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A B S T R A C T

The continuous advancement of urbanization has led to unprecedented traffic congestion in megalopolises 
worldwide, creating substantial challenges for healthcare delivery logistics. Emergency medical supplies, phar
maceuticals, laboratory specimens, and equipment face critical delays in congested urban environments, 
potentially compromising patient care. This research introduces an innovative multi-level network optimization 
framework for underground medical logistics systems that combines deep tunnel transportation with shallow 
pipeline channels to facilitate time-sensitive medical deliveries while alleviating surface congestion. We 
formulate an integer programming model that optimizes the placement of distribution centers, routing strategies, 
and flow allocation while considering construction and operational costs. To solve this computationally complex 
problem, we develop the immune-inspired multi-level network optimization for underground logistics systems 
(IMNO-ULS) algorithm that integrates mean-shift clustering with artificial immune systems and simulated 
annealing. This hybrid computational intelligence approach effectively decomposes the solution space by 
eliminating suboptimal configurations before optimization. Simulation results demonstrate that our algorithm 
outperforms traditional methods by 7–15 % in solution quality while reducing computation time by up to 71.3 %. 
A case study applying the system to a major metropolitan area shows that IMNO-ULS reduces the required 
number of distribution centers by 27 % while decreasing the average delivery time for emergency medical 
supplies by 32 %. The results validate the feasibility and efficiency of the proposed underground medical logistics 
network, offering a promising solution for improving healthcare delivery in congested urban environments.

1. Introduction

Urbanization continues to progress at an unprecedented rate 
worldwide, creating megalopolises with populations exceeding 20 
million residents (Benassi et al., 2023; Muroishi & Yakita, 2023). 

According to recent global demographic data, urban centers now house 
more than 56 % of the world’s population, projected to surpass 68 % by 
2050. This dramatic demographic shift has placed extraordinary pres
sure on urban infrastructure, particularly transportation networks, 
creating persistent congestion that impacts various critical services (Gu 
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et al., 2023; Shen et al., 2024). Healthcare delivery and medical logistics 
face severe challenges in these densely populated environments 
(Gustafsson & Dannapfel, 2025; Lv et al., 2025; Nikolic et al., 2022). 
Surveys indicate that emergency medical vehicles experience delays 
exceeding 40 % of their expected travel times during peak hours in 
major metropolitan areas, potentially compromising time-critical care 
for patients with conditions where minutes matter. Furthermore, the 
transportation of medical supplies, laboratory specimens, pharmaceu
ticals, and equipment encounter similar delays, affecting the overall 
quality and efficiency of healthcare services.

The convergence of multiple transportation demands on limited 
surface infrastructure further exacerbates the growing congestion 
problem (Pang et al., 2024; Rajkumar & Kumar, 2024). Commercial 
deliveries, personal vehicles, public transportation, and emergency 
services compete for the same road capacity, resulting in gridlock during 
peak hours. Traditional solutions involving road expansion have proven 
increasingly impractical in established urban centers, where space 
constraints and existing development limit opportunities for infra
structure growth (Anupriya et al., 2023). Environmental concerns add 
another dimension to this challenge, as increased vehicle emissions from 
idling in traffic contribute significantly to urban air pollution (Fang 
et al., 2025; Xu et al., 2024). Studies have identified that in some 
megacities, mobile sources contribute approximately 45 % of particulate 
matter (PM2.5) concentrations, posing substantial health risks to urban 
populations. The confluence of these factors – limited space, growing 
demand, and environmental impact – necessitates innovative ap
proaches to urban logistics, particularly for time-sensitive and critical 
goods like medical supplies.

Underground logistics systems (ULS) have emerged as a promising 
solution to alleviate surface transportation congestion while ensuring 
the reliable delivery of essential goods (Hu, Dong, Yang, Ren, & Chen, 
2023; Liang et al., 2022; Wang & Wang, 2023; Wei et al., 2024). ULS 
networks utilize underground tunnels, pipelines, and facilities to create 
a separate transportation layer that operates independently from surface 
traffic. By relocating a portion of freight movement below ground, these 
systems can significantly reduce surface congestion while providing 
more predictable delivery times. For medical logistics specifically, un
derground systems offer several compelling advantages: protection from 
weather conditions, enhanced security for sensitive medical materials, 
controlled environmental conditions for temperature-sensitive phar
maceuticals and biological samples, and, most importantly, reliable 
delivery times unaffected by surface traffic patterns. Recent advance
ments in automated guided vehicle (AGV) technology, IoT-enabled 
tracking systems, and artificial intelligence have made such under
ground networks increasingly feasible from both technological and 
operational perspectives (Ambrusevic & Gomiene, 2024; Liang et al., 
2024; Lv et al., 2025).

Developing underground medical logistics systems (UMLS) requires 
careful consideration of multiple factors, including network architec
ture, facility placement, capacity constraints, and cost efficiency (Xue 
et al., 2022). Traditional single-layer networks often prove inadequate 
for the complex needs of modern healthcare systems, which involve 
various types of medical facilities with different urgency requirements 
and handling specifications. This research proposes a multi-level 
network design that differentiates between high-volume, high-speed 
transport between major medical hubs (via deep tunnels) and more 
distributed, lower-volume deliveries to individual facilities (via shallow 
pipeline systems). This hierarchical approach optimizes resource allo
cation by matching infrastructure investment to usage patterns. The 
design of such systems requires sophisticated optimization models that 
balance multiple objectives, including construction costs, operational 
efficiency, reliability, and environmental impact. Furthermore, the 
complexity of these models necessitates advanced computational intel
ligence techniques to find high-quality solutions within reasonable 
computational timeframes.

Integrating computational intelligence (CI) approaches into UMLS 

design represents a significant advancement in tackling the inherent 
complexity of multi-level network optimization (Cao et al., 2024; Liu 
et al., 2022). Traditional optimization methods often struggle with the 
combinatorial explosion of possible solutions in large-scale network 
design problems, particularly when considering the numerous con
straints and interdependencies in medical logistics. Our research lever
ages a novel dual-layer heuristic approach that combines mean-shift 
clustering with artificial immune systems and simulated annealing to 
explore the solution space and identify near-optimal network configu
rations efficiently. Integrating CI techniques with domain-specific 
knowledge of underground logistics and medical supply chain re
quirements allows for more practical and implementable solutions. By 
developing this comprehensive framework for UMLS design and opti
mization, we aim to provide urban planners, healthcare administrators, 
and logistics providers with a powerful tool to improve medical logistics 
in congested urban environments, ultimately enhancing healthcare de
livery and patient outcomes in megalopolises worldwide.

Urban congestion increasingly threatens timely medical deliveries in 
megalopolises, where emergency supplies, pharmaceuticals, and labo
ratory specimens face critical delays. While underground logistics sys
tems offer a promising solution by creating separate transportation 
layers unaffected by surface congestion, existing approaches fail to 
address the specialized needs of medical logistics. Current research lacks 
integration between general underground logistics optimization and 
specific medical supply requirements, with most approaches employing 
single-algorithm solutions inadequate for multi-level medical networks. 
This research addresses these gaps by developing a specialized under
ground medical logistics network architecture and computational in
telligence algorithm that differentiates between high-volume 
distribution and time-sensitive last-mile delivery, providing a solution 
that both reduces delivery times and minimizes infrastructure costs in 
congested urban environments.

Accordingly, the main contributions of this paper are summarized as 
follows: 

• We propose a novel multi-level underground logistics network ar
chitecture specifically designed for medical supply transportation 
that differentiates between high-volume flows through deep tunnels 
and distributed deliveries through shallow pipelines.

• We formulate a comprehensive integer programming model that 
captures the complex interdependencies between distribution center 
activation, facility assignment, and network connectivity decisions 
in medical logistics contexts.

• We develop the immune-inspired multi-level network optimization 
for underground logistics systems (IMNO-ULS) algorithm, an inno
vative dual-layer metaheuristic that integrates mean-shift clustering 
for solution space decomposition with artificial immune systems, 
and simulated annealing for hierarchical optimization.

The remainder of this paper is organized as follows. Section 2 pre
sents a literature review. Section 3 describes the problem of medical 
underground logistics network design. Section 4 formulates the mathe
matical model and details the proposed IMNO-ULS algorithm. Section 5
presents the simulation results and analysis. Section 6 presents the 
managerial implications and insights. Finally, Section 7 concludes the 
paper.

2. Literature review

The exploration of underground logistics systems has evolved 
significantly over the past few decades, with researchers investigating 
multiple facets of implementation, optimization, and practical applica
tions. We review relevant literature on underground logistics systems, 
computational intelligence techniques, and medical applications, iden
tifying the research gaps addressed by our work.

Sun et al. (2023) proposed a well-matched solution framework 
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combining the multi-objective PSO algorithm and the A* algorithm to 
optimize the location-allocation-routing (LAR) decisions of the M-ULS 
network, called PSOA*-LAR. Sun et al. (2024) presented an improved 
adaptive genetic algorithm (IAGA) incorporating adaptive crossover, 
adaptive mutation, and an elitist strategy to address the vehicle routing 
problem in metro-based underground logistics systems. Zheng et al. 
(2022) proposed a bi-level programming model for a metro-based lo
gistics system (blM-ULS). Hu and Dong et al. (2020) introduced a two- 
phase optimization schema combining a genetic-based fuzzy C-means 
algorithm, depth-first-search fuzzy C-means algorithm, and Dijkstra al
gorithm etc. to optimize the location-allocation of underground logistics 
system facilities and customer clusters (GDD-ULS). Hu, Dong, Yang, Ren, 
and Chen (2023) proposed a simulation-based approach for supporting 
the operational decision-making of the metro-based urban underground 
logistics system (sM-ULS). Hu, Dong, Yang, Ren, and Chen (2023) pro
posed an improved multi-objective cooperative co-evolutionary algo
rithm (MoCC) incorporating non-dominated sorting and chromosomal 
recombination strategy to yield high-quality solutions for M-ULS 
network planning problem (MULNP) problem, called MoCC-MULNP.

