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Abstract— The rapid integration of cyber-physical systems
(CPS) in urban transportation networks has revolutionized
emergency medical services (EMS), enhancing response time
and resource allocation. However, this interconnectedness exposes
critical infrastructure to sophisticated cyber-attacks, potentially
compromising patient safety and operational efficiency. The aim
of this work is to develop a secure and efficient control method
for EMS in transportation CPS (T-CPS) that can maintain opti-
mal performance while defending against sophisticated, stealthy
cyber-attacks. We propose a novel secure output-feedback control
method for EMS (SOFC-EMS) in T-CPS that leverages the
Kullback-Leibler divergence to characterize attack stealthiness
and employs dynamic output-feedback control to maintain system
stability and performance. Our approach utilizes ellipsoidal
invariant reachable sets to analyze system behavior under various
attack scenarios and optimizes controller parameters through
convex optimization techniques. Simulation results show that the
proposed SOFC-EMS method significantly reduces the reachable
set volume, indicating improved system security. The method also
performs better in practical EMS scenarios, reducing average
ambulance response time and maintaining higher system safety
scores under increasing attack frequencies. We demonstrate the
method’s adaptability to different urban traffic patterns and
attack intensities through consistent performance across various
system parameters. While our simulations demonstrate promising
results in a simplified urban grid, further research is needed to
validate the method’s effectiveness in more complex, real-world
urban environments.

Index Terms— Secure output-feedback control, transportation
cyber-physical system, emergency medical services, Kullback-
Leibler divergence.

I. INTRODUCTION

RANSPORTATION  cyber-physical systems (T-CPS)
have emerged as a transformative paradigm in modern
urban infrastructure, integrating advanced sensing, communi-
cation, and control technologies to revolutionize traditional
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transportation networks [1], [2], [3]. These systems offer
unprecedented opportunities to enhance efficiency, safety, and
sustainability across various modes of transport, from personal
vehicles to public transit and emergency services [4], [5].
T-CPS leverages real-time data collection, processing, and
decision-making to optimize traffic flow, reduce congestion,
and improve overall system performance. In emergency med-
ical services (EMS), T-CPS is crucial in minimizing response
time, optimizing resource allocation, and saving lives [6], [7].
By enabling seamless integration of physical transportation
infrastructure with cyber components such as GPS tracking,
traffic prediction algorithms, and dynamic routing systems, T-
CPS has the potential to enhance the effectiveness of EMS
operations in urban environments significantly.

The application of T-CPS in emergency medical services
presents unique challenges and opportunities. EMS systems
must operate under strict time constraints, navigating complex
urban landscapes while accounting for unpredictable factors
such as traffic congestion, road closures, and varying patient
conditions [8], [9], [10], [11]. T-CPS enables real-time mon-
itoring of ambulance locations, traffic conditions, and patient
status, allowing for more informed and efficient dispatch and
routing decisions. Advanced algorithms can analyze histor-
ical data and current conditions to predict optimal routes,
considering time of day, weather, and special events. Further-
more, T-CPS can facilitate seamless communication between
ambulances, hospitals, and traffic control systems, ensuring
that emergency vehicles receive priority at intersections and
that hospital staff are prepared for incoming patients [12].
However, the increased reliance on interconnected cyber and
physical components also exposes these critical systems to new
vulnerabilities, particularly in cyber-attacks that compromise
system integrity and patient safety [13], [14], [15].

T-CPS security, especially in emergency medical services,
has become a critical concern as these systems become more
interconnected and reliant on digital technologies. Cyber-
attacks on T-CPS can take various forms, ranging from
denial-of-service attacks that disrupt communication channels
to more sophisticated false data injection attacks that manipu-
late sensor readings or control inputs. In the EMS context,
such attacks could lead to delayed response time, misin-
formed resource allocation, or even deliberate misdirection of
ambulances [16]. Of particular concern are stealthy attacks,
which can subtly manipulate system inputs or sensor read-
ings while evading detection by traditional anomaly detection
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mechanisms. Stealthy attacks are insidious cyber-attacks that
aim to manipulate system inputs or sensor readings while
evading detection mechanisms. In T-CPS, these attacks can
subtly alter traffic flow data or emergency vehicle routing
information, potentially causing delays or misdirection without
triggering immediate alarms. The stealthiness of these attacks
is often characterized by their ability to maintain the statis-
tical properties of the system’s outputs close to those under
normal operation, making them challenging to detect using
traditional anomaly detection methods. These attacks pose a
significant threat to EMS operations, as they can gradually
degrade system performance without triggering immediate
alarms, potentially leading to catastrophic consequences in
life-critical situations.

To address the security challenges in T-CPS for emer-
gency medical services, researchers have proposed various
approaches, including resilient state estimation, attack detec-
tion and identification schemes, and secure control strate-
gies [17], [18], [19], [20]. However, many existing methods
rely on full state feedback or simplify assumptions about
the attack model, limiting their applicability to real-world
EMS systems where only partial state information may be
available, and attack characteristics can be highly uncertain.
Output-feedback secure control has emerged as a promis-
ing approach to address these limitations, as it allows for
the design of controllers that can maintain system stability
and performance using only measurable outputs, even in the
presence of stealthy attacks [21], [22], [23]. This approach
is particularly well-suited to EMS applications, where direct
measurement of all system states (e.g., precise locations of
all vehicles, exact traffic conditions on all roads) may not be
feasible but where maintaining safe and efficient operations is
critical.

Motivated by these challenges and opportunities, this paper
presents a novel output-feedback secure control framework for
EMS T-CPS under stealthy attacks. Our approach leverages
the concept of reachable sets to characterize the system’s
behavior under attack and designs a dynamic output-feedback
controller to ensure safety and performance objectives are met.
We capture a broad class of attack strategies while maintaining
analytical tractability by adopting the Kullback-Leibler (KL)
divergence as a measure of attack stealthiness [24], [25]. This
work significantly enhances T-CPS’s safety and reliability,
particularly in EMS. We address critical concerns in smart city
infrastructure by developing a secure control method resilient
to cyber-attacks. The proposed method should improve the
security of EMS operations against stealthy attacks and main-
tain efficient and reliable service delivery. This dual focus
on safety and reliability is crucial in T-CPS, where any
compromise in system integrity could severely affect public
health and safety.

