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Abstract—Rising trends in Industrial Internet of Things
(IIoT), flexible manufacturing, and edge computing present
unprecedented opportunities for advancing healthcare manu-
facturing systems. However, orchestrating resources efficiently
while maintaining stringent healthcare quality standards poses
significant challenges, particularly in environments where man-
ufacturing processes must adapt quickly to varying production
requirements. These challenges are further complicated by
the limited computational resources of IIoT devices and the
need for real-time processing in medical device production and
pharmaceutical manufacturing. To address these challenges, we
propose a distributed healthcare-aware deep learning resource
orchestration (DH-DLRO) algorithm for edge computing-enabled
healthcare IIoT flexible manufacturing systems. Our approach
constructs a joint optimization problem for task offload-
ing decisions and resource allocation, specifically tailored to
healthcare manufacturing requirements. The algorithm employs
multiple parallel deep neural networks to generate efficient
offloading decisions while considering healthcare-specific qual-
ity constraints and manufacturing precision requirements. The
algorithm reduces energy consumption by 25%–30% while
maintaining medical device manufacturing precision standards,
shows remarkable stability across varying task sizes (7000–
25000 bytes), and exhibits robust performance under different
system parameter configurations. DH-DLRO maintains consis-
tent Quality of Service levels above 0.95 for medical device
assembly tasks while achieving optimal CPU utilization patterns
between 60%–80%, demonstrating its effectiveness in balancing
computational efficiency with healthcare manufacturing quality
requirements.

Index Terms—Edge computing, flexible manufacturing, health-
care manufacturing, Industrial Internet of Things (IIoT),
resource orchestration.

I. INTRODUCTION

THE IMPLEMENTATION of Industrial Internet of
Things (IIoT) technologies has transformed manufactur-

ing systems, particularly in sensitive production areas such
as healthcare, where accuracy, dependability, and flexibility
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are crucial [1], [2], [3]. IIoT devices are increasingly used
by modern healthcare manufacturing facilities for the produc-
tion of medical equipment, pharmaceuticals, and customized
medical devices using flexible manufacturing systems [4], [5].
These smart manufacturing systems require prompt processing
of enormous quantities of data, especially regarding ana-
lytic and healthcare compliance, owing to strict operational
regulations [6], [7]. Yet, IIoT devices in these healthcare
manufacturing environments face extreme constraints in their
hardware computation capabilities as well as energy resources,
which severely limits the system’s ability to process data while
meeting the stringent Quality of Service (QoS) healthcare-
grade manufacturing standards demands [8], [9].

As highlighted in sources [10] and [11], edge comput-
ing solves the latency and processing challenges within the
framework of healthcare-focused IIoT flexible manufacturing
systems. Edge computing offers critical low-latency processing
for real-time quality control and production line adaptability
by placing servers at the network edge close to the manufac-
turing floor. While traditional cloud computing offers powerful
capabilities, it often results in latencies that are far too slow
for IIM healthcare manufacturing processes, where decisions
need to be made within milliseconds to ensure optimal product
quality and safety [12], [13].

Resource orchestration differs from traditional resource
allocation in that it accentuates the coordinated and auto-
mated management of several interdependent resources across
multiple distributed computing environments. In healthcare
IIoT manufacturing settings, orchestration refers to the
dynamic coordination of computation resources, network
bandwidth, storage capacity, and processing priority among
various edge servers when all decisions related to resource
allocation must stand in compliance with healthcare quality
standards and regulatory requirements. Hence, the orches-
tration approach enables the automation of decision-making
about the management of resources while keeping the intricate
interdependencies between various resource types and manu-
facturing processes into consideration.

The adoption of healthcare-oriented IIoT systems with
flexible manufacturing principles adds an extra layer of
complexity concerning resource management and task
scheduling [14]. Moreover, within the pharmaceutical industry,
flexible manufacturing systems automate and dynamically
balance assembly lines for distinct production runs, such
as switching between different medical device specifications
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or modifying pharmaceutical formulation parameters. These
shifting paradigms demand agile resource management that
ensures dynamic dispatching of computationally intensive
tasks while adhering to rigid medical grade quality bench-
marks [15], [16].

IIoT is a paradigm shift in manufacturing automation,
wherein interconnected devices, sensors, and machines create
intelligent production ecosystems [17]. Within these healthcare
manufacturing contexts, IIoT enables real-time monitoring of
production parameters and automated quality control, along
with adaptive manufacturing processes to meet changing
demands. IIoT, when combined with edge computing, provides
distributed intelligence networks where manufacturing deci-
sions can be taken locally yet remain connected to centralized
management systems. Such a distributed form comes espe-
cially handy in healthcare manufacturing, where production
lines have to be running around the clock and yet comply with
stringent regulatory requirements.

The evolution of IIoT pertaining to healthcare manufactur-
ing is about balancing numerous technological layers, from
sensor-level data collection to the broad end of production
planning at the enterprise level [18]. Manufacturing machinery
is equipped with smart sensors to monitor variable parameters,
such as temperature, pressure, and vibration, while machine
learning algorithms utilize these data streams to identify
irregularities and forecast maintenance needs. With some edge
computing nodes placed throughout the manufacturing facility,
the sensor data gets processed locally, therefore reducing
latency and creating means to respond to situations that require
such immediate attention instantly. This multilayered system
sets the foundation to ensure that healthcare manufacturing
operations can bank on an exceptional level of precision and
reliability required for the production of medical devices and
pharmaceutical processing.

We make three contributions to advance the field of
healthcare-oriented IIoT flexible manufacturing systems with
edge computing.

