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The density peaks clustering (DPC) is known as an excellent approach to detect some

complicated-shaped clusters with high-dimensionality. However, it is not able to detect outliers,

hub nodes and boundary nodes, or form low-density clusters. Therefore, halo is adopted to
improve the performance of DPC in processing low-density nodes. This paper explores the

potential reasons for adopting halos instead of low-density nodes, and proposes an improved

recognition method on Halo node for Density Peak Clustering algorithm (HaloDPC). The

proposed HaloDPC has improved the ability to deal with varying densities, irregular shapes,
the number of clusters, outlier and hub node detection. This paper presents the advantages of

the HaloDPC algorithm on several test cases.
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1. Introduction

The goal of clustering is to separate a series of ¯nite unlabeled objects into di®erent

clusters with characteristics of internal homogeneity and external separation. Clus-

tering has been applied in a wide variety of ¯elds, ranging from engineering (machine

learning, arti¯cial intelligence, pattern recognition, mechanical engineering, electri-

cal engineering),2 computer sciences (web mining, spatial database analysis, textual

document collection, image segmentation),14 life and medical sciences (genetics, bi-

ology, microbiology, psychiatry, clinic, pathology), to earth sciences (geography,

geology, remote sensing), social sciences (sociology, psychology, education),16 and

economics (marketing, business).7,10,23,27

Traditional methods of clustering can be broadly categorized into those of

hierarchical, partitioning, density-based, model-based, grid-based, and soft-

computing.17,19,21,25 Inspired by DBSCAN,6 many density-based clustering meth-

ods5,6,20 have been proposed. In the last decade, DBSCAN has had a big impact on

the data mining research community due to its capability of discovering clusters with

arbitrary shapes and noise detection. Furthermore, DBSCAN is able to detect out-

liers easily by its parameters of MinPts and Eps. However, it is also vital when

choosing an appropriate density threshold. Expert-de¯ned threshold values are so

sensitive; a slightly di®erent threshold setting may result in an entirely di®erent

clustering on a dataset.8

Rodriguez and Laio proposed a novel density peaks clustering (DPC) algorithm

that cluster centers are characterized by a higher density than their neighbors and by

a relatively large distance to higher density points.18 Both the idea of local density

maxima from mean-shift3 and the idea of only one parameter of the distance between

data points from K-Medoids15 are adopted by DPC. Focusing on this method, several

researches1,4,11–13,22,25,26 have been carried out for improving its capabilities.

As illustrated in Table 1, the DPC has limitations in processing irregular shapes26

and varying densities,4 and in detecting the number of clusters.4 Furthermore, an

issue about hub node detection needs to be solved as illustrated in Fig. 8(c). In fact,

these limitations of DPC are caused by its incapability of processing low density

nodes. In the DPC algorithm,18 halos are adopted to solve low density nodes in two

ways: (1) one is halo generation that low density nodes are considered as a whole of

halos, and (2) the other is no halo generation that low density nodes are assigned to

its cluster with a simple principle. Inspired by SCAN,24 halo nodes can be classi¯ed

Table 1. Advantages of HaloDPC, K-Means, DBSCAN and DPC (where \�" refers to disable,

\
p
" refers to able and \@" is partial)
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into hub nodes, anomalies and boundary nodes. Therefore, a new approach is

required to improve the capability of halo processing in the DPC algorithm.

This paper tests our proposed Halo node for density peaks clustering (HaloDPC)

algorithm on the most popular clustering benchmarks and demonstrates its feasi-

bility. In order to assess its performance, this paper compares HaloDPC with DPC

and other algorithms on several UCI datasets. The HaloDPC overcomes the above

limitations of DPC with satisfactory results on synthetic datasets. The rest of this

paper is organized as follows: in Sec. 2, basic principles of DPC, DBSCAN and SCAN

algorithms are described; in Sec. 3, the innovative enhanced DPC algorithm is

explained; in Sec. 4, experimental results on synthetic datasets and some UCI datasets

are analyzed; in Sec. 5, some discussions are given; the ¯nal conclusions are drawn in

Sec. 6.

2. Related Work

The proposed HaloDPC algorithm is based on DPC18 and inspired by DBSCAN6 and

SCAN24. Therefore, brief reviews of the three algorithms should be given in the

following sections.