Additionally, recent research on underground logistics systems has 
evolved in several directions. Xue et al. (2023) formulated a resilient- 
maximizing plan for underground logistics networks using a two-stage 
linear programming model and Monte Carlo simulations to evaluate 
network resilience under disaster scenarios. Their work addressed 
network planning under uncertainty but did not consider the specialized 
needs of medical logistics. Li et al. (2024) assessed the resilience of 
metro-based underground logistics systems through a multi-layered, 
interdependent network approach that accounts for topology, func
tionality, facilities, and information layers. Their case study on the 
Nanjing Metro demonstrated how disruption types, duration, and train 
travel direction impact resilience, yet it did not explore network design 
optimization for medical supplies. Lu et al. (2024) proposed a resilience 
quantification method for urban underground logistics systems under 
node and link attacks, comparing three recovery strategies. Their 
research on the Nanjing City case showed that two-echelon networks 
exhibit exceptional resilience, with maximum flow-based recovery 
strategies proving the most effective. However, their work primarily 
focused on general logistics rather than time-sensitive medical logistics. 
Hou et al. (2024) introduced a novel urban contactless delivery solution 
incorporating M-ULS and the “Pandemic Thruport” concept to sustain 

city logistics performance during public health emergencies. Using 
system dynamics modeling with the Shanghai COVID-19 outbreak case, 
they demonstrated that M-ULS can reduce infection risks and improve 
urban freight transport efficiency compared to trucking but did not 
optimize network design for medical logistics specifically. The literature 
review conducted on underground logistics systems revealed critical 
research gaps that warrant further investigation. Despite the growing 
body of knowledge on general ULS optimization and separate medical 
logistics advancements, there is a noticeable absence of integrated ap
proaches that specifically address the unique requirements of medical 
supply transportation beneath congested urban centers. This siloed 
research approach has limited the development of specialized optimi
zation frameworks that could effectively manage the time-sensitive and 
often life-critical nature of medical deliveries. Additionally, current 
computational intelligence applications in this domain predominantly 
rely on single-algorithm methodologies, failing to capitalize on the 
significant potential of strategically combining multiple CI techniques 
within structured frameworks to tackle the inherent complexity of 
medical logistics networks. Perhaps most significantly, existing optimi
zation models have not adequately captured the distinctly hierarchical 
nature of medical logistics networks, where high-volume distribution 
between major hubs requires fundamentally different infrastructure and 
management approaches compared to precise, time-sensitive last-mile 
delivery to individual healthcare facilities. As illustrated in Table 1, 
which systematically compares recent underground logistics systems 
studies, these research limitations have persisted across various meth
odological approaches, creating an opportunity for more integrated, 
multi-level network optimization solutions specifically designed for 
medical logistics in underground environments.

Based on this literature analysis, several research gaps emerge. First, 
while studies have addressed general ULS optimization and medical 
logistics separately, few have integrated these domains to create 
specialized underground medical logistics optimization approaches. 
Second, existing computational intelligence techniques typically employ 
single-algorithm approaches rather than leveraging multiple CI methods 
in structured frameworks. Third, the hierarchical nature of medical lo
gistics networks, with different requirements for high-volume distribu
tion and last-mile delivery, remains inadequately addressed in existing 
optimization models.

Additionally, as illustrated in Table 1, which systematically 

Table 1 
Comparison of Recent Underground Logistics Systems Studies.

Study Focus area Methodology Network 
type

Objective Medical- 
specific

Multi-level 
design

Computational 
intelligence approach

Sun et al. (2023) Location-allocation- 
routing

PSO and A* algorithms Metro- 
based

Optimization of LAR 
decisions

No No Single algorithm

Sun et al. (2024) Vehicle routing Improved adaptive genetic 
algorithm

Metro- 
based

Routing optimization No No Single algorithm

Zheng et al. (2022) Distribution node 
location

Bi-level programming Metro- 
based

Location optimization No No Mathematical 
programming

Hu and Dong et al. 
(2020)

Location-allocation Two-phase clustering General 
ULS

Facility location No No Multiple algorithms

Hu, Dong, Yang, 
Ren, and Chen 
(2023)

Operational 
decision-making

Simulation-based approach Metro- 
based

Operational efficiency No No Simulation

Hu, Dong, Yang, 
Ren, and Chen 
(2023)

Network planning Multi-objective co- 
evolutionary algorithm

Metro- 
based

Multi-objective 
optimization

No No Single algorithm

Xue et al. (2023) Resilience 
maximization

Two-stage linear 
programming

General 
ULS

Network resilience No No Hybrid heuristic

Li et al. (2024) Resilience 
assessment

Multi-layer network modeling Metro- 
based

Resilience 
quantification

No No Network analysis

Lu et al. (2024) Recovery strategies Resilience quantification General 
ULS

Recovery optimization No Partial Network analysis

Hou et al. (2024) Emergency logistics System dynamics Metro- 
based

Performance during 
emergencies

Partial No System dynamics

This study Network design Integer programming +
Computational intelligence

Medical 
ULS

Cost and delivery time 
optimization

Yes Yes Hybrid dual-layer 
algorithm
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compares recent underground logistics systems studies, these research 
limitations have persisted across various methodological approaches, 
creating an opportunity for more integrated, multi-level network opti
mization solutions specifically designed for medical logistics in under
ground environments. Existing approaches face three fundamental 
limitations in computational performance. First, single-algorithm 
methods typically converge to local optima due to limited exploration 
capabilities, with average solution quality gaps of 15–25 % compared to 
theoretical lower bounds in network design problems. Second, the 
computational complexity of current approaches scales poorly with 
problem size − methods such as PSOA*-LAR and IAGA exhibit expo
nential time complexity increases when the number of medical facilities 
exceeds 100 nodes, making them impractical for metropolitan-scale 
implementations. Third, the lack of adaptive parameter tuning in 
existing frameworks results in inconsistent performance across different 
urban configurations, with solution quality variations exceeding 30 % 
between different city layouts using identical algorithmic parameters. 
These effectiveness limitations underscore the need for hybrid compu
tational intelligence approaches that combine multiple optimization 
techniques with adaptive parameter selection mechanisms to achieve 
both superior solution quality and computational scalability for medical 
logistics network design.

3. Multi-level underground medical logistics network integer 
programming model

Before formulating the mathematical model, we establish the 
following assumptions to define the scope and context of the problem: 

• Demand estimation: Medical facility demands are known and 
deterministic, based on historical data and forecasted needs. While 
actual demands may fluctuate daily, these variations are assumed to 
be within the capacity margins of the system.

• Transportation network: Underground pathways (deep tunnels and 
shallow pipelines) are assumed to follow straight-line distances be
tween connected nodes, adjusted by a tortuosity factor to account for 
practical routing constraints.

• Facility operations: Distribution centers operate continuously, with 
sufficient capacity to handle sorting and transfer operations for all 
assigned medical facilities. The processing time at distribution cen
ters is incorporated into the overall delivery time calculations.

• Vehicle operations: Transport vehicles in deep tunnels and shallow 
pipelines operate according to fixed schedules with predetermined 
departure intervals. The model assumes sufficient vehicles are 
available to maintain these schedules.

• Cost structure: Construction costs are amortized over the in
frastructure’s expected lifetime using a daily depreciation rate. 
Operational costs include transportation costs proportional to dis
tance and cargo volume and transfer costs at distribution centers.

• Service levels: All medical facilities must be connected to the un
derground logistics network, ensuring complete coverage of the 
urban healthcare system. The model does not explicitly prioritize 
different types of medical facilities but can accommodate priority 
adjustments through constraint modifications.

• Network topology: Distribution centers must form a connected 
network with at least one path between any two activated centers. 
This ensures network resilience and allows for alternative routing 
when needed.

• Flow conservation: The total flow entering the network at medical 
logistics hubs equals the total flow delivered to medical facilities, 
with flow conservation at all intermediate nodes.

This study addresses the design of a multi-level underground medical 
logistics network (UMLN) for megalopolises. We consider m medical 
logistics hubs located on the periphery of a major urban area, repre
sented as H = H1,H2,…,Hm, which serve as the origins for all medical 

supplies, equipment, specimens, and pharmaceuticals. Additionally, we 
define n underground receiving stations located beneath medical facil
ities (hospitals, clinics, laboratories) as destinations, denoted by F = F1,

F2,…, Fn. The network also includes k potential distribution center lo
cations, represented as D = D1, D2, …, Dk. The underground medical 
logistics network to be designed consists of elements from sets H and F, 
selected elements from set D, and the underground pathways connecting 
these nodes.

The designed underground medical logistics network comprises two 
distinct subsystems, as illustrated in Fig. 1. The primary system consists 
of medical logistics hubs located on the urban periphery, distribution 
centers, and deep tunnels connecting them, represented as N1 = H,S,T. 
The secondary system includes distribution centers, underground 
receiving stations beneath medical facilities, and shallow pipeline 
channels connecting them, represented as N2 = S, P, C. Medical cargo 
flow is concentrated and moves in larger volumes through the primary 
system, making deep tunnels the appropriate transportation mode. In 
contrast, cargo flow is more dispersed in the secondary system, making 
shallow pipeline channels more suitable.

The medical logistics flow primarily occurs between peripheral hubs 
and urban medical facilities. As shown in Fig. 2, this flow originates at 
peripheral medical logistics hubs, passes through urban distribution 
centers where it is sorted and transferred, and then travels to under
ground receiving stations beneath medical facilities, following the path 
H→S→F. From the receiving stations, supplies complete the final de
livery to the medical facility above ground, not requiring underground 
transportation resources.

The main decisions in this network design problem include (1) 
determining the locations of distribution centers, (2) establishing the 
assignment relationships between medical facilities and distribution 
centers, (3) designing the underground pathways between nodes, and 
(4) determining the routing of medical cargo flows. The demand vol
umes at each node, transportation costs between nodes, and maximum 
service capacities of logistics facilities are all known parameters. Since 
underground infrastructure construction is costly, minimizing the total 
cost becomes the primary objective in designing the underground 
medical logistics system. The goal is to design a network that satisfies the 
demands of all medical facilities, respects the capacity constraints of 
logistics facilities, and ensures feasible transportation routes while 
minimizing the combined construction and operational costs. Tables 2 
and 3 shows the model parameters and decision variables, respectively.

We formulate our model to minimize the sum of infrastructure 
depreciation and operational costs. Construction costs include those for 
primary system infrastructure, secondary system infrastructure, estab
lishing underground receiving stations, and activating distribution 
centers, expressed as: 

C1 = λ

(

ca

∑

j∈D
Yj + cd

(
∑

j∈D

∑

j́ ∈D

Zjj́ djj́ +
∑

l∈H

∑

j∈D
Uljdlj

)

+ cp

∑

j∈D

∑

i∈F
Xijdij

+ ncb

)

(1) 

The operational costs of the underground medical logistics system 
include the costs of transporting medical cargo through deep tunnels, 
shallow pipeline channels, and transfer operations at nodes, expressed 
as: 

C2 = vp

∑

j∈D

∑

i∈F

(

Xijdij

∑

l∈H

fil

)

+ ct

∑

l∈H

∑

i∈F

(

fil

∑

j∈D

∑

j́ ∈D

Kjj́
il

)

+ vd

∑

l∈H

∑

i∈F

(

fil

∑

j∈D

∑

j́ ∈D

Kjj́
il djj́

) (2) 

Therefore, the complete objective function is: 

O = min(C1 +C2) (3) 
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The direct summation of infrastructure depreciation cost C1 and 
operational cost C2 requires justification beyond monetary unit 
compatibility. Both cost components share the same time horizon (daily 
operations) and decision scope (network-wide impact), enabling 
meaningful aggregation. The infrastructure depreciation rate λ converts 
capital expenditures into equivalent daily costs, ensuring temporal 
consistency with operational expenditures.