1) We propose distributed healthcare-aware deep learning
resource orchestration (DH-DLRO), a novel distributed
deep learning-based resource orchestration algorithm for
healthcare manufacturing environments. The algorithm
encompasses four core components: a) a multi-deep
neural network (DNN) architecture with multiple par-
allel DNNs for different healthcare manufacturing
tasks; b) an adaptive DNN scaling mechanism that
dynamically adjusts network count based on task diver-
sity index (TDI) and computational load variance;
c) a healthcare-aware joint optimization framework that
simultaneously handles binary offloading decisions and
bandwidth allocation while maintaining medical-grade
quality constraints; and d) an experience replay memory
system calibrated for healthcare manufacturing precision
requirements.

2) We develop a joint optimization framework that han-
dles task offloading decisions and resource allocation
while maintaining healthcare manufacturing quality
standards. This framework transforms the original

mixed-integer nonlinear programming problem into
decomposed subproblems through strategic problem for-
mulation, enabling efficient resource allocation across
edge servers.

3) We implement a multi-DNN architecture that enables
parallel processing of healthcare manufacturing tasks
while maintaining consistent quality standards. The
architecture features neural networks for medical device
assembly tasks, pharmaceutical processing tasks, and
quality control operations, with each network opti-
mized using a modified Adam algorithm that minimizes
healthcare-specific cross-entropy loss functions while
preserving manufacturing precision requirements.

The remainder of the article is organized as follows.
Section II gives the related works. Section III introduces the
system model. Section IV presents our proposed DH-DLRO
algorithm. Section V provides experimental results. Finally,
Section VI concludes this article.

II. RELATED WORKS

Recent work exploiting deep learning techniques, especially
the application of DNNs, has effectively improved the allo-
cation of resources in sophisticated systems [19], [20]. Such
solutions based on deep learning still work for general IIoT
use cases and do not consider the specifics of the healthcare
manufacturing priorities. The problem involves intelligent
resource orchestration processes that enhance decision-making
for task offloading, manage wireless resource allocation,
and uphold quality standards for healthcare manufactur-
ing [21], [22], [23].

More recent works on resource orchestration have looked
at different solutions. GAN-NoisyNet resource orchestration
was proposed by Gupta et al. [24]. Dong et al. [25] proposed
an FedMRL approach for data-privacy-preserving network
slice orchestration and resolved the cold-start problem. A
deep reinforcement learning algorithm was introduced for
efficient workload orchestration under the name DEWOrch
by Safavifar et al. [26]. Proactive resource orchestrators
leveraging deep reinforcement learning for open radio access
networks were introduced by Staffolani et al. [27]. Deep
learning enabled computation and radio resource orchestration
in virtualizing radio access networks, proposed by Ayala-
Romero et al. [28], called vrAIn.

Applying existing resource orchestration techniques to
healthcare manufacturing processes poses numerous difficul-
ties [29]. For example, traditional cloud-based infrastructures
provide no value in the healthcare domain due to overly
sluggish response times for precision medicine manufactur-
ing workflows, and current edge computing frameworks are
indifferent to healthcare quality standards [30], [31]. Existing
methods tend to optimize resource management, but they
cannot sustain the sharpened precision required during the
medical device assembly procedures [32]. The same can be
said for resource-adaptive allocation approaches based on
generative adversarial networks that fail to ensure consistent
regulated compliance in pharmaceutical production. A number
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Fig. 1. System model in healthcare IIoT based on edge computing.
(The three-layer hierarchy shows: 1) cloud computing layer providing long-
term data storage and analytics for regulatory compliance and batch record
management; 2) edge computing layer with BSs and edge servers positioned
near manufacturing zones to provide low-latency processing for real-time qual-
ity control, pharmaceutical batch monitoring, and medical device assembly
verification; and 3) infrastructure layer containing healthcare manufacturing
devices).

of approaches based on federated learning apply distributed
computation efficiently, but the decision logic frameworks
lacking innovation severely compromise process control dur-
ing healthcare manufacturing quality assurance [33], [34],
[35]. Unlike all these examples, the proposed approach
solves these problems with its healthcare-conscious multi-
DNN architecture by introducing energy-efficient parallel
processing algorithm constraints for offloading decisions while
honoring healthcare-grade manufacturing multiprocessor oper-
ational demands.

III. SYSTEM MODEL

Fig. 1 illustrates a healthcare-oriented IIoT flexible manu-
facturing system supported by edge computing infrastructure.
The system is structured in a multilayer hierarchy, with
the edge computing layer strategically positioned between
the cloud and manufacturing infrastructure layers. This edge
computing layer is equipped with sophisticated base stations
(BSs) and specialized edge servers designed to handle the
stringent requirements of healthcare manufacturing processes.
Each BS effectively manages a dedicated zone of the man-
ufacturing floor, overseeing n healthcare IIoT devices, where
n = 1, 2, . . . , |N|.

The healthcare manufacturing environment depicted in this
system model incorporates multiple specialized components
designed for medical-grade production. Assembly robots in
the infrastructure layer perform precision assembly of medical
devices, such as pacemakers, insulin pumps, and diagnostic

equipment, requiring positioning accuracy within micrometers.
Sensors throughout the manufacturing floor monitor critical
parameters, including particulate levels in cleanrooms, temper-
ature variations in pharmaceutical storage areas, and humidity
control in sterile packaging zones. Production line controllers
manage complex workflows that must maintain compliance
with FDA regulations, including real-time documentation of
manufacturing parameters and automated rejection of products
that fall outside acceptable quality ranges. The edge servers
are equipped with healthcare-specific algorithms for analyzing
biocompatibility test results, validating pharmaceutical formu-
lations, and ensuring that all manufacturing processes meet
medical device quality standards such as ISO 13485.

The system operates on a carefully designed time-slotted
model where operational time is systematically divided into
t consecutive periods of equal duration, represented as t =
1, 2, . . . , |T|, with each slot t having a fixed duration τ . This
temporal organization enables precise coordination of manu-
facturing processes and resource allocation decisions, which
is crucial for maintaining the exacting standards required in
healthcare product manufacturing. At the commencement of
each time slot t, the healthcare IIoT devices generate various
computational tasks related to their specific manufacturing
processes, denoted as Qn(t) = (An(t), Zn(t)). Here, An(t)
represents the data size of the manufacturing task generated
by the nth healthcare IIoT device, which could range from
simple sensor readings to complex quality control imaging
data. In contrast, Zn(t) indicates the required CPU cycles for
processing these healthcare manufacturing tasks, accounting
for the computational complexity of precision manufacturing
operations.