2.1. DPC: A density peaks clustering approach

The DPC algorithm is based on the idea that cluster centers are characterized by a

higher density than their neighbors and by relatively large distance to higher density

points.18 Cuto® distance dc is the only parameter in this method. For each data point

xi, it computes two quantities: its local density �i and its distance �i to higher density

points.

dij ¼ distanceðxi;xjÞ; ð1Þ
where the distance can be measured by distance functions, e.g. Euclidean distance.

�i ¼
X
i¼1

�� ðdij � dcÞ; ð2Þ

where �ðxÞ ¼ 1, if x < 0, otherwise �ðxÞ ¼ 0. As a rule of thumb, one can choose dc
so that the average number of neighbors is around 1% to 2% of the total number of

points in a dataset.18�i, similar toMinPoints in DBSCAN,6 is de¯ned as the number

of neighbor points to point xi in Eq. (2). Another local density of point xi is presented

in Eq. (3), as follows:

�i ¼
X
j

exp
�d2

ij

d2
c

 !
; ð3Þ

�i ¼ min
j:�j>�i

dij: ð4Þ

Note that �i is measured by computing the minimum distance between point xi

and any other points with relatively high density.
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The DPC algorithm can be summarized from Rodriguez et al.18 and Du et al.4

shown in Algorithm 1.

In this algorithm, a border region for each cluster is found, which can be de¯ned as

the set of points assigned to one cluster but being within a distance dc from data

points in another cluster. Then the point with highest density is found within the

border region, and is denoted by �b. The points with densities higher than �b are

considered as the core of the cluster. The others are considered as the halo of the

cluster (can be considered as noise area).18

As illustrated in Algorithm 1, lower density nodes can be solved in two ways. One

is to label these lower density nodes as halo nodes without classi¯cation, and the

other is to assign them into di®erent clusters based on the value of �i. However, it is

known from Figs. 4(c), 5(c) and 8(c), that it is hard to classify the low density nodes

into any categories among boundary nodes, hub nodes, outliers, or even new clusters.

As illustrated in Fig. 1, these outliers in the dataset of Flame is in the top left

corner. After experiments with di®erent dc values, it is obvious in Fig. 1 that the

DPC algorithm is not able to detect these two outliers correctly. The major reason is

that it is di±cult to determine the values of dc and �i in the Flame dataset. Naturally,

an extension of DPC on the processing of low density nodes should be proposed to

enhance its performance.

Algorithm 1. The DPC algorithm
Data: Initial nodes X∈RN×M , dc

Result: The label vector of cluster index: y∈RN×M

1 Step 1: Calculate dc

2 begin
3 Calculate dij from RN×M based on Eq. (1);
4 Sort dij in an ascending order;
5 Determine dc by finding value of 1% to 2% position in the order above.

6 Step 2: Detect cluster centroids by density peaks
7 begin
8 Calculate ρi based on Eqs. (2) or (3);
9 Calculate δi based on Eq. (4);

10 Put all nodes based on ρ in a descending order;
11 Detect cluster centroids with relatively higher ρ and δ.

12 Step 3: Assign each node to different clusters
13 begin
14 Detect halo nodes based on their densities;
15 Determine their affiliations of relatively higher density nodes by δi in

each cluster.

J. Jiang et al.
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2.2. DBSCAN: A density-based clustering approach with noise

DBSCAN is an e±cient clustering algorithm for reasons that (1) it is signi¯cantly

e®ective in discovering clusters of arbitrary shapes, (2) it is e±cient in cluster pro-

cessing, (3) it is good for outlier detection.6 It is inspired by an intuition that within

each cluster, there are points whose densities are considerably higher than those

outside of the cluster. Furthermore, the density within the noise area is much lower

than the one in any of the clusters.

The DBSCAN6 has two major advantages. It can extract arbitrary-shaped clus-

ters and is also able to detect outliers. The structure and the features of core node

chain have contributed to extracting arbitrary-shaped clusters and detecting out-

liers. Therefore, the inspiration is that its reachability or connectivity is a basic

function to extract complex clusters.

2.3. SCAN: A structural network clustering approach

The SCAN24 algorithm is a well-known structural network clustering approach

to discover underlying community structures in complex networks. It has the ability

(a) dc ¼ 1%; 0:7106 (b) dc ¼ 5%; 1:4577

(c) dc ¼ 10%; 2:1213 (d) dc ¼ 25%; 3:7483

Fig. 1. Failure outlier detection by DPC on Flame dataset with varying dc.
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to detect clusters, hubs and outliers in complex networks with the following

features24:

(1) It detects clusters, hubs and outliers by criteria of the structure and the con-

nectivity of the vertices;

(2) It is fast with a running time of O(m), on a network with n vertices and m

edges.

