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a b s t r a c t

The gravitational search algorithm (GSA) is a population-based meta-heuristic optimiza-
tion algorithm which finds the optimal solution by the law of gravity and attraction
between objects. However, as the number of iterations increases, the increase of the
quality of the agents makes GSA fall into the local optimal solution more easily,
which greatly reduces the exploration capability of the algorithm. Although the chaotic
gravitational search algorithm (CGSA) uses chaotic maps for improving diversity to solve
this problem, it still has problems with the balance of exploration and exploitation.
This paper proposes the balance adjustment based chaotic gravitational search algorithm
(BA-CGSA), which introduces the sine randomness function and the balance mechanism
to solve the above problem. 30 benchmark functions of IEEE CEC 2014 are adopted
to evaluate the performance of the proposed algorithm in terms of exploration and
exploitation. Meanwhile, a real engineering design problem is used to illustrate the
ability of the algorithm to solve practical application problems. The experimental results
demonstrate its good performance in continuous optimization problems.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The optimization refers to the process of finding optimal values for the parameters of a given system from all the
possible values to maximize or minimize its output [1]. Optimization method is applied in many fields [2–6]. In general,
optimization algorithms can be classified into two main categories: deterministic and stochastic [7]. Due to the drawbacks
of the conventional optimization algorithms such as local optimal stagnation, the research on stochastic optimization [8]
algorithm has become an academic hotspot in recent years [9–13]. The stochastic optimization algorithm treats the
optimization problem as a black box [14], which maximizes or minimizes system outputs to meet requirements through
changing inputs and adjusting system parameters. The characteristics of the black box make the stochastic optimization

✩ The authors are grateful to the financial support by theNational Natural Science Foundation of China (no. 61572225), Natural Science Foundation
of the Science and Technology Department of Jilin Province, China (no. 20180101044JC), the Social Science Foundation of Jilin Province, China (nos.
2019B68, 2017BS28), the Foundation of the Education Department of Jilin Province, China (nos. JJKH20180465 kJ) and the Foundation of Jilin University
of Finance and Economics (no. 2018Z05).

∗ Corresponding authors.
E-mail addresses: jianhuajiang@yahoo.com (J. Jiang), lik@newpaltz.edu (K. Li).

https://doi.org/10.1016/j.physa.2019.122621
0378-4371/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2019.122621
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2019.122621&domain=pdf
mailto:jianhuajiang@yahoo.com
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.physa.2019.122621


2 J. Jiang, X. Yang, X. Meng et al. / Physica A 537 (2020) 122621

algorithm highly flexible and easy to be applied in different fields, which essentially benefits from higher local optimal
avoidance compared with traditional optimization algorithms.

Inspirations of a new algorithm can be from evolutionary phenomena, the collective behavior of creatures (swarm
intelligence techniques), physical rules, and human-related concepts and so on. Some popular algorithms in each of these
subclasses are as follows:

• Evolutionary techniques: Genetic Algorithms (GA) [15], Differential Evolution (DE) [16–18], Biogeography-Based
Optimization algorithm (BBO) [19], Evolution Strategy (ES) [20], etc.

• Swarm intelligence techniques: Ant Colony Optimization (ACO) [21], Particle Swarm Optimization (PSO) [22],
Artificial Bee Colony (ABC) [2,23] and Firefly Algorithm (FA) [24], Sine Cosine Algorithm(SCA) [1], etc.

• Physics-based techniques: Gravitational Search Algorithm (GSA) [25], Chaotic gravitational constants for the Gravi-
tational Search Algorithm (CGSA) [26], Colliding Bodies Optimization (CBO) [27], Black Hole (BH) [28], etc.

• Human-related techniques: League Championship Algorithm (LCA) [29], Mine Blast Algorithm (MBA) [30], Teaching–
Learning-Based Optimization (TLBO) [31], etc.

Chaotic gravitational search algorithm (CGSA) was proposed by Seyedali Mirjalili and Amir H. Gandomi in 2017 [26]
based on GSA. CGSA uses chaotic functions to increase the perturbation strength to help the agents jump out of the local
optimal solution, but the convergence of the algorithm is greatly reduced. Therefore, how to adjust the random mode to
find the best balance of disturbance intensity is a question that is worth considering. We can see that the final results of
applying 10 kinds of chaotic maps are not the same. Among them, the comprehensive performance of the chaotic map
9, the sinusoidal map, is the best [26]. After examining its characteristics, we boldly suspect that a sine function with
similar properties will perform well.

In addition, the algorithm uses the same search strategy throughout the entire iteration, which makes it impossible to
complete tasks of different standards in the exploration stage and the exploitation stage efficiently. According to the law of
universal gravitation to updates the moving speed and position, CGSA can find the optimal solution. The gravitational force
between the objects determines the acceleration of the motion, thus determining the speed and position of the motion
at the next moment. Therefore, the acceleration of the motion of the agent point plays a crucial role in the determination
of its position. The whole iterative process should be divided into two parts. The exploration phase should enhance the
effect of acceleration to help the agent point to explore a larger search range and jump out of the local optimal solution.
The search phase should reduce the effect of acceleration, so as to find the optimal solution faster. As mentioned earlier,
CGSA does not adjust the effects of acceleration throughout the iteration, which should be an important reason for the
lack of convergence of the algorithm.

In summary, the following two questions are raised:

Problem 1. Whether the new stochastic mechanism superimposed by the sine function and the chaotic map helps to
optimize finding optimal solutions.

Problem 2. Whether the acceleration adjustment coefficient changing with the stage helps to ameliorate the convergence
of the algorithm.

In this paper, we propose the BA-CGSA algorithm to verify the above problems. The major contributions of this paper
can be summarized as:

• Optimize the perturbation mode by superimposing the chaotic map and the sine function.
• Use the constraint coefficient k to control the effect of acceleration at different stages.
• The superposition of sine function and a chaotic map performs better than the hybrid of chaotic map and normal

random function, exploring the new way of stochastic optimization.

This paper is presented as follows: Firstly, Section 2 introduces the related algorithm; Secondly, the innovative ideas
and proposals of the BA-CGSA are presented in Section 3; Thirdly, the comparative experiments and an actual engineering
design problem are introduced in Section 4; In Section 5, discussion is given to analyze the performance of BA-CGSA
algorithm; Finally, conclusions and future works are demonstrated in the last Section 6.

2. Related work

The proposed BA-CGSA algorithm is inspired by GSA, CGSA, and SCA. The principle of the related algorithms will be
introduced in Section 2.

2.1. GSA: gravitational search algorithm

GSA is a new heuristic intelligent optimization algorithm, which was first proposed by Esmat Rashedi in 2009 [25].
Based on Newton’s law of gravity and the interaction between particles, GSA estimates the global optimum of the given
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search space. In GSA, all agents are considered as objects, and their performances are measured by their masses. Any two
agents attract each other by the gravity force, and all of them move towards the heavier masses which represent the
better solutions. When the algorithm satisfies the stop criterion, the position of the agent with the largest inertial mass
represents the best optimal solution obtained so far.

Now, considering a gravitational system with N agents (masses), and the ith agent position is defined as Eq. (1).

Xi = (x1i , x
2
i , . . . x

k
i , . . . x

d
i ), for i = 1, 2, . . . ,N (1)

where d is the number of variables, and xki represents the position of i agent in the kth dimension.
The gravitational constant and the Euclidean distance between agent i and j are calculated by Eqs. (2) and (3).

G(t) = G0 × e(−α t
T ) (2)

Rij(t) = ∥Xi(t), Xj(t)∥2 (3)

where G0 is the initial value for the gravitational constant, α is a constant, t is the current iteration, and T is the maximum
number of iterations, the number 2 represents the square, and it means that the value is calculated with Euclidean distance
equations.

