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a b s t r a c t

The Density Peaks Clustering (DPC) algorithm, published in Science, is a novel density-
based clustering approach. Gravitation-based Density Peaks Clustering (GDPC) algorithm,
inherited the advantages of DPC, is an improved algorithm. GDPC is able to detect outliers
and to find the number of clusters correctly. However, it still has some problems in: (1)
processing some data sets of varying densities; (2) processing some data sets of irregular
shapes. An improved density clustering algorithm, named as DPC-LG, is proposed to
overcome some weakness of GDPC. It can be seen from experimental results that the DPC-
LG algorithm is more feasible and effective, compared with AP, DPC and GDPC.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is aimed at grouping a set of objects in a way that objects are classified into categories on the basis of their
similarity [1–3]. The approach has been applied in a wide variety of fields, including engineering, computer sciences, life and
medical sciences, earth sciences, social sciences and economics [4–8].

Broadly, traditional methods in clustering can be categorized into: hierarchical method, partitioning method, density-
based method, model-based method, grid-based method, and soft-computing method [9–11]. W.E. Wright [12] introduced
gravitational clustering inspired by the motion of particles in space due to their gravitational attraction between each
other. Gravitational clustering method can generate better clustering results, especially for border-line points, which has
contributed significantly to the evaluation of clustering procedures [12]. Previously, agglomerative hierarchical clustering
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Fig. 1. Aggregate the data set of Jain.

methods, based on Gaussian probability models, had shown great promise in a variety of applications [13]. The Gaussian
probability model can provide efficiency for agglomerative hierarchical clustering algorithms [13].

A novel clustering algorithm, named as Density Peaks Clustering (DPC), was published in the journal Science [14]. DPC
is a density-based clustering algorithm based on the idea that cluster centers are characterized by a higher densities and a
relatively larger distance [14]. It is able to discover cluster centers rapidly, to recognize some shaped data sets, and to detect
clusters regardless of varying size and varying densities. Focusing on this method, several researches [15–23] have been
carried out to improve its capabilities.

However, DPC still has its deficiency in detecting outliers automatically and finding the number of clusters correctly [15,
19,22], to which GDPC is well qualified. Inspired by DPC and Newton’s law of gravitation, GDPC is an enhanced algorithm
based on gravitation theory and nearby distance to identify centers and anomalies accurately [22]. However, it still has some
problems in:

1. processing some data sets of varying densities;
2. processing some data sets of irregular shapes.

For example, GDPC cannot process Jain data set successfully presented in Fig. 1(c) though it found two cluster centers
correctly. GDPC is also unable to aggregate the clusters well in Spiral data set. As is shown in Fig. 2(c), GDPC can detect the
number of clusters, but it cannot achieve good cluster results. In Fig. 3, data points are marked in density order and NO.1
represents the data point of the highest density. The assignment rules of GDPC algorithm is the same to DPC algorithm; each
point except for cluster centers is assigned to its nearest neighbor of higher density within the same cluster [14]. This can be
explained by the assignment of data point NO.45. First, find data points with higher densities than data point NO.45; second,
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Fig. 2. Aggregate the data set of Spiral.

calculate distance between these data points and NO.45, and select the minimum distance. Thus, three points NO.24, NO.31,
and NO.44 are discovered, d(24,45), d(31,45), and d(44,45) represent the minimum distance between point NO.45 and the above
three points respectively, which is shown by the three colored lines as three possible cluster assignation. It is obvious that the
red line is shorter than the other two, for which data point NO.45 is assigned to the second cluster. Clearly, the unreasonable
distribution of data points contributes to the failure of cluster aggregation, caused by unreasonable order of the local density
ρ. In GDPC method, density calculation can affect the order of ρ, because the local density ρi is simply computed by the
number of neighbor points whose distances to point i are less than dc . As a result, the local density ρ is a discrete value
lacking smoothness.

In order to overcome the two problems, we are inspired by Gaussian probabilitymodels [13] to adopt logistic distribution
to enhance GDPC. The local density is calculated by the probability density function (PDF) of the logistic distribution, instead
of the number of neighbor points around point i. The approach is able to rationalize the order of ρ and aggregate the clusters
effectively.

Thus a developed algorithm, named DPC-LG, is proposed. The approach is applied to Iris, Breast data sets and five shaped
data sets, namely Compound, Flame, Spiral, Jain and R15. Compared with AP, DPC and GDPC, the enhanced DPC-LG has four
advantages:

1. aggregate clusters with varying densities efficiently;
2. process non-spherical clusters effectively;
3. detect the number of clusters correctly;
4. discover outliers accurately.
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Fig. 3. Sorting density by GDPC on Spiral data set, dc = 7.7345, Incorrect.