Subject to the following constraints:
Distribution centers must be activated before they can serve medical 

facilities: 
∑

i∈F
Xij⩽MYj, ∀j ∈ D (4) 

where M is a sufficiently large number.
To ensure all medical facilities are included in the underground 

medical logistics system, each facility must be connected to exactly one 
distribution center, and each activated distribution center must serve at 
least one medical facility: 
∑

j∈D
Xij = 1,∀i ∈ F (5) 

∑

i∈F
Xij⩾1, ∀j ∈ D (6) 

The transportation volume from distribution centers to medical 

facilities cannot exceed the processing capacity constraint: 

∑

i∈F

(

Xij

∑

l∈H
fil

)

⩽a,∀j ∈ D (7) 

The transportation capacity between distribution centers is con
strained by vehicle speed and tunnel length. Longer tunnels result in 
fewer transportation batches, and the daily flow volume between two 
distribution centers cannot exceed the maximum transportation capac
ity of the tunnel: 
∑

l∈H

∑

i∈F
Kjj́

il fil⩽⌊
ξγ

djj́ + δγ
θ⌋,∀j, j́ ∈ D, j ∕= j́ (8) 

where ⌊⋅⌋ represents the floor function.
The operational hour’s parameter ξ represents the daily operational 

window for underground vehicle movements. We set ξ = 8 hours in our 
experiments based on typical hospital logistics scheduling practices, 
where most non-emergency medical supply deliveries occur during 
standard business hours (9 AM to 5 PM) to minimize disruption to 
clinical operations. This 8-hour window excludes peak clinical hours 
(early morning and evening) when elevator and corridor access is 
restricted for patient transport. Alternative values of ξ could be 
explored: ξ = 12 hours for systems serving emergency departments 
requiring extended coverage, or ξ = 6 hours for specialized applications 
like laboratory specimen transport with concentrated delivery windows. 

Fig. 1. Multi-level underground medical logistics network architecture.

Fig. 2. Medical cargo flow path in underground logistics network.

J. Lv et al.                                                                                                                                                                                                                                        Computers & Industrial Engineering 209 (2025) 111451 

5 



The model’s flexibility allows adjustment of ξ based on specific 
healthcare system requirements and operational constraints.

Distribution centers at both ends of a tunnel must be activated for the 
tunnel to be established: 

Zjj́ ⩽min(Yj,Yj́ ),∀j, j́ ∈ D, j ∕= j́ (9) 

If a distribution center is activated, it must be connected to the pri
mary network with at least one deep tunnel passing through it: 
∑

j́ ∈D

Zjj́ ⩾Yj, ∀j ∈ D (10) 

Medical cargo flow and tunnel connectivity have a sequential rela
tionship; a tunnel must exist between two points for medical cargo to be 
transported between them: 
∑

l∈H

∑

i∈F
Kjj́

il ⩽MZjj́ ,∀j, j́ ∈ D, j ∕= j́ (11) 

All distribution centers in the primary system must have at least one 
connection path with other distribution centers: 
∑

j∈D
Zjj́ ⩾1, ∀j́ ∈ D, j ∕= j́ (12) 

Considering the capacity limitations of distribution centers, each 
center can connect to at most one medical logistics hub: 
∑

l∈H
Ulj⩽1, ∀j ∈ D (13) 

For each medical logistics hub, there is exactly one distribution 
center directly connected to it: 
∑

j∈D
Ulj = 1,∀l ∈ H (14) 

If a medical logistics hub transfers cargo through a distribution 
center, that center must be activated: 

Ulj⩽Yj, ∀l ∈ H, j ∈ D (15) 

The total medical cargo flow is consistent between primary and 
secondary systems: 
∑

i∈F

∑

l∈H
fil =

∑

i∈F

∑

l∈H

∑

j∈D

∑

j́ ∈D

filKjj́
il (16) 

In this model, all decision variables are binary: 

Xij,Yj, Zjj́ ,Ulj,Kjj́
il ∈ {0,1} (17) 

Research has proven that multi-level network design problems like 
ours are NP-hard, with complexity primarily influenced by the number 
of medical facilities and potential distribution center locations. For 
instance, with four medical logistics hubs, 10 potential distribution 
centers, and 50 medical facilities, the possible node assignment combi
nations reach 1050, making exact solutions computationally infeasible.

The computational complexity of the formulated integer program
ming model can be analyzed as follows:

The model contains several sets of binary decision variables: Xij (n×

k), Yj (k), Zjj́  (k× k), Ulj (m× k), and Kjj́
il (n× m× k× k). The total 

number of binary variables is n× k + k +
k×(k− 1)

2 + m× k +
n×m×k×(k− 1)

2 , 
which is dominated by O(n × m × k2) in the worst case.

The number of constraints is also substantial: Constraint (4) adds k 
constraints, constraints (5) and (6) add n+k constraints, constraint (7)
adds k constraints, constraint (8) adds k × (k − 1) constraints, constraints 
(9)–(15) add additional O(k2 +m × k+n × m × k2) constraints, and 
constraint (16) adds one constraint for flow conservation.

This problem belongs to the class of facility location problems 
combined with network design problems, known as NP-hard. Including 
multiple commodities (medical supplies) and service levels (primary 
and secondary systems) further increases the complexity.

For realistic problem sizes in medical logistics (e.g., n = 50, k = 30, 
m = 4), the model would contain over 90,000 binary variables and 
thousands of constraints, making exact solution methods computation
ally intractable. This complexity justifies our development of the IMNO- 
ULS algorithm that effectively decomposes the solution space and em
ploys computational intelligence techniques to find near-optimal solu
tions efficiently.

4. Computational intelligence algorithm design

The complexity analysis demonstrates that the formulated integer 
programming model is NP-hard with O(n × m × k2) binary variables for 
realistic problem sizes. This complexity makes exact solution methods 
impractical for real-world medical logistics networks. Our algorithm 
design is motivated by several characteristics of the medical ULS 
problem: 

Table 2 
Model parameters.

Symbol Description Index 
information

H = H1,H2, ..

.,Hm

Set of peripheral medical logistics hubs −

F = F1,F2, ...,

Fn

Set of medical facilities with underground 
receiving stations

−

D = D1,D2,...,

Dk

Set of candidate locations for distribution 
centers

−

m Number of medical logistics hubs −

n Number of medical facilities with underground 
receiving stations

−

k Number of candidate locations for distribution 
centers

−

λ Daily depreciation rate of infrastructure −

ca Construction cost of activating a distribution 
center

−

cb Construction cost of establishing an 
underground receiving station

−

cd Construction cost per kilometer of deep tunnel −

cp Construction cost per kilometer of shallow 
pipeline channel

−

ct Cost of medical cargo transfer at nodes −

vd Transportation cost of medical cargo in deep 
tunnels

−

vp Transportation cost of medical cargo in shallow 
pipelines

−

γ Speed of underground transport vehicles −

δ Departure interval between consecutive 
transport vehicles

−

θ Capacity of transport vehicles −

a Daily processing capacity of distribution 
centers

−

dij Distance between medical facility i and 
distribution center j

i ∈ F, j ∈ D

djj́ Distance between distribution centers j and j́ j, j́ ∈ D, j ∕= j́
dlj Distance between medical logistics hub l and 

distribution center j
l ∈ H, j ∈ D

fil Flow volume between medical facility i and 
medical logistics hub l

i ∈ F, l ∈ H

Table 3 
Decision variables.

Symbol Description Type

Xij 1 if medical facility i is assigned to distribution center j, 
0 otherwise

Binary

Yj 1 if distribution center j is activated, 0 otherwise Binary
Zjj́ 1 if distribution centers j and j́  are connected, 0 otherwise Binary
Ulj 1 if medical logistics hub l is connected to distribution center j, 

0 otherwise
Binary

Kjj́
il

1 if the medical cargo flow from hub l to facility i passes through 
the tunnel between distribution centers j and j́ , 0 otherwise

Binary
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• Spatial clustering: Medical facilities in urban environments tend to 
form natural clusters based on population density and healthcare 
service distribution. This spatial structure can be leveraged to 
decompose the solution space.

• Hierarchical decision structure: The model involves hierarchical 
decisions − distribution center activation, medical facility assign
ment, and network connectivity − with interdependencies that can 
be exploited in a multi-layer optimization approach.

• Multi-objective balance: The solution must balance infrastructure 
costs with operational efficiency, requiring an algorithm that can 
effectively explore diverse regions of the solution space to find the 
optimal trade-off.

Based on these characteristics, we propose a dual-layer algorithm 
that combines mean-shift clustering for spatial decomposition with a 
hierarchical optimization approach using artificial immune systems and 
simulated annealing. This combination allows us to efficiently handle 
the high dimensionality of the solution space while adapting to the 
inherent structure of medical logistics networks.

4.1. Mean-shift clustering algorithm

The core computation of the mean-shift (MS) clustering algorithm 
focuses on the density of points to be clustered, with each cluster center 
iteratively moving to the area with the highest density of medical fa
cilities (Peng et al., 2025). This approach aligns well with the regional 
concentration characteristic of medical logistics nodes. Given the coor
dinate vectors of medical facilities and cluster centers as xi and x, 
respectively, the algorithm proceeds as follows: 

1) If this is the first iteration, randomly select a sample point as the 
initial point; otherwise, randomly select a point from the samples not 
yet incorporated into clusters as the initial point.

2) Identify all medical facilities within the search radius of the cluster 
center, denoted as set B, with K elements.

3) Calculate the center shift value M for cluster B using:

M =
1
K
∑

xi∈B
(xi − x) (18) 

4) If M is less than the clustering convergence threshold, proceed to step 
5; otherwise, update the cluster center’s position according to M.

5) Return to step 2 with the updated cluster center.
6) Incorporate all traversed sample points into B, and determine if the 

distance between the current cluster center and other cluster centers 
is less than the cluster merging threshold; if so, merge the two 
clusters.