The gravitational forces between agents are calculated as Eq. (4).

F d
ij (t) = G(t)

Mpi(t) × Maj(t)
Rij(t) + ε

(xdj (t) − xdi (t)) (4)

where Mpi is the passive gravitational mass of agent i, Maj is the active gravitational mass of agent j, ε is a constant.
The gravitational force between agent i and all the other agents are calculated as Eq. (5).

F d
i (t) =

N∑
j=1,j̸=i

randj × F d
ij (t) (5)

where randj is a random number in the interval [0, 1].
Then, by the law of gravity, the acceleration and velocities of agent i at time t in the dth direction should be calculated

as Eqs. (6) and (7).

adi (t) =
F d
i (t)

Mij(t)
(6)

where Mij is the inertial mass of ith agent,
The next velocity of the agent is considered as a fraction of its current velocity added to its acceleration. Therefore,

the next velocity could be calculated as follows:

vd
i (t + 1) = randi × vd

i (t) + adi (t) (7)

where randi is a random number in the interval [0, 1], vd
i (t) represents the current velocity of the agent, adi (t) is the current

acceleration.
After calculating the acceleration and velocity, the position of the agent can be updated with Eq. (8).

xdi (t + 1) = xdi (t) + vd
i (t + 1) (8)

The mass of the agent represents the fitness value calculated by the fitness function. With the greater mass, the agent
moves at a slower speed. It is more important that both gravitation and influence are increased. So a heavier mass means
a more efficient agent which has higher attractions and more slowly walk. The relationship between mass and fitness
makes the mass of agents need to be updated as Eqs. (9) and (10).

mi(t) =
fiti(t) − worst(t)
best(t) − worst(t)

(9)

Mi(t) =
mi(t)∑N
j=1 mj(t)

(10)

where fiti(t) is the fitness value of the solution i in the tth iteration, best(t) is the best solution in the iteration t , and
worst(t) is the worst solution in the iteration t .
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After all, the pseudo-code of the GSA algorithm is presented as follows:

1 Initialize a set of random search agents m

2 Evaluate the fitness value of each agent by objective functions

3 while (the iterative criterion is not satisfied)
4 Update G(t),Mi(t) at time t for i = 1, 2, . . . ,N by Eqs. (2), (9) and (10)
5 Calculate the acceleration and velocity of agents by Eqs. (6) and (7)
6 Update the positions of all the agents by Eq. (8)
7 end while

8 return the optimal solution
Algorithm 1: Pseudo-code of the basic GSA algorithm

Although GSA has a superior performance compared with PSO [22] and GA [15], this algorithm still has some problems.
During the iteration, the mass of the search agent is becoming heavier and heavier by the updating equation of mass (Eqs.
(9) and (10)). Ultimately, the searching speed is deteriorated by the increasing iteration. The convergence of the algorithm
is affected by the increase of the iteration number.

2.2. CGSA: chaotical gravitational search algorithm

Chaotic gravitational search algorithm (CGSA) is a new optimization algorithm based on GSA. It was proposed by
Seyedali Mirjalili and Amir H.Gandomi in 2017 [26]. Although GSA has a super performance compared to PSO [22] and
GA [15], it suffers from an essential problem [26]. Due to the direct effect of fitness function on calculating mass, search
agents get heavier and heavier over the course of iterations [26]. CGSA introduces chaotic maps to solve these problems.

In order to redefine G, the normalized range is reduced proportionally to the iteration, and its equation is shown in
Eq. (11).

V (t) = MAX −
t
T
(MAX − MIN) (11)

where T is the maximum number of iterations, t is the current iteration, [MAX,MIN] represents the adaptive interval.
Normalize Ck(t) from [a, b] to [0, V (t)]

Cnorm
k (t) =

(Ck(t) − a) × (V (t) − 0)
(b − a)

(12)

where k indicates the index of chaotic maps, t is the current iteration, and [a, b] shows the range of chaotic maps. It can
be seen in Eq. (12) that we map [a, b] to [0, V (t)] in each iteration while V (t) is decreased by iterations.

The final value of the gravitational constant is updated in Eq. (13).

G(t) = Cnorm
k (t) + G0 × exp

(−α
t
T

)
(13)

where k indicates the index of chaotic maps, t is the current iteration, G0 is the initial gravitational constant, α is the
descending coefficient, and T is the maximum number of iterations.

The chaotic maps selected are listed as follows:
(1) Chebyshev [32]

xi+1 = cos(icos−1(xi))

The range of this map lies in the interval of (−1, 1).
(2) Circle [33]

xi+1 = mod(xi + b − (
a
2π

) sin(2πxi), 1), a = 0.5, b = 0.2,

The range of this map lies in the interval of (0, 1).
(3) Gauss/mouse [34]

xi+1 =

⎧⎨⎩
1, if xi = 0

1
mod(xi, 1)

, otherwise

The range of this map lies in the interval of (0, 1).
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(4) Iterative [35]

xi+1 = sin(
aπ
xi

), a = 0.7

The range of this map lies in the interval of (−1, 1).
(5) Logistic [35]

xi+1 = axi(1 − xi), a = 4

The range of this map lies in the interval of (0, 1).
(6) Piecewise [36]

xi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi
P

, 0 ≤ xi < P, P = 0.4

xi − P
0.5 − P

, P ≤ xi < 0.5

1 − P − xi
0.5 − P

, 0.5 ≤ xi < 1 − P

1 − xi
P

, 1 − P ≤ xi < 1

The range of this map lies in the interval of (0, 1).
(7) Sine [37]

xi+1 =
a
4
sinπxi, a = 4

The range of this map lies in the interval of (0, 1).
(8) Singer [38]

xi+1 = µ(7.86xi − 23.31x2i + 28.75x3i − 13.302875x4i ), µ = 2.3

The range of this map lies in the interval of (0, 1).
(9) Sinusoida [39]

xi+1 = ax2i sin(πxi), a = 2.3

The range of this map lies in the interval of (0, 1).
(10) Tent [40]

xi+1 =

⎧⎪⎨⎪⎩
xi
0.7

, xi < 0.7

10
3

(1 − xi), xi ≥ 0.7

The range of this map lies in the interval of (0, 1).
Compared with GSA, CGSA performs better [26], but it still lacks in optimal solution and convergence. CGSA incorpo-

rates chaotic functions into the GSA search formula. The random perturbation of the algorithm is increased, which greatly
improves the global exploration capability of CGSA. At the same time, however, the convergence and optimal value of the
algorithm are also affected. Compared with GSA, the convergence speed of CGSA has not been significantly improved,
which is the inadequacy of CGSA.

2.3. SCA: sine cosine algorithm

The SCA proposed by Seyedali Mirjalili in 2016 is a novel intelligent population-based random optimization algorithm
for searching global optimal solution [1]. The SCA creates multiple initialed random candidate solutions and optimizes
them by using a mathematical model based on sine and cosine functions. Several random and adaptive variables are
integrated into this algorithm to balance the exploration and exploitation in the different iterations of the optimization.
The results of unimodal test function show that SCA algorithm converges substantially faster than FA [7], BA [41], FPA [42],
GSA [25], PSO [22] and GA [15]. The SCA changes its search agents abruptly in the initial stage of optimization and
gradually in the final steps of optimization, which guarantees the brilliant performance of exploration, exploitation,
local optima avoidance, and convergence of the algorithm. The great characters make SCA perform illustriously in
solving challenging real problems, such as the airfoil shape design [1]. The stochastic optimization algorithms consider
optimization problems as black boxes, which makes the SCA more flexibility, meaning the stochastic algorithms are readily
applicable to problems in different fields [1].

