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• The complexity of a three-echelon SCM network is reduced greatly.
• The capability of scout bees is enhanced by gradient descent approach.
• The convergence and exploration capability is enhanced by simulated annealing approach.
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a b s t r a c t

Finding the best flow patterns (i.e., choices of resources) for a family of products is a key part of supply
chain management. It primarily focuses on reasonable selecting suppliers for every component, selecting
plants for assembling every sub- or final assembly, and selecting the delivery options to bring products
to customers. Different selecting operations form different cost and lead-time. Balancing a trade-off
between cost and lead-time is a non-trivial problem in a three-echelon supply chain, which forms a
complex network. We focus on finding the best flow patterns in which reasonable selections can be
formed together to provide products or services. The objective is to minimize the bi-objective of cost
and lead-time for any product. In this paper, we propose a complex network oriented artificial bee colony
algorithm, which can be processed in parallel, to tackle the so-called combinatorial problem. Besides, we
employ simulated annealing and gradient descent to find global Pareto optimal solutions in a supply chain
network. Extensive experiments on the three-echelon supply chain network demonstrate the superiority
of our proposals: (1) the proposed CN-ABC and CN-ABC-SAGD have the capability of discovering global
POS in a complex three-echelon SCN; (2) the speed of searching global POS is accelerated to satisfy the
requirement of its complexity of a SCN.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the development of electronic commerce, the number
of suppliers increase rapidly, hence supply chain network (SCN)
becomes more and more complex. The supply chain operation
management characterized by manufacturing resources, process-
ing and delivering needs to be optimized based on complex net-
work structure [1,2]. It is more andmore important to help the de-
cision makers to choose the suppliers, which not only can protect
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the profits of the enterprises, but also can guarantee the service
level of the enterprises. Therefore, finding an efficient optimization
approach is necessary to satisfy the emerging complexity require-
ment of supply chain operation management.

The optimization problem in a SCN refers to discover the best
flow patterns (i.e., choices of resources) for a family of products [3,
4]. The flow pattern in the SCN management involves selection
through which materials (raw materials, work in progress, and
finished products) and information (demand data, due date, de-
livery, assembly cost and lead time) in order to satisfy its multi-
objective functions [5–7]. In order to determine an efficient flow
pattern for every product in a family, it depends on reasonable
select operations: (1) the selection of a supplier (or suppliers) for
every component required by the product mix, (2) the selection
of a manufacturing plant (or plants) for assembling every sub- or
final assembly in the product mix, and (3) the selection of delivery
options to customers [4,8]. In a typical SCN, there often exist many
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suppliers that could supply the same rawmaterials or components,
multiple manufactures that could assemble sub- or final products,
and a number of deliveries to bring products to customers. These
different combinatorial selections in the flow patternwill generate
different cost and lead-time. Hence, the optimization in a SCN is a
combinatorial optimization problem, and it is a NP-hard problem.

Henceforth, it is necessary to design a bi-objective optimiza-
tion algorithm to find the global Pareto optimal solutions (POS)
with the objective of minimizing and balancing both cost and
lead-time. This is a non-trivial task due to its complexity, which
requires simultaneous optimization of cost and time, which are
often contradicting with each other. Further complexity of the
problem includes the involvements of multiple products of com-
plex hierarchy, sharing common components and sub-assemblies,
and the existence of a large number of resource options across
a SCN [3,4]. Aggregating all these objectives through weighted
sum can transform the bi-objective problem into a single objective
problem. Every objective is multiplied by a weighted factor, and
the sum of the weighted object is the objective function [7–11].
This alternative method is a collection of different criteria under
certainty, which is making for decision-maker to search trade-off
solutions and to get global POS.

Existing literatures have beenproposed to solve the bi-objective
combinatorial optimization problem using various algorithms in
supply chain design. For instance, Shaw et al. [12] propose an
integrated approach for selecting appropriate suppliers in a SCN,
using fuzzy-AHP and fuzzy multi-objective linear programming,
that does not consider the structural nature of complex network.
Yeh et al. [13] introduce green criteria into the framework of
supplier selection criteria, that does not consider optimization
with metaheuristics. Some metaheuristic approaches, such as ant
colony optimization (ACO [14]), genetic algorithm (GA [15,16]),
have been proposed to minimize the total supply chain cost and
lead time simultaneously in order to ensure product deliveries
without delays. They note that bi-objective can be optimized by
ACO, but their study should be improved by its searching speed for
the complexity of a SCN. Yuce et al. [17] use the artificial bee colony
(ABC) algorithm to deal with the bi-objective supply chain model
to search the optimum configuration of a given SCN problem that
can minimize the total cost and the total lead-time, but it does not
improve the basic ABC for the specific SCN problem.

