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Abstract. The density peaks clustering (DPC) algorithm is a novel density-based clustering approach. Outliers can be spotted
and excluded automatically, and clusters can be found regardless of the shape and of dimensionality of the space in which
they are embedded. However, it still has problems when processing a complex data set with irregular shapes and varying
densities to get a good clustering result with anomaly detection. A density fragment clustering (DFC) algorithm without
peaks algorithm is proposed with inspiration from DPC, DBSCAN and SCAN to cope with a larger number of data sets.
Experimental results show that our algorithm is more feasible and effective when compared to DPC, AP and DBSCAN

algorithms.
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1. Introduction

Clustering is known as unsupervised classification
in pattern recognition, or nonparametric density esti-
mation in statistics [1-3]. The goal of clustering is
to separate a finite unlabeled objects into different
clusters with characteristics of internal homogene-
ity and external separation. Clustering has been
applied in a wide variety of fields, ranging from
engineering (machine learning, artificial intelligence,
pattern recognition, mechanical engineering, electri-
cal engineering), computer sciences (web mining,
spatial database analysis, textual document collec-
tion, image segmentation), life and medical science
(genetics, biology, microbiology, psychiatry, clinic,
pathology), to earth sciences (geography, geology,
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remote sensing), social sciences (sociology, psychol-
ogy, education), and economics (marketing, business)
[4,5].

Traditional methods in clustering can be broadly
categorized into hierarchical, partitioning, density-
based, model-based, grid-based, and soft-computing
methods [6]. Many density-based clustering methods
[7-9] have been proposed and inspired by DBSCAN
[7] because its capability of discovering clusters with
arbitrary shapes with an overall average runtime com-
plexity of O(n x Ign). In addition, DBSCAN can
detect the number of clusters automatically. How-
ever, choosing an appropriate density threshold can
be nontrivial. It is very sensitive to the user-defined
threshold values, often producing very different clus-
tering results in a data set even for slightly different
threshold settings [10].

Density peaks clustering (DPC) algorithm is based
on the idea that cluster centers are characterized by a
higher density than their neighbors and by a relatively
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large distance from points with higher densities [11].
Concretely speaking, DPC adopts the idea of local
density maxima from mean-shift [12] and the basic
idea of only one parameter of the distance between
data points from K-Medoids [13]. The DPC algorithm
is effective with two assumptions that cluster centers
are surrounded by neighbors with lower local den-
sity and that they are a relatively large distance from
any points with a higher local density [11]. Several
researches [14-23] have been going on around this
method.

As illustrated in Table 1, DPC still has some
limitations: (1) The number of clusters cannot be
determined automatically. Itis determined by its deci-
sion graph in two dimensional space with a cutoff
distance d. and its density p. Du M. et al. [14]
have figured out that DPC cannot detect the number
of clusters when clusters are in the lower-left cor-
ner. Unfortunately, it cannot be changed with human
interference. (2) Like DBSCAN [7], relative thin
clusters would not be detected by its decision graph.
Especially, when a path-based data set consists of a
circular cluster with an opening near the bottom and
two Gaussian distributed clusters inside, the number
of clusters cannot be found via DPC [16] correctly.
(3) It is not reasonable that there must be a density
peak and only one centroid in each cluster. Otherwise,
DPC will split natural groups [16].

The proposed DFC algorithm has solved these
above problems via applying both density fragment
and network structural similarity that inspired by
DPC [11], SCAN [24] and DBSCAN [7] algorithms.
When compared with clustering algorithms such as
DBSCAN [7], AP [2] and DPC [11] illustrated in
Table 1, the proposed novel DFC algorithm has the
capability of determining the number of clusters auto-
matically, clustering more reasonable clusters, and
detecting anomalies.

We test the novel DFC algorithm in the most
popular clustering benchmarks to demonstrate its fea-
sibility. Our algorithm has overcome these above
problems with satisfactory results when compared
with DPC, SCAN and DBSCAN algorithms on some

Table 1
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UCI and synthetic data sets. The rest of this paper
is organized as follows. In Section 2, we describe
principles of DPC, DBSCAN and SCAN algorithms.
In Section 3, we propose the novel density fragment
clustering without peaks algorithm. In Section 4, we
present experimental results on synthetic data sets
and some UCI data sets. In Section 5, some discus-
sions are made to explain the major reasons. Finally,
we make conclusions.

2. Related work

The proposed DFC algorithm is inspired by
DPC, DBSCAN and SCAN. Brief reviews of these
three algorithms should be given in the following
subsections.