SCA starts the optimization process with a set of random solutions, and then updates the position of each agent as
Eqs. (14) and (15)

X t+1
i = X t

i + r1 × sin(r2) ×
⏐⏐r3P t

i − X t
i

⏐⏐ , r4 < 0.5 (14)
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X t+1
i = X t

i + r1 × cos(r2) ×
⏐⏐r3P t

i − X t
i

⏐⏐ , r4 ≥ 0.5 (15)

where X t
i is the position of the current solution in ith dimension at tth iteration, Pi is the destination point in ith dimension.

r1, r2, r3, r4 are four main parameters in the SCA algorithm. The parameter r1 defines how far the movement should be
towards or outwards the destination. The parameter r2 decides the movement direction. The parameter r3 gives random
weights for destination. At last, the parameter r4 equally switches between the sine and cosine components in Eqs. (14)
and (15).

In order to balance exploration and exploitation, the parameter r1 is changed adaptively by the Eq. (16).

r1 = a − t ×
a
T

(16)

where t is the current iteration, T is the maximum number of iterations, and a is a constant, such as a = 2. The
pseudo-code of the SCA algorithm is presented as Algorithm 2.

1 Initialize a set of random search agents X

2 Do
3 Evaluate the fitness value of each agent by objective functions
4 Update the best solution obtained so far P = X∗

5 Update parameters r1, r2, r3 and r4
6 Update the positions of search agents by using Eqs. (14) and (15)
7 While (satisfy the maximum number of iterations)

8 Return the best solution obtained so far as the global optimum
Algorithm 2: Pseudo-code of the SCA algorithm

The parameter r1 is one of the important inspirations brought by the SCA algorithm. It decreases linearly from the
constant a. This ensures that the search agents can explore at a high rate during the initial iteration and exploit carefully
during the final iteration. This mechanism guarantees the balance between exploration and exploitation in the different
iterations of the optimization.

The SCA algorithm uses the unique properties of the sine function to explore the search space, which makes the SCA
algorithm more simple and efficient, showing outstanding experimental results. The excellent performance of the sine
function in the SCA algorithm makes us pay attention to this simple but efficient function. It inspires us to explore the
search space by using the sine function when looking for the optimal solution.

3. Methods

3.1. The design of the weighting coefficient of acceleration

Inspired by the parameter r1 in the SCA algorithm, we add the constraint parameter k to the new proposed algorithm,
aiming to obtain better experimental results.

In the SCA algorithm, the parameter r1 is a linearly decreasing variable, which globally controls the movement length
of the agent point, which affects its next iteration position. In the entire iterative process, the parameter r1 gradually
decreases from the maximum value to zero. This allows the agent point to move fast in the early stage and slow in the later.
The constraint action of the parameter r1 helps the algorithm to realize the transition from exploration to exploitation.
The parameter r1 plays a crucial role in the entire SCA algorithm. The equation for calculating the new parameters is
shown in Eq. (17).

k = c − c ×
iteration
max_it

(17)

where c is a constant, iteration indicates the current iteration, max_it is the maximum number of iterations.
The linear constraint parameter k controls the change of the acceleration, which affects the variation of the velocity,

and finally, have an impact on the next iteration position of the agent point. After many tests, when the initial value of
k is set to 2, the experimental results are best.

3.2. The improvement of random weight of speed

The sine function is fused into the GSA algorithm to optimize the algorithm. Adding the sine function to the velocity
update equation of the GSA algorithm makes the result better. The next position of the proxy point is made more
reasonably because of the new equation.
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The speed update equation of the new algorithm is shown in Eq. (18).

v′

t+1 = sin (rand × π ) × vt (18)

where rand is a random variable in the interval [0, 1].

3.3. The new speed equation

According to Sections 3.1 and 3.2, we can combine Eqs. (17) and (18) to get the final speed update equation in Eq. (19).

vt+1
i = sin (rand × π ) × vt

i + k × a (19)

where a is the acceleration of the agent i at time t , rand is a random variable in the interval [0, 1].
This formula has been improved in acceleration and speed, and the optimal solution can be obtained at a lower cost.

We propose the new stochastic optimization algorithm BA-CGSA with the new velocity update equation.

3.4. The BA-CGSA algorithm

By adding the weighting coefficient of acceleration and the random weight of velocity, the speed update equation of
the new algorithm is designed more reasonable, which makes it more rational to obtain a next position of the agent point.
Therefore the algorithm can find a better optimal solution at a faster convergence speed. In summary, we propose the
new algorithm BA-CGSA with the improved velocity updating equations.

The flow chart of BA-CGSA is shown in Fig. 1.
The pseudo-code of BA-CGSA is shown in Algorithm 3.

1 Initialize a set of random search agents m

2 Evaluate the fitness value of each agent by objective functions

3 while (the iterative criterion is not satisfied)
4 Renew Mi(t) by Eqs. (9) and (10)
5 Update Cnorm

k (t) and G(t) by Eqs. (12) and (13)
6 Assgin the total force of agent i in different directions by Eq. (4)
7 Estimate the acceleration of each agent by Eq. (6)
8 Evaluate the weighting coefficient of acceleration k by Eq. (17)
9 Compute the random weight of velocity by Eq. (18)

10 Calculate the velocity of each agent by Eq. (19)
11 Attain the positions of all the agents by Eq. (8)
12 end while

13 return the optimal solution
Algorithm 3: Pseudo-code of the BA-CGSA algorithm

4. Experiments and analysis

In order to test the performance and efficiency of the proposed BA-CGSA, a variety of experiments are conducted. Due
to the stochastic nature of the optimization algorithm, we employ an appropriate and sufficient sets of test functions
and case studies to ensure that the superior results of the algorithm do not happen by chance. Firstly, we make a
comparative experiment with CGSA by four sets of benchmark functions of IEEE CEC 2014. Secondly, we compare it
with four well-known population-based optimization algorithms: SCA [1], PSO [22], ABC [23], TSA [43]. PSO, TSA and,
ABC are well-regarded and widely-used algorithms in the field, so using them as comparison algorithms is a good choice
and a challenge for the proposed algorithm. SCA is a good population-based optimization algorithm. Although it is a new
algorithm that has just been proposed in recent years, it has attracted the attention of many scholars. Based on this, many
variants have been proposed [44–49]. All these algorithms are good comparative algorithms to prove the superiority of
BA-CGSA for solving the high-dimensional global optimization problems. Thirdly, a challenging real-world engineering
optimization problem, the pressure vessel design, is utilized to verify the search-ability of the BA-CGSA. The following
subsections illustrate the initial values of the above experiments, show the experimental results respectively, and analysis
the results in detail.

All experimental data are coded in the Matlab R2016a environment under Windows 10 operating system. All
simulations are running on a computer with Intel Core(TM) i7-6700HQ CPU @ 2.60 GHz with 8G of memory. The
benchmark functions we used in the first two experiments are displayed in Table 1.
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Fig. 1. The flow chart of BA-CGSA.

4.1. Comparison between BA-CGSA and CGSA

We compare with CGSA in terms of convergence speed, optimal solution, stability, and runtime. Four criteria are used
for the two algorithms: best, mean, worst, and standard deviation. For a fair comparison, the common parameters are
equally set. In each function, the population size (N) is fixed to 30, corresponding to the dimensions 30, 50, and 100, and
the maximum number of iterations (iter_max) is 500 on all the simulations. This means the maximum number of fitness
function evaluations (FFEs) is 15,000. Each group of tests runs more than 30 times.

The comparison results of CGSA and BA-CGSA are reported in Table 2, where best refers to the best value, mean
represents the average best values, worst denotes the worst value, and the std means the standard deviation value. The
experimental results of the optimal solutions of BA-CGSA and CGSA in three dimensions (Dim = 30, 50, 100) are compared
in Table 3, where count represents the number of better solutions.