To describe these interactions within a practical healthcare
production model, think of an assembly line that manufactures
and assembles medical devices like pacemakers. On the
production floor, there are micro-assembly robots IIoT devices
that solder microelectronics with 10-micrometer precision;
packers verify the calibration of the complete sets within the
boxes per industry standards; and QC sensors that analyze
4 K frames. Every micro assembly robot creates telemetry
data of 15 MB every 5 s, and this data is streamed, as
private wireless channels, to the closest edge server. The edge
server has the responsibility of checking this telemetry data
for system micro-assembly metrics that could affect device
dependability and have risks of unreliable performance. As
composed of reasonable geometric verification methods, these
decisions can be made autonomously using local computation.
More advanced geometric hypothesis testing requires more
advanced techniques and thus must process information on the
edge server. These requests are executed by the edge server
equipped with dedicated algorithms for medical manufacturing
domains, while time-sensitive tasks are prioritized due to
DH-DLRO healthcare-aware orchestration principles. Thus,
while production is balanced, the workload for computational
resources is prioritized for life-critical parts.

Task generation across the manufacturing floor follows
an independent and identical distribution pattern, reflecting
healthcare manufacturing processes’ diverse but structured
nature. The wireless communication channels between devices
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and BSs maintain consistent conditions within each time slot.
However, they may experience variations between consecutive
slots, adapting to the dynamic nature of the manufacturing
environment. To optimize task processing in this complex
system, a binary offloading strategy is employed: when
xn(t) = 1, it indicates that the nth healthcare IIoT device’s
manufacturing task is processed at the edge server, leveraging
its superior computational capabilities for complex healthcare
manufacturing calculations; conversely, xn(t) = 0 signifies that
the task is processed locally on the device, suitable for simpler,
time-sensitive operations that require immediate response in
the manufacturing process [36].

A. Communication Model

In the healthcare-focused IIoT flexible manufacturing
system, sophisticated orthogonal frequency division multiple
access is used for task transmission management and to
control communication within the system [37]. Each piece
of manufacturing equipment, such as the assembly robots for
medical equipment, the pharmaceutical processing units, and
the quality control systems, is linked to dedicated channels to
maintain reliable data communication with a pharmaceutical-
grade robot. In this sophisticated manufacturing environment,
the healthcare IIoT device to BS uplink transmission rate
is computed in real-time based on the enhanced Shannon
limits and the uplink transmission enhancement conventional
hybrid Shanon formula, which is tailored for the specific
needs of production and processing of medical devices and
pharmaceuticals [38].

Temperature sensors throughout the manufacturing floor
feed data to the orchestration system. The allocation engine
evaluates thermal conditions when distributing computing
loads across edge nodes. The system redistributes processing
tasks during elevated temperatures to maintain optimal operat-
ing conditions. Environmental monitoring dashboards display
real-time temperature maps with corresponding resource allo-
cation patterns.

The system allows seamless monitoring and control of
resource allocation through a touchscreen interface. Workers
can visualize system metrics and receive alerts concerning
potential resource constraints or inefficiencies

Si(t) = Wi(t)log2

(
1 + qi(t)gi(t)

Nmed

)
(1)

where qi(t) represents the transmission power allocated to the
ith healthcare manufacturing device during time slot t, gi(t)
denotes the wireless channel gain between the manufactur-
ing device and the BS responsible for monitoring medical
production processes, Wi(t) indicates the wireless channel
bandwidth assigned to the ith healthcare manufacturing unit,
and Nmed is the specialized Gaussian noise power spectral
density calibrated for medical manufacturing [39].

The transmission latency for healthcare manufacturing data,
crucial for maintaining precise quality control in medical
device production and pharmaceutical processing, is defined
through a comprehensive metric accounting for data volume

and transmission capabilities. This latency metric is expressed
as

Dtrans
i = Mi(t)

Si(t)
(2)

where Mi(t) denotes the volume of healthcare manufacturing
data generated by the ith device in bytes, encompassing
various manufacturing processes from precision assembly
telemetry (typically 10–15 MB per batch) to real-time quality
control measurements (4–8 MB per inspection cycle). Si(t)
represents the maximum transmission rate in bytes per second
as calculated in (1), which varies based on channel condi-
tions and allocated bandwidth. For medical device assembly
operations, transmission latency must remain below 200 ms to
ensure timely detection of manufacturing defects.

B. Computation Model

In healthcare-focused IIoT flexible manufacturing systems,
computing tasks are handled with a refined dual-mode system
that uses local and edge computing. In local computation
situations, such as with healthcare manufacturing devices that
execute task processing, the computation lag correlates with
the device’s processing capability and the medical manufac-
turing process workflow. This relationship is captured in the
following:

Lproc
i = Qi(t)β

clocal
i

(3)

where Qi(t) represents the healthcare manufacturing task’s
computational requirements in terms of processing cycles,
clocal

i denotes the local computing capability of the ith health-
care manufacturing device, and β indicates the number of CPU
cycles required to process one bit of healthcare manufacturing
data, accounting for the precision requirements in medical
device production and pharmaceutical processing.

For edge computing scenarios, where tasks are offloaded to
powerful edge servers designed for healthcare manufacturing
applications, the computation delay follows a different model
that considers the enhanced processing capabilities available
at the edge

Eproc
i = Qi(t)β

cedge
i

(4)

where cedge
i represents the edge server’s computing resources

allocated to the ith healthcare manufacturing device’s tasks.
In healthcare manufacturing environments, the computational
results typically generate smaller data volumes than the ini-
tial input data, particularly in quality control and process
optimization scenarios. We focus on the primary processing
delays while excluding the downstream data transmission
latency and associated energy costs for analytical simplicity
and practical considerations in medical device manufacturing.