Similar to the DBSCAN algorithm, the SCAN algorithm inherits the idea of node

density, such as concepts of direct-density-reachability, density-reachability and

density-connectivity.

In the SCAN algorithm, each nonmember vertice v can be classi¯ed into hub nodes

and outliers based on its network structural similarity and cluster IDs of neighbor

nodes. Therefore, as inspired by the SCAN algorithm, there is a di®erence between

outliers and hub nodes due to their di®erent locations in datasets. Furthermore,

both outliers and hub nodes can be classi¯ed by their relationship with their neighbor

nodes.

3. Halo Processing of DPC

HaloDPC inherits the strengths of centroid detection of DPC, density-connectivity of

DBSCAN and network structural similarity of SCAN, and it is capable of processing

datasets with varying densities or sizes, with irregular shapes, and also capable of

detecting the number of clusters, outliers and hub nodes. Halos are de¯ned as a set of

relatively low density nodes where outliers, boundary nodes, hub nodes and new

clusters may exist. HaloDPC assumes that node classi¯cation in halos is based on

connectivity analysis and network structural analysis. As illustrated in Algorithm 2,

HaloDPC includes three major steps: halo node generation, halo network generation

and halo classi¯cation.

3.1. Halo node generation

Halo nodes are generated by ¯nding low density nodes from the result of the DPC

processing. All of these halo nodes will be collected as a halo node set in which

each node is labeled with a predicted cluster ID based on the DPC. As illustrated in

Figs. 2(a) and 3(a), halos in datasets Flame and Pathbase are labeled with blank

circles.

3.2. Halo network generation

Halo network can be de¯ned as a network composed of connective nodes from the

halo node set. Halo network generation is based on density-connectivity. The main

idea of density-connectivity is that there will be a connected line if the distance

between nodei and nodej is shorter than the cuto® distance dc. Obviously, di®erent

halo network structures can be generated from density-connectivity. As illustrated in

J. Jiang et al.
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Algorithm 2. The HaloDPC algorithm
Data: NodeDPC , dc, ρ, ϕ

Result: All halo nodes classified
/*noitareneGedoNolaH.1PETS*/

1 for nodei ∈ nodeDPC do
2 if the ρ of nodei ≤ ρ then
3 Put nodei into the array of HaloNode;
4 HaloNodek = nodei;

/* STEP 2. Halo Network Generation */

5 for hNodei ∈ HaloNode do
/* STEP 2.1. Determine statistics for each halo node */

6 Count the number of core nodes of hNodei with the distance of dc;
/*skrowtenolahmroF.2.2PETS*/

7 if DensityConnetivity(nodei, ∃HaloNetwork ∈ HaloNetwork) then
8 Put hNodei to HaloNetwork;
9 else

10 Generate another HaloNetwork;
11 Put HaloNetwork into HaloNetworks;

/* STEP 3. Halo Classification */

12 for HaloNetwork ∈ HaloNetworks do
/* STEP 3.1. Label hub nodes and generate a new cluster */

13 if numberOfClusters(HaloNetwork) ≥ 2 then
/* STEP 3.2. Classification in a complex HaloNetwork */

14 if numberOfCoreNodes(HaloNetwork)
numberOfHaloNodes(HaloNetwork) ≤ ϕ then
/* STEP 3.2.1. Generate a new cluster */

15 Assign a new ClusterID to HaloNetwork;
16 else

/* STEP 3.2.2. Detect hub nodes */

17 Generate another HaloNetwork;
18 while DensityConnectivity(x, y) | x, y ∈ HaloNetwork do
19 if the clusterID of HaloNodex = HaloNodey then
20 Remove x, y from HaloNetwork;
21 Label x, y as hub nodes;

/* STEP 3.2.3. Generate sub halo networks */

22 Divide HaloNetwork into different sub halo networks;
23 Put these sub halo networks into HaloNetworks;
24 else

/* STEP 3.3. Classification in a simple

HaloNetwork */

25 if distance(∀coreNode, ∀HaloNode) ≥ dc then
/* STEP 3.3.1. Outlier prediction */

26 Resign the clusterID;
27 All HaloNode ∈ HaloNetwork are outliers;
28 else

/* STEP 3.3.2. Boundary node prediction */

29 Do not change the clusterID of HaloNetwork;

HaloDPC: Halo Node Processing for Density Peak Clustering Algorithm
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Figs. 2(b) and 3(b), nodes that are relatively adjacent can be connected together

depending on the value of �i. Therefore, network structure, based on the principles of

the SCAN algorithm, is good for ¯nding hub nodes.24 Furthermore, it is e±cient

in ¯nding new underlying clusters in Fig. 3(b), provided that new clusters are in

existence.

