understanding the cerebrum’s affected areas during the onset
of Alzheimer’s, thus offering a non-invasive opportunity to study the
disease process (Monfared et al., 2022; Dao et al., 2025).

The evolution of AI and its branches have changed the paradigm
for processing and analyzing complex systematic patterns in speech
and language data (Zhang, 2025; Luo et al., 2024). Such changes have
opened up new avenues in developing non-invasive screening tools for
AD. Previous studies have tried to solve the problem with approaches
like acoustic feature analysis, paralinguistic marker analysis, and se-
mantic modeling based on text analytics (Koenig et al., 2023). The
Computational Paralinguistics Challenge and extended Geneva Mini-
malistic Acoustic Parameter Set datasets have been shown to perform
well in predicting AD using acoustic features (Bayerl et al., 2023;
Garcia-Gutierrez et al., 2023). It has been reported that certain prosodic
features of speech, like rhythm and stress patterns, are disrupted during
AD, and the degree to which these features are disrupted is proportional
to the degree of AD, indicating disruption of frontal-subcortical circuits
involved in speech motor control (Maiella et al., 2024). Paralinguis-
tic studies have demonstrated that Alzheimer’s disease progressively
disrupts frontal-subcortical circuits responsible for coordinating speech
timing, manifesting as altered speech rate and abnormal temporal
organization of phrases and pauses. These disruptions reflect neu-
rodegeneration affecting the neural networks that allocate attentional
resources and maintain working memory during speech production.
Analyzed data deriving metrics such as type-token ratio, syntactic
complexity, and coherence measures demonstrate that AD profoundly
affects a person’s ability to access and structure grammatical elements
using language due to the gradual decline of neural networks dedicated
to language processing (Hsu et al., 2025).

They do not help much in accurately differentiating AD from other
neurologic conditions that may have similar acoustic profiles due to
the inability to model the speech’s semantic content. Automated tran-
scription techniques that analyze discourse to extract the linguistic
features of text provide some semantic information, but the automated
systems perform poorly on elderly speakers. Moreover, most existing
approaches consider speech an acoustic signal or a linguistic unit.
The paper introduces an innovative neural-linguistic framework that
integrates acoustic and semantic processing pathways, thus addressing
these gaps.

Accordingly, the main contributions of this paper are summarized
as follows.

+ We propose cognitive acoustic symbolic transformation for
ALzheimer’s (COASTAL), a novel neurobiologically-inspired
framework for detecting AD from spontaneous speech.

We address fundamental limitations in existing approaches by
developing a hierarchical processing architecture that transforms
acoustic signals into discrete symbolic representations before ap-
plying contextual sequence analysis, mirroring the organization
of language networks in the human brain.

We demonstrate that shallower transformation architectures (2-
layer) more effectively preserve fine-grained temporal features
critical for cognitive assessment, achieving 70.42% accuracy on
the ADReSSo dataset and outperforming established baseline
methods by 5.63%.
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The rest of the paper is organized as follows: Section 2 intro-
duces the COASTAL framework. Section 3 presents the experimental
methodology and results. Finally, Section 4 concludes the paper.

2. Neurally-inspired computational framework for cognitive
deficit detection

The architecture transforms acoustic representations into symbolic
linguistic elements through a cascade of processing steps that paral-
lel neural pathways in human speech understanding. This computa-
tional framework converts acoustic spectral patterns to quantized rep-
resentational tokens and subsequently analyzes temporal dependencies
within these discrete sequences to identify cognitive markers associ-
ated with neurodegeneration. The design draws from neuroimaging
studies (Robertson et al., 2024) mapping the ventral speech processing
stream that extends from primary auditory cortex through superior tem-
poral regions to inferior frontal areas. Our system implements a dual-
component architecture: an acoustic-symbolic transformation module
(7) and a contextual sequence analyzer (S). Fig. 1 provides a schematic
representation of the complete architectural framework (Becker et al.,
1994).

2.1. Acoustic-symbolic transformation module

The acoustic-symbolic transformation component employs a mod-
ified variational inference framework fundamentally different from
standard approaches. While conventional variational learning (Li et al.,
2023) utilizes encoder-decoder architectures (&, and D), our im-
plementation incorporates specialized constraints reflecting cognitive
processing limitations.

The transformation process begins with acoustic input sequences
A = {aj,a,,...,a,} that undergo non-linear projection into a rep-
resentational manifold M. The architecture assumes that cognitive
representations occupy discrete regions within this manifold, corre-
sponding to attractor states in neural dynamics. The inference process
can be formalized through the mapping function £, : A — v, which
projects acoustic patterns onto latent variables v constrained by prior
distribution P(v) modeling expected cognitive representations.

The generative component D, (A|v) reconstructs acoustic patterns
from these latent representations. For temporal sequence A with M ele-
ments, the conditional generative process incorporates context-
sensitivity through:

M
D, (Alv) = [ [ Dola; l{ay}iesov) - R(A, 0, ) )}
j=1
where R(A,v,j) represents a recurrence function modeling working
memory constraints that limit integration across distant sequence el-
ements - a cognitive limitation particularly affected in AD.

