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• K nearest neighbors is adopted to solve domino effect problem in density peaks clustering.
• The capability of aggregating some non-spherical clusters is enhanced effectively.
• Experimental results show that the DPC-KNN algorithm is more effective.
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a b s t r a c t

Density Peaks Clustering (DPC) algorithm is a kind of density-based clustering approach,
which can quickly search and find density peaks. However, DPC has deficiency in
assignment process, which is likely to trigger domino effect. Especially, it cannot process
some non-spherical data sets such as Spiral. The research results indicate that assignment
process appears to be the most significant step in deciding the success of the clustering
performance. Therefore, we propose a density peaks clustering based on k nearest
neighbors (DPC-KNN) which aims to overcome the weakness of DPC. The proposed
DPC-KNN integrates the idea of k nearest neighbors into the distance computation and
assignment process, which is more reasonable. It can be seen from experimental results
that the DPC-KNN algorithm is more feasible and effective, compared with K-means,
DBSCAN and DPC.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is to divide objects into several sensible clusters according to their similarity [1–3]. Objects in the same
cluster are characterized by higher similarity, but objects in different clusters have lower similarity. Clustering approaches
have been applied widely in engineering, computer sciences fields, and so on [4–7].
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Fig. 1. Sort density by DPC on Spiral data set, dc = 13.6041, ×.

Clustering algorithms are divided into different categories by different starting points and criteria [1]. K-means [8] is a
simple, well-known algorithm. It is very fast and can be easily implemented in solving spherical data sets. The drawbacks
of K-means are that it is hard to decide the initial partitions and the number of clusters, it is sensitive to outliers and
noise, and it has weak ability of discovering non-spherical clusters [1,5,9]. DBSCAN [10] is a density-based clustering
algorithm. It is able to discover arbitrary shape clusters. DBSCAN depends on two parameters: ϵ and MinPts. ϵ is radius
of neighborhood for an object, and MinPts is the minimum number of points in a neighborhood, but the two parameters
need to be specified by users [1,5,9,11]. It is difficult to pre-set the two parameters appropriately.

In 2014, DPC (density peaks clustering) [12] algorithm was published in the journal Science. It is a kind of density-
based clustering algorithm based on the idea that cluster centers are characterized by a higher density and a relatively
longer distance [12]. Cutoff distance dc is the only user-defined parameter. DPC requires two quantities that are local
density ρ and distance δ. It is able to quickly search and find density peaks. DPC introduces the concept of cluster
centers, it can determine the clustering center automatically and it is able to deal with arbitrary shape clusters. Due
to the good performance of DPC algorithm, it has attracted the attention of many scholars. Focusing on this method,
several researches [13–22] have been carried out to improve its capabilities.

DPC finds out cluster centers by decision graph. For the remaining points, DPC adopts one-step strategy that each point
is assigned to the cluster of its nearest point with higher density. The assignment rules makes DPC efficient. However,
once a data point is assigned incorrectly, it will cause cluster allocation errors among the remaining points, triggering
the domino effect [11,22]. As is shown in Fig. 1, c1, c2, c3 represent three different clusters respectively, and data points
are marked by numbers. No. 1 means the point is of highest density. The larger the number of points is, the lower their
density becomes. Point No. 103 is of higher density than its neighbors, so the assignment of it will also influence the
assignment of its neighbors. Apparently, point No. 103 is assigned to cluster c2 incorrectly, triggering the domino effect
and generating wrong cluster result, which leads to the failure of cluster aggregation.

In DPC algorithm, distance δ will influence assignment process. In assignment process of DPC algorithm, cluster
allocation of each point is determined by its distance δ. For point No. 103, distance δ103 is distance d(26,103), which is
the minimum distance from points higher than its density. As a result, it is absorbed to point No. 26 and assigned to
cluster c2 incorrectly, which belongs to cluster c1. Therefore, it is unreasonable if the calculation of distance δ only takes
into consideration the distance between a point and its nearest neighbors of higher density. In order to overcome the
problem, we propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which integrates the idea of k
nearest neighbors into DPC, which further improves the distance δ computation. This approach is tested with Seeds [23],
Wine [23] data sets and five shaped data sets, namely Aggregation [24], Flame [25], Spiral [26], Jain [27] and R15 [28].
Compared with K-means [8], DBSCAN [10] and DPC [12], the proposed DPC-KNN has three advantages:

(1) Cluster center in decision graph is more notable than DPC;
(2) Non-spherical clusters are aggregated more effectively than DPC;
(3) Various sizes clusters are aggregated more correctly than K-means and DBSCAN.