7) If all sample points have been assigned to clusters, stop the algo
rithm; otherwise, return to step 1.

Following this method, all cluster centers will ultimately reach lo
cations of maximum local density of medical facilities. Through mean- 
shift clustering, we can effectively optimize the solution space, 
thereby improving the efficiency of the heuristic algorithm.

4.2. Dual-layer algorithm based on artificial immune systems and 
simulated annealing

We construct a dual-layer algorithm based on artificial immune 
systems (AIS) (Bejoy et al., 2022) and simulated annealing (SA) (Vargas- 
Martinez et al., 2023). As shown in Fig. 3, the outer layer employs 
simulated annealing to optimize the hyperparameters of the mean-shift 
clustering algorithm, while the inner layer uses an artificial immune 
system to search for the optimal network layout under the constraints of 
clustering results.

The outer layer algorithm optimizes the hyperparameters of the MS 
clustering algorithm, employing real-number encoding. The encoding 
consists of three segments representing the search radius of cluster 
centers, clustering convergence threshold, and cluster merging 
threshold, as shown in Fig. 4.

The core of the outer layer algorithm is the simulated annealing 
mechanism, which can be divided into three parts: new solution 
acceptance, random perturbation, and annealing process: 

1) New solution acceptance

We employ a probabilistic approach to accept new solutions, calcu
lated as: 

Fig. 3. Dual-layer algorithm for medical ULS network optimization.
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P =

⎧
⎪⎨

⎪⎩

1 if E(n + 1) < E(n)

e−
E(n+1)− E(n)

T if E(n + 1)⩾E(n)
(19) 

where E represents the energy value, with lower energy indicating a 
better solution. When a new solution has lower energy than the current 
solution, it is accepted with probability 1; when the new solution’s en
ergy is higher, it is still accepted with a certain probability to enable 
exploration of the global optimum. 

2) Random perturbation

Since the outer layer algorithm uses real-number encoding with 

significant differences in value ranges across segments, perturbation is 
applied proportionally to each segment’s value: 

Eʹ = (1 + r)E (20) 

where E is the original segment value and Eʹ is the new segment value. 
When r is large, global search capability is stronger but local search 
capability is weaker; when r is small, local search capability is stronger 
but convergence speed may be slower. In this study, r is set as a random 
number following a normal distribution with mean 0 and variance 0.15. 

3) Annealing process

Fig. 4. Outer layer algorithm encoding for IMNO-ULS.

×

Fig. 5. Immune body coding for medical ULS optimization.
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Parameter T represents the current temperature in the annealing 
process. If T is too high, the annealing speed will be too fast, and the 
algorithm may terminate before finding the global optimum; if T is too 
low, the computation time will increase. Therefore, we use a tempera
ture schedule to adjust the annealing process, starting with a higher T 
value and gradually reducing it as annealing progresses. The cooling rate 
follows an exponential decay with parameter λ set to 0.9, calculated as: 

T(n+1) = λT(n),n = 1, 2,… (21) 

The inner layer algorithm design process is as follows: 

1) Initial solution generation

The antibody encoding involves decisions about distribution centers, 
medical facilities, and tunnel layout, combining real-number and binary 
encoding approaches. Antibodies have three layers, as shown in Fig. 5.

The first layer represents the activation status of distribution centers, 
with 0 indicating the center is not activated and one indicating it is 
activated. Under the MS clustering results, at least one distribution 
center in each cluster must be activated. The second layer is based on the 
activated distribution centers and randomly assigns medical facilities to 
them, with the matching principle within the same cluster. The example 
shows four activated distribution centers; using Kruskal’s algorithm, we 
find their minimum spanning tree as the initial solution. The adjacency 
matrix is a 4 × 4 symmetric matrix, with the upper triangular portion 
combined into a single row as the third layer of the antibody, repre
senting the connectivity between distribution centers. 

2) Expected reproduction rate calculation

The expected reproduction rate evaluates antibody quality and is 
influenced by antibody concentration and affinity. Higher antibody af
finity results in a higher expected reproduction rate, while higher con
centration leads to a lower rate.

For antibody x, if the total population size is N and S is the logical 
discrimination value for antibody similarity (if two antibodies have 
more than R identical positions, they are considered approximately 
identical), then antibody concentration is defined as: 

c(x) =
∑

y∈NS(x, y)
N

(22) 

If the cost of the solution corresponding to antibody x is fit(x) and its 
affinity is A(x), to expand the search space, the algorithm allows 
exceeding tunnel capacity constraints. Let the excess amount be s(x), 
calculated as: 

s(x) = max

(
∑

j∈D

∑

j́ ∈D

(
∑

l∈H

∑

i∈F
Kjj́

il fil − ⌊
ξγ

djj́ + δγ
θ⌋

)

,0

)

(23) 

Adding a penalty factor τ for the excess amount and multiplying by a 
factor α > 1 at the end of each iteration, the final calculations for anti
body affinity and expected reproduction rate are: 

A(x) =
1

fit(x) + ταgens(x)
(24) 

e(x) = ε A(x)
∑

y∈NA(y)
+ (1 − ε) c(x)

∑
y∈Nc(y)

(25) 

where gen is the current iteration number, e(x) represents the expected 
reproduction rate of antibody x, and ε ∈ (0,1) represents the algorithm’s 
emphasis on concentration versus affinity. 

3) Immune operators

Immune operators include crossover operators, mutation operators, 
and memory cell library.

The crossover operator applies to the first and second layers of an
tibodies using single-point crossover. Given a crossover probability pc, 
we select historically superior antibodies and generate a random num
ber r ∈ [0, 1] for each antibody to be evaluated; if r⩽pc, the crossover 
operation is performed. The specific steps are shown in Fig. 6. After 
crossover, antibody segments that do not meet requirements are 
repaired.

The mutation operator applies to the third layer of antibodies using 
single-point mutation. Given a mutation probability pm, we generate a 
random number r ∈ [0, 1] for each antibody; if r⩽pm, the mutation 
operation is performed. The specific steps are shown in Fig. 7. The 
operation randomly selects one position for mutation; if the mutated 
antibody is feasible or reduces the excess amount s(x), it is retained. 
Otherwise, the mutation is reversed.

The memory cell library preserves antibodies with the highest af
finity while selecting appropriate antibodies to form new populations. 
The specific operations are as follows: 

1) If the memory library is empty, directly select the top m antibodies by 
expected reproduction rate from the current antibody population 
and store them in the memory library.

2) If the memory library is not empty before the immune process be
gins, combine the memory library with the antibody population, sort 
all antibodies by expected reproduction rate in descending order, 
select the top m antibodies for the memory library, and select the top 
N antibodies as the parent population, where N is the antibody 
population size.

3) Update the memory library before each immune operation.

After applying the crossover and mutation operators, solutions may 
violate problem constraints, necessitating a repair process to transform 
these infeasible solutions into feasible ones. The repair strategy ad
dresses different aspects of the solution structure while preserving the 
beneficial characteristics of the original solution.

The repair process begins with distribution center activation ad
justments. When no distribution center is activated in a cluster identified 
by the mean-shift algorithm, the repair mechanism randomly activates 
one distribution center within that cluster to ensure service coverage. 
Conversely, when multiple distribution centers are activated in a cluster 
where the mean-shift algorithm determines a single center is optimal, 
the process deactivates all but the one closest to the cluster centroid, 
thereby maintaining the efficiency benefits identified during clustering.

Flow constraint violations receive attention through flow rerouting 
mechanisms. When flow variables indicate cargo movement through 
non-existent tunnels (violating constraint 11), the repair process 
reroutes these flows through existing tunnels using the shortest path 
algorithm. Similarly, when tunnel capacity constraints (constraint 8) are 
violated, the mechanism iteratively removes flows from overloaded 
tunnels and redirects them through alternative paths until all capacity 
constraints are satisfied.

The comprehensive repair process ensures that all solutions evalu
ated during the optimization process satisfy the problem constraints 
while maintaining the beneficial characteristics of the original solution, 
allowing the algorithm to explore feasible regions of the solution space 
effectively.

Fig. 8 shows the overall flowchart of the IMNO-ULS algorithm, 
showing the interaction between the outer layer (simulated annealing), 
mean-shift clustering, and inner layer (artificial immune system).

The IMNO-ULS algorithm employs a termination criterion that 
govern when the optimization process concludes. These conditions 
apply at different levels of the algorithmic hierarchy to ensure compu
tational efficiency while maintaining solution quality. Within the outer 
layer employing simulated annealing, the algorithm concludes its search 
when it reaches a predefined maximum of 1000 iterations, providing a 
hard upper bound on computational time. Additionally, the outer layer 
terminates when the temperature parameter, which controls the 
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probability of accepting worse solutions, falls below a minimum 
threshold of 0.01, indicating that the search has sufficiently cooled and 
stabilized. To avoid wasting computational resources on plateaus in the 
solution space, the outer layer also halts if no improvement in the best 
solution occurs for 100 consecutive iterations, suggesting that further 
exploration would likely yield diminishing returns.

The inner layer utilizing artificial immune system concepts has its 
own set of termination conditions that operate within each call from the 
outer layer. Each inner layer optimization proceeds for a maximum of 50 
generations to prevent excessive computational time at any single point 
in the solution space. Convergence is detected when the memory cell 
library, which stores high-quality solutions, remains unchanged for 20 
consecutive generations, indicating that the immune system has stabi
lized around a set of local optima. Furthermore, the inner layer opti
mization concludes early when it identifies a solution with an objective 
function value within 1 % of the estimated lower bound, recognizing 
that the marginal benefit of continuing the search would be minimal 
compared to the computational cost.

These multi-level termination criteria create an effective balance 

between thorough exploration of the solution space and computational 
efficiency. By implementing different stopping conditions at various 
algorithmic levels, the IMNO-ULS algorithm can adapt its search in
tensity based on solution quality progression, allowing it to identify 
high-quality solutions for complex medical logistics networks within 
reasonable computation times while avoiding premature convergence to 
suboptimal solutions.

5. Simulation results and analysis

5.1. Setup

To evaluate the performance of the proposed IMNO-ULS algorithm in 
designing optimal medical logistics networks, we conducted extensive 
numerical experiments under various problem scales and configura
tions. These experiments were designed to assess the proposed 
approach’s solution quality and computational efficiency compared to 
established methods in the literature. All experiments were performed 
on a workstation with an Intel Xeon E5-2670 CPU @ 2.60 GHz, 64 GB 

Fig. 6. Schematic diagram of immune crossover operation.