The posterior distribution P(v|A) cannot be directly computed due
to the combinatorial complexity of possible attractor configurations.
We therefore introduce approximation function Q,(v|A) optimized
through divergence minimization. This leads to our evidence lower
bound formulation:

Lrrpo = Eg,wla) [log D,,(Alv)] -
v - Dgp [Q.,,(UlA)llp(V)] + 4 Qy,w)

The first component represents reconstruction fidelity; the second
implements regularization through divergence between approximate
posterior and cognitive prior, and Q(y,w) incorporates neurocognitive
constraints on representational capacity with an importance weight A.

Our implementation extends this framework through discretiza-
tion operations that quantize continuous representations into symbolic
elements c¢. The transformation process incorporates neural biophys-
ical constraints by modeling each representation as activation across

(2)
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Fig. 1. Cognitive-linguistic processing framework.

K distinct neuronal ensembles with competitive dynamics, formally
expressed as:
K
c= Quantize(SW(A)) = Z 6; - OneHot(arg ml_ax Si(€,(A)) 3)
i=1
where S; represents the activation function for the ith neural ensem-
ble and §; is its corresponding symbolic representation in a learned
codebook. This competitive selection process parallels winner-take-all
dynamics in cortical microcircuits, particularly in speech perception
regions where categorical boundaries emerge from continuous acoustic
input (Koever et al., 2013).

The discretization operation (Tian et al., 2021) introduces non-
differentiability in computational workflows. To address this limitation
while maintaining biological plausibility, we implement a temperature-
controlled relaxation using softened categorical distributions:

< exp((Si(&,(A) + g)/7)
¢ = Z o; - %
i=1 Zj:l exp((S;(&,,(4) + gj)/T)

where g; represents stochastic perturbations modeling neural noise, and
7 controls selectivity, paralleling attentional modulation in auditory

C)

processing. This modified objective function becomes:

Loodified = Eo,(c|a) [log D,,(Alo)] -
a- Dgy [Q, (| AP +& - D(e)
where @(c) incorporates additional constraints on symbolic represen-

tations reflecting neurological limitations in phonological processing
characteristic of neurodegenerative conditions.

)

Architecturally, the acoustic-symbolic transformation module incor-
porates hierarchical processing through cascaded convolutional oper-
ations (Song et al.,, 2022) with increasing temporal receptive fields,
mirroring the progressive integration across longer timescales observed
in ascending auditory pathways. Each processing layer incorporates
skip connections implementing predictive coding principles:

F(H,;) = ConvlD(H,_;) + SkipConnect(H,_;, H,_,) (6)

where H, represents feature activations at layer /. This architecture
creates representations capturing both phonemic content and supraseg-
mental features (rhythm, prosody, hesitations) that serve as critical
diagnostic markers for cognitive decline.
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2.2. Bidirectional contextual encoder model

The bidirectional contextual encoder () consists of multiple bidirec-
tional Transformer encoder layers that model the sequential relation-
ships within the pseudo-phoneme sequences generated by the 7 model.
This component is inspired by neuroscientific evidence of bidirectional
processing in language comprehension networks, where both preceding
and following contexts influence word interpretation in temporal and
frontal language areas.

The g model is trained using two self-supervised tasks that mirror
aspects of human language processing: masked language modeling
(MLM) (Wu and Chung, 2022) and next sentence prediction (NSP) (Liao
et al., 2024). In the MLM task, we randomly mask 15% of the tokens in
a training sequence. For each selected token at position i, we apply one
of three transformations: replace with [MASK] token (80% probability),
replace with a random token (10% probability), or leave unchanged
(10% probability). The model then predicts the original token using
the surrounding context, similar to how humans use contextual cues to
resolve ambiguous or degraded speech signals.

For the NSP task, we select sequence pairs A and B from the
dataset. Fifty percent of pairs have B as the actual continuation of A,
while in the remaining 50%, B is a random sequence. A [SEP] token
separates the sequences, and the model performs binary classification
to determine if the sequences are continuous. This task helps the model
learn discourse-level relationships, which are particularly disrupted in
AD due to impairments in executive function and working memory.

The architecture of the f model consists of 6 Transformer encoder
layers, each with 12 attention heads and 768-dimensional feature
embeddings. This design allows the model to capture long-range depen-
dencies in language that are typically impaired in AD patients due to
disrupted connectivity between frontal and temporal language regions.
While formal interpretability analysis of the attention mechanisms
was beyond the scope of this initial study, the multi-head attention
architecture theoretically enables the model to learn different aspects
of linguistic relationships simultaneously, with each head potentially
specializing in different dependency types such as syntactic, semantic,
or discourse-level connections.

The embeddings from the # model provide rich linguistic represen-
tations that capture syntax, semantics, and discourse-level features rele-
vant to detecting cognitive impairment. By processing discrete pseudo-
phoneme sequences rather than text, the model preserves important
paralinguistic information like hesitations, repetitions, and dysfluencies
that are known markers of cognitive decline.

2.3. Neural-linguistic model training process

Training our neural-linguistic model occurs in three distinct phases,
mirroring the brain’s hierarchical organization of language processing
from acoustic feature extraction to phonological encoding to semantic
integration.

In the first phase, we train the » model to compress mel-
spectrograms into sequences of pseudo-phonemes. The n encoder trans-
forms the input spectrogram into a sequence of discrete codes drawn
from a learned codebook. These discrete codes function as pseudo-
phonemes, representing fundamental units of speech similar to how the
brain’s dorsal auditory stream transforms continuous acoustic signals
into discrete phonological representations.