The rest of this paper is organized as follows. The functions of DPC algorithm and of DPC-KNN algorithm will be
described in Section 2. The process of DPC-KNN algorithm will be proposed in Section 3. Experimental results on some



704 J. Jiang, Y. Chen, X. Meng et al. / Physica A 523 (2019) 702–713

data sets will be presented in Section 4. Some discussions will be made to explain the major reasons in Section 5. Finally,
conclusions will be drawn in the last Section.

2. Related work

The proposed DPC-KNN algorithm is inspired by DPC [12] and k nearest neighbors. Brief reviews ought to be given in
the following subsections.

2.1. DPC: a density peaks clustering approach

DPC algorithm is based on the hypothesis that cluster centers are characterized by a higher density than their neighbors
and by a relatively longer distance from points of higher density [12]. Pi means point i. It is a data point in the data set of
N ∗ M dimensions, Pi ∈ N . For each point of Pi, it computes two parameters: its local density ρi and its distance δi from
points with higher density. These two parameters are relied on distance dij between data points Pi and Pj.

dij = distance(Pi, Pj) (1)

where the formula can be calculated by distance formula, e.g. Euclidean distance.
The local density ρi of point Pi is given by Eq. (2).

ρi =

∑
j

χ (dij − dc) (2)

where χ (dij −dc) = 1 if (dij −dc) < 0 and χ (dij −dc) = 0 otherwise, cutoff distance dc is the only user-defined parameter.
As a rule of thumb, one can choose a dc so that the average number of neighbors is around 1% to 2% of the total number
of points in a data set [12,18,22].

For point Pi of the highest density, its distance δi is given by Eq. (3).

δi = max(dij) (3)

For the rest of points, distance δi are defined by Eq. (4).

δi = min
j:ρj>ρi

(dij) (4)

2.2. DPC-KNN: density peaks clustering based on k nearest neighbors

In DPC-KNN algorithm, for each point Pi, the formula of local density is the same as DPC shown in Eq. (2). The proposed
DPC-KNN integrates the idea of k nearest neighbors into the formula of distance δ. The set of k nearest neighbors of point
Pi is defined by Eq. (5). k represents the number of the nearest neighbors.

Nk
i = {Pj|m

k
in(dij), Pj ∈ N, Pj ̸= Pi} (5)

The set that consists of point Pi and its k nearest neighbors is defined by Eq. (6).

Si = {Nk
i , Pi} (6)

The set of the points of higher density than point Pi is given by Eq. (7).

Hi = {Pt |ρt > ρi, Pt ∈ N, Pt ̸= Pi} (7)

For each point Pi, except the point of the highest density, distance δi is defined by Eq. (8).

δi = min{distance(Pl, Pt )}, Pl ∈ Si, Pt ∈ Hi (8)

3. Methods

The proposed DPC-KNN is different from DPC algorithm. In DPC-KNN algorithm, the formula of distance δ and
assignment rules are redefined. DPC-KNN algorithm includes three major steps: (1) calculate the density and distance
of points; (2) generate decision graph; (3) aggregate clusters.

3.1. CaLculate the density and distance of points

A suitable cutoff distance dc is selected to calculate the local density ρi [12], and the formula of local density of DPC-
KNN algorithm is the same as DPC algorithm shown in Eq. (2). But the calculation of distance δi is different in DPC-KNN
algorithm, to which k nearest neighbors is introduced. k nearest neighbors will influence distance δi for each point Pi, the
latter already made clear by Eqs. (3) and (8).
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Fig. 2. The decision graph of Spiral data set with dc = 14.1182.

3.2. Generate decision graph

Distance δ is adopted as the vertical axis and density ρ as the horizontal axis of decision graph. Cluster center is
characterized by a higher density and by a relatively longer distance. As shown in Fig. 2(b), all the points except the
cluster centers have lower value of distance δ in decision graph of DPC-KNN algorithm, so it is easy to find cluster centers
which are prominent in the decision graph.