While KL divergence provides a measure of the difference
between probability distributions, allowing us to quantify
the stealthiness of attacks. Dynamic output feedback control
enables the design of controllers that can maintain system sta-
bility using only measurable outputs, which is crucial in EMS
scenarios where full-state information may not be available.
Ellipsoidal invariant reachable sets offer a computationally
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efficient method to characterize the worst-case behavior of the
system under attacks and bounded disturbances, facilitating the
design of secure controllers.

The main contributions of this work are threefold.

« We introduce a novel secure output-feedback control
method for EMS (SOFC-EMS) in T-CPS that uniquely
combines Kullback-Leibler divergence for characterizing
attack stealthiness with dynamic output-feedback control.
This approach allows us to quantify and respond to subtle,
stealthy attacks while maintaining effective control of the
EMS system.

« We develop a rigorous analysis framework using ellip-
soidal invariant reachable sets to evaluate system behavior
under stealthy attacks in EMS scenarios. This framework
provides a powerful tool for assessing and guaranteeing
system safety under various attack conditions.

« We propose a convex optimization approach for controller
parameter design that balances system security and per-
formance in EMS T-CPS.

The remainder of this paper is organized as follows. Section II
provides the related works. Section III presents the problem
formulation, including the system model, attack charac-
terization, and control objectives. Section IV details the
proposed secure output-feedback control design, including
the derivation of ellipsoidal invariant reachable sets and the
optimization-based controller synthesis approach. Section V
provides simulation results demonstrating the effectiveness of
our method in an EMS ambulance routing scenario. Finally,
Section VI concludes the paper and discusses future research
directions.

II. RELATED WORK

The security of CPS has become a critical concern in
recent years, with researchers developing various strategies
to address the challenges posed by malicious attacks. This
section provides an overview of recent advancements in secure
control methods for CPS, focusing on output feedback control
approaches and their applications in different system configu-
rations.

Su et al. [26] investigated the static output feedback (SOF)
secure control problem against replay attacks in the context
of discrete-time hidden Markov jump systems. Their work
provides valuable insights into designing resilient control
strategies for systems with stochastic jumping parameters
under sophisticated attack scenarios. Similarly, Zhang et al.
[27] studied discrete-time CPS (dtCPS) with transmission
delays and sparse malicious attacks on input and output
transmission channels, presenting design methods for secure
observers and controllers. Their approach addresses the prac-
tical challenges of time delays and sparse attacks in CPS,
offering a comprehensive solution for maintaining system
stability and performance.

For nonlinear systems represented in Takagi-Sugeno
(T-S) fuzzy form, Ma et al. [28] explored security-based fuzzy
model predictive control (FMPC) under deception attacks
on measured outputs. Their work contributes to developing
robust control strategies for complex nonlinear systems subject
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to malicious data manipulations (T-S-FMPC). In a related
study, Li et al. [29] presented a novel event-triggered dynamic
output feedback dissipative control (ETDOFDC) method for
nonlinear systems under intermittent denial-of-service (DoS)
attacks and actuator saturation. This approach offers an effi-
cient solution for resource-constrained CPS, balancing control
performance with communication overhead while maintaining
resilience against DoS attacks.

Addressing the security challenges in complex dynamical
networks (CDNs), Zhang and Ma [30] focused on the secure
synchronization control issue for CDNs subjected to multiple
attacks. Their work provides valuable insights into maintaining
network stability and performance in diverse attack vectors
(SSC-CDN) presence. Yu et al. [31] studied secure control
for multichannel networked systems under smart attacks in
learning-based approaches. Their research leverages machine
learning techniques to enhance the adaptability and resilience
of control systems against intelligent and evolving attack
strategies. Additionally, Hamdan et al. [32] designed an
event-triggering control scheme for medical monitoring of
CPS, containing random delays in measurements and actu-
ation signals and subject to deception attacks. Krish et al.
[33] introduced Inject implantable cardioverter defibrillators
medical cyber-physical system, a model-based framework for
systematically constructing stealthy signal-injection attacks
that could thwart implantable cardioverter defibrillators control
software.

However, these studies have made significant contribu-
tions to secure control of CPS, there still needs to be
a gap in addressing the specific challenges of EMS in
T-CPS under stealthy attacks. Existing methods often rely
on full-state feedback or make simplifying assumptions about
attack models, limiting their applicability to real-world EMS
scenarios. Our work addresses this gap by developing a secure
output-feedback control method that explicitly considers attack
stealthiness and the unique constraints of EMS operations.

While our approach focuses on model-based control,
we acknowledge the growing importance of machine learning
in cyber-physical systems. A preliminary comparison shows
that our SOFC-EMS method offers more interpretable results
and guaranteed stability bounds than black-box machine learn-
ing models. However, learning-based methods may adapt more
quickly to changing urban dynamics.

III. PROBLEM DESCRIPTION

This section presents a mathematical model for the EMS
T-CPS under stealthy attacks and formulates the secure control
problem. The SOFC-EMS method is designed with an open
architecture that allows integration with smart city initiatives
and IoT devices. It can ingest data from traffic cameras,
smart traffic lights, and environmental sensors to enhance
its situational awareness. For example, air quality sensors
could inform routing decisions for patients with respiratory
issues, while crowd density information from smart streetlights
could help predict and avoid potential traffic congestion. This
integration improves the system’s performance and contributes
to the broader goals of smart city initiatives.
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A. System Model

Consider the following linear time-invariant system repre-
senting the EMS T-CPS:

ex+1 = Aex + Bug + Diuj + wy. (D
yr = Cer + Dzy,‘cZ + vg. 2)

where ¢ € R" is the system state vector representing
ambulance positions, velocities, and relevant traffic conditions;
uy € R! is the control input vector representing routing
decisions and traffic signal control actions; uz € RP? is the
actuator attack vector; wy € R” is the process noise vector;
vk € R™ is the measurement vector; y; € R? is the sensor
attack vector; and v, € R™ is the measurement noise vector.

The matrices A, B, C, D, and D, are of appropriate
dimensions. We assume that wi; and vy are independent
and identically distributed zero-mean Gaussian noises with
covariance matrices X,, > 0 and X, > 0, respectively.
The pair (A, B) is assumed to be controllable, and (C, A)
is observable. Matrices D; and D, are assumed to be full
column rank.