2.1. DPC: A density peaks clustering approach

Density peaks clustering (DPC) algorithm is based
on the idea that cluster centers are characterized by
a higher density than their neighbors and by rela-
tively large distance from points with higher density
[11]. Cutoff distance d, is the only parameter in this
method. For each data point x;, it computes two quan-
tities: its local density p; and its distance §; from
points of higher density.

ey

Where the distance can be measured by distance func-
tions, e.g. Euclidean distance.

pi = xx(dij—dc)
J

d;j = distance(x;, x ;)

@

Where x(x) = 1ifx < Oand x(x) = 0 otherwise, and
d. is the only user defined parameter to describe its
cutoff distance. As a rule of thumb, one can choose d..
so that the average number of neighbors is around 1 to
2% of the total number of points in a data set [11]. p;,
similar to MinPoints in DBSCAN [7], is defined as the
number of neighbour points to point x; in Equation 2.

Advantages of DFC when compared with DBSCAN, AP and DPC, where ‘x" refers to disable, ‘/’
means able and ‘0’ is partial

Algorithms  Varying sizes Irregular shapes Varying densities  f of clusters Anomaly detection
DBSCAN a d 9 a d
AP A X d d X
DPC v a v d 0
DFC N a N VA VA
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Another local density of a point x; is presented in
Equation 3, as follows:

d?

pi = Zexp <_d}2> 3
j C

8; = min djj “)
J:pj>pi
Note that §; is measured by computing the mini-
mum distance between point x; and any other points
with relative higher density.

The DPC algorithm can be summarized from
Rodriguezetal.[11] and Duetal. [14]in Algorithm 1.

Algorithm 1 The DPC algorithm

Input: Initial nodes XeRn« v, dc

Output: The label vector of cluster index: yeRy « pm
Step 1: Calculate d,
1.1 Calculate d;; from Ry based on Equation 1;
1.2 Sort d;; in an ascending order;
1.3 Determine d, by finding value of 1 to 2% posi-
tion in the above order.
Step 2: Detect cluster centroids by density peaks
2.1 Calculate p; based on Equation 2 or 3;
2.2 Calculate §; based on Equation 4;
2.3 Sort nodes based on p in a descending order;
2.4 Detect centroids with relative high p and é.
Step 3: Assign each node to different clusters
3.1 Detect halo nodes based on its density;
3.2 Determine its affiliation of relative high density
nodes by §; to each cluster.

As illustrated in Algorithm 1, there is an inspira-
tion that each node to be a centroid has two major
characteristics: one is relative high density, and the
other is relative long distance from its higher density
nodes.

2.2. DBSCAN: A density-based clustering
approach with noise

DBSCAN is a time proved and efficient clustering
algorithm with the following features. (1) It is signif-
icantly effective in discovering clusters of arbitrary
shapes. (2) It is easy for anomaly detection. (3) It is
efficient in clustering process [7].

The DBSCAN can determine a cluster if two
parameters Eps and Min Pts are satisfied. Therefore,
it is easy to figure outliers out. The capabil-
ity of finding arbitrary shaped cluster is achieved

by its characteristics of directly-density-reachable,
density-reachable and density-connected. It is the
inspiration that each cluster is consisted of reachable
core nodes and their boundary nodes classified by
density parameters of Eps and Min Pts. Furthermore,
the density within the areas of noise is lower than the
density in any of the clusters.

2.3. SCAN: A structural network clustering
approach

The SCAN algorithm is a famous structural net-
work clustering approach to discover underlying
structures innetworks. It can detect clusters, hubs and
outliers in networks with the following features [24]:

— Itdetects clusters, hubs and outliers by using the
structure and the connectivity of the vertices as
clustering criteria.

= Tt is fast with its running time of O(m) on a
network with n vertices and m edges.

Similar to DBSCAN algorithm, SCAN algorithm
inherits the ideas of node density, such as definitions
of directly density-reachable, density-reachable, and
density-connected. Different from DBSCAN, each
edge between two vertices is measured by
network structural similarity in Equation 5.

(v, w) = IT(w) N T'(w)]
’ VIF)IT(w)]

In SCAN algorithm, network structural similarity
in Equation 5 is adopted to determine core and
member vertex in a cluster. It is the inspiration that
network structural similarity is an efficient measure-
ment to determine the role of each vertex in a network.
In other words, network-based modelling maybe a
good way to aggregate clusters.