From Table 2, it can be noticed that the BA-CGSA obtains a better optima (0) under 24 benchmark test functions ( f 1,
f 2, f 4 − f 19, f 21, f 22, f 24, f 25, f 29, f 30) with a fixed number of fitness function evaluations of 15,000. This shows
the excellent ability of BA-CGSA. Besides, it can be seen from Table 3 that, as the dimension increases, the number
that BA-CGSA gets better solutions gradually increases. This proves BA-CGSA has more obvious advantages in solving
high-dimensional stochastic optimization problems.

For further explanation, Fig. 2(f) shows the convergence curves of eight representative test functions for CGSA and BA-
CGSA in 30 dimensions. From Fig. 2(f), we can see that BA-CGSA obtains better optimal solutions at a faster convergence
rate. The outstanding performances show the excellent ability of the algorithm in terms of convergence and global optimal
solution. Especially, BA-CGSA shows a surprising ability of convergence in the combination function F29, and the hybrid
function F18.

To analyze whether BA-CGSA greatly adds the algorithm running time to achieve outstanding performances, we make
a comparison between CGSA and BA-CGSA of the execution time (seconds) in three dimensions in Table 4.

As can be seen from Table 4, for all benchmark functions, the average CPU runtime of CGSA and BA-CGSA in three
dimensions is very close. In other words, there is no significant difference in execution time between CGSA and BA-CGSA.

4.2. Comparison with other population-based algorithms

To further demonstrate the superiority of BA-CGSA in solving global optimization problems, we compare it with four
well-known population-based optimization algorithms: SCA [1], PSO [22], ABC [23], TSA [43]. The dimensions of each test
function are set to 100, and each algorithm executes independently over 30 times on each function. In this experiment, the
initial population size of the five algorithms is set to 30, and the maximum number of iterations was 500. The comparative
results are shown in Tables 5 and 6.

The experimental results show that the comprehensive average ranking of BA-CGSA is the first, which indicates the
preeminent ability of it among six algorithms under 30 benchmark functions. In order to demonstrate the superiority of
the proposed algorithm, we compare it with other five algorithms respectively in Table 7.

As shown in Table 7, regarding the multiple-problem Wilcoxon’s test, the ISCA provides higher R+ values than R- values
in all cases. Moreover, according to the Wilcoxon’s rank-sum test, the p-values are less than 0.1 and 0.05 in all the cases.
This means that the performance of the BA-CGSA is significantly better than all of the algorithms for high-dimensional
problems.
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Table 1
Benchmark functions of CEC 2014.
Function name Function formulation

Unimodal functions Note: M-rotation matrix
High Conditioned Elliptic Function F1(x) = f1(M(x − o1)) + 100

Rotated Bent Cigar Function F2(x) = f2(M(x − o2)) + 200

Rotated Discus Function F3(x) = f3(M(x − o3)) + 300

Multimodal functions

Shifted and Rotated Rosenbrock’s Function F4(x) = f4(M( 2.048(x−o4)
100 ) + 1) + 400

Shifted and Rotated Ackley’s Function F5(x) = f5(M(x − o5)) + 500

Shifted and Rotated Weierstrass Function F6(x) = f6(M( 0.5(x−o6)
100 )) + 600

Shifted and Rotated Griewank’s Function F7(x) = f7(M( 600(x−o7)
100 )) + 700

Shifted Rastrigin’s Function F8(x) = f8(
5.12(x−o8)

100 ) + 800

Shifted and Rotated Rastrigin’s Function F9(x) = f8(M( 5.12(x−o9)
100 )) + 900

Shifted Schwefel’s Function F10(x) = f9(
1000(x−o10)

100 ) + 1000

Shifted and Rotated Schwefel’s Function F11(x) = f9(M( 1000(x−o11)
100 )) + 1100

Shifted and Rotated Katsuura Function F12(x) = f10(M( 5(x−o12)
100 )) + 1200

Shifted and Rotated HappyCat Function F13(x) = f11(M( 5(x−o13)
100 )) + 1300

Shifted and Rotated HGBat Function F14(x) = f12(M( 5(x−o14)
100 )) + 1400

Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function F15(x) = f13(M( 5(x−o15)
100 + 1)) + 1500

Shifted and Rotated Expanded Scaffer’s F6 Function F16(x) = f14(M(x − o16) + 1) + 1600

Hybrid Functions
F17 = f9(M1z1) + f8(M2z2) + f1(M3z3) + 1700 p = [0.3, 0.3, 0.4]

F18 = f2(M1z1) + f12(M2z2) + f8(M3z3) + 1800 p = [0.3, 0.3, 0.4]

F19 = f7(M1z1) + f6(M2z2) + f4(M3z3) + f14(M4z4) + 1900 p = [0.2, 0.2, 0.3, 0.3]

F20 = f12(M1z1) + f3(M2z2) + f13(M3z3) + f8(M4z4) + 2000 p = [0.2, 0.2, 0.3, 0.3]

F21 = f14(M1z1) + f12(M2z2) + f4(M3z3) + f9(M4z4) + f1(M5z5) + 2100 p = [0.1, 0.2, 0.2, 0.2, 0.3]

F22 = f10(M1z1) + f11(M2z2) + f13(M3z3) + f9(M4z4) + f5(M5z5) + 2200 p = [0.1, 0.2, 0.2, 0.2, 0.3]

Notes:
z1 = [yS1 , yS2 , . . . , ySn1 ],

z2 = [ySn1+1 , ySn1+2 , . . . , ySn1+n2 ],

zN = [yS∑N−1
i=1 ni+1

, yS∑N−1
i=1 ni+2

, . . . , ySD ]

y = x − oi, S = randperm(1 : D), pi : percentageofgi(x)

n1 = ⌈p1D⌉, n2 = ⌈p2D⌉, . . . , nN−1 = ⌈pN−1D⌉, nN = D −
∑N−1

i=1 ni

Composition Functions
F23 = ω1 ∗ F ′

4(x) + ω2 ∗
[
1e−6F ′

1(x) + 100
]
+ ω3 ∗

[
1e−26F ′

2(x) + 200
]

σ = [10, 20, 30, 40, 50]

+ω4 ∗
[
1e−6F ′

3(x) + 300
]
+ ω5 ∗

[
1e−6F ′

1(x) + 400
]
+ 2300

F24 = ω1 ∗ F ′

10(x) + ω2 ∗
[
F ′

9(x) + 100
]
+ ω3 ∗

[
F ′

14(x) + 200
]
+ 2400 σ = [20, 20, 20]

F25 = ω1 ∗ 0.25F ′

11(x) + ω2 ∗
[
F ′

9(x) + 100
]
+ ω3 ∗

[
1e−7F ′

1(x) + 200
]
+ 2500 σ = [10, 30, 50]

F26 = ω1 ∗ 0.25F ′

11(x) + ω2 ∗
[
F ′

13(x) + 100
]
+ ω3 ∗

[
1e−7F ′

1(x) + 200
]

σ = [10, 10, 10, 10, 10]

+ω4 ∗
[
2.5F ′

6(x) + 300
]
+ ω5 ∗

[
10F ′

7(x) + 400
]
+ 2600

F27 = ω1 ∗ 10F ′

14(x) + ω2 ∗
[
10F ′

9(x) + 100
]
+ ω3 ∗

[
2.5F ′

11(x) + 200
]

σ = [10, 10, 10, 20, 20]

+ω4 ∗
[
25F ′

6(x) + 300
]
+ ω5 ∗

[
1e−6F ′

1(x) + 400
]
+ 2700

F28 = ω1 ∗ 2.5F ′

15(x) + ω2 ∗
[
10F ′

13(x) + 100
]
+ ω3 ∗

[
2.5F ′

11(x) + 200
]

σ = [10, 20, 30, 40, 50]

+ω4 ∗
[
5e−4F ′

16(x) + 300
]
+ ω5 ∗

[
1e−6F ′

1(x) + 400
]
+ 2800

F29 = ω1 ∗ F ′

17(x) + ω2 ∗
[
F ′

18(x) + 100
]
+ ω3 ∗

[
F ′

19(x) + 200
]
+ 2900 σ = [10, 30, 50]

F30 = ω1 ∗ F ′

20(x) + ω2 ∗
[
F ′

21(x) + 100
]
+ ω3 ∗

[
F ′

22(x) + 200
]
+ 3000 σ = [10, 30, 50]

Notes:

ωi =
1√∑D

j=1(xj−oij)2)
exp(−

∑D
j=1(xj−oij)2

2Dσ2
i

)
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Table 2
Comparison results of CGSA and BA-CGSA with D = 100.