Fig. 7. Schematic diagram of immune mutation operation.
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RAM, running MATLAB R2023a.
The parameters used in our experiments were derived from multiple 

sources to ensure realism and applicability: 

1. Infrastructure costs (construction costs for distribution centers, 
receiving stations, tunnels, and pipelines) were estimated based on 
published civil engineering literature and infrastructure develop
ment reports from urban planning authorities. These values were 
calibrated using cost data from recent underground transportation 
projects in major metropolitan areas and adjusted for the specific 
requirements of medical logistics operations.

2. Operational parameters (vehicle speed, capacity, transportation 
costs) were based on technical specifications of automated guided 
vehicles used in hospital logistics and underground transportation 
systems. These parameters were validated through consultation with 
medical logistics experts and manufacturers of underground trans
portation equipment.

3. Medical facility demand data were synthesized based on empirical 
studies of hospital logistics operations, considering typical demand 
patterns for pharmaceuticals, laboratory specimens, and medical 
supplies. The uniform distribution range (3,000–24,000 items) re
flects the variability observed in healthcare facilities of different 
sizes and specialties.

4. Time-critical parameters, such as vehicle departure intervals and 
speed, were calibrated to meet emergency medical delivery re
quirements while maintaining operational feasibility.

5. The medical logistics network components in our model include: 
• Peripheral medical logistics hubs: Large-scale facilities located on 

the urban periphery that serve as entry points for medical supplies, 
equipment, and specimens

• Distribution centers: Underground facilities that receive, sort, and 
redistribute medical cargo based on destination and priority

• Deep tunnel system: Large-diameter tunnels (2–3 m) accommo
dating automated vehicles carrying consolidated cargo between 
hubs and distribution centers

• Shallow pipeline network: Smaller-diameter conduits (0.5–1 m) 
connecting distribution centers to individual medical facilities

• Underground receiving stations: Facilities beneath medical build
ings that receive deliveries and transfer them to above-ground 
operations

All parameter values represent realistic estimates for a major 
metropolitan area with a population of 5–10 million people and were 
validated through sensitivity analysis to ensure the robustness of the 
results.

Based on the literature review and real-world operational re
quirements of medical underground logistics systems, we established 
parameter settings for the physical system components and the 

Fig. 8. IMNO-ULS algorithm flowchart.
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algorithmic implementation. Table 4 presents the medical ULS infra
structure and operational parameters used in our experiments, while 
Table 5 provides the computational intelligence algorithm parameter 
settings.

To evaluate the proposed IMNO-ULS algorithm’s performance, we 
implemented six state-of-the-art baseline methods from recent literature 
for comparison: PSOA*-LAR, IAGA, blM-ULS, GDD-ULS, sM-ULS, and 
MoCC-MULNP. The key differences between IMNO-ULS and these 
baseline methods include (1) our use of mean-shift clustering with 
adaptive parameters optimized through simulated annealing, (2) the 
dual-layer optimization structure that separates strategic and tactical 
decisions, and (3) the specific adaptation to medical logistics re
quirements including time-sensitive delivery constraints.

In our experiments, these algorithms were implemented according to 
their original specifications with parameter settings recommended by 
their respective authors. They were then adapted to the medical logistics 
context with appropriate constraints and objectives. This ensures a fair 
and meaningful comparison across different methodological 
approaches.

5.2. Results analysis

5.2.1. Comparative performance analysis
To investigate the optimization capability of the proposed IMNO- 

ULS algorithm across different problem scales, we designed and gener
ated random test instances of varying sizes. The test instances varied in 
terms of the number of medical facilities (n), potential distribution 
center locations (k), and medical logistics hubs (m). Specifically, we 
created four categories of problem scales: 

1. Small-scale: 50 medical facilities, 30 potential distribution centers, 4 
medical logistics hubs

2. Medium-scale: 100 medical facilities, 50 potential distribution cen
ters, 6 medical logistics hubs

3. Large-scale: 200 medical facilities, 90 potential distribution centers, 
8 medical logistics hubs

4. Extra-large-scale: 500 medical facilities, 150 potential distribution 
centers, 10 medical logistics hubs

For each problem scale, we generated five random instances and 
solved them using all seven algorithms (IMNO-ULS and the six baseline 
methods). Each algorithm was executed 10 times per instance to account 
for the stochastic nature of metaheuristic algorithms, and we recorded 
the average objective function value and computation time.

Table 6 presents the computational results across different problem 
scales, comparing the performance of IMNO-ULS with the baseline 
methods. In this table, Z1 represents the objective function values (total 
cost in millions of monetary units) for our proposed IMNO-ULS algo
rithm, while Z2 through Z7 represent the values for PSOA*-LAR, IAGA, 
blM-ULS, GDD-ULS, sM-ULS, and MoCC-MULNP, respectively. 

Table 4 
Parameter data of underground medical logistics system.

Parameter Value Unit

Distribution center activation 
cost ca

150,000 10,000 units per center

Underground receiving station 
establishment cost cb

60,000 10,000 units per 
station

Deep tunnel construction cost 
cd

108,000 10,000 units per km

Shallow pipeline construction 
cost cp

74,000 10,000 units per km

Distribution center capacity for 
medical supplies a

260,000 items per day

Infrastructure depreciation 
rate λ

80 years, 365 days −

Deep tunnel transportation 
cost vd

90 units per km

Shallow pipeline 
transportation cost vp

150 units per km

Medical cargo transfer cost ct 80 units per thousand 
items per transfer

Medical facility daily package 
quantity fil

Uniformly distributed 
(3,000, 24,000)

items

Autonomous vehicle operating 
speed γ

50 km/h

Autonomous vehicle cargo 
capacity θ

5,000 items per vehicle

Temperature control system 
maintenance

1,200 units per month

Biohazard containment 
protocols

3,500 units per facility

Emergency response capability 2,000 units per distribution 
center

Table 5 
Parameter settings for computational intelligence algorithm.

Parameter Value

Antibody population size (N) 50
Immune mutation probability (pm) 0.1
Immune crossover probability (pc) 0.6
Memory cell library capacity (m) 20
Logical discrimination threshold (R) 50 % of antibody total length
Initial penalty factor (τ) 0.01
Expected reproduction rate parameter (ε) 0.6
Temperature cooling rate (λ) 0.9
Initial temperature (T0) 100
Mean-shift search radius range [2.0, 15.0] km
Clustering convergence threshold range [0.01, 1.0]
Cluster merging threshold range [1.0, 20.0] km
Maximum iterations 1000
Convergence criterion 100 iterations without improvement

Table 6 
Comparative performance across different problem scales.

Parameter Scale 1 
(Small)

Scale 2 
(Medium)

Scale 3 
(Large)

Scale 4 (Extra- 
large)

m 4 6 8 10
n 50 100 200 500
k 30 50 90 150
Z1 (IMNO- 

ULS)
788.8 1,355.28 2,654.53 3,852.24

Z2 (PSOA*- 
LAR)

847.62 1,476.25 2,977.84 4,429.14

Z3 (IAGA) 825.91 1,443.72 2,843.16 4,208.95
Z4 (blM-ULS) 818.46 1,409.15 2,814.08 4,175.68
Z5 (GDD-ULS) 808.93 1,401.56 2,809.00 4,135.57
Z6 (sM-ULS) 803.12 1,382.73 2,780.32 4,076.13
Z7 (MoCC- 

MULNP)
796.36 1,369.55 2,733.17 4,008.24

T1 (IMNO- 
ULS)

17.2 42.1 75 168.6

T2 (PSOA*- 
LAR)

45.3 94.6 218.4 587.2

T3 (IAGA) 39.8 86.5 184.6 463.8
T4 (blM-ULS) 35.4 79.2 167.3 412.5
T5 (GDD-ULS) 28.7 67 142.7 375.1
T6 (sM-ULS) 24.5 58.4 112.8 235.7
T7 (MoCC- 

MULNP)
20.4 46.7 88.2 196.3

GAP1 (Z2-Z1)/ 
Z1

7.46 % 8.93 % 12.18 % 15.00 %

GAP2 (Z3-Z1)/ 
Z1

4.70 % 6.53 % 7.10 % 9.26 %

GAP3 (Z4-Z1)/ 
Z1

3.76 % 3.97 % 6.01 % 8.40 %

GAP4 (Z5-Z1)/ 
Z1

2.55 % 3.41 % 5.82 % 7.35 %

GAP5 (Z6-Z1)/ 
Z1

1.82 % 2.03 % 4.74 % 5.81 %

GAP6 (Z7-Z1)/ 
Z1

0.96 % 1.05 % 2.96 % 4.05 %
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Similarly, T1 through T7 represent their respective computation times in 
seconds.

The performance gaps between IMNO-ULS and each baseline algo
rithm are calculated as: 

GAPi =
Zi+1 − Z1

Z1
× 100%, i = 1,2, ...,6 (26) 

Table 6 reveals several important trends. First, IMNO-ULS consis
tently outperforms all baseline methods across all problem scales 
regarding solution quality (objective function value). The performance 
advantage becomes more pronounced as the problem scale increases. 
For small-scale problems, the gap between IMNO-ULS and the next best 
algorithm (MoCC-MULNP) is approximately 0.96 %, while for extra- 
large-scale problems, this gap increases to 4.05 %. Compared to the 
worst-performing algorithm (PSOA*-LAR), the advantage of IMNO-ULS 
ranges from 7.46 % for small-scale problems to 15.00 % for extra-large- 
scale problems.

Table 7 shows the impact of different weight combinations on 
network design solutions across medium-scale problem instances. The 
analysis examines how varying the relative importance of infrastructure 
versus operational costs affects optimal network configurations and total 
system performance.

The experimental results demonstrate that solutions remain 
remarkably stable across different weighting schemes when infrastruc
ture and operational costs maintain similar magnitudes. Network con
figurations converge within narrow cost ranges regardless of weight 
adjustments, with maximum deviations below four percent from the 
baseline equal-weight solution. The natural balance between infra
structure investment and operational efficiency in medical logistics 
systems creates inherent cost equilibrium that supports direct additive 
formulation. This validates our unweighted objective function approach 
for medical underground logistics network design, where infrastructure 
and operational considerations naturally complement rather than 
compete with each other.