&)

3. Methods

The proposed DFC algorithm inherits the strengths
of DPC, DBSCAN and SCAN. Density fragment can
be defined as the set of density decreasing nodes
with relative nearby distance. DFC assumes that (1) a
cluster is consisted of many density fragments; (2)
two density fragments can be merged together if
their network structural similarity is relative high. As
illustrated in Algorithm 2, DFC includes three major
steps: density decreasing, density fragment genera-
tion and density fragment aggregation.
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Algorithm 2 The DFC algorithm.

Input: Initial nodes XeRn« um, de, p

Output: All clusters and outliers are found
Step 1: Similarity matrix(d) calculation

1.1 Calculate d;; from Ryxp based on Equation 1;
1.2 Sort d;; in an ascending order.

Step 2: Density(p) calculation

2.1 Determine d, value with principles of DPC;
2.2 Calculate p; value based on Equations 2 or 3;
2.3 Put all p in a descending order.
Step 3: Delta(5) calculation
for each node i do
8; = d;j based on Equation 1
end for
Step 4: Density fragment generation
4.1 Core node link generation;
for each node i in a descending order do
if §; < d. then
Node i becomes a core node i;
Get slot nodes for the core node i that their
distances within d;
Connect core node i to its neighbour core node
i+ 1
Get a core node link based on the above rule;
Get the core node link and their slot nodes
together and then generate a density fragment.
end if
end for
Step 5: Density fragment aggregation
for each density fragment do
Calculate density fragment similarity based on
Equation 7
for each DFSim(x, y) do
if DFSim(x, y) > 0.5 then
Aggregate the fragment x and fragment y
as one cluster.
end if
end for
end for
Step 6: Anomaly detection
for each core node link do
if DFSim(x, y)> 0.5 then
Node i is an outlier.
else
if Core node link has no slot nodes then
It is an outlier.
end if
end if
end for
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Fig. 1. An example of core node chains.

3.1. Density decreasing

As similar with DPC, a suitable cutoff distance d,
is selected based on principles of density to calculate
their local density p for sorting these density val-
ues in a descending order. §; is an Euclidean distance
between the node; and its next node; 1 in the density
decreasing order depicted in Equation 6.

8; = Distance(node;, nodej+1) (6)
3.2. Density fragment generation

Density fragment generation is processed in two
stages: in stage I, node; can become a core node
if its §; < d., then check its next node;jy| with
density-reachability to form a core node chain illus-
trated in Fig. 1; in stage II, a core node i can expand
its density-connectivity to its nearby nodes in the
range of d.. These nearby nodes can be defined as
slot nodes. A core node chain and its slot nodes con-
stitute a density fragment. All density fragments can
be formed after processing this two stages.

As illustrated in Fig. 1, 40 nodes with two dimen-
sions are generated randomly, core node chains are
depicted with solid line, and density fragments are
formed by these core node chains and their slot nodes.

3.3. Density fragment aggregation

As described in the sub Section 3.2,
density fragment is a network structure. Density
fragment aggregation can be processed by principles
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Table 2
7 different types of data sets

Data sets Nodes Dimensions Clusters
Iris 150 4 3
Seeds 210 7 3
Wine 178 13 3
Glass 214 9 6
Flame 240 2 2
Aggregation 788 2 7
Spiral 312 2 3
D 87 2 3

of network structural similarity and a priori proba-
bility. The network structural similarity of density
fragments can be defined in Equation 7. Frag,
and Frag, refer to density fragment of x and y
respectively. The larger of DFSim(x, y) value, the
higher probability of aggregation between Fragy
and Fragy. The aggregation of density fragments is
processed with a priori probability that the density
fragment with higher density has a higher priority to
merge other density fragments.

|Fragy N Fragy|
VvV |Fragx||Fragy|

The proposed density fragment clustering
approach is depicted in Algorithm 2.

DFSim(x, y) = (7)

4. Results

To test its feasibility and effectiveness of the pro-=
posed DFC algorithm, we compare it with DBSCAN,
AP and DPC in the above four UCI data sets and
the next three synthetic data sets listed in Table 2.
F-Measure can be defined in Equation 10, which is
an index to evaluate the performance of clustering
results. 7 different data sets (Iris, Seeds, Wine, Glass,
Flame, Aggregation and Spiral) are selected to eval-
uate the clustering performance of DBSCAN, AP,
DPC and DFC in Table 3 and Fig. 2. The results
in Table 3 and Fig. 2 are mean values based on
30 times run.

F-Measure index measures accuracy. It considers
both the precision P and the recall R of clustering
algorithms: P is the ratio of the number of correct
results to the number of all returned results, and R
is the ratio of the number of correct results to the
number of results that should have been returned.
P, R and F-Measure(F') are defined as the following
Equations 8, 9 and 10.