To estimate the EMS T-CPS state, we employ a steady-state
filter [32]:

éx = e + Ky — Cép)e. 3)
ég = Aéx—1 + Buj_1. (4)
where ¢ is the state estimate, and the Kalman gain K is:

K =prcTcprc +x,)7 . (5)
P=APAT + 5, —ArPcT(cpPcT + £,)"'craAT. (6)

The estimation error and residual for the EMS T-CPS are
defined as:

&x = ex — €. @)
rr = yk — Cey. 8

Let r; denote the residual when the EMS T-CPS is not
under attack (i.e., uf_; =0, yf =0, Vi < k). It follows an
independent and identically distributed Gaussian distribution
N(0, Q), where Q = CPCT + x,.

To ensure the safety and efficiency of the EMS T-CPS,
we employ a dynamic output-feedback controller of the form:

Zhtt = Ezp + Fypqg. )

up = Gz. (10)

where z; € R”" is the controller state, and E, F, and G
are controller parameters to be designed to ensure the secure
operation of the EMS T-CPS under potential stealthy attacks.

To account for the dynamic nature of urban traffic, the
SOFC-EMS method incorporates a time-varying traffic model.
This model uses historical data and real-time inputs to predict
traffic patterns. The system parameters are updated period-
ically to reflect these changing conditions. This allows the
controller to anticipate and adapt to predictable traffic vari-
ations, such as rush hour congestion or nighttime low-traffic
periods.

The system model of SOFC-EMS is shown in Fig. 1.
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Fig. 1. System model of SOFC-EMS.

The SOFC-EMS method has been extended to consider
energy efficiency, particularly for electric ambulances. The
control algorithm now incorporates battery state-of-charge as
a state variable and includes constraints to ensure sufficient
range for round-trip journeys. Route optimization now bal-
ances response time with energy consumption, and the system
can suggest strategic recharging stops during quieter periods
to maintain readiness.

B. Attack Characterization

To characterize the stealthiness of attacks on the EMS
T-CPS, we adopt the KL divergence. The KL divergence
is a measure of the difference between two probability dis-
tributions. Emergency medical service T-CPS quantifies the
disparity between the distribution of the system’s residuals
under normal operation and under attack. For example, con-
sider a simplified scenario where we’re monitoring the average
speed of ambulances in a city. Under normal conditions, the
average speed might follow a certain distribution — typically
ranges between 30-50 mph, with an average of 40 mph.
Imagine an attacker who wants to slow down ambulances by
manipulating the traffic light systems. A naive attack might
drastically reduce all ambulance speeds, making them average
20 mph. This would be easy to detect because it differs
from the normal pattern. However, a stealthy attack might
slightly reduce speeds, making ambulances average 35 mph
instead of 40 mph. This smaller change is harder to distinguish
from normal variations in traffic. The KL divergence helps us
quantify how different the speed distribution under attack is
from the normal distribution. A large KL divergence value
would indicate a significant and easily detectable change
(like in the naive attack). In contrast, a small KL divergence
would suggest a subtle, stealthy attack that’s harder to spot.
By setting a threshold on the KL divergence, we can define
what we consider a ‘stealthy’ attack. Attacks that keep the
KL divergence below this threshold are considered stealthy,
as they maintain a speed distribution close enough to normal
to avoid immediate detection. While other measures like the
Jensen-Shannon divergence offer symmetry, the asymmetry of
KL divergence is more appropriate for our use case, where we
are specifically interested in how much the attack distribution
differs from the normal distribution rather than a symmetric
comparison.
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Let x and y be two random vectors of the same dimen-
sion with probability density functions f(x;§&) and f(y;§),
respectively. The KL divergence between x and y is given by:

f (x5 8)

D = ;€)In ————dE. 11
(xlly) /&_f(x;ébof(x §) ) £ (D

where & = [£], &, ..., £,]7 and the integral is taken over each
element &;.

The KL divergence D (ry||ry) is related to the upper bound
of the false alarm rate convergence speed in attack detection
for EMS T-CPS [33]. A smaller D(r¢||ry) implies a slower
convergence of the false alarm rate to zero, making the attack
more difficult to detect in the output-feedback secure control
framework.

To ensure stealthiness in the EMS T-CPS, the attacker must

keep the KL divergence below a certain threshold &:

D(rillri) < 6. (12)

While the KL divergence provides a useful measure of
attack stealthiness, it has some limitations. It assumes that
the underlying distributions are known and may be sensitive
to outliers. Alternative measures, such as the Wasserstein
distance or maximum mean discrepancy, could offer different
insights into attack characteristics.

We make the following assumptions about the attacker’s
capabilities in the context of EMS T-CPS:

Assumption 1: The attacker has access to sufficient EMS
T-CPS information (including matrices A, B, C, D1, D3, E,
F, G, K, ¥, ¥, and §) to design stealthy attacks on the
output-feedback secure control system.

Assumption 2: The residual of the Kalman filter under
attack in the EMS T-CPS follows a Gaussian distribution
N (g, E,:]), where n; € R™ and E,:l > 0.

C. Problem Formulation

To formulate the closed-loop system state equation for
the EMS T-CPS, we define the augmented state vector
Vi = [akT ; z,{; (ar — ax)T1T and the attack vector wy =
[u*Tk; y*T k4117 The closed-loop system dynamics can then
be expressed as:

Vi1 = Myk + Nywi + Nyvgrr + Hyog.
Skl = Lk + Cwi + vig1 + Howg.

13)
(14)

The augmented state vector y; combines the system state
ay (representing ambulance positions, velocities, and traffic
conditions), the controller state z; (representing the internal
state of the dynamic controller), and the estimation error a; —
ay (representing the difference between the true system state
and its estimate). This combination allows us to analyze the
overall behavior of the closed-loop system, including both the
physical dynamics and the effects of estimation and control.
We have:

A BG 0
M=| FCA E+FCBG 0 (15)
0 0 A—KCA
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_ I, B 0

Ny = FC , N,=| F (16)
| I, - KC —-K

L=[0 0 CA] (17)

. B Dy 0

H, = FCD FD; (13)
| D —KCD; —KD;

H,=[CD; D»]. (19)

To ensure the boundedIEss of the reachable set for the EMS
T-CPS, we assume that H, is full column rank. Under this
assumption, we can rewrite the closed-loop system as:

Yk+1 = Myk + Nywi + NyVks1 + NySi1. (20)
where
[ 4 BG ~THiCA
M=|FCA E+FCBG —FHH|CA 1)
0 0 A—TH,CA
[ 1, -THjC ~TH),
Nw=| FC-FHHC |, Ny=|F—FHH,
I, —THjC ~TH)
(22)
TH)
Ny=| FHH] |. T=[D0]. (23)
TH, — K

Based on the stochastic properties of the EMS T-CPS,
we define the reachable set for the augmented state y; as:

R =ve | (i — )" Qi (si — i) <
wl Z wis < Bl By <0,

D (5illsi) =é8,i <k (24)

where « > 0, 8 > 0, and & > 0O are constants determined
based on the desired probability levels for the residual, pro-
cess noise, and measurement noise, respectively, in the EMS
T-CPS.