Regarding computational efficiency, IMNO-ULS demonstrates supe
rior performance compared to most baseline methods. While MoCC- 
MULNP and sM-ULS show comparable computation times for smaller 
problems, IMNO-ULS maintains its efficiency advantage as the problem 
scale increases. For extra-large-scale problems, IMNO-ULS achieves a 
14.1 % reduction in computation time compared to MoCC-MULNP and a 
28.5 % reduction compared to sM-ULS. Compared to the slowest algo
rithm (PSOA*-LAR), IMNO-ULS reduces computation time by approxi
mately 71.3 % for extra-large problems.

These results demonstrate that IMNO-ULS is particularly well-suited 
for large-scale medical underground logistics network optimization 
problems, where combining solution quality and computational effi
ciency becomes increasingly important.

We compared its performance with commercial optimization solvers 
to validate the quality of solutions obtained by IMNO-ULS and establish 
its advantages over exact methods. Due to the complexity of the full 
model, we simplified the problem by fixing the distribution center lo
cations (based on the IMNO-ULS solution) and solving the resulting 
subproblem using CPLEX 12.10. Table 8 presents the results of this 
comparison.

For small-scale problems, CPLEX found optimal solutions with 

solution quality 1.78–2.28 % better than IMNO-ULS but required 
significantly more computation time (48–630 times longer). For me
dium and large-scale problems, CPLEX could not find feasible solutions 
within 10,000 s, while IMNO-ULS provided high-quality solutions in less 
than a minute.

These results confirm that while exact methods can provide slightly 
better solutions for small problems, they become computationally 
intractable for realistic problem sizes in medical logistics. The small 
optimality gap (under 2.5 %) for problems where CPLEX could find 
optimal solutions suggests that IMNO-ULS provides near-optimal solu
tions while offering substantial computational advantages.

5.2.2. Algorithm stability analysis
Solution stability is critical for medical logistics systems as it ensures 

consistent performance across multiple runs, which is essential for 
reliable planning and decision-making. To analyze the stability of the 
proposed IMNO-ULS algorithm, we conducted repeated experiments on 
the test instances described before. For each problem scale, we executed 
the IMNO-ULS algorithm 20 times, recording the optimal, worst, and 
average objective function values. We then calculated the percentage 
differences between these values to quantify the algorithm’s stability.

Table 9 shows the stability analysis results for the proposed IMNO- 
ULS algorithm across different problem scales.

The optimal-average difference ratio and worst-average difference 
ratio are calculated using Eqs. (27) and (28): 

Table 7 
Impact of weight combinations on network design solutions.

Weight ratio (w1 : w2) Infrastructure cost 
(C1)

Operational cost 
(C2)

Total weighted 
cost

Distribution 
centers

Average delivery time 
(min)

Cost deviation from 
baseline

1:4 (Operations priority) 1,423.60 1,089.20 1,780.40 6 19.8 2.30 %
1:2 (Operations focus) 1,398.70 1,156.40 1,744.10 7 18.9 0.80 %
1:1 (Equal weight) 1,355.30 1,081.20 1,218.30 8 17.6 Baseline
2:1 (Infrastructure focus) 1,289.40 1,247.80 1,275.50 9 18.2 1.40 %
4:1 (Infrastructure 

priority)
1,234.80 1,398.60 1,632.40 11 20.1 3.10 %

Table 8 
Comparison with optimization solver.

Problem Scale CPLEX 
solution

CPLEX 
time (s)

IMNO-ULS 
solution

IMNO- 
ULS time 
(s)

Gap 
(%)

Small (n = 10, 
k = 5)

352.16 217.3 358.42 4.5 1.78 
%

Small (n = 20, 
k = 10)

546.93 1,842.50 559.17 8.2 2.24 
%

Small (n = 30, 
k = 15)

687.24 7,625.80 702.93 12.1 2.28 
%

Medium (n =
50, k = 30)

− >10,000 788.8 17.2 −

Large (n =
100, k = 50)

− >10,000 1,355.28 42.1 −

Table 9 
Stability analysis of the IMNO-ULS algorithm.

Scale 
group

Best 
value

Worst 
value

Average 
value

Optimal- 
average 
difference 
ratio/%

Worst- 
average 
difference 
ratio/%

Small 779.34 800.28 788.15 − 1.13 1.51
Medium 1,324.58 1,362.85 1,349.80 − 1.9 0.96
Large 2,618.86 2,689.61 2,654.39 − 1.36 1.31
Extra- 

large
3,812.87 3,909.08 3,846.79 − 0.89 1.59

Average ​ ​ ​ − 1.32 1.34
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OptimalRatio =
Optimal − Average

Average
× 100% (27) 

WorstRatio =
Worst − Average

Average
× 100% (28) 

Table 9 shows that the IMNO-ULS algorithm demonstrates remark
able stability across all problem scales. The average difference ratio 
between optimal and average values is − 1.32 %, while the average 
difference ratio between worst and average values is 1.34 %. This nar
row range indicates that the algorithm consistently produces solutions of 
similar quality across multiple runs.

Interestingly, the algorithm’s stability does not deteriorate with 
increasing problem scale, which is often observed in many metaheuristic 
algorithms. The optimal-average difference ratio for the extra-large 
problem scale is lower (− 0.89 %) than for smaller scales, suggesting 
that the algorithm’s stability improves for larger problems. This coun
terintuitive result can be attributed to the mean-shift clustering 
component, which becomes more effective at identifying natural 
groupings as the number of medical facilities increases, thereby 
providing a more consistent decomposition of the solution space.

When compared to the baseline algorithms, IMNO-ULS demonstrates 
superior stability. For example, PSOA*-LAR shows average difference 
ratios of − 3.45 % (optimal-average) and 4.12 % (worst-average), while 
IAGA shows − 2.78 % and 3.15 %, respectively. The improved stability 
of IMNO-ULS is particularly important in medical logistics, where 
consistent performance is crucial for reliable emergency response 
planning and critical supplies distribution.

These stability results further validate the robustness of the proposed 
IMNO-ULS algorithm for practical applications in medical logistics 
network design, where reliability and consistency are paramount 
considerations.

5.2.3. Sensitivity analysis
To investigate how changes in infrastructure parameters affect the 

underground medical logistics system’s design and operational costs, we 
conducted a comprehensive sensitivity analysis. We selected the distri
bution center processing capacity (α) as a key parameter for this anal
ysis, as it represents a critical decision variable that can be influenced 
through technology adoption and operational adjustments.

Implementing automated pharmaceutical sorting systems, robotic 
handling equipment, advanced inventory management technologies, or 
modifications to operational protocols can result in changes in distri
bution center processing capacity. Understanding the relationship be
tween this parameter and the overall system cost provides valuable 
insights for decision-makers in medical logistics planning.

We randomly selected one instance from the four problem scales for 
the sensitivity analysis. For each instance, we varied the distribution 
center processing capacity parameter across five levels: 50 %, 75 %, 100 
% (baseline), 125 %, and 150 % of the standard capacity value. The 
IMNO-ULS algorithm was applied to optimize the network design under 
each capacity level, and we recorded the resulting infrastructure 
depreciation costs, transportation costs, and total system costs.

Fig. 9 shows the effects of varying distribution center capacity on 
infrastructure depreciation and transportation costs, while Fig. 10 il
lustrates the impact on total system costs. Both figures represent the 
average results across the four problem scales.

As distribution center capacity increases, infrastructure depreciation 
costs decrease, reaching a plateau around 125–150 % of baseline ca
pacity. This trend can be explained by the reduced number of distribu
tion centers needed to serve all medical facilities when individual center 
capacity increases. Fewer distribution centers result in reduced deep 
tunnel infrastructure requirements, which is partially offset by increased 
shallow pipeline construction to connect more distant medical facilities. 
Transportation costs show a more pronounced and continuous decrease 
as distribution center capacity increases. This is due to the more efficient 

consolidation of medical cargo flows through fewer, higher-capacity 
distribution centers, resulting in shorter average transportation dis
tances and reduced handling operations. The total system cost, 
combining infrastructure and operational costs, consistently decreases 
as distribution center capacity increases, with diminishing returns 
beyond 125 % of baseline capacity. Increasing distribution center ca
pacity generally benefits system efficiency, but the marginal benefits 
decrease at higher capacity levels.

Investments in distribution center capacity enhancement technolo
gies (e.g., automated pharmaceutical sorting systems and robotic 
handling equipment) can yield significant system-wide cost reductions, 
particularly in transportation operations. Focusing on moderate capac
ity enhancements (to approximately 125 % of baseline) may offer the 
optimal balance between investment costs and system-wide benefits for 
medical logistics systems with strict budget constraints. Additionally, 
the relationship between capacity and system costs is non-linear, sug
gesting that strategic capacity planning should consider the diminishing 
returns at higher capacity levels. Transportation costs are more sensitive 
to capacity changes than infrastructure costs, indicating that operational 
efficiency improvements should be a primary focus in system design.

These findings highlight the importance of distribution center ca
pacity as a key design parameter in medical underground logistics sys
tems. The insights from this sensitivity analysis can guide investment 

Fig. 9. Effect of distribution center capacity on system costs.

Fig. 10. Effect of distribution center capacity on total system cost.
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decisions and technology adoption strategies for improving the effi
ciency and resilience of urban medical supply chains.

5.3. Case study

To demonstrate the practical applicability of the proposed IMNO- 
ULS algorithm, we conducted a case study simulating our approach to 
a major metropolitan area with a high concentration of medical facil
ities. The study area encompasses approximately 290 km2 in the central 
district of Shenyang City, China, hosting a population of 6.87 million 
residents (27.6 % of the city’s total population). This area contains 42 
major hospitals, 78 community health centers, 25 specialized clinics, 13 
medical laboratories, and five pharmaceutical distribution centers, 
creating a complex and demanding medical logistics environment.

The high population density, concentration of medical facilities, and 
existing transportation congestion in this area make it an ideal candidate 
for implementing an underground medical logistics system. The case 
study aims to design an optimal multi-level underground network that 
efficiently handles time-sensitive medical supplies, specimens, phar
maceuticals, and equipment while minimizing construction and opera
tional costs.

5.3.1. Mean-shift clustering parameter optimization
The effectiveness of the mean-shift clustering component in IMNO- 

ULS depends critically on the appropriate selection of the search 
radius parameter. This parameter determines the granularity of the 
clustering process and significantly influences the quality of the result
ing network design. To identify the optimal search radius for this specific 
urban environment, we conducted a parametric study varying the search 
radius from 2 km to 10 km and evaluated the resulting network costs. 
Fig. 11 shows the relationship between the search radius parameter and 
the final network cost obtained by IMNO-ULS.