The majority of studies on SCN have considered only one prod-
uct and one manufacturing center [18]. But, in reality most opti-
mization problems involve more than one product, have a number
of manufacturing centers in different regions, and bring different
products to different customers. Henceforth, our study focuses on
three-echelon SCN with multiple products, manufacturing cen-
ters and customers with the global Pareto optimization with bi-
objective of total cost and lead-time.

To solve these above problem, the present paper proposed a
complex network oriented artificial bee colony algorithm (CN-
ABC) for parallel computing in a SCN. Furthermore, to solve the
disadvantage of ABC algorithmwith easily falling into local optimal
solutions, the idea of simulated annealing is adopted to increase
the capability of exploration that can find global POS in a SCN. To
increase the convergence speed of finding global POS, the idea of
gradient descent is adopted to update its selection probability for
each choice in a node for a SCN. These two enhancements forms
a complex network oriented artificial bee colony algorithm with
simulated annealing and gradient descent (CN-ABC-SAGD). The
major contributions of this paper can be highlighted as follows:

(i) Solutions are modelled with complex network structure to
satisfy the requirement of the SCN nature;

(ii) TheproposedCN-ABC andCN-ABC-SAGDhave the capability
of discovering global POS in a complex three-echelon SCN;

(iii) The convergence speed is accelerated to satisfy the increas-
ing complexity of a SCN.

The organization of this paper is as follows: materials and
methods are depicted in Section 2; the optimized result of the test
example is given in Section 3; the simulated results are analysed in
Section 4; and the final conclusion is drawn in the last section.

2. Materials and methods

2.1. Model description

This paper simulates a supply chain network which is formed
by the operation process of a Bulldozer manufacturing enterprise.
The whole network, which includes the initial raw material pro-
curement, semi-finished products and the distribution of the final
target market, is a complete supply chain with three layers struc-
ture. In order to get closer to the real situation, we simulate the
supply chain composed of different groups, each group represents
different spare parts. Each group is made up of different nodes,
which act as different suppliers of the group, as shown in Fig. 1.

In Fig. 1, a22, a26, a35 are three products supplied by the Bull-
dozer company, such as Wheel Loader (WHL), Track Loader (TRL)
andTrack-Type Tractor (TTT). {a1, a2, a3, . . . , a16, a17} are the com-
mon rawmaterials and intermediate products of these three prod-
ucts. a18, a19, a20, a21, a25, a31, a32, a33, a34 are the respective raw
materials and intermediate products of the three products. Each
directed line in Fig. 1 represents the transfer of the raw material
between groups, that is, the product produced by the directed
group requires the product of the above grade group as the raw
material. Therefore, the supply chain we simulate consists of 38
groups, and each node has its own cost and lead-time.

In this paper, the three layer structure of the supply chain is
regarded as a complex network. Groups on the supply chain are
represented by {a1, a2, . . . , an}, and ai is not related to each other.
The total cost and total lead-time are chosen as the indicator to
measure the profit and service quality as Eq. (1).

Z = ω1 × TC + ω2 × LT (1)

where ω1 and ω2 are the two parameters for balancing cost and
lead-time, and the sum of them equals to 1. TC is the total cost in
supply chain, while LT is the total lead-time. For each group ai, TCi
and LTi are calculated as Eqs. (2) and (3):

TCi = µi

Nj∑
j=1

Cij × yij (2)

In Eq. (2), each node in the group is marked by aij(j = 0, 1, 2,
. . . ,Nj), where Nj is the number of alternative suppliers in ai, µi
denotes average quantity demandedper daywhen calculating cost,
Cij is the cost for each selection in ai, yij is used as a Boolean variable
for judging whether the node is selected. If the node is selected,
yij = 1, otherwise yij = 0.

LTi =

Nj∑
j=1

Tij × yij + max
k∈S

LTk (3)

where Tij is the lead-time of each selection in the node ai, Nj and
yij are the same as Eq. (2), S is the set of all child nodes of the
node ai, LTk is the lead-time of a child node with ai. Therefore, LTi is
calculated by putting its own lead-time and themaximal lead-time
from its child nodes.
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Fig. 1. Supply chain network for Bulldozer manufacturing enterprise.