3.3. Aggregate clusters

Cluster centers are selected by decision graph, and the remaining point Pi is assigned to each cluster. In the assignment
rules of DPC-KNN algorithm, point Pi is absorbed to the point Pt in the set Hi which has minimum distance to point Pl
in the set Si. Therefore, in assignment process, point Pi is assigned to the cluster where lies the nearest point of higher
density, which is determined by δi based on Eq. (8). Finally, we can get the clusters aggregated by assignment process.
DPC-KNN algorithm is depicted in Algorithm 1.

Algorithm 1 Density peaks clustering based on k nearest neighbors

Require: Initial points Pi ∈RN×M (RN×M is the matrix of N×M dimensions), dc (dc is a cutoff distance), k (k nearest
neighbors)

Ensure: The label vector of cluster index: y∈RN×M
Step 1: Calculate dc
1.1 Calculate dij from RN×M based on Eq. (1);
1.2 Sort dij in an ascending order;
1.3 Determine dc by finding value of certain percentage position in the above order.
Step 2: Detect cluster centers by decision graph
2.1 Calculate ρi based on Eq. (2);
2.2 Sort points based on ρ in a descending order;
2.3 Calculate δ based on Eq. (3) for point of the highest density, and calculate δ based on Eq. (8) for the remaining
points;
2.4 Generate the decision graph with density ρ and with distance δ;
2.5 Find cluster centers from decision graph.
Step 3: Assign each point to different clusters
3.1 Point Pi is absorbed to the nearest point of higher density which is determined by δi based on Eq. (8);
3.2 Iterate until all points are assigned.
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Table 1
Seven different types of data sets.
Data sets Points Dimensions Clusters

Seeds 210 7 3
Wine 178 13 3
Aggregation 788 2 7
Flame 240 2 2
Spiral 312 2 3
Jain 373 2 2
R15 600 2 15

4. Results

To test its feasibility and effectiveness of the proposed DPC-KNN algorithm, it is compared with K-means [8],
DBSCAN [10] and DPC [12] on Seeds [23], Wine [23] data sets and five shaped data sets, which are, Aggregation [24],
Flame [25], Spiral [26], Jain [27] and R15 [28] respectively. The attributes of these data sets are listed in Table 1.

4.1. Evaluate clustering results

We adopt F-Measure [29], NMI (Normalized Mutual Information) [30] and ARI (Adjust Rand Index) [30] to test the
performance of K-means, DBSCAN, DPC and DPC-KNN. The upper limit of the three indexes is 1. The larger the three
indexes are, the better is the cluster result.

F-Measure involves both the precision P and the recall R: P is the ratio between the number of correct positive results
and the number of all positive results returned by the classifier, and R is the ratio between the number of correct positive
results and the number of all samples that should have been identified as positive. P , R and F-Measure are defined by
Eqs. (9), (10) and (11). Mj is set of the number of all samples that should have been identified as positive. Ci is set of the
number of all positive results returned by the classifier.

P(Mj, Ci) =
|Mj ∩ Ci|

|Ci|
(9)

R(Mj, Ci) =
|Mj ∩ Ci|

|Mj|
(10)

F (Mj, Ci) =
2 × P(Mj, Ci) × R(Mj, Ci)
P(Mj, Ci) + R(Mj, Ci)

(11)

The mutual information (MI) [30] can be used to measure the information shared by two clusters. Given a set S of N
data points, and two partitions of set S, namely X = {X1, X2, . . . , Xr}, and Y = {Y1, Y2, . . . , Ys}. Suppose that we pick an
object at random from S, then the probability that the object falls into cluster Xi is

P(i) =
|Xi|

N
(12)

Entropy can be described as the information conveyed by the uncertainty that a randomly selected point belongs to a
certain cluster. Entropy of the cluster X is given by Eq. (13).

H(X) = −

r∑
i=1

P(i) × log P(i) (13)

The MI [30] between the clusters X and Y is defined by Eq. (14).

I(X, Y ) =

r∑
i=1

s∑
j=1

P(i, j) × log
P(i, j)
P(i)P(j)

(14)

The NMI [31] is calculated as Eq. (15).