Consequently, for healthcare manufacturing tasks, there is
proportionality to the selected computation strategy. In the case
of local processing, total delay equates to local processing
time. However, in the case of edge processing, the total delay
consists of the sum of all transmission and computation delays

T total
i = Dtrans

i + Eproc
i . (5)
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Our resource orchestration approach aligns with ISO
13485 medical device quality management standards and
FDA good manufacturing practice guidelines, ensuring that
automated task allocation maintains required documenta-
tion and traceability throughout the manufacturing process.
The resource orchestration system monitors power consump-
tion patterns and adjusts workload distribution to minimize
environmental impact. During off-peak hours, the system con-
solidates computing loads onto fewer edge servers, allowing
others to enter low-power states.

C. Energy Consumption Model

In healthcare-oriented IIoT flexible manufacturing environ-
ments, energy consumption patterns vary significantly between
local processing and edge computing scenarios. The energy
consumption primarily comprises computational requirements
for local computation in healthcare manufacturing devices,
such as medical equipment assembly robots and pharmaceuti-
cal processing units. This local energy consumption model is
expressed as

Plocal
i (t) = γ

(
clocal

i

)3
Lproc

i (6)

where γ represents the energy coefficient specifically cal-
ibrated for healthcare manufacturing computing operations,
given the battery limitations of healthcare IIoT devices in man-
ufacturing environments, the total energy consumption must
remain within a predefined budget Pmax

med, ensuring sustainable
operation throughout extended production cycles.

The energy consumption model becomes more complex
for edge computing scenarios in healthcare manufacturing,
incorporating both transmission energy requirements and edge
server computing costs. This comprehensive energy consump-
tion is formulated as

Pedge
i (t) = qi(t)D

trans
i + Hγ

(
clocal

i

)3
Eproc

i (7)

where H represents the weight factor for edge server energy
consumption in healthcare manufacturing contexts. When
H = 0, the model exclusively considers the transmission
energy of healthcare IIoT devices, particularly relevant in
scenarios where edge server energy costs are subsidized
or negligible compared to the critical nature of healthcare
manufacturing operations.

D. Problem Formulation

In healthcare-oriented IIoT flexible manufacturing environ-
ments, we assume that only the wireless channel gain gi(t)
varies between time slots among all system parameters. In
contrast, other parameters remain fixed to maintain consis-
tent healthcare manufacturing quality standards. These fixed
parameters ensure precise control and reliability in medical
device production and pharmaceutical processing operations.

To minimize the completion time of healthcare manufac-
turing tasks and their associated energy consumption while
maintaining medical-grade precision, we introduce a com-
prehensive efficiency function U(y, W, c). This function is
defined as the weighted sum of energy consumption and

task completion delay across all healthcare manufacturing
processes

U(y, W, c) =
I∑

i=1

(
(1 − yi(t))Pi

local(t)+
ryi(t)Pi

edge
(t) + K max

(
T total

i , Lproc
i

)
)

. (8)

where K represents the weight balancing energy consumption
against healthcare manufacturing task completion time, and
r denotes the edge computing utilization factor. Through
joint optimization of each healthcare manufacturing device’s
offloading decisions and resource allocation strategies, we
establish the primary optimization problem (P1) to minimize
U(y, W, c)

P1: miny,W,c U(y, W, c)

s.t. C1 :
I∑
i

Wi(t) ≤ Wmax

C2 : Wi(t) ≥ 0 ∀i ∈ I

C3 : yi ∈ 0, 1 ∀i ∈ I

C4 : cedge
i ≥ 0 ∀i ∈ I

C5 : d’max. (9)

In this formulation, C1 ensures that all healthcare manu-
facturing devices’ total uplink bandwidth allocation does not
exceed the maximum available bandwidth Wmax, critical for
maintaining real-time communication in medical production
processes. C2 specifies that bandwidth allocation must be
positive for all devices. C3 restricts the offloading decision
variable yi to binary values, determining whether tasks are
processed locally or at the edge. C4 ensures positive resource
allocation for edge processing. At the same time, C5 maintains
that total computing resource allocation does not exceed the
edge server’s maximum computing capacity cmax, essential for
reliable healthcare manufacturing operations.

To enable hybrid processing strategies, we extend our binary
offloading model to include partial task decomposition. Tasks
can be split into critical components requiring immediate local
processing and complex components suitable for edge com-
putation. This hybrid approach allows fine-grained resource
allocation, enabling real-time sensor data processing locally
while offloading complex analytics to edge servers.

Since P1 represents a mixed-integer nonlinear programming
problem, conventional optimization methods cannot solve it
directly [40]. The healthcare manufacturing requirements for
precision and reliability further increase the complexity. To
address these challenges in healthcare IIoT flexible manufac-
turing, we propose a novel deep learning-based distributed
resource orchestration algorithm that effectively balances com-
putational efficiency with healthcare manufacturing quality
standards.

IV. DH-DLRO ALGORITHM

During off-peak manufacturing periods, the system redis-
tributes computational loads to maximize energy efficiency
while maintaining minimal ready-state resources for unex-
pected production demands.
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We propose a novel DH-DLRO algorithm for edge
computing-enabled healthcare IIoT flexible manufacturing
environments. This advanced algorithm employs j parallel
DNNs to generate binary offloading decisions, where j =
1, 2, . . . , |J|, each network specifically trained to handle the
unique requirements of healthcare manufacturing processes,
from precision medical device assembly to pharmaceutical
production control.