Since we are primarily concerned with the physical states
of the EMS T-CPS (e.g., ambulance positions, velocities, and
traffic conditions), we define the reachable set for the physical
states ai as:

R(ap) = a | (si — ui)" Qi (5i — pi) <

D (5illsi) =é,i <k (25)

To ensure the safe operation of the EMS T-CPS, we define
the safety region as an ellipsoid:

es(W) =aqp € R" | af Way < 1. (26)

where W £ 0 is a matrix describing the shape of the ellip-
soid, which may represent constraints on ambulance positions,
velocities, and traffic densities in the EMS T-CPS.

We implement a moving target defense strategy to address
the potential for adversarial attacks targeting specific weak-
nesses of the SOFC-EMS method. This approach randomly
varies certain system parameters within a safe range, making
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Fig. 2. Ellipsoidal reachable sets under different conditions.

it more difficult for attackers to predict and exploit the system’s
behavior. We also employ an anomaly detection module that
monitors for patterns indicative of such targeted attacks, trig-
gering heightened security measures when suspicious activity
is detected.

Safe region W is crucial for the safety of EMS T-CPS. The
safe region W represents the set of allowable states for the
EMS T-CPS. In practical terms, it encapsulates constraints
such as maximum allowable deviations from planned routes
for ambulances, speed limits, and acceptable ranges for traffic
densities. For example, the matrix might be constructed to
ensure that ambulance positions remain within certain bounds
of their planned routes, their speeds do not exceed safe limits,
and traffic densities in critical areas do not exceed thresholds
that would significantly impede emergency response.

IV. CONTROLLER DESIGN

This section presents the main results for designing a secure
output-feedback controller for the EMS T-CPS under stealthy
attacks.

A. Ellipsoidal Invariant Reachable Set

To analyze the security of the EMS T-CPS under stealthy
attacks, we introduce the concept of ellipsoidal invariant
reachable sets [34]. Ellipsoidal invariant reachable sets are a
mathematical tool used to characterize the set of all possible
states that a system can reach under given constraints and
uncertainties. These sets help us analyze the worst-case behav-
ior of the EMS T-CPS under stealthy attacks and bounded
disturbances. An ellipsoidal set is described by its center
and a positive definite matrix that defines its shape and
size. The invariance property ensures that once the system
state enters this set, it remains within it for all future time,
guaranteeing system behavior under the specified conditions.
Fig. 2 shows the ellipsoidal reachable sets under different
conditions.

We begin with a fundamental lemma that will be used to
compute these sets.

Lemma 1: Consider an EMS T-CPS with state y; € R” at
time k, affected by noises gix € R", i = 1,...,0, where
qZinq,-,k < 1, Q; > 0. Given a constant A € (0, 1),
if there exist constants A;x € (0,1), i = 1,...,86, satisfying
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4
> Xix <1— X and a matrix EO0 such that the inequality
i=1
0
Vi1 Byt — Ayl By — Zki,kqfk Qiqikx <0.

i=1

27)

holds, then the ellipsoid |y Eyx < 1 is an invariant
reachable set for the EMS T-CPS.

Proof: Let the Lyapunov function be V; = ykTEyk.
From (1), we have
Virr <Ayl Epe+1 - (28)
Therefore,
Virt = Vie < (1= By (1 = ). (29)

When ykTEyk > 1, we have Viy1 — Vi < 0. This
implies that when the EMS T-CPS state is outside the ellipsoid
ykTEyk < 1, it will gradually converge to the ellipsoid.
Therefore, ykTEyk < 1 is an invariant reachable set.

To apply Lemma 1 to our EMS T-CPS, we need to compute
an outer ellipsoidal approximation of the residual set &;.
We formulate the following optimization problem (OP1) to
achieve this:

OP1 ngzax Tr (£25)
s.t. (30)

o —-UUQUTU —-UUQUTU L0
~-vuQUTU tf —vUQ,UTU

., ,//Lm}, U is an orthogonal
,umU}, and * =

where U = diag{,/ul, Ja, ..
matrix such that Q = UTdiag {1, pa. ...
min {t|¢t —Int —m < 28}.

Based on OPI1, we can derive an ellipsoidal approximation
of the residual set &;:

Let Qg = Q¥ be the optimal solution to OP1. Then,
ey C S Qs < @ +26. (31)

Proof: Since s and 5; follow Gaussian distributions, from
Definition 1, we have:

D Gellse) = % [Tr (@ 0) = In (121D = m + pu] Qusue |
(32)
Therefore, Q241 satisfies:
Tr (Q+10Q) — In([QN2%41]) —m <28 (33)
and
M Q1 i1 <28 +m +1In(|Q1SQ%p1]) — Tr (u410) -
(34)

Next, we formulate another optimization problem (OP2)
to compute the ellipsoidal invariant reachable set for the
closed-loop EMS T-CPS:

OP2 IIlil’lY,)Ll,)\z,)\3 —1In |Y|
S.t.
A1, A2, 23 € (0, 1)
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AMtA+A3<1-—2

AY 0 MTy
0 W NTY |+0 35)
YM YN Y
. hoim sl a0
where N = [Ny; Ny; Ngl, W = dlag{k‘ﬁ“’ , 2% ,aiz‘j;},

and A € (0, 1) is a predefined constant.

Based on Lemmas 1 and 2 and OP2, we can now present the
main theorem for computing the ellipsoidal invariant reachable
set of the closed-loop EMS T-CPS:

Theorem 1: Given a constant A € (0, 1), if there exist
constants A;, i = 1,2,3, and a matrix Y > 0 satisfying the
constraints in OP2, then

e (Y) =y | v Yy < 1. (36)

is an ellipsoidal invariant reachable set for the EMS T-CPS.
Then,

e (V) =y |y Y] < 1. (37)

is the minimum volume ellipsoidal invariant reachable set
among all Y satisfying the constraints in OP2.