Function CGSA BA-CGSA

Best Mean Worst St.dev Best Mean Worst St.dev

F1 2.8893E+08 5.3130E+08 7.7722E+08 9.9254E+07 6.5492E+07 1.0241E+08 1.5839E+08 2.1156E+07
F2 7.8657E+10 9.4973E+10 1.1434E+11 7.5724E+09 1.3483E+10 2.1958E+10 3.5678E+10 4.9011E+09
F3 2.0656E+05 2.3277E+05 2.8380E+05 1.7804E+04 2.1567E+05 2.5393E+05 2.9244E+05 1.8438E+04
F4 1.0380E+04 1.3713E+04 1.9730E+04 2.0452E+03 1.6900E+03 2.8053E+03 4.1873E+03 6.0454E+02
F5 5.2000E+02 5.2000E+02 5.2000E+02 6.4627E−04 5.2000E+02 5.2000E+02 5.2000E+02 5.1493E−04
F6 7.2492E+02 7.3754E+02 7.4452E+02 4.0650E+00 6.9412E+02 7.0638E+02 7.2073E+02 5.4196E+00
F7 1.5852E+03 1.7594E+03 1.9165E+03 7.7811E+01 8.9217E+02 9.6607E+02 1.0397E+03 3.8082E+01
F8 1.3592E+03 1.3852E+03 1.4268E+03 1.7168E+01 1.2935E+03 1.3392E+03 1.3990E+03 2.7287E+01
F9 1.5577E+03 1.6265E+03 1.7109E+03 3.7473E+01 1.4771E+03 1.5397E+03 1.6203E+03 3.9110E+01
F10 1.6269E+04 1.7626E+04 1.9033E+04 7.6059E+02 1.4294E+04 1.6681E+04 1.8777E+04 1.0306E+03
F11 1.3605E+04 1.5377E+04 1.8089E+04 1.0419E+03 1.1823E+04 1.3901E+04 1.6201E+04 1.1436E+03
F12 1.2000E+03 1.2000E+03 1.2000E+03 8.9681E−03 1.2000E+03 1.2000E+03 1.2000E+03 4.9914E−03
F13 1.3048E+03 1.3053E+03 1.3056E+03 2.1333E−01 1.3005E+03 1.3010E+03 1.3026E+03 6.8364E−01
F14 1.6440E+03 1.6918E+03 1.7425E+03 2.1163E+01 1.4386E+03 1.4702E+03 1.5179E+03 1.9141E+01
F15 9.5534E+04 1.8751E+05 3.2808E+05 5.3476E+04 2.9703E+03 5.4741E+03 1.2815E+04 2.3019E+03
F16 1.6449E+03 1.6459E+03 1.6466E+03 3.4590E−01 1.6446E+03 1.6458E+03 1.6468E+03 5.7922E−01
F17 1.2917E+07 3.5437E+07 5.9658E+07 1.2173E+07 2.0390E+06 5.0678E+06 9.5540E+06 1.5950E+06
F18 2.6485E+03 7.6046E+07 7.7806E+08 1.5761E+08 2.6053E+03 3.5935E+03 6.5362E+03 1.0229E+03
F19 2.3266E+03 2.4573E+03 2.6133E+03 6.4427E+01 2.0521E+03 2.1196E+03 2.2150E+03 3.7171E+01
F20 1.1506E+05 1.3750E+05 1.6075E+05 1.2127E+04 9.8201E+04 1.3888E+05 1.7814E+05 1.4942E+04
F21 3.0941E+06 5.0727E+06 1.0683E+07 1.7720E+06 1.6835E+06 3.0459E+06 4.9262E+06 7.1930E+05
F22 4.3767E+03 5.7704E+03 7.1999E+03 7.2039E+02 3.8682E+03 5.6300E+03 7.0117E+03 6.9307E+02
F23 2.5009E+03 2.5350E+03 3.0451E+03 1.2758E+02 2.5004E+03 2.7470E+03 2.9560E+03 1.5616E+02
F24 2.7126E+03 2.7435E+03 2.7595E+03 1.1615E+01 2.7213E+03 2.7399E+03 2.7765E+03 1.1832E+01
F25 2.7000E+03 2.7071E+03 2.7314E+03 9.7614E+00 2.7000E+03 2.7067E+03 2.7451E+03 1.1147E+01
F26 2.8001E+03 2.8002E+03 2.8003E+03 4.2767E−02 2.8002E+03 2.8003E+03 2.8004E+03 4.9494E−02
F27 8.1079E+03 9.9263E+03 1.1313E+04 7.5849E+02 9.2563E+03 1.0892E+04 1.2975E+04 9.5703E+02
F28 9.3969E+03 1.3358E+04 1.7126E+04 1.6718E+03 1.1357E+04 1.5600E+04 1.9312E+04 2.0145E+03
F29 3.0825E+06 1.3208E+08 1.2106E+09 3.5580E+08 7.9663E+03 1.7939E+05 2.6245E+06 6.4652E+05
F30 2.2406E+06 5.3807E+06 9.8986E+06 1.9573E+06 7.3878E+05 1.9223E+06 1.1569E+07 1.9224E+06

4.3. BA-CGSA for engineering design problems

We further verify the performance and efficiency of BA-CGSA by solving a practical engineering problem, the pressure
vessel design. This problem is widely discussed and solved in the literature to better demonstrate the effectiveness of the
algorithm [50,51]. In this experiment, the initial population size is set to 30 and the maximum number of iteration is set
to 500.

The purpose of solving the pressure vessel design problem is to minimize the overall cost of the cylindrical pressure
vessel. The problem has four variables: the thickness of the shell (Ts), the thickness of the head (Th), the inner radius
(R), and the length of the cylindrical portion that does not take into account the head (L). The schematic diagram of the
pressure vessel is given in Fig. 3.

The mathematical formulation of pressure vessel design problem is defined as follows:

Consider X = [x1, x2, x3, x4] = (Ts, Th, R, L)

Minimize f (X) = 0.6224x1x3x4 + 1.7781x2x23 + 3.1611x21x4 + 19.84x21x3
Subjectto g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x2 + 0.00954 ≤ 0

g3(X) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0

g4(X) = x4 − 240.0 ≤ 0

g5(X) = −x1 + 1.1 ≤ 0

g6(X) = −x2 + 0.6 ≤ 0

Where 1.1 ≤ x1 ≤ 99, 0.6 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 240

To cope with the constraints of the PVD problem, a penalty function is introduced. If a constraint is violated, a penalty
value is added to the objective function. For g6 constraint, the penalty value is calculated as follows:
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Table 3
Comparison results between BA-CGSA and CGSA in dimensions 30, 50, 100 with 15000 FFEs.