NMI(X, Y ) =
2 × I(X, Y )
H(X) + H(Y )

(15)

The overlap between X and Y can be summarized in a contingency table shown in Table 2. Nrs denotes the number of
objects in common between Xr and Ys.
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Table 2
The contingency table.
X Y Sums

Y1 Y2 · · · Ys

X1 N11 N12 · · · N1s a1
X2 N21 N22 · · · N2s a2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

Xr Nr1 Nr2 · · · Nrs ar
Sums b1 b2 · · · bs

Table 3
F-Measure evaluation.
Data sets K-means DBSCAN DPC DPC-KNN

Seeds 0.8106 0.5543 0.8169 0.8169
parameter k = 3 ϵ = 1.2/MinPts = 2 dc = 1.3110 dc = 1.3110/k = 5

Wine 0.5835 0.5813 0.6000 0.6425
parameter k = 3 ϵ = 2/MinPts = 4 dc = 145.3290 dc = 96.4202/k = 5

Aggregation 0.8159 0.9003 1 1
parameter k = 7 ϵ = 1.05/MinPts = 4 dc = 3.1185 dc = 3.1185/k = 7

Flame 0.7586 0.9840 1 1
parameter k = 2 ϵ = 0.93/MinPts = 4 dc = 1.4577 dc = 1.6008/k = 4

Spiral 0.3276 1 0.7795 1
parameter k = 3 ϵ = 2/MinPts = 4 dc = 13.6041 dc = 13.6041/k = 7

Jain 0.6977 0.9767 1 1
parameter k = 2 ϵ = 2.5/MinPts = 4 dc = 13.0124 dc = 13.0124/k = 9

R15 0.9932 0.9402 0.9916 0.9932
parameter k = 15 ϵ = 0.35/MinPts = 5 dc = 0.5887 dc = 0.6551/k = 8

Table 4
Normalized mutual information evaluation.
Data sets K-means DBSCAN DPC DPC-KNN

Seeds 0.6949 0.0948 0.6938 0.6938
parameter k = 3 ϵ = 1.2/MinPts = 2 dc = 1.3110 dc = 1.3110/k = 5

Wine 0.4287 5.551e−07 0.4240 0.4298
parameter k = 3 ϵ = 2/MinPts = 4 dc = 145.3290 dc = 96.4202/k = 5

Aggregation 0.8805 0.9207 1 1
parameter k = 7 ϵ = 1.05/MinPts = 4 dc = 3.1185 dc = 3.1185/k = 7

Flame 0.4622 0.9275 1 1
parameter k = 2 ϵ = 0.93/MinPts = 4 dc = 1.4577 dc = 1.6008/k = 4

Spiral 0.0007 1 0.6951 1
parameter k = 3 ϵ = 2/MinPts = 4 dc = 13.6041 dc = 13.6041/k = 7

Jain 0.3672 0.8729 1 1
parameter k = 2 ϵ = 2.5/MinPts = 4 dc = 13.0124 dc = 13.0124/k = 9

R15 0.9942 0.9459 0.9928 0.9942
parameter k = 15 ϵ = 0.35/MinPts = 5 dc = 0.5887 dc = 0.6551/k = 8

Adjusted Rand Index (ARI) [30] is defined as Eq. (16).

ARI =

∑
ij

(
Nij
2

)
−

[∑
i

(
ai
2

)∑
j

(
bj
2

)]
/

(
N
2

)
1
2

[∑
i

(
ai
2

)
+

∑
j

(
bj
2

)]
−

[∑
i

(
ai
2

)∑
j

(
bj
2

)]
/

(
N
2

) (16)

where Nij is an entry in the contingency table, ai and bj are its marginal sums.
If the three indexes are higher, the performance of algorithm is better. The cluster results are depicted in Tables 3–5,

which are mean values based on 20 times run. Overall, DPC-KNN and DPC are superior to K-means and DBSCAN. DPC-KNN
and DPC can achieve maximum value on data sets of Aggregation, Flame and Jain. DPC-KNN performs better than DPC on
Spiral data set. In summary, DPC-KNN gets highest value, compared with K-means, DBSCAN and DPC.
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Table 5
Adjust rand index evaluation.
Data sets K-means DBSCAN DPC DPC-KNN

Seeds 0.7166 0.0025 0.7264 0.7264
parameter k = 3 ϵ = 1.2/MinPts = 2 dc = 1.3110 dc = 1.3110/k = 5