This finding aligns with the spatial distribution of medical facilities 
in urban environments, where facilities tend to form natural clusters 
with characteristic scales that match urban district sizes. The optimal 
search radius of approximately 6.5 km corresponds to the typical service 
radius of major medical centers in the study area, suggesting that the 
algorithm effectively captures the inherent spatial organization of the 
urban healthcare system.

IMNO-ULS demonstrated a superior ability to identify this optimal 
clustering scale compared to baseline methods. For example, GDD-ULS, 
which also employs clustering as a preprocessing step, achieved its best 
performance with a different parameter setting (equivalent to a radius of 
approximately 4.8 km), resulting in a network cost of 5.8 % higher than 
IMNO-ULS. This demonstrates the effectiveness of the simulated 
annealing component in IMNO-ULS for optimizing the clustering 
parameters.

To evaluate the specific contribution of the mean-shift clustering 
component, we conducted additional experiments where we incorpo
rated this preprocessing step into the baseline algorithms. Table 10
presents the results of this analysis.

The results demonstrate that mean-shift clustering preprocessing 
improves solution quality and computational efficiency across all 
baseline algorithms. However, the improvement varies significantly, 
with simpler algorithms like PSOA*-LAR benefiting more (3.22 % so
lution quality improvement) than more sophisticated algorithms like 
MoCC-MULNP (0.77 % improvement). This suggests that algorithms 
with inherent clustering capabilities derive less additional benefit from 
explicit preprocessing.

Even with mean-shift clustering added, none of the baseline algo
rithms matched the performance of IMNO-ULS. This indicates that 
IMNO-ULS’s superiority stems not only from the clustering preprocess
ing but also from the effective integration of this component with the 
dual-layer optimization approach and the specific adaptations for 
medical logistics networks.

5.3.2. Network design results
Using the optimized parameters, we applied IMNO-ULS to design a 

complete underground medical logistics network for the case study area. 
The resulting network design included eight activated distribution 
centers (from 27 candidate locations) connected to 4 peripheral medical 
logistics hubs, serving all 163 medical facilities through an optimized 
configuration of deep tunnels and shallow pipelines. Fig. 12 illustrates 
the optimized underground medical logistics network layout for the case 
study area.

The network layout illustrated in Fig. 12 represents a significant 
achievement in medical logistics optimization, demonstrating how the 
IMNO-ULS algorithm effectively balances multiple competing objectives 
in a complex urban environment. The visualization reveals a thought
fully structured hierarchical network where the primary system (blue 
deep tunnels connecting medical logistics hubs to distribution centers) 
forms the backbone of the medical supply chain, while the secondary 
system (green shallow pipelines) creates a capillary network reaching 
individual healthcare facilities.

This layout is particularly noteworthy because it embodies the 
principle of “trunk and branch” distribution, a design philosophy often 
found in natural systems. The four peripheral medical logistics 
hubs—positioned strategically at the urban boundary—serve as entry 
points for pharmaceuticals, medical equipment, and biological speci
mens. These hubs connect to eight optimally placed distribution centers 
through high-capacity deep tunnels, creating efficient supply routes that 
minimize redundancy while maintaining network resilience.

The algorithm has positioned the distribution centers at locations 
that balance several critical factors: proximity to clusters of medical 
facilities, accessibility to logistics hubs, and coverage of the entire urban 
area. This placement was not arbitrary—it emerged from the mean-shift 
clustering process with an optimal search radius of approximately 6.5 
km, which aligns remarkably well with typical urban healthcare service 
districts. The algorithm has essentially discovered the natural organi
zational structure of the urban healthcare system.

Examining the connectivity patterns reveals another sophisticated 
aspect of the IMNO-ULS solution. Rather than creating a complete graph 
where every distribution center connects to every other (which would be 
prohibitively expensive), the algorithm has identified a sparse yet robust 
network topology. Each distribution center maintains connections to an 
average of 2.5 other centers, providing multiple routing options for 
time-sensitive medical deliveries while keeping infrastructure costs 
manageable. This network structure ensures that even if a single dis
tribution center or tunnel fails, 92 % of medical facilities can still receive 
critical supplies through alternative routes—a vital consideration for 
healthcare resilience.

The secondary network of shallow pipelines extends from distribu
tion centers to the 80 medical facilities, creating shorter, more direct Fig. 11. Effect of distribution center capacity on total system cost.
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connections for “last-mile” delivery. Notice how facilities with similar 
medical specialties or in proximity to each other tend to be served by the 
same distribution center, reflecting the algorithm’s ability to recognize 
and leverage natural clustering patterns in the healthcare ecosystem. 
This specialized grouping enables more efficient handling of different 
categories of medical supplies—pharmaceuticals, laboratory specimens, 
blood products, and surgical equipment—each with unique handling 
requirements.

Compared to the baseline methods tested in this study, the IMNO- 
ULS solution achieves remarkable improvements. The network re
quires 27 % fewer distribution centers than the PSOA*-LAR approach 
while maintaining complete coverage. The total deep tunnel length has 
been reduced by 18.3 % compared to GDD-ULS, translating to sub
stantial infrastructure savings. Perhaps most importantly for medical 
applications, the network designed by IMNO-ULS reduces average de
livery time for emergency medical supplies by approximately 32 %, a 
difference that could be life-saving in critical situations.

The layout demonstrates how the algorithm has adapted to the un
derlying urban structure. Distribution centers near existing trans
portation hubs and medical facility clusters follow the city’s 
developmental patterns. This integration with urban morphology sug
gests that the IMNO-ULS algorithm is not merely optimizing in abstract 
mathematical space but responding intelligently to real-world con
straints and opportunities presented by the physical environment.

This network visualization serves as compelling evidence that 

computational intelligence approaches like IMNO-ULS can transform 
how we design critical infrastructure for healthcare systems in con
gested urban environments. It offers a blueprint for underground med
ical logistics networks that are efficient, resilient, and responsive to the 
unique demands of medical supply chains.

Table 11 compares the network design results obtained by IMNO- 
ULS and the baseline methods for the case study area. The comparison 
focuses on key performance indicators relevant to medical logistics 
operations.

As shown in Table 11, IMNO-ULS outperforms all baseline methods 
across key performance indicators. The IMNO-ULS solution requires 27 
% fewer distribution centers than PSOA*-LAR (8 versus 11) while 
maintaining complete service coverage. This reduction in infrastructure 
directly translates to lower construction and maintenance costs.

The most notable advantage of IMNO-ULS is delivery time perfor
mance, achieving a 32 % reduction in average delivery time for emer
gency medical supplies compared to PSOA*-LAR (17.6 min versus 25.9 
min). Even compared to the best-performing baseline (MoCC-MULNP), 
IMNO-ULS still reduces delivery times by 8.3 %. This improvement is 
particularly valuable for time-critical medical items such as blood 
products, emergency medications, and laboratory specimens.

The total system cost of the IMNO-ULS solution is 20 % lower than 
PSOA*-LAR and 2.8 % lower than MoCC-MULNP, demonstrating the 
economic efficiency of the proposed approach. This cost advantage 
stems from the more effective placement of distribution centers and the 

Table 10 
Impact of mean-shift clustering on baseline algorithms.

Algorithm Original solution quality With MS clustering Improvement (%) Original computation time (s) With MS clustering (s) Time reduction (%)

PSOA*-LAR 847.62 820.35 3.22 % 45.3 32.1 29.10 %
IAGA 825.91 803.26 2.74 % 39.8 28.7 27.90 %
blM-ULS 818.46 798.54 2.43 % 35.4 26.2 26.00 %
GDD-ULS 808.93 796.21 1.57 % 28.7 22.4 21.90 %
sM-ULS 803.12 793.87 1.15 % 24.5 19.8 19.20 %
MoCC-MULNP 796.36 790.24 0.77 % 20.4 17.5 14.20 %

Fig. 12. Underground medical logistics network layout.
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optimized connectivity pattern that balances deep tunnel and shallow 
pipeline construction.

5.3.3. Algorithm convergence comparison
To further evaluate IMNO-ULS’s performance in the case study, we 

analyzed its convergence behavior compared to baseline methods. This 
analysis provides insights into the algorithms’ efficiency and effective
ness in finding high-quality solutions within a reasonable computational 
timeframe. Fig. 13 shows the convergence behavior of IMNO-ULS 
compared to a standard genetic algorithm during the optimization 
process for the case study.

The convergence analysis in Fig. 13 reveals a striking performance 
differential between IMNO-ULS and the six baseline methods, with 
important implications for medical logistics network optimization. The 
convergence trajectories illuminate several key algorithmic efficiency 
aspects that directly translate to practical advantages in healthcare 
supply chain design.

IMNO-ULS demonstrates remarkably accelerated convergence dur
ing the initial 300 iterations, achieving solution quality that other 
methods require 600–900 iterations to reach. This early convergence 
advantage stems from the algorithm’s mean-shift clustering pre
processing, which provides a strategically narrowed search space 
focused on promising medical facility groupings. This computational 
efficiency translates to faster decision-making capabilities for time- 
sensitive medical logistics planning scenarios—such as pandemic 
response or hospital network expansions.

The hierarchical solution quality pattern among algorithms remains 

consistent throughout the optimization process. IMNO-ULS maintains its 
lead, followed by MoCC-MULNP, sM-ULS, GDD-ULS, blM-ULS, IAGA, 
and PSOA*-LAR. However, the performance gap widens rather than 
narrows over time, suggesting that IMNO-ULS starts from a better initial 
position and maintains superior exploration capabilities. By the 1000th 
iteration, IMNO-ULS achieves a final solution approximately 14 % better 
than PSOA*-LAR and 4 % better than MoCC-MULNP.

What is particularly noteworthy is the shape of the IMNO-ULS 
convergence curve. Unlike traditional genetic algorithms that often 
plateaued early, IMNO-ULS demonstrates periodic small improvements 
even in later iterations. These “steps” in the convergence profile indicate 
successful escape from local optima, enabled by the simulated annealing 
component that strategically accepts occasionally worse solutions to 
explore new regions of the solution space. This exploration–exploitation 
balance is crucial for medical logistics networks where small improve
ments can represent millions in savings or critical minutes saved in 
emergency medical deliveries.

The convergence patterns also reveal algorithm-specific character
istics: PSOA*-LAR shows characteristically slow but steady improve
ment, while IAGA exhibits larger early improvements followed by 
diminishing returns. MoCC-MULNP, the strongest baseline competitor, 
demonstrates good early-stage convergence but still falls short of IMNO- 
ULS’s comprehensive optimization capabilities.