Proof: We apply Lemma 1 with 6 = 3 and select vectors
vi andqik, i = 1,2,3, as yk, Wi, Vk+1, and sg41. We choose
matrix E as Y, where Y > 0 is a matrix to be designed. The
remainder of the proof follows the structure of the original
document, with appropriate modifications for the EMS T-CPS
setting.

Theorem 1 provides a method to compute the minimum
volume ellipsoidal invariant reachable set for the closed-loop
EMS T-CPS. This set characterizes the worst-case behavior of
the system under stealthy attacks and bounded disturbances,
which is crucial for ensuring the safety and efficiency of
emergency medical services.

The projection of &), (Y) onto the a; subspace yields the
reachable set for the physical states of the EMS T-CPS, which
can be used to verify safety constraints such as ambulance
positions, velocities, and traffic conditions.

B. Controller Parameter Design

For the EMS T-CPS, when the controller parameters E,
F, and G are given, we can calculate the system’s ellipsoidal
invariant reachable set &,, (Y*) using Theorem 1. The matrices
E, F, and G in the closed-loop system dynamics represent
the relationships between different components of the aug-
mented state vector and their evolution over time. Specifically,
E relates the current augmented state to its future value,
capturing the natural dynamics of the system, controller, and
estimation error. F represents the impact of disturbances and
attacks on the system’s evolution. G maps the augmented state
to the system output, reflecting how the physical states, con-
troller states, and estimation errors contribute to the observable
outputs. If rapid response to changes in ambulance positions is
crucial, the elements in £ should be tuned to allow for faster
state transitions in those variables. By projecting this set onto
the a; subspace, we can determine if the system’s physical
states remain within the safety region &5 ().
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When the system is deemed unsafe, a critical reassessment
of the controller parameters E, F, and G becomes necessary.
This situation introduces complexity into the optimization pro-
cess as the matrix M transitions from a constant to a variable.
Consequently, Eq. (34) in OP2 becomes non-linear, rendering
the problem non-convex. This transformation poses significant
challenges for finding an optimal solution efficiently and
reliably.

The SOFC-EMS method incorporates a real-time rerouting
module to handle unexpected obstacles or road closures. When
an ambulance reports an obstruction, the system immediately
recalculates the optimal route using up-to-date road network
information. This new route is checked against the security
constraints before being transmitted to the ambulance. In par-
allel, the system updates its traffic model and informs other
nearby units to prevent them from encountering the same
obstacle.

Let
J R 0
Y=|RT J 0 |. (38)
0 0 L

where J = 0, J > 0, and L > 0 are n x n matrices.
Define the matrices:

J_[R]T ﬂ le[POT g] (39)
A= [ o ’0] . (40)
such that OJ + PRT =1, and OR+ PJ =0.
Define the invertible linear transformation matrices:
O = diag {A, I,} . (41)
Oy = diag{O1, li+om, O1}. (42)

The SOFC-EMS method incorporates a multi-objective opti-
mization module to handle simultaneous emergencies. This
module considers factors such as the emergency’s severity,
estimated arrival time, and available resources to prioritize
and allocate ambulances dynamically. In cases where demand
exceeds available resources, the system coordinates with
neighboring districts to request additional support, ensuring
optimal coverage across the wider urban area.

We can now formulate the following convex optimization
problem (OP3):

OP2 ming, y, Hs,J,0,L,%; 1t(O)
s.t.
v l_0>0
0700, >0

ATpA =0 (43)

where the matrices ®2T Q@z, ATnA, and other related matri-
ces are defined as Eqgs. (44)-(52), shown at the bottom of the
next page.

Based on OP3, we can now present the main result for
designing the secure output-feedback controller for the EMS
T-CPS:
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Theorem 2: Given a parameter A € (0, 1), solve OP3 and
then solve Egs. (49)-(51) and OJ + PRT = I, to obtain the
secure controller gains E, F, and G for the EMS T-CPS.

Proof:

1) Equivalence of constraints: a) First, we show that con-
straint (34) in OP2 is equivalent to constraint (42) in
OP3. This is due to the non-singular transformation
®y: ®100,~0 & 0>0 b) The constraint W~ —
O >0 ensures that the projected reachable set is con-
tained within the safety set: g4, (O) C & (V).

2) Obtaining controller gains: a) Solve OP3 to obtain Hi,
H,, Hs, J, O, and L. b) Use the full-rank decomposition
to find non-singular matrices R and P satisfying OJ +
PRT = 1I,.

3) Proving system safety: a) The solution of OP3 min-
imizes Tr(O), which is related to the volume of
the projected reachable set. b) The constraint W—! —
O>0 ensures that the projected reachable set is con-
tained within the safety set. ¢c) The obtained controller
gains E, F, and G result in a closed-loop system that
satisfies the safety constraints.

4) Optimality: The objective function Tr(O) is convex, and
all constraints in OP3 are convex. Therefore, the solution
obtained is globally optimal for the given A.

5) Feasibility: A solution to OP3 ensures the feasibility of
the secure controller design.

Therefore, Theorem 2 provides a method to obtain the optimal
secure controller gains E, F, and G for the EMS T-CPS
that ensure system safety while minimizing the volume of the
reachable set.

The solution to OP3 depends on the predefined parameter
A € (0,1). To find the optimal A that minimizes the objective
function for the EMS T-CPS, a grid search can be performed
over the interval (0, 1).

From Lemma 1, we can observe that when the EMS
T-CPS is not affected by noise, the Lyapunov function
ykTEyk satisﬁesykz_lEka - kykTEyk < 0. Therefore, the
controller ensures system stability for the EMS T-CPS without
noise.

The closed-loop system state vector y is constructed using
the system state ai, controller state zx, and filter estimation
error a; — ay (not the filter state estimate ay) for two reasons
specific to the EMS T-CPS: 1) After computing the invari-
ant reachable set eyx(Y™) in Theorem 1, we can project it
onto the ar — a; subspace to analyze the filter’s estimation
performance for ambulance positions and traffic conditions;
2) Using ag, zx, and a; to construct y; would change the
expressions for the matrices in the closed-loop system, making
it impossible to construct a convex optimization problem using
the non-singular transformation ®, designed in Theorem 2 for
the EMS T-CPS.

SOFC-EMS adapts to various urban traffic patterns through
several mechanisms:

o Time-of-day considerations: The controller parameters
are adjusted based on historical traffic data for differ-
ent times. For example, during morning rush hours,
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the system places higher weights on arterial roads that
experience heavy congestion.