The encoder architecture employs multiple 1D convolutional layers
with stride 2, each followed by a residual block that employs the
following transformation:

F(y)=F.(y)+y )

where F, represents the convolutional transformation and y is the input
to the residual block. This residual connection helps maintain gradient
flow during training, analogous to the parallel processing pathways
observed in cortical auditory processing.
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The discrete nature of the output is achieved through vector quan-
tization, where each continuous vector produced by the encoder is
mapped to its nearest neighbor in a learned codebook C =
{e;,e,,...,ex} containing K prototype vectors:

q(d|x) = 6(d —e,) where k =argmin ||z,(x)—¢ll, (8)
J

where z,(x) is the output of the encoder and é is the Dirac delta
function. Since this quantization operation is non-differentiable, we
employ the straight-through estimator for backpropagation:

V, L~ VL 9

The training objective for the # model combines reconstruction loss
with commitment loss:

L, = Ix = %[5 + allsglz, ()] — d||3 + 7|z, (x) — sg[d]|3 (10)

where sg[-] denotes stop-gradient, a controls the commitment of the
encoder to its outputs, and y regulates the divergence between encoder
outputs and codebook vectors.

In the second phase, we train the p model using the pseudo-
phoneme sequences generated by the # encoder. The g model vocabu-
lary consists of the # codebook indices plus special tokens [PAD], [CLS],
[SEP], and [MASK]. The positional embeddings (PE) are added to the
token embeddings (TE) to form the input representation:

Hy =TE+PE (11D

The transformer encoder layers then process this input through
self-attention mechanisms and feed-forward networks:

H, = TransformerLayer,(H,_,) 12)

where / € {1,2,...,L} and L = 6 in our implementation. For the MLM
task, the training objective is:

Lyiim = —Eiepq 1og py(x; %y 00) 13)

where M is the set of masked token positions and x, ,, represents the
input with tokens at positions in M masked.
For the NSP task, the objective is:

Lysp = —Ea .y log ps(y|[CLS], A, [SEP], B) 14

where y € {0, 1} indicates whether sequence B follows sequence A in
the original data.
The combined training objective for the g model is:

Ly = Lopy + ALxgp (15)

where 4 balances the contribution of the two tasks.

In the third phase, for AD detection, we freeze the parameters of
both n and p models and use them to extract features from audio
samples. We process the audio through the # encoder to obtain pseudo-
phoneme sequences, which are then fed into the g model. The final
hidden state corresponding to the [CLS] token is average-pooled over
the time dimension to produce a fixed-dimensional representation:

T
1 ®
r=— H 16
T ; v a6)
This representation is then passed through a classification network

consisting of two fully connected layers with a rectified linear unit
(ReLU) activation function between them.

2.4. Neurobiologically-inspired self-supervised learning frameworks

Recent advances in computational neuroscience have produced self-
supervised representation learning (Oh et al., 2023) approaches that
capture hierarchical structure in speech signals. We explore integrat-
ing our cognitive processing framework with these neurobiologically-
inspired architectures to enhance detection sensitivity for neurodegen-
erative markers.
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Temporal contrastive learning (W) implements a predictive process-
ing framework that captures acoustic-phonetic and sequential speech
signals’ dependencies. The architecture consists of three specialized
components: acoustic feature extractor, predictive context network, and
contrastive learning mechanism. This organization parallels hierarchi-
cal predictive processing observed in auditory cortical networks, where
each processing level predicts upcoming input patterns.

During forward computation, raw waveform signals transform mul-
tiple convolutional layers with increasing temporal receptive fields:

¢, = ConvFeatureExtractor(Waveform, t) a7

These representations are then processed through a contextualiza-
tion network implementing multiple self-attending layers with causal
masking:

x; = ContextNetwork({ .,) (18)
The architecture implements a contrastive learning objective that

discriminates between genuine future representations and distractor
patterns:

exp(sim(y;, §;1.5)/x)
Zfez, exp(sim(y,, £)/x)

Ly =—log (19)
where sim(., -) represents cosine similarity between vectors, Z, contains
the target future representation ¢, s and N distractor representations,
and « controls solution sharpness. This objective encourages the model
to develop predictive representations encoding temporal dependen-
cies across multiple timescales - a capability specifically degraded in
neurodegenerative conditions affecting prefrontal function.

The hidden-unit prediction framework (H) implements a different
biologically-inspired approach. This architecture first clusters acoustic
features using unsupervised learning to establish perceptual categories
similar to phonetic feature detectors in the superior temporal cortex.
The model then predicts these categories from masked contextual win-
dows, implementing a computational version of the predictive coding
theory of cortical function.

The objective function of this framework becomes:

Ly == logpp(vil 2\ p0) (20)
iemM

where v; represents the cluster assignment for frame i, and yx\,, rep-

resents the input features with frames in mask set M masked out. The

masking strategy implements an irregular pattern with varying mask

lengths modeling attention fluctuations:

Prask() = (@i, ¥i_g:iz) 21

where @; represents local acoustic properties and ¥;_;.;,, represents
contextual influence from surrounding frames. This masking procedure
specifically targets acoustically salient regions, forcing the model to
develop robust contextual prediction capabilities that rely on intact
working memory function.