The algorithm’s primary objective is to design an intelligent
offloading strategy function π that, upon receiving channel
gain information gi(t) at the beginning of each time slot,
rapidly generates optimal offloading actions y∗

i (t) ∈ 0, 1 while
maintaining healthcare manufacturing quality standards. This
strategy can be formally expressed as

π : gi(t) → y∗
i (t). (10)

The size of the target binary offloading decision set grows
exponentially with the number of healthcare IIoT devices,
presenting a significant challenge in healthcare manufactur-
ing environments where multiple precision devices operate
simultaneously. Finding optimal offloading actions becomes an
NP-hard problem, particularly when considering the stringent
medical device production and pharmaceutical processing
requirements. To address this complexity, we employ multiple
parallel DNNs with discrete activation functions to approxi-
mate the strategy function π .

As illustrated in Fig. 2, the DH-DLRO algorithm architec-
ture comprises two primary components: 1) the offloading
decision generation phase and 2) the strategy update phase,
both optimized for healthcare manufacturing requirements.
The DNNs incorporate embedded parameters ωj, representing
the weighted connections between hidden neurons specialized
for healthcare manufacturing task processing. Each param-
eter ωj corresponds to the jth DNN’s unique configuration.
To address the optimal DNN configuration selection, we
implement an adaptive DNN scaling mechanism that dynam-
ically adjusts the number of parallel networks based on
manufacturing complexity indicators. The system monitors
three key metrics: 1) TDI; 2) computational load variance;
and 3) manufacturing precision requirements. When TDI
exceeds 0.8, or CLV surpasses 0.6, the algorithm automat-
ically increases the DNN count from the baseline of 3 to
a maximum of 7 networks. Conversely, during periods of
uniform task processing (TDI < 0.4), the system reduces
to two DNNs to minimize computational overhead. The
adaptive mechanism ensures optimal resource allocation while
maintaining healthcare manufacturing quality standards across
varying production scenarios. During time slot t, when channel
gain information gi(t) is input to the DNNs, the distributed
networks efficiently generate J candidate offloading actions
yi,j(t). The system then selects the action achieving minimum
efficiency as output, designated as y∗

i (t).
The resulting solution {yi(t), Wi(t), c∗

i (t)} is output as the
resolution for input gi(t), ensuring all healthcare manufac-
turing constraints specified in C1, C2, C3, C4, and C5 are
satisfied. The algorithm’s adaptive learning mechanism con-
tinuously improves its performance through strategy updates,
gradually optimizing resource allocation for various healthcare

Fig. 2. Architecture of DH-DLRO algorithm.

manufacturing scenarios while maintaining consistent quality
standards. When system anomalies occur, a three-tier response
protocol activates: 1) immediate production line safeguarding;
2) automated rerouting of critical tasks; and 3) gradual
resumption of normal operations following safety verification
steps.

A. Decision Generation

In healthcare-oriented IIoT flexible manufacturing environ-
ments, assuming we receive channel gain information gi(t) at
time slot t, the DNN parameters ωj are initialized following
a zero-mean Gaussian distribution optimized for healthcare
manufacturing precision requirements. For each input from
medical device assembly robots, pharmaceutical processing
units, and quality control systems, we employ J parallel DNNs
to generate J binary offloading actions yi,j(t), where each DNN
can be represented by a parametric function hωj specifically
designed for healthcare manufacturing operations

hωj : gi(t) → yi,j(t). (11)

The integrated sensors within the orchestration system track
the status of the power supply’s stability. When stability
is detected, a tiered response strategy is triggered, which
monitors for voltage abnormalities and balances computing
tasks across zones with stable power surfaces. The system
enforces conflict-free queueing for prioritized processing flow;
thus, essential processes are guaranteed uninterrupted power
sustainment. Automation of emergency sustainment allocation
triggers occurs for power events.

Once binary offloading actions yi,j(t) are generated for var-
ious healthcare manufacturing tasks, the optimization problem
(P1) transforms into a specialized bandwidth allocation
problem (P2) that considers medical-grade manufacturing
requirements

P2: minW,c U(y, W, c)

s.t. C1, C2, C4, C5. (12)

This transformation effectively decomposes the original
problem P1 into two distinct subproblems: 1) healthcare-
aware offloading decision generation and 2) medical resource
allocation P2. The optimal resource allocation solution
{Wi(t), ci(t)} for the convex problem P2, which maintains
healthcare manufacturing quality standards, requires solving
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using a specialized 1-D bisection search method incorporating
healthcare-specific resource allocation constraints

yi(t) = argminyi,j(t)R
(
gi(t), yi,j(t)

)
. (13)

where R(gi(t), yi,j(t)) represents the minimum achievable effi-
ciency for a given channel state and offloading decision in
healthcare manufacturing scenarios, and yi,j(t) represents the
candidate offloading decisions generated by the jth DNN.
For flexible manufacturing processes requiring precise medical
device production and pharmaceutical processing, we employ
Python’s advanced optimization toolkit Scipy to solve this
healthcare-optimized P2 convex problem efficiently.

Finally, after resolving J bandwidth allocation problems
(P2) tailored for healthcare manufacturing requirements, we
select the offloading action that achieves the minimum effi-
ciency value R∗(gi(t), yi,j(t)) according to

V
(
gi(t), yi,j(t)

) = ηi(t)D
trans
i + λR∗(gi(t), yi,j(t)

)
(14)

where ηi(t) represents the healthcare manufacturing quality
factor and λ denotes the resource utilization coefficient. The
corresponding output serves as the optimal solution for input
gi(t), ensuring both computational efficiency and healthcare
manufacturing precision requirements are met.

Each manufacturing task carries a digital signature linking
raw materials, processing parameters, and quality measure-
ments, creating an unbroken chain of documentation from
input to finished product.

B. Strategy Update

The strategy update mechanism in our healthcare-oriented
IIoT flexible manufacturing system utilizes the resource allo-
cation solutions obtained through equation R(gi(t), yi,j(t)) to
improve decision-making processes continuously. We imple-
ment a sophisticated memory system with carefully calibrated
capacity to store training samples essential for maintaining
healthcare manufacturing quality standards. During each time
slot t, a new training sample R(gi(t), yi(t)) is systematically
added to the memory, incorporating crucial information about
both medical device assembly operations and pharmaceutical
processing requirements. The system generates automated
compliance reports documenting resource allocation decisions,
quality control measurements, and production parameters, sup-
porting FDA audit requirements and internal quality assurance
protocols.