Wine 0.3711 0.0 0.2796 0.3818
parameter k = 3 ϵ = 2/MinPts = 4 dc = 145.3290 dc = 96.4202/k = 5

Aggregation 0.7624 0.8662 1 1
parameter k = 7 ϵ = 1.05/MinPts = 4 dc = 3.1185 dc = 3.1185/k = 7

Flame 0.4998 0.9659 1 1
parameter k = 2 ϵ = 0.93/MinPts = 4 dc = 1.4577 dc = 1.6008/k = 4

Spiral −0.0057 1 0.6686 1
parameter k = 3 ϵ = 2/MinPts = 4 dc = 13.6041 dc = 13.6041/k = 7

Jain 0.3181 0.9411 1 1
parameter k = 2 ϵ = 2.5/MinPts = 4 dc = 13.0124 dc = 13.0124/k = 9

R15 0.9928 0.9357 0.9910 0.9928
parameter k = 15 ϵ = 0.35/MinPts = 5 dc = 0.5887 dc = 0.6551/k = 8

Table 6
Compare clustering performance with different k by DPC-KNN on Spiral data set.
k 4 5 6 7 8 9 16

FM 0.8878 0.8878 0.8878 1 1 0.8028 0.4801
NMI 0.8491 0.8491 0.8491 1 1 0.7196 0.2344
ARI 0.8312 0.8312 0.8312 1 1 0.7039 0.1724

4.2. Generate decision graph

We use DPC algorithm and DPC-KNN algorithm to compare the decision graph of spiral. As illustrated in Fig. 2, all the
points except the cluster centers have lower value of distance δ in decision graph of DPC-KNN algorithm, which makes
cluster centers more notable in decision graph than DPC.

4.3. Detect clusters of irregular shapes

Spiral is applied to evaluate the performance of DPC-KNN algorithm in processing irregular-shaped clusters. In Fig. 3,
K-means is unable to aggregate satisfactory cluster result in Spiral data set. DPC can find three cluster centers, but it
cannot aggregate Spiral data set correctly. DBSCAN and DPC-KNN are able to aggregate it efficiently and achieve good
cluster results.

4.4. Detect clusters of varying size

As is shown in Fig. 4, K-means is unable to process Flame data set successfully. DBSCAN is able to detect two clusters,
but it incorrectly identifies two points in the upper left corner and on the edge as noise points. However, DPC and DPC-KNN
can aggregate two clusters efficiently.

As is illustrated in Fig. 5, K-means can only recognize some certain clusters, but cannot detect all clusters correctly.
DBSCAN is unable to find the two clusters on the right and it identifies some edge points as noise points. However, DPC
and DPC-KNN are able to perform well on the Aggregation data set and achieve good cluster results.

4.5. Aggregate clusters in different values of k

As is shown in Fig. 6, when dc is 13.6041, DPC detects Spiral data set incorrectly. When k is 16, DPC-KNN gets the
same cluster result with the same dc . As is illustrated in Fig. 7, when dc is 13.6041, DPC-KNN gets different cluster results
in different k. In Table 6, it is shown that DPC-KNN can achieve good cluster result when k is 7 or 8. When k is 4 to 6,
DPC-KNN gets the same cluster evaluation on Spiral data set. When k is 16, DPC-KNN gets lower values of indexes on
Spiral data set. It is seen that DPC-KNN algorithm is influenced by different values of k.

5. Discussion

To analyze the strengths and weaknesses of DPC-KNN algorithm, its performance is discussed in cluster detection.
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Fig. 3. Aggregate the data set of Spiral.

5.1. Analysis of generating decision graph

In DPC algorithm, the value δ of point Pi is minimum distance between point Pi and point Pt belonged to set Hi. DPC-
KNN considers k nearest neighbors and applies it to improve the calculation of distance δ. For any point Pi except the
cluster centers, if its k nearest neighbors are of lower density than point Pi, then δi is minimum distance between point
Pl that belongs to set Si and point Pt that belongs to set Hi. If one of its neighbors’ density is higher than point Pi, then
the minimum distance is zero, so δi is zero. Therefore, in the decision graph generated by DPC-KNN, the δ of most points
are zero, and the δ of some points are smaller, so the cluster centers are more notable.