« Real-time congestion detection: The system continuously
monitors traffic density across the grid. When congestion
is detected, it dynamically updates route plans for ambu-
lances, favoring less congested alternatives.

o Special event handling: The system incorporates a
database of scheduled events (e.g., sports games, con-
certs) that may impact traffic. When such events are
ongoing, the controller adjusts its parameters for expected
congestion in specific areas.

« Weather-based adaptations: The system factors in weather
conditions, reducing expected speed in adverse weather
and adjusting route preferences accordingly.

The optimization problem for controller design can be formu-
lated as a semidefinite program:

min trace (W*IX)

T T pT
‘L [AX+XA EBY—FY B —*1}50'

X>0 (53)

where objective function trace(W ~'X) is related to the vol-
ume of the ellipsoidal reachable set. Minimizing this trace
effectively minimizes the reachable set volume, enhancing
system security. The constraints ensure stability and positive
definiteness of X.While reachable set volume is the volume of
the set of all possible states that the system can reach under
given constraints and uncertainties. A smaller volume indicates
tighter control and improved system security.

The computational complexity of this semidefinite program
is O (nﬁ), where n is the dimension of the state space. For
our EMS T-CPS with three ambulances in a 10 x 10 grid,
n=126 (12 ambulance states 4+ 100 traffic states + 14 flow
parameters).
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V. SIMULATION RESULTS AND ANALYSIS

To wvalidate the effectiveness of the proposed secure
output-feedback control method for EMS T-CPS, we present
comprehensive simulation results using a realistic urban ambu-
lance routing scenario.

A. Physical Model and System Parameters

Our simulation environment is designed to replicate a
realistic urban EMS scenario. We model a city area as a
10 x 10 square grid, representing approximately Skm x Skm
of urban terrain [35]. Traffic flow is simulated using a cellular
automaton model incorporating lane-changing rules to cap-
ture complex traffic behaviors. The communication network
between ambulances and the control center is assumed to be
generally reliable, with a small 1% probability of packet loss
to model real-world imperfections.

We consider multiple attack models to test the robustness of
our system. These include false data injection attacks, where
random perturbations are added to traffic density reports, and
replay attacks, where previous valid traffic data is used to
mask current congestion patterns. To capture the variability
of urban environments, we simulate three distinct scenarios:
normal weekday traffic, rush hour congestion, and special
event conditions causing localized heavy traffic.

The simulation uses SUMO (Simulation of Urban MObility)
with the TraCl interface for traffic modeling. Our SOFC-EMS
algorithm is implemented in Python 3.8, utilizing NumPy and
SciPy for numerical computations and CVXPY for convex
optimization. The simulations are run on a high-performance
workstation with an Intel Core 17-10700K CPU, 32GB RAM,
and an NVIDIA GeForce RTX 3080 GPU to handle the
computational demands of our complex urban EMS scenarios.

The system matrices A, B, C, D1, and D; are constructed
to reflect the dynamics of ambulance movement, traffic flow,

i [ 20Ty, 0 oMy,
0y 06, = 0 14 NTY, (44)
L oly,e, efyn  ely,
0TY®, = diag {ATnA, L} (45)
[0 |
T _ n
AnA__In J]. (46)
1, —T'C J—JT|C+ H,C — H,T»C L—LT,C
@{YN = -1 —JT1/CA+ Hy— HyT, JT1+ HT ()]
| LTy LT, —LK
[ AO + BH; H JA+ H,CA
ofymo, = 0 —~T\CA —JT,CA— H,T,CA (48)
i 0 0 LA—LT,CA
T\ =TH], T, = HhH, (49)
Hy =JAO + RFCAO + JBGPT + REPT + RFCBGPT
(50)
H, = RF (51)
Hy=GPT (52)
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and the interactions between ambulances and traffic conditions.
The sampling interval is set to 5 seconds, which balances
control responsiveness and computational efficiency for urban
EMS operations. The 5-second sampling interval was chosen
to balance control responsiveness and computational effi-
ciency. This interval allows for frequent updates to ambulance
routing and traffic control decisions while remaining feasible
for real-time computation in urban EMS scenarios. It also
aligns with typical update frequencies of traffic management
systems in smart cities.

According to Eq. (24), « is often related to the residual
bound. It is set to 5.99, which might correspond to a 95%
confidence interval for a chi-square distribution with 2 degrees
of freedom. B is set to 9.21, which could relate to the
process noise bound. 6 is set to 11.98, likely related to the
measurement noise bound. This highest value might corre-
spond to an even higher confidence interval, perhaps 99.5%
or 99.9%, for a chi-square distribution with 2 or 3 degrees of
freedom.

B. Simulation Setup
We consider three simulation scenarios [36]:

1) Normal operation (no attacks).

2) Stealthy false data injection attack on traffic density
Sensors.

3) Stealthy actuator attack on ambulance routing com-
mands.

The KL divergence threshold is set to § = 0.1, and the safety
region parameters are chosen to ensure ambulances maintain
safe distances from each other and avoid high-traffic density
areas. The noise covariance matrices X, and X, are selected
to reflect realistic measurement and process uncertainties in
urban environments.

The performance metrics are as follows.

1) Average ambulance response time: The mean time from
when an emergency call is received to when an ambu-
lance arrives at the scene. This metric directly measures
the efficiency of the EMS system in responding to
emergencies.

2) System safety score: A composite metric (0-100) that
considers factors such as:

o Percentage of time ambulances operate within safe
speed limits

« Maintenance of safe distances between ambulances
and other vehicles

o Adherence to planned routes

3) Attack detection latency: The time elapsed between the
start of an attack and its detection by the system. Lower
latency indicates better system security.

These metrics were chosen for their direct relevance to EMS
performance and security. Response time is critical in emer-
gencies where every minute can impact patient outcomes.
The safety score ensures that improved efficiency doesn’t
come at the cost of increased risk. Attack detection latency
measures the system’s resilience to cyber threats, crucial in
maintaining the integrity of EMS operations in a smart city
environment.
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C. Results Analysis

To verify the results of Theorem 1, we analyze the relation-
ship between the KL divergence threshold § and the volume
of the ellipsoidal invariant reachable set for different values
of @, B, and 6. Fig. 3 illustrates this relationship. In this
simulation, we used identical values for «, 8, and 6 to simplify
the analysis and focus on the overall performance of the
SOFC-EMS method. These values were chosen to represent a
moderate level of uncertainty in residuals, process noise, and
measurement noise, respectively. In practice, these parameters
would be tuned based on specific characteristics of the EMS
system and observed noise levels.