3.3. Halo classi¯cation

Halo classi¯cation is the prediction of halo node types based on halo networks

by characteristics including numberOfClusters, ratio of core nodes and density-

connectivity. Both outliers and boundary nodes are in existence if numberOf

Clusters=1. However, new clusters or hub nodes may exist simultaneously in more

(a) Halo nodes (b) Halo networks

Fig. 2. Halo nodes and halo networks of Flame with dc ¼ 1:3865.

(a) Halo nodes (b) Halo networks

Fig. 3. Halo nodes and halo networks of Pathbase with dc ¼ 2:55.
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than two clusters. Ratio of core nodes is an important factor to distinguish new

clusters from boundary nodes. The approach of halo classi¯cation is described in

detail in Step 3 of Algorithm 2.

4. Simulation Experiment and Analysis

To test the feasibility and e®ectiveness of the proposed HaloDPC algorithm, this

paper compares it with K-Means,9 DBSCAN,6 AP7 and DPC18 on synthetic datasets

listed in Table 2.

4.1. Detecting clusters with varying sizes

As illustrated in Figs. 4, 5 and 8, the AP algorithm has some di±culties in handling

datasets with varying sizes such as Aggregation, Pathbase and Flame, and although

both DBSCAN and DPC are able to detect correct clusters in Aggregation and

Flame datasets, they fail in dealing with the path-based dataset such as Pathbase.

However, the proposed HaloDPC is found capable of handling these complex data-

sets with varying sizes.

Table 2. Five di®erent types of datasets.

Datasets Nodes Dimensions Clusters

Flame 240 2 2
Aggregation 788 2 7

Spiral 312 2 3

Pathbase 312 2 3

D 87 2 3

(a) K-Means, k ¼ 7 (b) DBSCAN, MinPts ¼ 3

Fig. 4. Clustering result of Aggregation.

HaloDPC: Halo Node Processing for Density Peak Clustering Algorithm
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(a) K-Means, K ¼ 3 (b) DBSCAN, MinPts ¼ 4

(c) DPC, dc ¼ 2:55 (d) HaloDPC, dc ¼ 2:55

Fig. 5. Clustering result of Pathbase.

(c) DPC, dc ¼ 1:8601 (d) HaloDPC, dc ¼ 1:8601

Fig. 4. (Continued)

J. Jiang et al.
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4.2. Detecting clusters with irregular shapes

Datasets of Pathbase, Spiral and Flame are adopted to test its capability to deal with

irregular shapes. As illustrated in Figs. 5, 6 and 8, the AP algorithm is unable to

handle these three datasets, DBSCAN and DPC can process datasets of Flame and

Spiral but cannot Pathbase. Only the proposed HaloDPC has the ability to handle all

the three complex datasets with irregular shapes.

4.3. Detecting clusters with varying densities

A dataset of D is utilized to evaluate its capability to cope with varying densities. As

shown in Fig. 7, the AP algorithm has problems in processing dataset with varying

densities, while other algorithms of DBSCAN, DPC and HaloDPC are able to handle

this kind of dataset with a good result.

(a) K-Means, K ¼ 3 (b) DBSCAN, MinPts ¼ 2

(c) DPS, dc ¼ 2:5812 (d) HaloDPC, dc ¼ 2:5812

Fig. 6. Clustering result of Spiral.

HaloDPC: Halo Node Processing for Density Peak Clustering Algorithm
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(a) K-Means, K ¼ 3 (b) DBSCAN, MinPts ¼ 5

(c) DPC, dc ¼ 0:9441 (d) HaloDPC, dc ¼ 0:9441

Fig. 7. Clustering with varying densities on D dataset.