Fig. 4. Sorting density by DPC-LG on Spiral data set, dc = 2.5812, Correct.

The rest of this paper is organized as follows. In Section 2, the DPC algorithm, GDPC algorithm and logistic distribution
are described. In Section 3, density peaks clustering based on logistic distribution and gravitation algorithm is proposed.
In Section 4, experimental results on some data sets are presented. In Section 5, some discussions are made to explain the
major reasons. And some conclusions are drawn in the last Section.

2. Related work

The proposed DPC-LG algorithm is inspired by DPC [14], GDPC [22] and logistic distribution [24]. Brief reviews should be
given in the following subsections.
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Table 1
Mapping between Newton’s law of gravitation and parameters fromDPC [22].
Parameters from Gravitation Parameters from DPC

mi ρi
mj ρj
ri δi

2.1. DPC: a density peaks clustering approach

Density peaks clustering (DPC) algorithm is based on the idea that cluster centers are characterized by a higher density
than their neighbors and by a relatively larger distance frompointswith higher density [14]. For each data point i, it computes
two quantities: its local densityρi and its distance δi frompoints of higher density. These two quantities are relied on distance
dij between data points.

dij = distance(i, j) (1)

where the distance can be measured by distance functions, e.g. Euclidean distance. The local density of point i is given
by Eq. (2).

ρi =

∑
j

χ (dij − dc) (2)

where χ (dij − dc) = 1 if (dij − dc) < 0 and χ (dij − dc) = 0 otherwise, cutoff distance dc is the only user-defined parameter.
As a rule of thumb, one can choose dc so that the average number of neighbors is around 1% to 2% of the total number of
points in a data set [14]. For the point i with the highest density, its distance δi is given by Eq. (3).

δi = max(dij) (3)

For the rest of points, distance δi is defined by Eq. (4).

δi = min
j:ρj>ρi

(dij) (4)

2.2. GDPC: gravitation-based density peaks clustering algorithm

GDPC inherits the advantage of DPC, combined with law of gravitation. The GDPC assumes that cluster centers are
characterized by a higher density than their neighbors and by a relatively lower gravitation to a point with higher
density [22]. The GDPC requires three quantities: density ρ, distance δ and gravitation F . The calculation of density ρ and
distance δ are similar to DPC. According to law of gravitation, gravitation F between object i and object j is given by Eq. (5).

F(i,j) = G ×
mi × mj

r2i
(5)

As presented in Table 1. GDPC algorithm proposed the mapping between Newton’s law of gravitation and parameters
from the DPC.

According to Table 1, the function of gravitation F [22] is defined by Eq. (6).

F(i,j) = G ×
ρi × ρj

δ2i
(6)

2.3. The probability density function of the logistic distribution

In probability theory and statistics, the logistic distribution is a continuous probability distribution [24]. The probability
density function (PDF) of the logistic distribution is given by Eq. (7).

f (x; µ, δ) =
π

√
3δ

e−π (x−µ)/
√
3δ

{1 + e−π (x−µ)/
√
3δ}2

(7)

The corresponding cumulative distribution function is defined by Eq. (8).

F (x; µ, δ) =
1

1 + e−π (x−µ)/
√
3δ

(8)

when µ = 0 and δ = 1, the PDF of the logistic distribution is presented by Eq. (9).

f (x; 0, 1) =
π
√
3

e−πx/
√
3

(1 + e−πx/
√
3)2

(9)
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The corresponding cumulative distribution function is shown in Eq. (10).

F (x; 0, 1) =
1

1 + e−πx/
√
3

(10)

This is the standardized form of the logistic distribution. When variable z = −πx/
√
3, the PDF of standard form is given

by Eq. (11).

f (z) =
1

ez + 2 + e−z (11)

It is clear that the logistic density function in Eq. (11) is symmetric about zero, and it is similar to the normal
distribution [24]. Its corresponding cumulative distribution function is given by Eq. (12).

F (z) =
1

1 + e−z (12)

3. Methods

The proposed DPC-LG algorithm inherits the strengths of GDPC and logistic distribution. Its main idea is similar to GDPC
algorithm, but the calculation of local density ρ is different. As a rectification of GDPC, the DPC-LG algorithm includes three
major steps: (1) calculate density and distance of points; (2) generate decision graph of gravitation; (3) aggregate clusters
with gravitation.

3.1. Calculate density and distance of points

Like DPCmethod, a suitable cutoff distance dc is selected to calculate the local density ρi, but the formula for density ρi is
different from DPC algorithm. The probability density function of the standardized logistic distribution is adopted as shown
in Eq. (11) that random variable z is distributed as logistic with mean 0 and variance π2/3. So uij =

dij
dc

and the local density
ρi is given by Eq. (13).