Our approach leverages advanced experience replay tech-
nology, a critical component that enables DNNs to learn
efficiently from stored healthcare manufacturing data samples.
At each time slot t, we employ a strategic sampling method to
randomly select a batch of training samples (gi(λ), y∗

i (λ))|λ ∈
ξt from the memory buffer, where ξt represents the memory’s
capacity configured specifically for healthcare manufacturing
scenarios, and λ denotes the temporal index of randomly
selected samples from various manufacturing processes. These
carefully selected samples are then utilized to train all J DNNs
simultaneously, ensuring consistent learning across the entire
manufacturing system.

To optimize the DNNs’ parameters ωj for healthcare man-
ufacturing precision, we employ an enhanced version of the

Algorithm 1 DH-DLRO
Input: Wireless channel gain gi(t) at time slot t for

healthcare manufacturing devices
Output: Optimal healthcare manufacturing offloading

action yi(t) and resource allocation {Wi(t), ci(t)}
01: Initialize J DNN parameters ωj optimized for healthcare

operations
02: Clear healthcare-specific memory buffer, set training

period σ

03: for t = 1, 2, ..., T do
04: Generate J offloading actions yi,j(t) = hωj(gi(t)) for

healthcare tasks
05: Parallel solve J resource allocation problems P2 con-

sidering medical requirements
06: Select optimal strategy yi(t) = argminR(gi(t), yi(t))
07: Store healthcare-optimized state-action pair (gi(t), yi(t))

in memory
08: if t mod σ = 0
09: Select training batch from healthcare manufacturing

memory
10: Train DNNs using selected samples, update ωj using

modified Adam
11: end if
12: Solve P2 for optimal healthcare resource allocation

{Wi(t), ci(t)}
13: end for

Adam algorithm, which has been specifically modified to
minimize the specialized cross-entropy loss function [41]

H
(
ωj

) = − 1

|ξt|
∑
λ∈ξt

(
(yi(λ))T ln(v(gi(λ)))+

(1 − yi(λ))T ln(1 − v(gi(λ)))

)
. (15)

where |ξt| represents the healthcare-optimized memory capac-
ity size, superscript T denotes the transpose operation essential
for maintaining manufacturing data integrity, ln represents the
vector logarithm operation, and v(gi(λ)) indicates the predicted
probability distribution over possible offloading actions in
healthcare manufacturing contexts.

The system maintains timestamped records of all resource
allocation decisions, including rational basis and authorization
chains, supporting internal reviews, and external compliance
audits. Algorithm 1 operates through a structured initialization
and iterative optimization process.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

Table I provides all the parameter settings for analyz-
ing the DH-DLRO algorithm for healthcare-oriented IIoT
flexible manufacturing systems. The parameters are divided
into five main categories: 1) system configuration; 2) device
performance metrics; 3) task requirements specific to health-
care; 4) algorithm parameters; and 5) architecture of the neural
network. The system is tuned to accommodate ten IIoT devices
with stringent healthcare manufacturing precision benchmarks
(98% for medical device assembly and 95% for pharmaceutical
processing). The neural network architecture features three

Authorized licensed use limited to: Northeastern University. Downloaded on November 09,2025 at 01:28:08 UTC from IEEE Xplore.  Restrictions apply. 



LV AND LI: DEEP-LEARNING-BASED RESOURCE ORCHESTRATION 47811

TABLE I
EXPERIMENTAL PARAMETERS FOR HEALTHCARE-ORIENTED IIOT

MANUFACTURING SYSTEM

hidden layers with 128 neurons each, which are tailored toward
healthcare manufacturing processes. These selections enable
the system to achieve targeted precision and efficiency in
healthcare manufacturing processes, including energy use in
edge computing systems.

We compare our DH-DLRO algorithm with five state-of-
the-art approaches: 1) GAN-NoisyNet [24]; 2) FedMRL [25];
3) DEWOrch [26]; 4) PRORL [27]; and 5) vrAIn [28].

B. Impact of DNN Configuration

The configuration of DNN is equally critical as the domain
of a resource orchestration system for a healthcare-oriented
IIoT flexible manufacturing approach. To assess this thor-
oughly, we designed comprehensive tests studying the impact
of varying amounts of parallel DNNs on the convergence and
efficiency of the proposed DH-DLRO algorithm. This study
is relevant because in healthcare manufacturing environments,
resource allocation, especially for medical device assembly
and pharmaceutical processing, has to be done accurately and
reliably. Different DNN configurations and their respective
convergence performance are shown in Fig. 3.

The system employs a multistage backup protocol during
resource reallocation. Before executing allocation changes,
incremental snapshots of manufacturing data are created. A
distributed storage system maintains redundant copies across
multiple edge nodes, while transaction logs capture the com-
plete sequence of allocation decisions. This ensures data
integrity throughout the reallocation process.

The data gives critical takeaways specifically for healthcare
manufacturing. With five parallel DNNs, our DH-DLRO algo-
rithm gains an outstanding 0.98 gain ratio within 1000 learning

Fig. 3. DH-DLRO convergence analysis in healthcare manufacturing.

steps, demonstrating remarkable efficiency in overcoming
multifaceted healthcare manufacturing workflows. This config-
uration is very useful in addressing the medicare part assembly,
drug manufacturing, and quality inspection multitasking bot-
tleneck. The results also cover the relative scalability benefits
of the algorithm. The gains in performance are pronounced up
to having five DNNs and taper off afterward, which suggests
that five parallel networks strike a reasonable tradeoff between
resource orchestration capability and computational overhead
in healthcare manufacturing environments.