Table 3
F-Measure evaluation
Data sets DBSCAN AP DPC DFC
Iris 0.7045 0.4851 0.7715 0.7554
Seeds 0.4784 0.3877 0.8026 0.793
Wine 0.5794 0.3142 0.5892 0.5894
Glass 0.3315 0.2874 0.5418 0.5571
Flame 0.6242 0.2874 1 0.9713
Aggregation 0.8140 0.3429 1 0.9909
Spiral 1 0.2853 1 1
D 0.8143 0.6117 0.8780 1
M;NC
P=(Mj,c,>—' NG ®)
|Cil
IM; NG
R=(M;,C)= ©
' | M|
2-PM;, C;)-R(M;, C;
E(M;, C) = (M;, Ci) - R(Mj, Cy) (10)

P(M;, Ci)+ R(M;, C))

Besides the clustering performance depicted in
Fig. 2, many experiments have been done to evaluate
the DFC capability with limitations such as varying
sizes, irregular shapes, varying densities, number of
clusters and anomaly detection.

4.1. Varying sizes

Clusters with varying sizes are normal in a real
data set, and they should be detected correctly without
interference. Aggregation, Flame and D are selected
to evaluate the capability of processing varying sizes
of clusters in a data set.

As illustrated in Fig. 3, to test the accuracy of the
DBSCAN algorithm without any other factors, the
number of cluster is controlled to the true cluster num-
ber (Eps = 0.9, Min Pts = 5). AP’s preferenceis set
to the medium value of the similarity matrix accord-
ing to the original AP algorithm. DPC’s d,. value is
set to 2.7212 and DFC’s DFSim is set to 0.3024
when they can get their best result. This figure shows
that both DFC and DPC can find clusters correctly
while AP cannot cluster in an intuitive way. And
some points are close to their actual clusters while
DBSCAN cannot recognize them. And the param-
eters in these four algorithms are set for the same
purpose in the following data sets. Figures 5 and 8
show the same result that DFC has the ability to detect
data sets with varying size while most algorithms can
not.
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Fig. 4. Clustering the data set of Spiral with irregular shapes.

4.2. Irregular shapes

In general, density-based clustering algorithm
has advantage of processing data sets with irregu-
lar shapes. Aggregation, Spiral and Flame can be
adopted to evaluate its capability of processing irreg-
ular shapes. When compared with the DPC algorithm,
the proposed DFC algorithm has the equal capability
of clustering irregular shaped clusters shown in Figs.
3,4 and 8. Compared with AP in these three data sets,
DFC has the superior performance. DBSCAN gets a
good result on Spiral clustering the same as the DPC
and DFC in Fig. 4. However, DBSCAN cannot deal
with the data sets such as Aggregation and Flame
due to its incorrect anomaly detection. The DFC can
detect the linear data like Spiral and also has the abil-
ity to handle irregular spherical data like Aggregation
and Flame.

4.3. Varying densities

Data set D in Fig. 5 is used to test the advantage
of the DFC in varying densities clustering. AP cannot
solve this kind of data set when it gets the right cluster
number. DBSCAN only detect the two cluster centers
while the data set has the three centers actually, and all
the points in the third cluster are recognized as anoma-
lies which shown black color in Fig. 5. The DPC and
DFC have a good performance in the data set D.

4.4. Number of clusters

The DPC has the advantage of finding cluster num-
ber by its decision graph [11]. However the DPC
doesn’t work well in data sets Iris or Glass which
shown in Figs. 6 and 7, because it is difficult to
select the suitable cluster centroids. The proposed
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DEFC can achieve reasonable clusters without human
intervention.

4.5. Anomaly detection

Anomaly detection is a basic function for any
clustering algorithm. DBSCAN adopts MinPts and
density-reachability to detect outliers, but this algo-
rithm meets unsatisfied anomaly detection which
shown in Figs. 3, 5 and 8. DPC takes outliers as halos
without anomaly detection. As illustrated in Figs. 8
and 9, only the proposed DFC algorithm can figure
these two outliers correctly in the top left cornerin data
set Flame.

5. Discussion

With the aggregation principle in DFC, clusters
are formed by merging density fragments based on

network structural similarity and density decreasing
sequence. To analyse the strengths and weaknesses of
the proposed DFC algorithm, the elaborate analysis
of simulation results shown in Section 4 are made
to know its capability of processing data sets with
varying sizes, irregular shapes and varying densities,
of detecting the number of clusters and outliers.