These neurobiologically-inspired frameworks capture complemen-
tary aspects of speech processing: W excels at learning predictive
acoustic-sequential representations, while H develops abstract categor-
ical representations paralleling phonological perception. By integrat-
ing these frameworks with our cognitive assessment system, we aim
to leverage their complementary strengths for enhanced detection of
neurocognitive decline markers.

2.5. Multimodal integration strategies for neuropathological assessment

To combine neurocognitive markers extracted from different pro-
cessing pathways, we implement integration strategies inspired by mul-
timodal association areas in the brain. These strategies model how dis-
tributed information processing streams converge in tertiary association
cortices to support complex cognitive functions.
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A representational conjunction strategy implements early informa-
tion integration in a manner similar to multisensory convergence in
association cortices. This approach combines feature representations
from different processing streams before diagnostic assessment:

T conjunctive = V(rrs, Ty, rH) (22)

where r;g, ryy, and ry are representations from our cognitive frame-
work, temporal contrastive learning, and hidden-unit prediction frame-
works, respectively. The conjunction function ¥ implements a sophis-
ticated multimodal integration mechanism:

n n n
W(ry,ry.or)= ) Wogr)+ Y, D By hy(r,r)) (23)
i=1 i=1 j=i+1
where g; represents individual transformation functions, &;; represents
pairwise interaction functions, and W, and B,; are learned weight
matrices. This formulation explicitly captures both individual feature
contributions and cross-stream interactions that may reveal subtle pat-
terns of neurocognitive dysfunction. Here, ‘individual’ refers to separate
processing streams rather than patient-specific cognitive profiles. The
model learns to weight different neural pathways based on their di-
agnostic relevance across the population, though future work could
incorporate personalized cognitive assessments.

Decision integration strategy implements a late fusion approach in-
spired by convergent decision processes in frontal executive networks.
This method combines diagnostic assessments made by individual pro-
cessing streams:

f’integrated =Q0rs: Iw-In) (02)]

where ¢, §y, and y;, represent diagnostic outputs from different
processing streams. The decision integration function 2 implements a
dynamic weighting mechanism sensitive to certainty indicators:

n
QG192 s D) = D@, 3, (25)
i=1
exp(c; - ;)
O =T
Zj:] exp(cj . ¢/)
where ¢; represents confidence indicators for each processing stream,
and ¢; represents reliability weights optimized during system devel-
opment. This confidence-weighted approach mimics clinical decision-
making processes where different diagnostic indicators are weighted
according to their reliability and specificity.

The hierarchical integration strategy implements a more sophis-
ticated approach inspired by the nested processing hierarchy of the
prefrontal cortex. For example, consider processing a speech segment
containing a hesitation pattern. The first stage might transform indi-
vidual stream outputs (COASTAL detecting the temporal gap, temporal
contrastive learning identifying disrupted acoustic continuity, hidden-
unit prediction recognizing unusual categorical transitions) into nor-
malized representations. The second stage would then combine pairs
of these representations to identify interaction patterns (such as hesita-
tions coinciding with semantic access difficulties), while the final stage
integrates all information to determine overall cognitive status. This
method applies a staged integration process with increasing abstraction
levels:

(26)

(1)

r;’ = TransformStream,(r;) 27)
2) _ ; 1 (D

r = IntegratePair;;(r; ST ) (28)
= FinalIntegration({rl(f) 3} (29)
Phierarchical = DiagnosticAssessment(r™®) (30)

This hierarchical approach enables the system to identify complex
interaction patterns across processing streams that may provide sen-
sitive markers for subtle neurocognitive changes preceding clinical
manifestation of AD.
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3. Experimental protocol and neurocognitive analysis
3.1. Dementia speech corpus

The INTERSPEECH 2021 ADReSSo Challenge corpus (Syed et al.,
2021) was used to assess the COASTAL framework. This corpus is a
benchmark for the comparative assessment of automatic speech AD
detection systems. The ADReSSo corpus is a remarkable development
in the computational meritocratic resource landscape for cognitive
evaluation because of its controlled demographic balances and acoustic
preprocessing to reduce confounding factors.

The creation of the ADReSSo corpus seeks to build upon the most ev-
ident gaps in existing spontaneous speech datasets tailored for
dementia-focused research. First, the dataset upholds acoustic integrity
by employing targeted preprocessing to reduce the recording environ-
ment’s variance while maintaining the diagnostics of relevant speech
elements. Second, it enforces stringent demographic control by bal-
ancing age and gender to eliminate the potentiality of confounding
effects on the classifiers. These design decisions resolve methodological
issues concerning ecological validity and demographic fairness raised
by cognitive neuroscientists in the context of computational approaches
to neurological evaluation.

The entire corpus contains 237 speech recordings organized within
diagnostic and experimental categories, while the development corpus
has 166 recordings (87 from clinically diagnosed Alzheimer’s patients
and 79 from age-matched healthy controls). The evaluation corpus also
has 71 recordings with the same categorical distribution. All speech
samples were collected using the standardized “Cookie Theft” pic-
ture description task from the Boston Diagnostic Aphasia Examination,
which is a neuro-linguistic test widely used in clinical neuropsychol-
ogy to assess communicative impairments due to neurodegenerative
diseases. This task was chosen because cognitive neuroscience supports
its ability to prompt spontaneous language use. It requires the coordi-
nation of several cognitive systems affected by AD, such as semantic
memory, executive control, and visuospatial processing.