C. Learning Rate Analysis

Learning rate analysis is important in understanding how
our DH-DLRO algorithm learns within the context of
healthcare-focused IIoT flexible manufacturing systems. These
environments, particularly in the production of medical devices
and drugs, demand high precision and dependability; there-
fore, the learning rate matters when deciding how fast and
precisely the system can make optimal expenditure decisions
for scarce resources without breaching stringent quality thresh-
olds. Fig. 4 illustrates the effect of learning rate on DH-DLRO
performance in healthcare manufacturing settings.

The findings reveal distinct enhancements in the effi-
ciency of healthcare manufacturing processes in comparison
to baseline methods. DH-DLRO outperforms conventional
approaches by 30% in achieving healthcare quality bench-
marks with an optimal learning rate, all while achieving
25% lower variance in resource allocation decisions. Such
stable performance is particularly beneficial in healthcare
manufacturing, where consistency is critical in high-precision
areas like medical devices and pharmaceutical manufacturing
process control.

D. Task Size Impact Analysis

Task size impact analysis explains how DH-DLRO adjusts
to the changing computational requirements in healthcare
manufacturing domains that span from basic sensor monitoring
to advanced medical imaging. This study is timely given that
healthcare manufacturing plants are now seeking to install
advanced quality control and automated production systems
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Fig. 4. Learning rate impact on DH-DLRO in healthcare manufacturing.

Fig. 5. Task size impact on resource orchestration performance.

that create diverse computational workloads. Resource orches-
tration performance illustrated in Fig. 5 dynamically responds
to changes in workload.

The analysis highlights the notable benefits DH-DLRO has
over other existing methods for tackling variable task sizes.
While handling medical device assembly tasks (10–15 MB),
DH-DLRO achieves 25%–30% less energy consumption than
the best performing baseline method (vrAIn). This efficiency
becomes even more pronounced for larger pharmaceutical
processing tasks (25–30 MB), where DH-DLRO consumes
35% less energy than traditional approaches with no compro-
mise on precision. The algorithm outperforms others due to
its healthcare-aware resource allocation strategy that provides
optimally distributed computation across the edge servers but
within strict quality bounds for medical manufacturing.

In addition, the algorithm’s performance features align
seamlessly with the increased adoption of flexible manufac-
turing systems for healthcare sectors. As production lines
increasingly pivot to diverse medical devices or pharmaceuti-
cal products, the smooth transition required by DH-DLRO to
handle varying task sizes makes it invaluable. The algorithm
assists in conserving precision during the transition while
skillfully maintaining energy efficiency. The flexible resource
allocation helps retain consistent quality benchmarks for
varying scenarios, spanning from small-batch medical device
manufacturing to large-scale pharmaceutical processing.

Fig. 6. Impact of parameters on healthcare manufacturing.

E. Parameter Sensitivity Analysis

The analysis of system parameter sensitivity explores how
DH-DLRO responds to variations in two critical parameters:
1) L (weight between energy consumption and task completion
time) and 2) V (edge server energy consumption weight).
Fig. 6 illustrates system performance under different values
of L and V , respectively. As L increases, the weight of
processing delay in the efficiency metric grows, causing
all algorithms to show increased total energy consumption.
Similarly, larger V values increase the importance of edge
server energy consumption in the optimization process. In both
cases, DH-DLRO performs superior to baseline approaches,
demonstrating its robustness in handling various healthcare
manufacturing requirements and constraints.

The evaluation reveals DH-DLRO’s robust performance
across parameter variations, particularly in contexts where
medical device manufacturing precision cannot be compro-
mised. When examining sensitivity to parameter L, which
balances energy efficiency against processing speed, DH-
DLRO demonstrates remarkable stability with only a 12%
variation in performance across the entire range (L = 1.0 to
3.0). This stability proves crucial for maintaining consistent
quality in medical device assembly processes, where even
minor variations in processing parameters could affect product
integrity.

The algorithm’s response to parameter V variations (V = 1.5
to 3.5) provides equally compelling insights. DH-DLRO main-
tains energy efficiency with a maximum performance deviation
of 15%, significantly outperforming baseline approaches
where variations reach up to 35% (GAN-NoisyNet) and 28%
(vrAIn).

The results also show that the shifting operational priorities
do not affect the distinct capabilities of DH-DLRO. Whether
the focus is set on a cost-driven energy efficiency strategy or
on a speed-driven execution for time-sensitive medical device
production, the algorithm’s consistent and stable reaction to
bound parameter changes adjustment guarantees upheld strin-
gent quality benchmarks. Such features allow manufacturing
facilities to streamline processes while adhering to inflexible,
narrow healthcare manufacturing guidelines.

As shown in Fig. 7, the DH-DLRO algorithm’s dynamic
performance metrics concurrent with different healthcare man-
ufacturing workload tiers are juxtaposed with CPU resource
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Fig. 7. Impact of parameters on healthcare manufacturing.

allocation. The experiment focuses on three representative
tasks critical to healthcare manufacturing, which include bulk
processing of pharmaceutical batches (25 000 bytes), precision
assembly of medical instruments (11 000 bytes), and process-
ing of real-time QC sensor data for automated inspection (7000
bytes). Through this analysis, we seek to understand how
responsive DH-DLRO is to varying intensity workloads and
multiple healthcare manufacturing operating conditions while
converging on rigorous industry compliance standards in the
agile resource coordination of edge computing.