It can be seen from Fig. 3 that all three lines show an
increasing trend, indicating that as the KL divergence threshold
§ increases, the volume of the reachable set also increases. This
aligns with our expectations, as a higher & allows for more
significant deviations in the system’s behavior, potentially due
to stealthier attacks.

The lines for larger (o, B, 0) values consistently show larger
reachable set volumes, which is intuitive as these parameters
relate to the allowable bounds on residuals and noise. This
demonstrates that our method effectively captures the impact
of both attack stealthiness and system uncertainties on the
reachable set.

Next, we examine the impact of the parameter A on the vol-
ume of the ellipsoidal invariant reachable set. Fig. 4 presents
this relationship.

It can be seen from Fig. 4 that this behavior can be explained
by the trade-off between the contraction rate of the Lyapunov
function (1) and the allowable deviation due to noise and
attacks (1 — Q).

The minimum point of each curve represents the optimal A
value for each set of («, 8, 6). The optimal A is approximately
0.4 for all three cases, suggesting a consistent balance point
regardless of the specific («, 8, ) values.

We visualize the reachable sets in the state space to provide
a more intuitive understanding. Fig. 5 shows the projections
of the ellipsoidal invariant reachable sets onto the plane of the
first ambulance’s position.

Upon closer inspection, while the ellipses primarily differ in
size, subtle differences in their eccentricity can be observed.
These minor variations in shape reflect the system’s sensitivity
to different types of uncertainties and attacks. The similar

Authorized licensed use limited to: Northeastern University. Downloaded on September 26,2025 at 01:35:10 UTC from IEEE Xplore. Restrictions apply.



14188

400

a=3=0=599
a=p3=0=921
—#%—a=3=0=11.98

350

300
- 250
200 -

150

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A

Fig. 4. Relationship between A and volume of ellipsoidal invariant reachable
set with different «, B, and 6.

T -
a=3=6=59 |]

51
o ~ a=F=0=921
A /*,/ \,f\?%u—@—a—nes i
3t
# X
2r ¥
1h 4 *
2 1
2 of # %
2 |
204 I
2 X pa
X #
ys )/
4+ y\*\
5F F—s H—K *
. .
6 4 2 0 2 4 6 8

Position

Fig. 5. Ellipsoidal invariant reachable sets of system’s state with different
«, B, and 6.

800

700

600 [

2 500 -
£
400

300

200

L L . L L L . L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A

Fig. 6. Relationship between A and Tr(O) with different «, S, and 6.

orientations suggest that the primary direction of state uncer-
tainty remains consistent across different parameter settings.
However, the increasing size of the ellipses with larger «, £,
and 6 values indicates the system’s expanded range of possible
states under greater uncertainties and potential attacks.

To verify the results of Theorem 2 and evaluate the effec-
tiveness of our controller design method, we analyze the
relationship between A and Tr(O), which is related to the
volume of the projected reachable set in the physical state
space. Fig. 6 illustrates this relationship.

As seen from Fig. 6, the minimum points occur at slightly
different A values, typically around 0.7. This shift can be
attributed to the projection of the physical state space and
the specific constraints of the EMS T-CPS.

The curves for larger (o, B, 6) values consistently show
higher Tr(O) values, indicating larger projected reachable sets.
This aligns with our expectations and previous results.
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Next, we evaluate the performance of our designed con-
troller by comparing the system’s behavior with and without
the secure output-feedback controller. Fig. 7 presents this
comparison.

The visual representation in Fig. 7 demonstrates the SOFC-
EMS controller’s efficacy in enhancing system safety for
EMS T-CPS. Without the controller, the ellipsoidal reach-
able set extends beyond the boundaries of the safe region,
intersecting with areas deemed unsafe for system operation.
This overlap signifies a concerning vulnerability, where the
system states could evolve into configurations that compromise
safety, possibly leading to critical failures or suboptimal EMS
performance.

To further demonstrate the high performance of the pro-
posed SOFC-EMS method in T-CPS under stealthy attacks,
we conducted additional experiments comparing it with the
six baseline methods: SOF [26], dtCPS [27], T-S-FMPC [28],
ETDOFDC [29], SSC-CDN [30], and SCMN [31]. These
experiments focus on key performance metrics relevant to
EMS operations in urban environments.

We evaluated the average response time of ambulances
across various urban scenarios with different traffic conditions
and attack intensities. Fig. 8 presents a line chart showing each
method’s average response time (in minutes) over a 24-hour
period.

It can be seen from Fig. 8 that SOFC-EMS consistently
outperforms the baseline methods, maintaining lower average
response time even during peak traffic hours and under varying
attack intensities. The proposed method’s ability to adapt to
changing conditions and mitigate the impact of stealthy attacks
significantly improves EMS performance.

To assess the resilience of each method against stealthy
attacks, we measured the system’s ability to maintain safe
operations under increasing attack frequencies. Fig. 9 illus-
trates this comparison using a 3D surface plot.

In Fig. 9, the z-axis represents a safety score (0-100), while
the x and y axes show the attack frequency and different
methods, respectively. SOFC-EMS demonstrates superior per-
formance, maintaining higher safety scores across a wider
range of attack frequencies than the baseline methods.

To assess the scalability of SOFC-EMS, we conducted addi-
tional simulations using progressively larger urban models.
We evaluated the method’s performance across three scenarios:
the original 10 x 10 grid with three ambulances, a medium-
scale 20 x 20 grid with ten ambulances, and a large-scale
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TABLE I
SCALABILITY ANALYSIS OF SOFC-EMS
Avg. re-
Sce- Grid Ambu- sponse Computa-  Memory
: . . tional time usage
nario size lances time (ms) (MB)
(min)
Small 10x10 3 8.2 45 128
Medium  20x20 10 10.5 180 512
Large 30x30 20 12.8 420 1024

30 x 30 grid with 20 ambulances. Each scenario incorporated
increasing complexity in road networks and traffic patterns.
Table I summarizes the key performance metrics for each
scenario.

The results demonstrate that SOFC-EMS maintains reason-
able performance as the problem size increases. The average
response time shows a sublinear increase relative to the expan-
sion of the urban area, indicating that the method effectively
manages the added complexity. This is likely due to the
adaptive nature of the control algorithm, which can leverage
the increased number of ambulances to maintain coverage
despite the larger area.