Function Dim = 30 Dim = 50 Dim = 100

CGSA BA-CGSA CGSA BA-CGSA CGSA BA-CGSA

F1 6.4657E+06 4.4683E+06 3.7568E+07 5.8657E+06 5.3130E+08 1.0241E+08
F2 8.4774E+03 8.2209E+03 6.1956E+09 7.9515E+03 9.4973E+10 2.1958E+10
F3 3.3854E+04 4.1747E+04 9.7715E+04 1.1109E+05 2.3277E+05 2.5393E+05
F4 5.0487E+02 4.9052E+02 1.2684E+03 5.7190E+02 1.3713E+04 2.8053E+03
F5 5.2000E+02 5.2000E+02 5.2000E+02 5.2000E+02 5.2000E+02 5.2000E+02
F6 6.2714E+02 6.1554E+02 6.5706E+02 6.3584E+02 7.3754E+02 7.0638E+02
F7 7.0000E+02 7.0000E+02 7.5585E+02 7.0000E+02 1.7594E+03 9.6607E+02
F8 9.4629E+02 9.0254E+02 1.0754E+03 1.0321E+03 1.3852E+03 1.3392E+03
F9 1.0676E+03 9.9890E+02 1.2690E+03 1.1387E+03 1.6265E+03 1.5397E+03
F10 4.8136E+03 4.1552E+03 8.8559E+03 7.8056E+03 1.7626E+04 1.6681E+04
F11 5.6698E+03 4.8041E+03 9.5235E+03 8.4381E+03 1.5377E+04 1.3901E+04
F12 1.2000E+03 1.2000E+03 1.2000E+03 1.2000E+03 1.2000E+03 1.2000E+03
F13 1.3004E+03 1.3003E+03 1.3006E+03 1.3005E+03 1.3053E+03 1.3010E+03
F14 1.4002E+03 1.4003E+03 1.4007E+03 1.4003E+03 1.6918E+03 1.4702E+03
F15 1.5206E+03 1.5056E+03 1.9276E+03 1.5425E+03 1.8751E+05 5.4741E+03
F16 1.6137E+03 1.6136E+03 1.6227E+03 1.6228E+03 1.6459E+03 1.6458E+03
F17 2.2480E+05 2.2419E+05 8.5995E+05 8.3776E+05 3.5437E+07 5.0678E+06
F18 2.1890E+03 2.3398E+03 5.2610E+03 3.7618E+03 7.6046E+07 3.5935E+03
F19 1.9180E+03 1.9181E+03 1.9546E+03 1.9415E+03 2.4573E+03 2.1196E+03
F20 2.3412E+04 2.7151E+04 2.7771E+04 3.1272E+04 1.3750E+05 1.3888E+05
F21 1.5153E+05 1.6792E+05 8.4063E+05 7.4048E+05 5.0727E+06 3.0459E+06
F22 3.3100E+03 3.2108E+03 4.0501E+03 4.0323E+03 5.7704E+03 5.6300E+03
F23 2.5386E+03 2.6152E+03 2.5218E+03 2.6516E+03 2.5350E+03 2.7470E+03
F24 2.6041E+03 2.6133E+03 2.6359E+03 2.6592E+03 2.7435E+03 2.7399E+03
F25 2.7036E+03 2.7028E+03 2.7005E+03 2.7014E+03 2.7071E+03 2.7067E+03
F26 2.7938E+03 2.7946E+03 2.8001E+03 2.8001E+03 2.8002E+03 2.8003E+03
F27 4.4657E+03 3.7179E+03 5.9205E+03 5.8604E+03 1.0238E+04 1.1151E+04
F28 5.0664E+03 6.0102E+03 8.5416E+03 1.0075E+04 1.3358E+04 1.5600E+04
F29 1.8438E+05 6.5336E+03 7.9259E+05 9.3767E+03 1.3208E+08 1.7939E+05
F30 1.2208E+04 1.1389E+04 1.0946E+05 5.6573E+04 5.3807E+06 1.9223E+06
Count 13 20 10 23 8 24

Let be x2 = 0.1, g6 constraint function is calculated as 0.5, and the constraint is therefore violated. New f (X) is obtained
by using Eq. (20).

nF (X) = f (X) +

6∑
i=1

vi (20)

where vi is the violation of ith constraint and is calculated as Eq. (21).

vi(X) =

{
h × (gi(X))2 if gi(X) > 0
0 otherwise

(21)

where, h is a high positive constant number.
Briefly, the violation value (Eqs. (20) and (21)) of each constraint is added to objective function value. While the method

minimizes the objective function, it is tried to cope with the constraints by using the penalty function (Eq. (21))
BA-CGSA is applied to solve the pressure vessel design problem and is compared with four other algorithms. The

experimental results are displayed in Table 8.
From the table, we can see that the best value, mean value and worst value of the overall cost calculated by BA-CGSA

are the best. This shows that BA-CGSA has an outstanding performance in solving this practical engineering problem.

5. Discussion

5.1. The comparison with CGSA

By comparing the experimental data, it can be seen that the average optimal solution of BA-CGSA is better than that
of CGSA, which indicates the BA-CGSA algorithm has a stronger ability to find the global optimal solution. Moreover,
the convergence of BA-CGSA is better. And these comparisons are more obvious in the high dimension, indicating that
BA-CGSA has an advantage in solving high-dimensional global optimization problems. These advantages benefit from the
balance adjustment mechanism of the algorithm.
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Fig. 2. Convergence curves of CGSA and BA-CGSA on six representative test functions with D = 100.

Fig. 3. The pressure vessel problem.

5.2. The comparison with other algorithms

Compared with other algorithms, the global optimal solution of BA-CGSA is better, which indicates that BA-CGSA has
a stronger global search-ability. On the one hand, this is due to the balance adjustment mechanism of BA-CGSA. On the
other hand, it benefits from the application of chaotic maps. The chaotic map allows the algorithm to jump out of the
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Table 4
The mean execution time (seconds) obtained by CGSA and BA-CGSA.

Function Dim = 30 Dim = 50 Dim = 100

CGSA BA-CGSA CGSA BA-CGSA CGSA BA-CGSA

F1 5.4512E+00 5.4937E+00 7.2915E+00 7.3341E+00 1.3540E+01 1.3516E+01
F2 5.4402E+00 5.4085E+00 7.1654E+00 7.2309E+00 1.3295E+01 1.3325E+01
F3 4.9438E+00 4.9583E+00 7.2465E+00 7.2904E+00 1.3139E+01 1.3263E+01
F4 5.2831E+00 5.2088E+00 7.4066E+00 7.5381E+00 1.3288E+01 1.3247E+01
F5 4.9676E+00 4.9867E+00 7.3740E+00 7.3721E+00 1.3251E+01 1.3346E+01
F6 8.1424E+00 8.1679E+00 1.2193E+01 1.2253E+01 2.3315E+01 2.3300E+01
F7 4.9920E+00 5.0093E+00 7.2261E+00 7.2671E+00 1.3314E+01 1.3372E+01
F8 4.8860E+00 4.9260E+00 7.0842E+00 7.1565E+00 1.2698E+01 1.2813E+01
F9 5.0403E+00 5.1211E+00 7.2936E+00 7.3165E+00 1.3222E+01 1.3389E+01
F10 5.0739E+00 5.1071E+00 7.2821E+00 7.3506E+00 1.3141E+01 1.3203E+01
F11 5.0331E+00 5.0939E+00 7.4148E+00 7.4639E+00 1.3674E+01 1.3822E+01
F12 5.5422E+00 5.5884E+00 8.2180E+00 8.2814E+00 1.5344E+01 1.5575E+01
F13 4.8857E+00 4.9232E+00 7.1825E+00 7.2440E+00 1.3177E+01 1.3271E+01
F14 4.8873E+00 4.9323E+00 7.2094E+00 7.2259E+00 1.3181E+01 1.3319E+01
F15 4.9080E+00 4.9419E+00 7.2242E+00 7.2787E+00 1.3280E+01 1.3364E+01
F16 4.8915E+00 4.9417E+00 7.2151E+00 7.2788E+00 1.3312E+01 1.3431E+01
F17 4.9431E+00 4.9867E+00 7.3116E+00 7.3608E+00 1.3479E+01 1.3662E+01
F18 4.9002E+00 4.9426E+00 7.1846E+00 7.2471E+00 1.3253E+01 1.3429E+01
F19 5.5179E+00 5.5538E+00 8.3021E+00 8.2849E+00 1.5441E+01 1.5552E+01
F20 4.9320E+00 4.9709E+00 7.2025E+00 7.2574E+00 1.3274E+01 1.3720E+01
F21 4.9338E+00 4.9788E+00 7.2700E+00 7.3446E+00 1.7832E+01 1.8199E+01
F22 5.0013E+00 5.0601E+00 7.3591E+00 7.4214E+00 1.5056E+01 1.5060E+01
F23 5.5472E+00 5.5889E+00 8.4991E+00 8.4581E+00 1.6658E+01 1.6762E+01
F24 5.3198E+00 5.3685E+00 7.9824E+00 8.9096E+00 1.5102E+01 1.5239E+01
F25 5.4424E+00 5.4900E+00 8.1583E+00 8.2227E+00 1.5898E+01 1.6016E+01
F26 8.7852E+00 8.8326E+00 1.4660E+01 1.4710E+01 2.7809E+01 2.7856E+01
F27 8.9832E+00 9.1105E+00 1.4004E+01 1.4053E+01 2.7702E+01 2.7708E+01
F28 5.7872E+00 5.8430E+00 8.9987E+00 8.9808E+00 1.7778E+01 1.7759E+01
F29 5.9846E+00 6.0478E+00 9.2678E+00 9.3317E+00 1.7606E+01 1.7707E+01
F30 5.4322E+00 5.4741E+00 8.3826E+00 8.3705E+00 1.5864E+01 1.5992E+01