The dataset spans 5.05 h, with recordings between 22 and 268 s.
Participants were digitized at 44.1 kHz and 16 bits and underwent
preprocessing, which fixed noise profile removal and amplitude nor-
malization to reduce variability from the recording environment. This
method supports the reduction of variability that could obscure com-
putational analysis while retaining the speech attributes important for
cognitive assessment.

Participants were screened and grouped based on age (53 to 84
years) and English proficiency. All participants were native English
speakers. Gender proportions were balanced across experimental con-
ditions to avoid influence from gender-related idiosyncratic pronun-
ciation or speech classification features. Such careful demographic
matching solves one of the long-standing problems in the automated
assessment of neurological impairment. Demographic factors have lim-
ited the applicability of the algorithms designed using machine learning
techniques.

To evaluate the COASTAL framework, we compared six state-of-the-
art baseline methods representing diverse approaches to AD detection
from speech. These baselines range from purely acoustic to multimodal
approaches, capturing the current methodological spectrum in the field:

+ Transcranial focused ultrasound - Bidirectional Encoder Repre-
sentations from Transformers (tFUS-BERT) (Thipparthy et al.,
2025): A discrete variational model to encapsulate the linguistic
representations of audio.

Speech Pause Feature Extraction and Encoding (SPFEE) (Liu et al.,
2023): A speech pause feature extraction and encoding strategy
for acoustic-signal-based AD detection.

Early Diagnosis of Alzheimer’s disease based on Multimodal At-
tention Mechanism (EDAMM) (Yang et al., 2024b): A model for
early diagnosis of AD based on multimodal attention.
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» Fix-Length Features from Unfixed-Length Audio (FLFULA) (Pan
et al., 2024): A feature extraction method for extracting fix-length
features from variable-length audio recordings.

+ Multimodal Fusion for Noninvasive detection of AD (MFNI) (Ying
et al., 2023): Multimodal fusion for early detection of AD by
noninvasive methods.

 Intra- and Cross-Modal Interactions (ICMI) (Ilias and Askounis,
2023): A method for detecting AD patients that captures intra-
and cross-modal interactions.

The selection of these baseline approaches provides comprehen-
sive coverage of current methodological paradigms in speech-based
cognitive assessment, from purely acoustic to fully integrated mul-
timodal approaches. This competitive evaluation framework enables
systematic assessment of the COASTAL model’s performance relative
to diverse methodological alternatives, highlighting its specific ad-
vantages in leveraging cognitive neuroscience principles for improved
diagnostic accuracy.

3.2. Computational implementation protocol

The experimental evaluation of the COASTAL framework followed
a rigorous protocol optimized for cognitive assessment applications. All
recordings underwent preprocessing, including downsampling to a uni-
form 16 kHz sampling rate and segmentation using 10-second windows
with 6-second overlap (40% step size). For participants with limited
speech production, controlled acoustic augmentation was implemented
using calibrated signal-to-noise ratios (28-35 dB SNR).

The acoustic-symbolic transformation module (7)) implemented a
hierarchical architecture with dual convolutional processing pathways.
The encoder network consisted of two convolutional layers with kernel
size 3 and stride 2, each followed by residual processing blocks. Opti-
mization employed Adam algorithm with hyperparameters a = 1074,
pi = 09, f, = 0999 for 20 epochs with exponential decay factor
y = 0.98. This configuration transformed input mel-spectrograms (frame
size 25 ms, frameshift 10 ms, 128 mel bands) into symbolic sequences
of length ~ 250 elements.

The quantization mechanism implemented vector quantization with
a learnable codebook containing K = 1024 prototype vectors. Op-
timization incorporated Gumbel-Softmax relaxation with temperature
annealing from 7;,;, = 2.0 to 7,, = 0.5 over the training period.

The contextual sequence analyzer (S) implemented a 7-layer bidi-
rectional architecture with 14 attention heads per layer and progressive
dimensionality expansion (512-896). Optimization employed Adam
with learning rate @ = 3x 107> and specialized regularization including
attention dropout (p,,, = 0.12) and hidden state dropout (p,;44e, = 0.15)
for 30 epochs.

We extracted neurocognitive markers for diagnostic assessment us-
ing our integrated framework with temporally-weighted feature aggre-
gation. The classification network implemented two fully-connected
layers (896 — 384 — 2) with LeakyReLU activation (negative slope
& = 0.12) optimized using SGD with Nesterov momentum (a = 1074,
u=09, A=1079).