Next, we conducted a comparative analysis to evaluate
the proposed SOFC-EMS method’s effectiveness compre-
hensively. The comparison focused on critical performance
metrics for EMS operations under stealthy attacks. Table II
presents a summary of the comparative results.

The results demonstrate that SOFC-EMS outperforms exist-
ing methods across all key metrics. These comparative
results highlight the significant advancements made by the
SOFC-EMS method in securing and optimizing EMS oper-
ations within T-CPS frameworks. The consistent superior
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TABLE II
PERFORMANCE COMPARISON OF SOFC-EMS WITH EXISTING METHODS

Avg. re- - .
Method sponsge Iieme Safety score /?it:)?lcgfe:z; R'e source ;1 -
(min) (0-100) () lization (%)
SOFC-EMS 7.8 92 2.3 88
SCMN 8.3 89 3.1 84
SSC-CDN 8.7 86 35 81
ETDOFDC 9.1 83 39 78
T-S-FMPC 9.4 80 42 75
dtCPS 9.8 77 4.6 72
SOF 10.3 73 5.1 68
TABLE III

SOFC-EMS PERFORMANCE UNDER DIFFERENT ATTACK SCENARIOS

Avg. re-

Attack sce- sponse time Safety score Detection
nario . rate
(min)

No Attack 8.2 92 N/A

DoS Attack 9.1 89 95%

FDI Attack 8.7 90 92%

Replay At- 8.5 91 88%

tack

performance across various metrics and under different attack
scenarios underscores the method’s potential to substantially
enhance the resilience and effectiveness of urban EMS systems
against cyber threats.

Further, we evaluated SOFC-EMS under three distinct
attack scenarios. The results are shown in Table III.

o Denial of service (DoS) Attack: Periodic jamming of
communication channels between ambulances and the
control center.

o False data injection (FDI) Attack: Manipulating traffic
density reports to mislead ambulance routing.

« Replay attack: Replaying old, valid traffic data to mask
current road conditions.

SOFC-EMS demonstrated robust performance across all
attack scenarios. These results highlight the adaptability of
SOFC-EMS to various attack vectors, ensuring resilient EMS
operations under diverse cyber threat scenarios.

We conducted a comprehensive comparison with six base-
line methods to assess the accuracy and effectiveness of
our SOFC-EMS model. We evaluated these methods using
real-world EMS data from a mid-sized urban area over six
months. The results are summarized in Table I'V.

Table IV shows SOFC-EMS consistently outperforms all
baseline methods across all three scenarios: normal traffic,
peak hours, and simulated attack conditions. This resilience in
challenging conditions can be attributed to SOFC-EMS’s inno-
vative integration of Kullback-Leibler divergence for attack
characterization and dynamic output-feedback control. These
features enable more effective detection and response to subtle
attacks and traffic anomalies, maintaining high prediction
accuracy even in adverse conditions.

These results demonstrate the effectiveness of our
SOFC-EMS method in maintaining system performance under
various attack scenarios. The method’s ability to keep average
response time within 1 minute of non-attack conditions, even
under sophisticated attacks, highlights its robustness. This is
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TABLE IV
PREDICTION ACCURACY

Method Normal traf-  Peak hours Simulated

fic (%) (%) attack (%)
SOFC-EMS 95.2 91.8 89.5
SCMN 93.1 89.3 86.2
SSC-CDN 924 88.7 85.5
ETDOFDC 91.8 87.9 84.7
T-S-FMPC 91.2 87.3 84.1
dtCPS 90.5 86.8 83.4
SOF 89.1 85.2 81.9

particularly crucial in EMS contexts where every minute can
significantly impact patient outcomes.

Maintaining high safety scores (89-91 out of 100) across
all attack scenarios underscores the method’s emphasis on
balancing efficiency with safety. This is a key consideration in
urban EMS operations where the pressure to respond quickly
must be balanced against the need to ensure the safety of
ambulance crews, patients, and other road users.

The detection rates for various attacks, ranging from 88%
to 95%, demonstrate the method’s sensitivity to cyber threats.
The slightly lower detection rate for replay attacks (88%)
suggests an area for potential future improvement, possibly
through the integration of more sophisticated temporal analysis
techniques.

Overall, these results justify the effectiveness of our
SOFC-EMS approach in providing a secure, efficient, and
adaptable control method for EMS in T-CPS environments.
The method’s performance across various metrics and attack
scenarios supports its potential for real-world application in
enhancing the resilience of urban EMS systems against cyber
threats.

VI. CONCLUSION

This study addressed the critical challenge of secur-
ing EMS T-CPS against stealthy attacks. We developed
a novel SOFC-EMS method that effectively balanced sys-
tem security and operational efficiency. The method utilized
Kullback-Leibler divergence to characterize attack stealthiness
and employed dynamic output-feedback control to maintain
system stability under adverse conditions. Simulations val-
idated the effectiveness of SOFC-EMS in realistic urban
EMS scenarios. The method consistently outperformed exist-
ing approaches in key metrics, including average ambulance
response time and system safety scores under increasing attack
frequencies. Visualizations of the ellipsoidal invariant reach-
able sets with and without the controller clearly illustrated the
security enhancements achieved by our approach.

However, the SOFC-EMS method demonstrates significant
improvements in EMS security and efficiency. It is important
to acknowledge the limitations of the current research and
outline potential future directions. Our simulations, although
comprehensive, were conducted in a simplified urban grid that
may not fully capture the complexity of real-world urban
environments. The diversity of urban landscapes, including
factors such as varying road widths, complex intersections,
and geographical obstacles, could impact the performance
of our system in ways not fully explored in this study.
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Additionally, while we considered a range of attack models,
the ever-evolving nature of cyber threats means that our system
may need to prepare for all possible future attack vectors. The
computational complexity of our method, while manageable in
our simulated environment, may pose challenges for real-time
implementation in very large-scale systems spanning entire
metropolitan areas.

One promising direction is the integration of advanced
machine learning techniques, particularly deep reinforcement
learning, to enhance the adaptability of the control system.
This could enable the SOFC-EMS to learn and improve
its performance, adapting to evolving urban dynamics and
attack patterns without requiring explicit reprogramming.
Another important area for future exploration is expanding
the SOFC-EMS framework to encompass a broader range
of emergency services beyond just ambulances. This could
include fire departments, police services, and disaster response
teams, creating a comprehensive, secure, and efficient emer-
gency response ecosystem for smart cities. Such an integrated
approach could significantly improve coordination among dif-
ferent emergency services and optimize resource allocation
during large-scale incidents.
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