Table 5
Comparative experiment between BA-CGSA and other five algorithms.
Function Index ABC PSO SCA TSA CGSA9 BA-CGSA

F1
Mean 1.7403E+10 5.2790E+08 4.8569E+09 2.3423E+09 5.3130E+08 1.0241E+08
St.dev 2.7425E+09 1.6344E+08 1.1237E+09 4.0093E+08 9.9254E+07 2.1156E+07

F2
Mean 5.2050E+11 1.0831E+10 2.3311E+11 5.3276E+10 9.4973E+10 2.1958E+10
St.dev 4.8308E+10 2.4309E+09 1.5142E+10 5.6705E+09 7.5724E+09 4.9011E+09

F3
Mean 1.3879E+06 4.3928E+05 4.0007E+05 3.4496E+05 2.3277E+05 2.5393E+05
St.dev 4.5118E+05 5.6238E+04 3.9111E+04 2.6095E+04 1.7804E+04 1.8438E+04

F4
Mean 2.5641E+05 2.3810E+03 5.5530E+04 9.1280E+03 1.3713E+04 2.8053E+03
St.dev 3.1229E+04 4.6383E+02 7.5324E+03 1.1120E+03 2.0452E+03 6.0454E+02

F5
Mean 5.2144E+02 5.2136E+02 5.2140E+02 5.2137E+02 5.2000E+02 5.2000E+02
St.dev 2.7942E−02 5.4074E−02 3.1855E−02 2.3788E−02 6.4627E−04 5.1493E−04

F6
Mean 7.6318E+02 7.1394E+02 7.6037E+02 7.4441E+02 7.3754E+02 7.0638E+02
St.dev 2.5255E+00 8.9064E+00 4.4573E+00 2.0694E+00 4.0650E+00 5.4196E+00

F7
Mean 6.2414E+03 7.8324E+02 3.0400E+03 1.1617E+03 1.7594E+03 9.6607E+02
St.dev 3.7524E+02 1.8727E+01 1.5524E+02 4.5464E+01 7.7811E+01 3.8082E+01

F8
Mean 2.7573E+03 1.3492E+03 2.1812E+03 1.8837E+03 1.3852E+03 1.3392E+03
St.dev 9.5698E+01 6.5532E+01 5.5462E+01 4.4901E+01 1.7168E+01 2.7287E+01

F9
Mean 3.2297E+03 1.8819E+03 2.4087E+03 2.0962E+03 1.6265E+03 1.5397E+03
St.dev 1.3604E+02 1.3332E+02 6.1323E+01 3.7420E+01 3.7473E+01 3.9110E+01

F10
Mean 3.3688E+04 1.7707E+04 3.1920E+04 2.9600E+04 1.7626E+04 1.6681E+04
St.dev 5.2128E+02 1.4056E+03 9.4642E+02 1.1552E+03 7.6059E+02 1.0306E+03

local optimal solution, which solves the problem of falling into local optimum. Thus, the algorithm can find the global
optimal solution more efficiently.

5.3. The influence of k on the agent motion

Through the comparative experiments, we can find that the convergence of the BA-CGSA algorithm is greatly improved
after applying the linear change weight coefficient of k. This is because the linear coefficient k plays a vital role in the
balance of the proxy point when it moves from the exploration phase to the exploitation phase.
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Table 6
Comparative experiment between BA-CGSA and other five algorithms.
Function Index ABC PSO SCA TSA CGSA9 BA-CGSA

F11
Mean 3.5376E+04 3.1848E+04 3.3436E+04 3.2206E+04 1.5377E+04 1.3901E+04
St.dev 5.9350E+02 1.1259E+03 5.9900E+02 5.6044E+02 1.0419E+03 1.1436E+03

F12
Mean 1.2051E+03 1.2045E+03 1.2049E+03 1.2046E+03 1.2000E+03 1.2000E+03
St.dev 2.5794E−01 5.3180E−01 2.8762E−01 2.7738E−01 8.9681E−03 4.9914E−03

F13
Mean 1.3136E+03 1.3007E+03 1.3080E+03 1.3034E+03 1.3053E+03 1.3010E+03
St.dev 7.6111E−01 1.5515E−01 3.3757E−01 2.6827E−01 2.1333E−01 6.8364E−01

F14
Mean 2.9428E+03 1.4300E+03 2.0560E+03 1.5363E+03 1.6918E+03 1.4702E+03
St.dev 1.3051E+02 9.7165E+00 5.0560E+01 1.1587E+01 2.1163E+01 1.9141E+01

F15
Mean 5.2634E+08 1.8947E+04 1.1097E+07 6.1557E+05 1.8751E+05 5.4741E+03
St.dev 1.6465E+08 9.4540E+03 5.7009E+06 1.7223E+05 5.3476E+04 2.3019E+03

F16
Mean 1.6483E+03 1.6470E+03 1.6476E+03 1.6470E+03 1.6459E+03 1.6458E+03
St.dev 1.7329E−01 5.4856E−01 2.9078E−01 1.8778E−01 3.4590E−01 5.7922E−01

F17
Mean 1.9032E+09 8.5632E+07 7.1323E+08 2.2282E+08 3.5437E+07 5.0678E+06
St.dev 3.1131E+08 3.4618E+07 1.5508E+08 3.9546E+07 1.2173E+07 1.5950E+06

F18
Mean 1.5521E+09 1.9660E+07 1.4366E+10 3.0777E+03 7.6046E+07 3.5935E+03
St.dev 2.5296E+08 4.7298E+07 3.0186E+09 5.3076E+02 1.5761E+08 1.0229E+03

F19
Mean 3.9892E+03 2.1413E+03 4.4727E+03 2.1560E+03 2.4573E+03 2.1196E+03
St.dev 3.6732E+02 3.1038E+01 5.1031E+02 2.8290E+01 6.4427E+01 3.7171E+01

F20
Mean 1.8893E+07 3.1250E+05 9.1164E+05 2.5099E+05 1.3750E+05 1.3888E+05
St.dev 7.7440E+06 9.9400E+04 5.5546E+05 3.8851E+04 1.2127E+04 1.4942E+04