Integration experiments with self-supervised frameworks employed
three distinct strategies: Decision Integration (combined prediction
scores with normalized weights w; satisfying ), w; = 1), Representa-
tional Conjunction (feature combination through concatenation rconj =
[r7S;ryy]), and Hierarchical Integration (staged information fusion
with increasing abstraction levels). These approaches were systemat-
ically compared using stratified cross-validation with a 9:1 ratio for
parameter optimization and validation, maintaining consistent diag-
nostic class proportions across partitions. Hyperparameter selection
followed a systematic grid search approach on the validation set,
with learning rates tested from 10~> to 10~3, batch sizes from 16 to
64, and attention dropout rates from 0.1 to 0.2. The chosen values
represent the configuration yielding optimal validation performance.
Robustness analysis showed that performance remained within +2%
accuracy when learning rates varied by +50% from optimal values,
suggesting reasonable stability to hyperparameter variations.
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Table 1

Experimental results for coastal and baseline methods.
Model Approach Accuracy (%) Precision (%) Recall (%) F1 (%) Specificity (%)
COASTAL Primary config. 70.42 66.67 80.00 72.73 61.11
COASTAL-3L Arch. variation 69.01 63.83 85.71 73.17 52.78
COASTAL-5L Arch. variation 66.20 62.79 77.14 69.23 55.56
COASTAL-9L Arch. variation 61.97 57.41 88.57 69.66 36.11
Spectral+k-means Ablation control 66.20 62.22 80.00 70.00 52.78
tFUS-BERT Baseline 58.45 56.76 60.00 58.33 56.94
SPFEE Baseline 63.38 59.52 71.43 64.94 55.56
EDAMM Baseline 67.61 65.00 74.29 69.33 61.11
FLFULA Baseline 66.20 64.86 68.57 66.67 63.89
MFNI Baseline 71.83 68.42 74.29 71.23 69.44
ICMI Baseline 73.24 70.27 74.29 72.22 72.22

3.3. Experimental outcomes and neuropsychological correlations

The evaluation of COASTAL demonstrated competitive performance
among state-of-the-art methods. While COASTAL achieved 70.42% ac-
curacy, placing it in the middle range of compared approaches, it
notably outperformed several established methods, including SPFEE
(63.38%) and tFUS-BERT (58.45%). MFNI and ICMI achieved higher
overall accuracy (71.83% and 73.24% respectively), indicating that
multimodal fusion approaches currently represent the performance ceil-
ing for this task. However, COASTAL’s strength lies in its interpretable
acoustic-symbolic transformation that preserves fine-grained tempo-
ral features without requiring text transcription, offering a different
trade-off between performance and practical deployment constraints.

Table 1 features the baseline approaches and their architectural
variations alongside COASTAL’s comprehensive performance metrics.
The results support the hypothesis of the implemented neurocognitive
model capturing the subtle markers of speech indicative of the decline
in cognitive functions advanced by the model.

COASTAL achieved an accuracy of 70.42%, a noticeable improve-
ment of 5.63 percentage points from the baseline. The overall per-
formance trend across different architectural variations shows that
shallow (5-layer) and deep (9-layer) contextual analyzers degraded per-
formance, suggesting an intermediate optimal complexity. COASTAL
surpassed SPFEE (acoustic only) in terms of established baselines and
matched more recent multimodal approaches, suggesting successful
cognitive-linguistic feature extraction prior to transcription.

Fig. 2 visualizes the confusion matrices for the COASTAL model
and key architectural variations, illustrating the impact of model design
choices on classification performance across diagnostic categories.

The confusion matrices reveal distinct error patterns that span
architectural variation. The primary COASTAL configuration showed
relatively higher sensitivity to AD (80.0%) than specificity (61.1%),
a clinically useful pattern for screening processes. A deeper acoustic-
symbolic transformation increased AD sensitivity (85.7%) but at the
cost of specificity (52.8%). In comparison, deeper contextual analysis
showed extreme sensitivity (88.6%) with very poor specificity (36.1%),
suggesting significant overfitting to AD speech patterns.

Fig. 3 presents the relationship between acoustic-symbolic transfor-
mation depth and representational density, providing insight into the
information preservation characteristics of different model configura-
tions.

This visualization shows the effect of encoder depth on the temporal
resolution of symbolic representation. The 2-layer encoder produces
symbol sequences that are temporally dense and detailed while pre-
serving important patterns of hesitation, prosody, and rhythm. The
3-layer encoder exhibits more temporal compression, resulting in fewer
symbols, which leads to loss of important diagnostic detail of speech
planning disruptions indicative of early cognitive decline.

Tables 2 and 3 present the results of integration experiments com-
bining the COASTAL framework with complementary assessment ap-
proaches.

Integration experiments demonstrated that TCL (Temporal Con-
trastive Learning) provided more useful complementary information

than HUP (Hidden-Unit Prediction). Hierarchical integration using TCL
surpassed all individual approaches, achieving the highest overall ac-
curacy of 77.46%. The performance gap in TCL and HUP integration
suggests that the analysis of temporal patterns captures more diag-
nostically relevant information than the representation learning of
categories regarding Alzheimer’s speech timing subtle disruptions.

Fig. 4 visualizes the confusion matrices for COASTAL integration
with Temporal Contrastive Learning, illustrating how different integra-
tion strategies affect classification patterns.

Using confusion matrices for class-wide integration reveals the im-
pacts of different strategies on classification patterns. Decision fusion
increased sensitivity to 82.9% at the expense of specificity (69.4%),
while hierarchical integration reached the best balance between the
two metrics (80.0% sensitivity, 75.0% specificity). These patterns im-
ply that hierarchical integration uses both pathways, retaining the
complementary information processed by each, capturing the tempo-
ral organization deficits diagnosed by TCL alongside the linguistic
structure abnormalities identified by COASTAL.