ρi =

∑
j

1
euij + 2 + e−uij

(13)

Distance δi is depended on density ρi and Euclidean distance shown in Eq. (1). Density of all data points are sorted in
a descending order so that the point of the highest density can be found. Like DPC algorithm, for the point of the highest
density, δi is measured by the maximum distance between the point and all other points in Eq. (3). For other points i, δi is
defined by calculating the minimum distance between point i and all other points with relative higher density as shown
in Eq. (4).

3.2. Generate decision graph of gravitation

According to Eq. (6), gravitation F is calculated.We adopt the reciprocal of gravitation F as the vertical axis anddensityρ as
the horizontal axis of decision graph. Cluster center is characterized by a higher density and by a relatively lower gravitation,
so it is easy to find cluster centers which are prominent in the decision graph of gravitation.

3.3. Aggregate clusters with gravitation

Cluster centers are selected by decision graph and the remaining points i is assigned to each cluster. Finally, we can
get the clusters that are aggregated by assignment process. The density peaks clustering based on logistic distribution and
gravitation algorithm is depicted in Algorithm 1.

4. Results

To test its feasibility and effectiveness of the proposed DPC-LG algorithm, we compare it with AP, DPC and GDPC on Iris,
Breast data sets and five shaped data sets, that is Compound, Flame, Spiral, Jain and R15. The attributes of these data sets are
listed in Table 2.

F-Measure is used for testing the performance of AP, DPC, GDPC and DPC-LG. F-Measure index is the measure of accuracy.
It considers both the precision P and the recall R of clustering algorithms: P is the ratio of the number of correct results to
the number of all returned results, and R is the ratio of the number of correct results to the number of results that should
have been returned. P , R and F-Measure are defined as the following Eqs. (14)–(16). Mj is set of the number of results that
should have been returned. Ci is set of the number of all returned results.

P(Mj, Ci) =
|Mj ∩ Ci|

|Ci|
(14)
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Algorithm 1: DPC based on logistic distribution and gravitation algorithm.

Require: Initial points X∈RN×M (RN×M is the matrix of N×M dimensions), dc(dc is a cutoff distance)
Ensure: The label vector of cluster index: y∈RN×M

Step 1: Calculate dc
1.1 Calculate dij from RN×M based on Equation (1) ;
1.2 Sort dij in an ascending order;
1.3 Determine dc by finding value of certain percentage position in the above order.
Step 2: Detect cluster centers by density peaks
2.1 Calculate ρi based on Equation (13) ;
2.2 Sort points based on ρ in a descending order ;
2.3 Calculate δi based on Equation (3) and Equation (4) ;
2.4 Compute gravitation based on Equation (6);
2.5 Form the decision graph with density ρ and the reciprocal of gravitation F ;
2.6 Detect centers and outliers from the decision graph.
Step 3: Assign each point to different clusters
3.1 Put outliers to a special cluster;
3.2 Assign each point with clusterId by its value of the reciprocal of gravitation F ;
3.3 Iterate until all points are clustered.

Table 2
Seven different types of data sets.
Data sets Points Dimensions Clusters

Iris 150 4 3
Breast 699 9 2
Compound 399 2 6
Flame 240 2 2
Spiral 312 2 3
Jain 373 2 2
R15 600 2 15

Table 3
F-Measure evaluation.
Data sets AP DPC GDPC DPC-LG

Iris 0.4851 0.7715 0.7715 0.7715
Breast 0.5491 0.7442 0.7533 0.7607
Compound 0.8303 0.7279 0.7784 0.8341
Flame 0.5789 1 1 1
Spiral 0.3008 0.7795 0.7795 1
Jain 0.4690 1 0.8038 1
R15 0.9867 0.9916 0.9867 0.9932

R(Mj, Ci) =
|Mj ∩ Ci|

|Mj|
(15)

F (Mj, Ci) =
2 × P(Mj, Ci) × R(Mj, Ci)
P(Mj, Ci) + R(Mj, Ci)

(16)

The score of F-Measure is higher, and the performance of algorithm is better. The clustering results are depicted in Table 3,
which are mean values based on 30 times run. It is found that DPC-LG obtains the highest F-Measure score on data sets of
Breast, Compound, Spiral and R15. DPC-LG performs better or equally, compared with GDPC. Next, its capability is evaluated
in terms of varying densities, irregular shapes, number of clusters and outliers detection.

4.1. Detect clusters of varying densities

The data set Jain has two clusters, one with higher densities, and the other with lower densities. Jain is applied to test
the performance of DPC-LG in detecting clusters of varying densities. We make experiment with varying dc in Jain data set.
As is shown in Figs. 1 and 5, AP, DPC and GDPC are unable to find clusters with varying densities. DPC cannot detect Jain
accurately with varying dc . However, DPC-LG can achieve it successfully with varying dc , stable cluster results with varying
dc is achieved. It is shown that the DPC-LG algorithm has stability.
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Fig. 5. Aggregate the data set of Jain with varying dc .