From a medical operations perspective, this convergence advantage 
translates to tangible benefits: IMNO-ULS produces network designs that 
reduce construction costs, lower operational expenses, and enhance 
delivery reliability. The algorithm’s ability to rapidly identify high- 

Table 11 
Comparison of network design results in case study.

Performance indicator IMNO-ULS PSOA*-LAR IAGA blM-ULS GDD-ULS sM-ULS MoCC-MULNP

Number of activated distribution centers 8 11 10 10 9 9 9
Total deep tunnel length (km) 42.3 58.6 53.8 51.2 51.8 47.5 45.1
Total shallow pipeline length (km) 128.6 114.3 118.7 120.4 126.9 127.2 130.8
Average delivery time for emergency supplies (min) 17.6 25.9 24.3 23.5 21.7 20.8 19.2
Maximum delivery time (min) 31.2 42.7 39.5 38.1 35.4 33.7 32.5
Infrastructure cost (million units) 1,843.7 2,186.5 2,071.3 2,024.6 1,982.1 1,926.4 1,895.2
Annual operational cost (million units) 1,081.2 1,324.8 1,256.7 1,210.3 1,173.5 1,142.8 1,112.6
Total system cost (million units) 2,924.9 3,511.3 3,328.0 3,234.9 3,155.6 3,069.2 3,007.8
Improvement over baseline (%) − 20.0 % 13.8 % 10.6 % 7.9 % 4.9 % 2.8 %

Fig. 13. Convergence comparison of optimization algorithms.
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quality solutions means healthcare systems can explore multiple plan
ning scenarios under tight timelines—evaluating, for instance, how 
network designs might change under different budget constraints or 
service level requirements.

The convergence analysis validates the fundamental premise behind 
IMNO-ULS’s design: combining mean-shift clustering for spatial 
decomposition with a dual-layer optimization approach creates a 
powerful collaboration specifically suited to medical underground lo
gistics networks. This computational advantage ultimately serves the 
critical goal of these systems: ensuring life-saving medications, diag
nostic specimens, and emergency supplies reach their destinations with 
maximum reliability and minimum delay.

5.4. Model assumptions analysis and limitations

While our model assumptions enable tractable optimization, they 
introduce several limitations that warrant consideration in practical 
implementations. The deterministic demand assumption forms the 
foundation of our optimization approach, yet real-world medical supply 
requirements exhibit substantial variability that our model cannot 
capture. Emergencies, seasonal health patterns, and unexpected medical 
events create demand fluctuations that could strain system capacity 
beyond our calculated requirements. This limitation suggests that actual 
implementations would benefit from incorporating buffer capacity to 
accommodate demand uncertainty.

The geometric simplification of underground pathways presents 
another area where reality diverges from our model. Underground 
construction must navigate existing utility networks, varying soil con
ditions, and complex urban infrastructure that our straight-line distance 
calculations cannot fully represent. Construction crews encounter un
expected obstacles, required detours around critical infrastructure, and 
geological formations that substantially alter both construction time
lines and costs compared to our theoretical estimates.

Our operational assumptions regarding continuous distribution 
center operations and fixed vehicle schedules reflect idealized condi
tions that may not persist in practice. Real systems experience equip
ment maintenance requirements, staff scheduling constraints, and 
periodic system shutdowns that reduce operational availability below 
theoretical maximum capacity. Similarly, the rigid scheduling approach 
we model overlooks opportunities for dynamic routing optimization that 
could enhance system efficiency through real-time adjustments based on 
actual demand patterns and system conditions.

The requirement for complete service coverage while ensuring 
equitable access to all medical facilities may generate economically 
suboptimal solutions in certain contexts. Some remote medical facilities 
might be more cost-effectively served through alternative delivery 
methods, and a more flexible service approach could reduce overall 
system costs while maintaining adequate healthcare delivery standards.

These modeling limitations highlight important directions for future 
research and implementation considerations. Incorporating stochastic 
demand models would better reflect the uncertain nature of medical 
supply requirements. Integrating detailed geological and infrastructure 
databases would improve construction cost accuracy and timeline esti
mates. Developing dynamic scheduling algorithms could unlock effi
ciency gains not captured in our fixed-schedule approach. Finally, 
exploring tiered service level agreements could balance cost optimiza
tion with service equity requirements. Pilot implementations in smaller 
urban areas could validate these model refinements before deploying 
metropolitan-scale systems, allowing for iterative improvement of both 
the optimization approach and practical implementation strategies.

6. Managerial implications and insights

The findings from this study offer several practical implications for 
medical logistics managers, healthcare administrators, and urban plan
ners considering underground logistics solutions for healthcare delivery.

6.1. Network design strategy

The multi-level network architecture demonstrated in this study 
provides a blueprint for implementing medical logistics systems in 
congested urban environments. Logistics managers should consider 
positioning medical logistics hubs on the urban periphery to reduce land 
acquisition costs while providing efficient access to incoming supplies 
and the inner-city distribution network. Our results indicate that 4–6 
peripheral hubs are typically sufficient for metropolises of 5–10 million 
residents.

The spatial distribution of medical facilities naturally forms clusters 
that should guide distribution center placement. Our mean-shift clus
tering approach identified that 6–7 km radius distribution centers offer 
the optimal balance between infrastructure costs and delivery time 
performance. This finding can inform strategic facility location decisions 
when planning underground medical logistics networks.

Our research demonstrates the value of separating high-volume, 
long-distance transportation through deep tunnels from last-mile de
livery through shallow pipelines, allowing for more efficient resource 
allocation. Deep tunnels should form a sparse but connected network, 
while shallow pipelines should create direct connections to medical fa
cilities. This tiered approach enables cost-effective scaling of the 
network while maintaining service quality.

6.2. Operational planning

The underground medical logistics system offers several operational 
advantages that managers can leverage. By isolating medical logistics 
from surface traffic, the underground system provides consistent de
livery times regardless of traffic conditions, weather events, or time of 
day. This allows for more precise scheduling of medical procedures and 
inventory management, potentially improving healthcare service de
livery and patient outcomes.

The network structure supports dynamic prioritization of medical 
cargo based on urgency. Emergency supplies can be routed through the 
shortest path with dedicated vehicles, while routine supplies can be 
consolidated for more efficient transportation. This flexibility is partic
ularly valuable in healthcare settings where delivery timing can signif
icantly impact treatment outcomes.

The controlled environment of the underground system is ideal for 
automation. Logistics managers should invest in automated sorting 
systems at distribution centers and autonomous delivery vehicles to 
reduce operational costs and increase reliability. Our case study results 
suggest that automation can contribute to the 32 % reduction in average 
delivery time for emergency medical supplies.

6.3. Investment and implementation

Our findings provide several insights for healthcare administrators 
and urban planners considering investment in underground medical 
logistics. The network’s modular nature allows for phased imple
mentation, starting with high-priority corridors connecting major hos
pitals before expanding to a comprehensive system. Our case study 
demonstrates that even a partial network can deliver significant 
benefits.

Distribution center capacity has a substantial impact on overall 
network efficiency. Our sensitivity analysis shows that investing 
approximately 25 % additional capacity beyond baseline requirements 
offers the optimal balance between initial investment and long-term 
operational benefits. This finding can guide capacity planning de
cisions during the design phase of underground medical logistics 
systems.

The underground medical logistics network should leverage existing 
underground infrastructure, such as utility tunnels or metro systems, to 
reduce construction costs when possible. The network design model can 
be adapted to incorporate these existing assets as constraints. This 

J. Lv et al.                                                                                                                                                                                                                                        Computers & Industrial Engineering 209 (2025) 111451 

18 



integration approach can significantly reduce initial investment re
quirements while accelerating implementation timelines.

6.4. Long-term benefits

Beyond immediate operational improvements, the underground 
medical logistics system offers several long-term benefits. By removing 
medical delivery vehicles from surface streets, the system reduces 
emissions, noise pollution, and congestion. Our case study estimates a 
reduction of approximately 1,200 vehicle trips per day in the metro
politan area, contributing to improved air quality and reduced carbon 
footprint.

Faster and more reliable delivery of medical supplies enables hos
pitals to reduce inventory levels, decrease waste from expired items, and 
respond more effectively to emergencies. This translates to both cost 
savings and improved patient outcomes. Healthcare facilities can redi
rect resources from logistics management to patient care, improving 
overall healthcare service quality.

The underground system provides a segregated delivery channel that 
can continue functioning during surface disruptions such as natural di
sasters, public events, or other emergencies. This resilience is particu
larly valuable for maintaining healthcare operations during crises. The 
system’s ability to ensure reliable medical supply delivery regardless of 
surface conditions significantly advances urban healthcare infrastruc
ture resilience.

7. Conclusion

This study addressed the pressing challenges of medical logistics in 
congested metropolitan areas by developing a novel multi-level under
ground logistics network architecture and an effective computational 
intelligence optimization approach. The study demonstrated that un
derground logistics systems offered a viable solution for time-sensitive 
medical supply transportation in megalopolises where surface conges
tion severely impacts healthcare delivery. Our investigation revealed 
that combining deep tunnels for high-volume flows and shallow pipe
lines for distributed deliveries created an efficient hierarchical structure 
for medical logistics operations. Simulation experiments confirmed that 
IMNO-ULS outperformed baseline methods by 7–15 % in solution 
quality while reducing computation time by up to 71.3 %. The case 
study further validated these findings, showing that our approach 
reduced the average delivery time for emergency medical supplies by 32 
% while requiring 27 % fewer distribution centers than alternative 
methods.

However, several limitations remained in our study. The model 
assumed straight-line underground pathways without detailed consid
eration of geological constraints that might affect tunnel construction 
feasibility and costs. Additionally, the operational dynamics of the un
derground logistics system were simplified, particularly regarding the 
handling of different types of medical supplies with varying tempera
ture, security, and urgency requirements. Furthermore, while efficient 
for the problem scales tested, the computational approach might face 
scalability challenges for extremely large metropolitan areas with 
thousands of medical facilities.

Future research directions included the integration of underground 
medical logistics networks with existing transportation infrastructure, 
particularly metro systems, to leverage collaborations and reduce con
struction costs. The development of dynamic routing strategies capable 
of real-time adjustments based on medical priorities and system condi
tions also represented a promising avenue for investigation. Addition
ally, extending the model to incorporate detailed geological constraints, 
environmental impacts, and resilience considerations would enhance 
the practical applicability of the approach. Multi-objective optimization 
frameworks that balanced cost considerations with service quality, 
reliability, and sustainability metrics could further advance this field. 
Finally, exploring the integration of underground logistics planning with 

healthcare facility location decisions offered potential for system-wide 
healthcare delivery optimization in urban environments.
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