5.2. Analysis of detecting irregular shapes

Spiral data set is a typical non-spherical data set, which brings challenges to most clustering algorithms. As is shown
in Fig. 3, K-means and basic DPC algorithm cannot detect Spiral data set. DBSCAN and DPC-KNN are able to aggregate
it efficiently. K-means is able to process data sets of regular shapes but not to non-spherical data sets. DBSCAN has the
capability of processing data sets of arbitrary shapes.

According to assignment process of DPC algorithm, each point is assigned to the same cluster to which its nearest point
of higher density belongs. In Fig. 1, data points are marked by numbers following density order and No. 1 represents the
data point of the highest density. Points No. 26 and No. 91 are the two nearest neighbors of higher density to point No.
103. It is obvious that distance d(26,103) is shorter than distance d(91,103). Therefore, point No. 103 is assigned to the same
cluster as point No. 26 is in. Once point No. 103 is assigned to the wrong cluster, other points of lower density around it
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Fig. 4. Aggregate the data set of Flame.

are assigned to the same wrong cluster, triggering the domino effect. Therefore, DPC is unable to process Spiral data set
successfully.

In assignment process of DPC-KNN algorithm, point Pi is assigned to the same cluster as point Pt in the set Hi which
has minimum distance to point Pl in the set Si. In Fig. 8, for point No. 103, its k nearest neighbors are No. 104, No. 105,
No. 111, No. 114, No. 119, No. 123 and No. 126 when k is 7. It is seen that d(91,105) is the minimum distance from point
No. 103 and its k nearest neighbors to the points of higher density than point No. 103. Therefore, the value of distance δ

of point No. 103 is d(91,105). And the point No. 103 is assigned to the same cluster as point No. 91 is in. Once point No. 103
is assigned to the correct cluster, its neighbors of lower density are assigned to the same cluster, which achieves good
cluster results. After integrating the k nearest neighbors into DPC-KNN algorithm, the calculation of distance δ and the
assignment process become more reasonable. Therefore, DPC-KNN is able to process Spiral data set successfully.

5.3. Analysis of detecting varying size

K-means is hard to decide the initial partitions, which has weak ability of discovering arbitrary-shaped clusters [1,5,9],
therefore, it is unable to process Flame and Aggregation data sets. In Figs. 4(b) and 5(b), DBSCAN is able to find some
cluster centers and detect some clusters correctly, but it is unable to find all clusters completely. Although DBSCAN has a
notion of noise, and is robust to outliers [10], its accuracy in noise detection needs to be improved. DPC can find correct
cluster centers on both two data sets, and it can aggregate them by one-step assignment process. DPC-KNN inherits the
advantages of DPC, so it can also detect Flame and Aggregation data sets.
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Fig. 5. Aggregate the data set of Aggregation.

Fig. 6. Aggregate the data set of Spiral with dc = 13.6041.
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Fig. 7. Aggregate the data set of Spiral with dc = 13.6041 in different k.

Fig. 8. Sort density by DPC-KNN on Spiral data set, dc = 13.6041,
√
.
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5.4. Analysis of aggregating clusters in different values of k

As is shown in Fig. 6, when k is 16, DPC-KNN gets the same cluster result as DPC with dc = 13.6041. In Fig. 7, DPC-KNN
is influenced by the values of k, different values of k have different results when dc is the same. As is illustrated in Table 6,
DPC-KNN achieves good performance on Spiral data set when k is 7 or 8 with dc = 13.6041. Therefore, k is not fixed in
DPC-KNN algorithm, and the effect of k value will affect the cluster result to a large extent.

6. Conclusion

DPC has deficiency in assignment process, which is easy to trigger domino effect. Especially, it cannot process some
non-spherical data sets such as Spiral. Absorbing k nearest neighbors, DPC-KNN is able to make assignment process more
reasonable and ensure the effectiveness of the algorithm. DPC-KNN integrates the idea of k nearest neighbors into the
distance computation and assignment process. It can be seen from experimental results that the DPC-KNN algorithm is
more feasible and effective, compared with K-means, DBSCAN and DPC. DPC-KNN has good performance in processing
non-spherical clusters and various sizes clusters. It is able to generate decision graph with cluster centers that are more
notable. However, how to determine the k value of DPC-KNN algorithm automatically, and find the relationship between
parameters dc and k needs a further research.
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