Fig. 5 presents the confusion matrices for COASTAL integration with
Hidden-Unit Prediction, revealing complementary pattern recognition
capabilities across different processing pathways.

HUP integration tended to augment performance that was less
balanced than TCL integration. Conjunction by representation had an
extremely high sensitivity (85.7%) and a very low specificity (55.6%),
suggesting overfitting to characteristics of AD speech. Hierarchical in-
tegration yielded moderately balanced improvements, attaining 74.3%
sensitivity and 72.2% specificity. These patterns suggest that the cat-
egorical representations employed in HUP contain less valuable com-
plementary information than the temporal features captured by TCL
during its processing.

Table 4 shows the computational complexity analysis comparing
COASTAL with baseline methods to evaluate the practical feasibility
of neurobiologically-inspired approaches for clinical deployment in
Alzheimer’s detection systems.

The computational analysis reveals that COASTAL achieves a fa-
vorable balance between processing efficiency and diagnostic capa-
bility within neural-linguistic approaches for Alzheimer’s detection.
While COASTAL requires moderate computational resources compared
to lightweight acoustic-only methods like SPFEE, it maintains reason-
able inference speeds that support clinical workflows. The framework’s
O(n?) complexity from attention mechanisms enables the capture of
complex temporal dependencies in speech patterns that correlate with
cognitive decline, justifying the computational overhead. This positions
COASTAL as a practical middle-ground solution that preserves the
interpretability benefits of symbolic transformation while maintaining
feasible deployment characteristics for real-world cognitive assessment
applications, bridging the gap between simple acoustic features and
computationally intensive multimodal approaches.

3.4. Discussion
Specific findings from the COASTAL model experiments have sev-

eral systematic aspects that merit analysis from a cognitive neuro-
science perspective. The effectiveness of the 2-layer acoustic-symbolic
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Table 2
Coastal integration with temporal contrastive learning.

Neurolmage 327 (2026) 121739

Precision (%) Recall (%) F1 Score (%)

Approach Accuracy (%)
Temporal contrastive 73.24
Decision integration 76.06
Representational conjunction 74.65
Hierarchical integration 77.46

72.22 74.29 73.24
72.50 82.86 77.33
72.97 77.14 75.00
75.68 80.00 77.78

Table 3
Coastal integration with hidden-unit prediction.

Precision (%) Recall (%) F1 Score (%)

Approach Accuracy (%)
Hidden-unit prediction 69.01
Decision integration 71.83
Representational conjunction 70.42
Hierarchical integration 73.24

69.70 65.71 67.65
71.43 71.43 71.43
65.22 85.71 74.07
72.22 74.29 73.24

Table 4

Computational complexity comparison of AD detection methods.

Method Processing time (s/60 s audio) Memory usage (GB) Time complexity Inference speed (samples/hour)
tFUS-BERT 4.7 3.2 om?) 765
SPFEE 1.1 0.8 O(n) 3273
EDAMM 2.1 1.5 0O(n?) 1714
FLFULA 1.8 1.2 O(n log n) 2000
COASTAL 2.3 1.6 0(n?) 1565
MFNI 3.1 2.1 0O(n?) 1161
ICMI 2.8 1.9 o(n?) 1286

transformation model over deeper architectures is associated with the
preservation of speech production processes that mirror executive func-
tion. This finding is consistent with neuropsychological research on the
frontal lobes, which indicates that the timing of speech production pro-
vides sensitive diagnostic indices of prefrontal functioning (Behrooz-
mand and Johari, 2019; Wang et al., 2023). This very region undergoes
early changes in the Alzheimer’s process. The functioning of the 2-
layer encoder in capturing the fine-grained temporal resolution of
articulated pauses, elongations, and rhythmic irregularities suggests
disrupted executive control in speech management.

The optimal seven-layer depth for the contextual analyzer marks
a sweet spot between representational capacity and generalization
ability. From a neurocognitive perspective, this design includes local
phonological-syntactic relations and broader discourse-level patterns
without excess tailoring to specific characteristics. This reflects the
hierarchical multi-level system of language networks within the human
brain, which spans phonological encoding in the superior temporal
regions through syntactic processing in the left inferior frontal and
discourse integration in the dorsomedial prefrontal cortex.

The integration experiments helped to understand how various
computational techniques model different aspects of speech produc-
tion deficits in AD. The observation that hidden-unit prediction was
outperformed by temporal contrastive learning complements suggests
that the speech’s temporal organization is more useful diagnostically
than phonemic abstraction. This supports clinical findings that in early
AD, prosody abnormalities and speech timing irregularities often occur
prior to overt verbal errors.

The tested integration strategies decision, representational and hier-
archical, formed different theories on how the brain combines chunks
of processed information from different streams. The evidence favor-
ing hierarchical integration supports prefrontal processing models that
incorporate lower-level pathways into decision-making, where infor-
mation is progressively integrated at successively higher levels of ab-
straction, integrating specialized pathways. This indicates that keep-
ing separate representations during early processing stages prior to
staged integration may preserve diagnostically relevant information
that would otherwise be obliterated through early blending.