F21
Mean 8.4195E+08 3.6206E+07 2.8164E+08 9.0861E+07 5.0727E+06 3.0459E+06
St.dev 1.7734E+08 1.2849E+07 7.1775E+07 2.1960E+07 1.7720E+06 7.1930E+05

F22
Mean 1.3247E+04 6.4944E+03 9.3433E+03 7.0275E+03 5.7704E+03 5.6300E+03
St.dev 1.4901E+03 9.3896E+02 6.5651E+02 2.3619E+02 7.2039E+02 6.9307E+02

F23
Mean 5.8250E+03 2.7116E+03 4.2680E+03 2.7676E+03 2.5350E+03 2.7470E+03
St.dev 3.5864E+02 1.9842E+01 3.0836E+02 1.1538E+01 1.2758E+02 1.5616E+02

F24
Mean 4.1634E+03 2.9169E+03 3.1704E+03 2.9902E+03 2.7435E+03 2.7399E+03
St.dev 1.5691E+02 1.5207E+01 4.3602E+01 1.2939E+01 1.1615E+01 1.1832E+01

F25
Mean 3.6754E+03 2.8567E+03 3.0730E+03 3.0482E+03 2.7071E+03 2.7067E+03
St.dev 1.6379E+02 2.9711E+01 8.5742E+01 2.8835E+01 9.7614E+00 1.1147E+01

F26
Mean 2.7426E+03 2.8413E+03 3.1035E+03 3.0008E+03 2.8002E+03 2.8003E+03
St.dev 1.2716E+01 9.8607E+00 2.3215E+02 2.2698E+01 4.2767E−02 4.9494E−02

F27
Mean 7.1218E+03 5.8617E+03 7.4101E+03 6.3860E+03 9.9263E+03 1.0892E+04
St.dev 5.5832E+01 1.8384E+02 1.4790E+02 8.6634E+01 7.5849E+02 9.5703E+02

F28
Mean 2.4634E+04 1.4264E+04 2.5946E+04 2.0721E+04 1.3358E+04 1.5600E+04
St.dev 2.4713E+03 1.9108E+03 1.5930E+03 1.6849E+03 1.6718E+03 2.0145E+03

F29
Mean 1.0351E+05 2.5627E+07 1.9776E+09 2.2393E+07 1.3208E+08 1.7939E+05
St.dev 3.8889E+04 1.0518E+08 3.8429E+08 6.1478E+06 3.5580E+08 6.4652E+05

F30
Mean 1.7096E+05 9.8418E+05 6.4348E+07 2.6842E+06 5.3807E+06 1.9223E+06
St.dev 4.9455E+04 7.9040E+05 2.0717E+07 7.9446E+05 1.9573E+06 1.9224E+06

Average ranking 3.5333 5.3000 2.5333 5.1333 2.7667 1.7333

Total ranking 4 6 2 5 3 1

Table 7
Results of the multiple-problem Wilcoxon’s test and Wilcoxon’s rank-sum test for BA-CGSA and other algorithms on 30 test functions.
Algorithm Better Equal Worst R+ R− p α = 0.1 α = 0.05

BACGSA versus ABC 26 0 4 402 63 4.8969E−04 Yes Yes
BACGSA versus PSO 21 0 9 328 137 4.9498E−02 Yes Yes
BACGSA versus SCA 29 0 1 450 15 7.6909E−06 Yes Yes
BACGSA versus TSA 28 0 2 435 30 3.1123E−05 Yes Yes
BACGSA versus CGSA9 22 2 6 373 92 5.2775E−03 Yes Yes

Table 8
Results obtained by BA-CGSA and other algorithms for pressure vessel design problem.
Algorithm TSA BA-CGSA SCA ABC PSO

Best Cost 7067.7511 7019.0328 7323.4213 7203.8915 7205.1078
Mean Cost 7146.0100 7029.5108 7534.1766 7221.7900 7236.9200
Worst Cost 7261.5711 7090.7252 8050.1037 7265.7685 7309.3154
Std.Dev 51.6371 19.8275 188.0822 15.3953 21.9913
x1 of Best Cost 1.1039 1.1013 1.1028 1.1250 1.1257
x2 of Best Cost 0.6284 0.6000 0.6001 0.6250 0.6257
x3 of Best Cost 56.3499 57.0530 57.0788 58.0728 58.0142
x4 of best Cost 55.2178 50.6656 50.6020 45.1283 45.5515
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Fig. 4. Sine function affects the direction of agent point motion.

Fig. 5. Sine and cosine functions affected by the weighting factor k.

The value of k is linearly reduced from 2 to 0, which helps the algorithm to complete the conversion of phases. In the
initial exploration phase, the value of k is linearly reduced from 2 to 1, amplifying the effects of agents, especially the
better ones. This design makes the agent explore the area of the search space as large as possible in the early phase, thus
avoiding sticking into the local optimization. In the later exploitation phase, the k value decreases linearly from 1 to 0,
gradually slowing down the speed of searching, so that the agents can explore around the positions of good-performed
agents obtained in the earlier phase. This ensures that the agent will not jump out of the critical area easily where has
obtained good results, increasing the possibility of achieving better global optimal solutions.

5.4. The influence of the sine function on the agent motion

The sine function fluctuates regularly between [−1, 1] so that the next movement direction of the agent is not
invariable. When the value of the sine function is positive, the agent point moves to the positive direction of the current
point. When it is negative, the agent point moves to the opposite. The mechanism of the motion direction of the agent
point affected by the sine function is shown in Fig. 4.

The parameter k and the sine function control the next moving direction and step size of the agent points, forming
the balance adjustment mechanism of the algorithm. In the early stage of the experiment, the value of the balance
adjustment mechanism fluctuates regularly between [−2, −1] and [1, 2], emphasizing the exploration. In the later phase
of the experiment, the value of the balance adjustment mechanism fluctuates regularly between [−1, 1], emphasizing
exploitation. The superposition principle of the k factor and the sine function is shown in Fig. 5.

6. Conclusion and future work

CGSA combines chaotic maps with GSA to enhance the perturbation of the algorithm so as to solve the problem of
falling into the local optimal solution. But this enhances the instability of the algorithm and brings some disadvantages.
Inspired by the sine function and the balance mechanism of SCA, we propose the improved algorithm BA-CGSA based on
CGSA. Compared with other algorithms, BA-CGSA has advantages in the following four aspects:

• Balance: Applying the linear variable weight coefficient k to balance the two stages of exploration and exploitation.
So the searching speed of agents over the whole iterative process can be controlled globally, which realizes the
balance adjustment mechanism of the algorithm.

• Directivity: The directivity of the sine function makes the searching process of the algorithm more reasonable,
improving the convergence of the algorithm.

• Chaotics: The chaotic mapping functions are preserved to avoid the algorithm falling into the local optimal solution.
• Flexibility: Ten kinds of chaotic maps allow users to choose a more suitable algorithm according to different

situations, which makes the algorithm more flexible.
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Fig. 6. The influence of the value of α for benchmark function F1.

Although we have obtained the outstanding performance of BA-CGSA, there are still some problems that need further
research. The gravity constant G is the main global control parameter, which defines the intensity of gravitational forces
between the search agents. Therefore the determination of G is crucial to the algorithm. CGSA redefines the calculation
formula of G by using the chaotic function, and has achieved good improvement results. But the selection of the constants
G0 and α in the formula still needs to be discussed further. In order to make the differences between CGSA and the
proposed algorithm, the same 24 benchmark functions tested in CGSA are evaluated for its fairness. In future work, some
more benchmark functions can be applied. The influence of constant α is shown in Fig. 6 by using the benchmark function
F1 as an example.
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