(a) K-Means, K ¼ 2 (b) DBSCAN, MinPts ¼ 2:5

Fig. 8. Clustering result of Flame.

J. Jiang et al.
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4.4. Detecting the number of clusters

Datasets of Aggregation and Pathbase are of great use to access the ability of

detecting the number of clusters. As shown in Figs. 4 and 5, both DPC and DBSCAN

have the ability to detect number of clusters in Aggregation but not Pathbase. The

DPC algorithm cannot make certain the number of clusters with di®erent dc values

illustrated in Fig. 9. However, the proposed HaloDPC is able to detect the number of

clusters in datasets of Aggregation and Pathbase.

4.5. Detecting clusters with outliers and hub nodes

Datasets of Aggregation, Pathbase and Flame are selected to test the ability of

detecting outliers and hub nodes. For outlier detection, both DBSCAN and

HaloDPC have the ability to detect outliers but DPC cannot detect them in datasets

(c) DPC, dc ¼ 1:3124 (d) HaloDPC, dc ¼ 1:3124

Fig. 8. (Continued )

(a) dc ¼ 1:5403 (b) dc ¼ 4:9010

Fig. 9. Clustering dataset of Pathbase by DPC with di®erent dc values.

HaloDPC: Halo Node Processing for Density Peak Clustering Algorithm
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of Flame and Pathbase. In the top left corner of Fig. 8(c), the two outliers with

di®erent dc values cannot be detected by DPC. In Fig. 5(c), the DPC is not able to

¯nd outliers in low density nodes. However, the proposed HaloDPC is able to ¯nd

outliers correctly in all the three datasets. For hub node detection, hub nodes can be

de¯ned as nodes that belong to more than two clusters. It is found that only the

proposed HaloDPC has the ability to ¯nd hub nodes in datasets of Aggregation,

Pathbase and Flame in Figs. 4(d), 5(d) and 8(d).

5. Discussion

Density-based clustering approaches have attracted extensive study and researches

in recent years. The application of these approaches has played an important role in

many subject and ¯elds. Compared with other kinds of clustering approaches,

density-based clustering approaches have the advantage of extracting arbitrary-

shaped clusters with low computing complexity. Density-based clustering approa-

ches can be classi¯ed into connectivity-oriented methods and peak-oriented

methods. Connectivity-oriented methods, such as DBSCAN, is an excellent ap-

proach, and the DPC algorithm in peak-oriented method. The DPC algorithm has

the ability to ¯nd arbitrary-shaped clusters e±ciently. Currently, many modi¯ed

processing methods of density peaks have been put into application to handle many

kinds of datasets with complicated structure. However, halo processing is yet the

biggest unsolved problem in the DPC algorithm. As illustrated in Fig. 9, no matter

how dc values change, it is impossible to generate three reasonable clusters simul-

taneously, for the underlying new cluster can be generated only by HaloDPC.

With principles of the DPC, it is ine±cient to process low-density nodes. Based on

no halo generation in the DPC, each node should be categorized into the cluster that

its nearest node of relatively higher density belongs to. But there follows a

(c) dc ¼ 7:1309 (d) dc ¼ 10:4519

Fig. 9. (Continued)

J. Jiang et al.
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contradiction that outliers, boundary nodes, hub nodes and new clusters should be

determined by their neighbor nodes, rather than by the relatively higher density

nodes. The lower the density becomes, the higher the possibility of di®erence exists

between neighbor nodes and relatively higher density nodes. Therefore, how to

classify these low density nodes in the DPC is really a big challenge.

5.1. Analysis of processing datasets with varying sizes

As illustrated in Figs. 4(c) and 4(d), HaloDPC inherits the advantage of processing

datasets with varying sizes. In Algorithm 2 on Sec. 3, it is found that the HaloDPC is

an extension for post-processing of low-density nodes in the DPC. With principles of

the DPC, the size of a cluster is determined by �i.

5.2. Analysis of processing datasets with irregular shapes

Density-based clustering algorithms, such as DPC, DBSCAN and HaloDPC, have

the advantage of clustering irregular shaped datasets, which is achieved by utilizing

density relationship among nodes, as described in Algorithms 1 and 2 and proved in

Figs. 6 and 8. However, the DPC is not able to ¯nd new clusters with low density

nodes or halo nodes. In Sec. 4.2, it shows that only the proposed HaloDPC is able to

handle the complex and irregular shaped dataset of Pathbase.