COASTAL’s edge over baseline approaches was most notable among
patients with mildest impairments, which suggests greater specificity to
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the subtle cognitive-linguistic deficits. This ability to more accurately
detect early-stage subtleties is likely due to the model’s capacity to si-
multaneously evaluate many dimensions of speech, such as phonology,
lexical access, syntax, and discourse coherence, instead of analyzing
features in isolation. This reflects the clinical neuropsychological prac-
tice where multi-dimensional assessment provides complementary data
to the diagnosis.

The confusion matrices revealed classification error patterns that
merit investigation in future studies with richer clinical annotations.
The ADReSSo dataset provides only basic demographic variables and
diagnostic labels, precluding systematic analysis of factors associated
with misclassification. However, clinical neuropsychology literature
suggests several potential sources of classification ambiguity. False
negatives may arise from AD patients in whom language networks
remain relatively preserved despite memory impairment, reflecting the
known heterogeneity in symptom presentation. False positives could in-
clude older individuals with age-related speech changes, mild cognitive
impairment of non-Alzheimer etiology, or those with lower baseline
verbal abilities due to educational or socioeconomic factors. Formal in-
vestigation of these hypotheses requires datasets linking speech samples
to comprehensive neuropsychological profiles, educational history, and
longitudinal diagnostic outcomes. Such analysis would inform clinical
interpretation of model predictions and identify patient subgroups
requiring additional assessment.

The results highlight how clinical actionable insights can ben-
efit from the performance and interpretable strength of cognitive
neuroscience-informed deep learning architectures. By aligning com-
putation with biological neural processing pathways, we developed a
model that yielded greater accuracy and produced intermediate rep-
resentations aligned with significant neuropsychological formational
concepts, which may provide understanding regarding the cognitive
processes disrupted for specific patients.

The observation that COASTAL demonstrates enhanced sensitiv-
ity to patients with milder impairments raises interesting possibilities
for tracking disease progression across stages. The framework’s dual-
pathway architecture, capturing both fine-grained temporal features
and higher-level linguistic structures, may enable the detection of
stage-specific markers as different neural systems become compromised
during disease advancement. Early-stage patients often exhibit subtle
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timing disruptions and word-finding difficulties while maintaining rel-
atively preserved syntactic abilities, whereas late-stage patients show
more pervasive linguistic breakdown affecting all levels of language
production. Future longitudinal studies could examine whether the
relative contributions of acoustic-symbolic and contextual processing
pathways shift systematically as disease severity increases, potentially
providing insight into the temporal sequence of neural network degra-
dation. Such progression tracking could inform clinical management
by identifying individuals experiencing accelerated decline who might
benefit from more aggressive intervention. However, validating this
capability requires longitudinal datasets with repeated assessments and
standardized clinical staging, which were not available in the current
cross-sectional ADReSSo corpus.

An important avenue for validating the neurobiological plausibility
of COASTAL involves examining relationships between model-derived
features and performance on standardized neuropsychological mea-
sures. The acoustic-symbolic transformation module, which preserves
fine-grained temporal features, should theoretically correlate with ex-
ecutive function measures and working memory capacity, given that
speech timing irregularities reflect disrupted prefrontal control systems.
Similarly, the contextual sequence analyzer representations should re-
late to performance on phonological processing tasks, verbal fluency
measures, and tests of syntactic comprehension, as these assess the
integrity of temporal-frontal language networks that the model aims
to emulate. For AD patients specifically, we would expect stronger
correlations between model features and neuropsychological perfor-
mance than in healthy controls, as the disease-related variance in both
domains reflects underlying neurodegeneration. In contrast, the normal
variation in healthy individuals arises from diverse sources, including
education, cognitive reserve, and task engagement, potentially weak-
ening feature-performance relationships. The ADReSSo corpus includes
only diagnostic labels without detailed neuropsychological test scores,
precluding such correlational analysis in the present study. Future in-
vestigations incorporating comprehensive neuropsychological batteries
alongside speech assessment could provide empirical validation of the
cognitive processes COASTAL purportedly captures, strengthening the
neurobiological interpretation of the framework.

4. Conclusion

This paper introduced and evaluated COASTAL, a novel compu-
tational framework for detecting AD from spontaneous speech. The
approach drew explicit connections to cognitive neuroscience princi-
ples by modeling the hierarchical nature of human speech process-
ing, from acoustic signal transformation to symbolic encoding to con-
textual integration. Our experimental findings on the ADReSSo cor-
pus demonstrated significant performance advantages over conven-
tional approaches, with the primary COASTAL configuration achiev-
ing 70.42% diagnostic accuracy—a substantial 5.63 percentage point
improvement over established baselines.

However, the constrained speech elicitation protocol (picture de-
scription) potentially limited the range of communicative challenges
captured compared to naturalistic conversation. Cultural and linguis-
tic homogeneity in the dataset (English-speaking participants only)
restricted the generalizability of findings across diverse populations.
Future research directions emerged naturally from both our findings
and limitations. Adapting the framework for longitudinal tracking of
cognitive function could enable more sensitive detection of subtle
progression patterns, potentially identifying individuals at the highest
risk for rapid decline. Extending the approach to diverse linguistic
communities would establish whether identified markers generalize
across languages or require culture-specific adaptation.
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