5.1. Analysis of processing varying sizes

As illustrated in Section 4.1, both DFC and DPC
can detect clusters correctly with varying sizes.In
DBSCAN algorithm, the true cluster cannot be found
when there is a close line, and the wrong anomaly
detecting disturb border points to reach their correct
clusters. In AP algorithm, itis difficult to adjust global
parameters to satisfy the data distribution in Fig. 3(b).
To overcome the limitation of global parameters, each
cluster in DPC is formed by determining its centroid
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Fig. 6. Decision graph of DPC with Iris data set.

and by absorbing lower density nodes based on inter-
distances §; in Equation 6. The proposed DFC also has
this capability because that the size of each cluster is
determined by network structural similarity among
density fragments.

5.2. Analysis of detecting irregular shapes

As illustrated in Figs. 3, 4 and 8, irregular shapes
in data sets Aggregation, Spiral and Flame are
extracted correctly by DPC and DFC algorithms. The
DBSCAN algorithm gets good result in Spiral while
fault in clustering Aggregation and Flame. The AP
algorithm can get many fragments of each clusters,
however it cannot combine them together to a rea-
sonable cluster as depicted in Fig. 4(b). The DPC
algorithm can get the correct clusters because each
centroid is in the front part of a cluster and the fol-
lowing density decreasing nodes are near to them
iteratively shown in Fig. 4(c). Similar as illustrated
in Figs. 3 and 8, the reason for successful cluster-
ing in DFC is that density fragments are materials
of any irregular shaped cluster and the merging prin-
ciple is based on network structural similarity and
priori probability without any direction guidance.

5.3. Analysis of processing varying densities

Generally speaking, it is an important capabil-
ity of handling data sets with varying densities.
DBSCAN algorithm cannot handle varying den-
sity data sets because it is distance-based clustering
approach. As principles in DBSCAN, a node will
be absorbed to a cluster if it is density-reachable or
density-connectivity [7]. However, it is difficult to set
the global density parameter in DBSCAN. Both DPC
and DFC can handle data sets with varying densities
because both of them do not adopt density principles

in the stage of cluster generation. A cluster in DPC is
formed by finding its centroid to absorb decreasing
density nodes one by one [11]. The proposed DFC
forms its cluster by merging density fragments with
scalability in Equation 7.

5.4. Analysis of detecting the number of clusters

As illustrated in Figs. 6 and 7 in Section 4.4, the
DPC algorithm will determine the number of clus-
ters with human involvement. However, it is difficult
for experts to determine the number of centroids in
the decision graphs of Fig. 6(a) and (b). However,
the proposed DFC algorithm has a relative advan-
tage of detecting the number of clusters automatically
when compared with DPC. The reason is that it
will be unreasonable if the centroids of clusters are
determined in a priori. In other words, more rea-
sonable number of clusters should be determined
by density-reachability and density-connectivity as
DBSCAN. The proposed DFC algorithm does
not determine each centroid of a cluster, while
it forms a cluster by merging density fragments
as SCAN.

5.5. Analysis of anomaly detection

Compared with DPC, AP and DBSCAN shown
in Figs. 8 and 9, only the proposed DFC algorithm
can figure these two outliers correctly in the left top
corner in the data set of Flame. DBSCAN algorithm
has problems of finding outliers, and AP algorithm
cannot find these two outliers with optimization by
large amount of iterations. The state-of-the-art DPC
algorithm cannot detect outliers when the distance
between outliers and relative higher density nodes
is less than d.. However, the d. will not be a small
value to find a centroid of a cluster in a data set.
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Fig. 8. Irregular shapes and anomaly detection of Flame data set.
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Fig. 9. Anomaly detection with DFC of Flame data set.

However, outliers are detected by density fragments
and their density connectivity in our proposed DFC
algorithm. Therefore, DFC has its advantage to detect
outliers.

6. Conclusion

With inspiration by DPC, DBSCAN and SCAN
algorithms, the proposed DFC is processed by merg-
ing density fragments with principles of network
structural similarity and density decreasing sequence
to improve its capability with varying sizes, vary-
ing densities and irregular shapes, with detecting
the number of clusters and outliers. In this paper,
the proposed DFC algorithm shows the power in
some synthetic data sets. Besides the good feasi-
bility, the DFC gets better clustering performances
when compared with some classical methods, such
as DBSCAN, AP and DPC in UCI data sets.

However, the proposed DFC algorithm does not
perform well in a path-based data set such as Path-
base. Future research is to improve the performance
of DFC algorithms on more complex data sets.
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