From the experiments conducted, it is evident that DH-
DLRO has some striking benefits for the healthcare-focused
IIoT flexible manufacturing systems. It is shown that our
algorithm has great consistency in the delivery of QoS
metrics, achieving an average of 0.95 efficiency during
the assembly of medical devices (11000 bytes), even with
some resource contention and consistent CPU utilization of
60%–80%. Also notable is the algorithm’s responsiveness
on pharmaceutical processing tasks (25000 bytes), where
it sustains high QoS metrics (above 0.9) during the most
demanding phases of processing, passing through only short
and controlled performance dips tailored to healthcare manu-
facturing regulated baseline standards. What stands out most
is the improvement observed while processing quality control
sensor data (7000 bytes), where DH-DLRO attains near-perfect
maximal QoS stability (0.97–0.99) while optimizing CPU
usage between 70%–85%, which is paramount to uninterrupted
real-time surveillance critical to healthcare product assurance.
These results illustrate the distinctive ability DH-DLRO has in
fog computing environments with fragmented resource agility
balanced against operational payoff accuracy and strict adher-
ence to surgical precision. The observed impact of persistent
high QoS across diverse task scales with minimal fluctuations

is a major leap toward the design requirements of flexible
manufacturing systems tailored for healthcare environments
where continuous adapted shifts between diverse medical
devices are needed on the production line.

In addition, the constant patterns of CPU usage across all
levels of tasks demonstrate that the DH-DLRO method is
successful at avoiding resource bottlenecks, providing seam-
less integration between different manufacturing steps, and
allowing healthcare organizations to make full use of their
edge computing infrastructure while exercising the tight con-
trol necessary for producing medical devices and processing
pharmaceuticals.

F. Variable Production Workload Analysis

The variable production workload analysis measures
DH-DLRO’s deterministic high-level dynamic resource
orchestration’s intelligence in addressing differing workload
distributions in manufacturing while ensuring healthcare ser-
vice standards. We look into the algorithm’s efficiency within
diverse production scenarios salient to the medical device and
pharmaceutical industries, concentrating on the effectiveness
of resource utilization and precision maintenance. Production
scenario specifications and resource orchestration performance
comparison are given in Tables II and III.

The experiment results noted a number of fundamental
benefits of DH-DLRO in the context of healthcare IIoT-
oriented distributed intelligent manufacturing systems. The
algorithm achieved the best resource utilization in all pro-
duction scenarios, with medical device assembling standing
out due to the high precision demand. Enhanced resource
utilization improves the overall manufacturing efficiency in
Industrial IoT environments. These changes emphasize the
adaptive strengths of DH-DLRO in flexible manufacturing
systems. It maintains predetermined quality levels regardless
of workload changes. The rapid adaptation capabilities of the
algorithm allow shifting modes of production almost instan-
taneously, a critical characteristic for contemporary healthcare
manufacturing that routinely changes product lines. Here,
the advantages of edge computing become obvious in the
energy efficiency measurements where DH-DLRO outper-
formed the baseline approaches. Improvements stemmed from
more optimal energy efficiency by lowering power consump-
tion while upholding processing capabilities near the shop
floor due to better workload distribution among edge nodes.

G. Scalability Analysis

Table IV shows the scalability performance of DH-DLRO
across varying device counts to evaluate its suitability for
large-scale healthcare manufacturing deployments. The evalu-
ation encompasses convergence behavior, resource allocation
efficiency, energy consumption patterns, and quality mainte-
nance across device configurations ranging from small medical
device assembly lines to enterprise-scale pharmaceutical pro-
duction facilities.

The scalability analysis shows that DH-DLRO retains effec-
tiveness in enterprise-scale healthcare manufacturing systems.
Sublinear energy scaling with maintained quality levels above
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TABLE II
PRODUCTION SCENARIO PARAMETERS

TABLE III
RESOURCE ORCHESTRATION PERFORMANCE COMPARISON

TABLE IV
SCALABILITY PERFORMANCE ANALYSIS

TABLE V
ROBUSTNESS PERFORMANCE UNDER ADVERSE CONDITIONS

0.91 allows large pharmaceutical facilities to incur lower
costs while maintaining manufacturing accuracy. Meeting the
acceptable convergence time for 150 devices supports flexi-
ble manufacturing systems, which require dynamic resource
assignment across numerous production lines, allowing manu-
facturers in the healthcare sector to increase operational scale
freely without sacrificing the benefits of edge computing, real-
time processing, or severely time-bound data handling.

H. Robustness Analysis

Table V shows the robustness performance of DH-DLRO
under adverse operational conditions to evaluate its reliabil-
ity in healthcare manufacturing environments where network

disruptions and equipment failures can occur. The evaluation
examines system behavior under wireless channel degradation
and device failure scenarios, measuring quality maintenance,
recovery time, and operational continuity across different
stress conditions.

The robustness analysis shows that operational healthcare
manufacturing adaptability is preserved even under extreme
operating conditions with DH-DLRO. Worst case scenarios
where the algorithm maintains quality above 0.86 and oper-
ational continuity above 85% continue enabling production
in healthcare facilities where equipment uptime is critical for
reliability. The systems in these environments provide live
monitoring and rapid response solutions that reduce downtime
during production pauses, which helps maintain regulatory
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demand fulfillment and production timelines, automating
reliance on equipment amid infrastructural limitations to
increase value and confidence in deploying edge computing
for critical healthcare manufacturing systems.

VI. CONCLUSION

This article presented the DH-DLRO algorithm, a dis-
tributed deep learning-based resource orchestration algorithm
specifically designed for healthcare-oriented IIoT flexible
manufacturing systems with edge computing support. The
experimental results demonstrated that the DH-DLRO algo-
rithm improved resource utilization while maintaining strict
healthcare manufacturing quality standards. However, DH-
DLRO has limitations that are worth addressing in future
work. The algorithm’s parallel DNN architecture requires
substantial initial computational resources and training time.
Performance may degrade in manufacturing environments with
extremely heterogeneous tasks or highly variable produc-
tion patterns. The current implementation assumes consistent
wireless channel conditions and lacks predictive maintenance
capabilities that could further enhance production reliabil-
ity. Future enhancements should reduce these limitations
while preserving healthcare manufacturing quality standards.
Future research directions should focus on incorporating
blockchain technology for enhanced traceability in medical
device manufacturing, developing privacy-preserving variants
of the DH-DLRO algorithm, and extending the framework to
support real-time quality control feedback loops.
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