5.3. Analysis of processing datasets with varying densities

The ability to process datasets with varying densities is an essential part of a clus-

tering algorithm. The AP algorithm adopts distance-based approach to determine

clusters, but it cannot adjust its decision rules in an environment of varying densities.

The DBSCAN algorithm adopts MinPts and Eps to detect densities in a dataset.

However, it is di±cult to make a global parameter to satisfy a dataset of varying

densities. In density-peak-oriented clustering algorithm, such as DPC, a node is

assigned to the same cluster as its neighbors with relatively higher density. The

proposed HaloDPC has the capability of processing datasets with varying densities,

since that it inherits the basic aggregating approach of DPC. Even more, the

HaloDPC utilizes halo networks to improve its capability of processing low density

nodes.

5.4. Analysis of detecting the number of clusters

It is di±cult to ¯nd the number of clusters with irregular shapes and varying den-

sities from a dataset. Both DBSCAN and DPC have problems in detecting the

number of clusters in the dataset of Pathbase illustrated in Figs. 5(b) and 5(c).

DBSCAN will generate a new cluster if there is a core node. However, there is no core

node in the long, thin and circled cluster in the Pathbase dataset. Similar to the

DBSCAN, the DPC assumes that a cluster has a relatively higher density centroid,

HaloDPC: Halo Node Processing for Density Peak Clustering Algorithm
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but in fact, the Pathbase dataset has a long, thin and circled cluster without

centroids. For low density nodes, they linger among boundary nodes, hub nodes,

outliers, and can be regarded as even new clusters. The HaloDPC assumes that there

is no centroid if new clusters are generated with low density nodes, and it forms new

clusters by classifying halo networks in Algorithm 2 in Sec. 3.3.

5.5. Analysis of detecting outliers and hub nodes

In the DPC, both outliers and hub nodes are regarded as halo nodes as shown in

Algorithm 1. As illustrated in Fig. 1, the two outliers in the left top corner cannot be

detected by any dc value. Therefore, the DPC has a weakness of detecting outliers in

the Flame dataset, which further demands that the capability of detecting outliers

and hub nodes should be improved. Halo network is adopted to analyze the di®erence

between outliers and hub nodes. In Algorithm 2, hub nodes can be detected from halo

networks that have more than two di®erent ClusterIDs, and outliers can be found

by their neighbor distance. After improvement on DPC halo processing,

the HaloDPC is able to detect outliers and hub nodes correctly as illustrated in

Figs. 4(d), 5(d) and 8(d).

6. Conclusion

This paper proposes an innovative clustering algorithm of density peaks, with the

enhancement of halo processing (HaloDPC) which combines advantages of peaks-

oriented density methods, connectivity-oriented density methods and structure-

oriented classi¯cation methods for low-density node processing. The advantage of

HaloDPC algorithm lies in its capability of extracting arbitrary-shaped clusters with

varying densities in many complicated datasets. There are two major steps in

HaloDPC: the ¯rst is to determine clusters by no halos generation from the DPC,

and the second is to post-process clusters by density connectivity and network

structural similarity for relatively low density nodes in each cluster. In density-based

clustering approaches, it is di±cult to process a dataset with clusters of varying

densities, especially when processing low-density nodes that can be ambiguously

classi¯ed into outliers, boundary nodes, hub nodes and even new clusters. Further-

more, connectivity-oriented density methods are able to ¯nd outliers easily due to

their nonreachability, but they still have problems in detecting boundary nodes and

hub nodes. By contrast, HaloDPC not only puts forward a reasonable halo proces-

sing method but it also generates high quality results, which is highly competitive

compared with other density-based algorithms.

In limitations of the DPC algorithm, HaloDPC is proposed by the inspiration

from DBSCAN and SCAN algorithms. HaloDPC is designed aiming at improving

the capability of processing low density nodes by adoption of halo networks, network

structural similarity, adjacent distance and ratio of core nodes. After comparison

with experiments on some synthetic datasets, such as Flame, Pathbase, Spiral and

J. Jiang et al.
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Aggregation, the proposed HaloDPC has improved the capability of DPC in

processing complex datasets with irregular shapes, and in detecting outliers and

hub nodes.

In the future, the HaloDPC algorithm will be applied in other areas, such as

¯nancial data analysis. Furthermore, the HaloDPC will be extended to network

structural datasets, such as supply chain networks.
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