4.2. Detect clusters of irregular shapes

Spiral is applied to evaluate the performance of DPC-LG algorithm in processing irregular shapes. In Fig. 2, AP is unable to
process Spiral data set. DPC and GDPC can find three clusters correctly, but they cannot aggregate Spiral data set efficiently
and achieve good cluster results. Compared with AP, DPC and GDPC, DPC-LG is able to achieve better performance in Spiral
data set.

4.3. Detect the number of clusters

As illustrated in Fig. 6, it appears that GDPC and DPC-LG are superior to DPC in detecting the number of clusters. DPC can
only distinguish two cluster centers, and it is difficult to recognize three cluster centers in Iris. However, GDPC and DPC-LG
can make cluster centers notable in decision graph and find three cluster centers correctly.

4.4. Detect outliers

As is illustrated in Fig. 7, AP and DPC have poor performance in outlier detection. GDPC is able to recognize two points
on the upper left corner as outliers. DPC-LG inherits the advantages of the GDPC, so it can also detect outliers successfully in
Flame data set.

5. Discussion

To analyze the strengths and weaknesses of DPC-LG algorithm, its performance is discussed in cluster detection.
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Fig. 6. The decision graph of Iris.

5.1. Analysis of detecting varying densities

As is illustrated in Fig. 1, AP failed to discover two clusters, it detects seven clusters. AP is unable to identity correct
clusters of varying densities. GDPC is also unable to aggregate the clusters of Jain data set correctly though it found two
clusters successfully. From the experiment results of Jain data set, DPC cannot get good result, but DPC-LG can achieve
greater performance in Jain with varying dc . It is shown that the DPC-LG algorithm has stability. The reason why DPC-LG
can aggregate Jain correctly with varying dc is that the calculation of local density ρ is improved by logistic distribution.

5.2. Analysis of detecting irregular shapes

In Fig. 2, AP, DPC and GDPC cannot get good results, only DPC-LG can get correct clusters. As is illustrated in Fig. 3, it
is found that GDPC clusters Spiral data set with unreasonable density, therefore, according to assignment rules of GDPC
algorithm, data point NO.45 is assigned to the second cluster because the red line is shorter than the other two. As shown in
Fig. 4, these data points are assigned to correct clusters successfully.

5.3. Analysis of detecting the number of clusters

In Newton’s law of gravitation, the force is proportional to the product of the two masses and inversely proportional to
the square of the distance between them. In Eq. (6), the law states the following: in a data set, each density point attracts
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Fig. 7. Detect outliers on the data set of Flame.

every single density of other points by the attractive force of gravity, the force is proportional to the data set of the densities
of two points and inversely proportional to the square of the distance between them. For a normal point i except cluster
centers, it has a relatively lower density and a relatively small distance to point jwith higher density than point i. The force
between point i and point j is large because δi is smaller and the force is inversely proportional to the square of δi. Conversely,
the gravity of cluster center is small, and the reciprocal of its gravity is large. Therefore, its decision graph can make cluster
centers notable and it is capable to find the number of clusters correctly.

5.4. Analysis of detecting outliers

In Fig. 7(a) and Fig. 7(b), neither DPC or AP has the ability to identify these two outliers. DPC algorithm cannot detect
outliers when the distance between outliers and relatively higher density points is less than dc . As presented in Fig. 7(c) and
Fig. 7(d), both GDPC and DPC-LG can find these two outliers correctly in the left top corner, and they have great capability
of outlier detection. The metric of gravitation force inverse can reduce the influence from dc value [22].

6. Conclusion

It can be seen from experimental results that the DPC-LG algorithm is more feasible and effective, compared with AP,
DPC and GDPC. Inspired by GDPC, DPC-LG overcomes the weakness of unreasonable density ordering by improving density
calculation. DPC-LGhas goodperformance in processing clusters of varying densities, clusters of irregular shapes, the number
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of clusters and outliers. GDPC applies law of gravitation to DPC algorithm, overcoming the weakness of detecting outliers
and the number of clusters [22]. Absorbing logistic distribution function, DPC-LG achieves reasonable density ordering to
ensure the stability of the algorithm. Therefore, on top of detecting outliers and the number of clusters, DPC-LG has greater
ability to process clusters of varying densities correctly and process clusters of irregular shapes successfully.

However, the DPC-LG algorithm does not performwell in Pathbased [25] data set. It is necessary to make further research
to improve the performance of DPC-LG algorithm on more complex data sets.
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