2.2. Expressed solutions

In the proposed algorithms of CN-ABC and CN-ABC-SAGD, a
set of feasible solutions, named as ‘‘solution vector’’, is created.
The solution vector is structured as fragments of supply chain
network. The supply chain network can be divided into different
sub-networks. For instance, as illustrated in Fig. 1, a35, a22 and a26
are three assembling nodes forWHL, TRL and TTT respectively, and
these three products are assembled by a range of common supply
nodes, e.g. {a1, a2, a3, . . . , a16, a17}. Therefore, this sub-network
for all three products is the fragment from node a1 to a17. The sub-
network for both products of TRL and TTT is the fragment from
node a18 to a20. The sub-network for the unique product WHL is
the fragment from node a31 to a38, the sub-network for the unique
product TRL is the fragment from node a21 to a24, and the sub-
network for the unique product TTT is the fragment from node a25
to a30. For an universal complex network oriented solutions, it can
be modelled as Fig. 2. For instance, the value of m + n + k + t + z
is 38 in Fig. 1.

In Fig. 2, every Sub-Network can be modelled as feasible solu-
tions as Fig. 3. In Fig. 3, {SV1, SV2, . . . , SVL} represents all detected
solution vectors (SV) for the solution space of the SCN problem,
SVi(i ∈ L) indicates the ith iteration of the maximal iteration of
L. For any solution vector SVi, it has three parts, such as option

sequence, fitness value and Bayesian probability sequence. Option
sequence of {O1,O2, . . . ,Ok} is the selection sequence formed by
its selection of each node ai in a Sub-Network, and Bayesian prob-
ability sequence of {P1, P2, . . . , Pk} is the probability sequencewith
its initial probability of equal chance for each selection. Fitness
value records the evaluation result based on Eq. (1) for its option
sequence. After the fitness value evaluation, both option sequence
and Bayesian probability sequence will be changed based on the
principle of the proposed CN-ABC and CN-ABC-SAGD algorithms.

2.3. Methods

In order to solve the problems mentioned in Section 2.1, the
proposed algorithms are mainly based on ABC algorithm, use the
related technology of complex network to strengthen the mutual
connection between supply chain structure which can simplify the
process of supply chain decision-making. And by adding the idea
of gradient descent and simulated annealing, the search result set of
the ABC algorithm is greatly enlarged while the convergent speed
is speeded up as far as possible.

2.3.1. A brief introduction to basic ABC
Artificial bee colony (ABC) algorithm is a novel optimization

methodwhich is proposed by Karaboga [19]. It mainlymimicks the
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Fig. 2. Different types of sub-networks for a complex network.

Fig. 3. Feasible solution for sub-networks of a SCN.

behaviour of honey collection by bees, through the optimization
of the behaviour of the individual bees and ultimately making
the global optimal value in the population, has a faster conver-
gence rate. Karaboga et al. [20] have shown that ABC has been
widely applied for feature selection [21], classification [22,23],
real-parameter optimization [24], job scheduling [25], travelling
salesman problem [26], and combinatorial problems [27]. The pre-
vious literature [17,27] has proved that the ABC algorithm has a
very good effect on combinatorial optimization problems, such
as supply chain optimization issue. Even more, with the explo-
sive growth in supply chain network, this type of combinatorial
optimization that is known to be NP-hard. Therefore, using ABC
algorithm as the major solution is a good choice.

In the basic ABC algorithm, the number of employed bees or the
onlooker bees is equal to the number of solutions in the swarm.
Each employed bee Xi generates a new candidate solution Vi in the
neighbourhood of its present position as Eq. (4).

Vik = Xik + φik × (Xik − Xjk ) (4)

where Xj is a randomly selected candidate solution (i ̸= j), k is a
random dimension index selected from the set {1, 2, . . . , n}, and
φik is a random number within [−1,1].

This probabilistic selection is really a roulette wheel selection
mechanism which is described as Eq. (5).

Pi =
fiti∑n
j fitj

(5)

where fiti is the fitness value of Xi. If a position cannot be improved
over a predefined number (called limit) of cycles, then the food
source is abandoned. Assume that the abandoned source is Xi, and
then the scout bee discovers a new food source to be replacedwith
Xi as Eq. (6).

Xik = lbj + rand(0, 1) × (ubj − lbj) (6)

where rand(0, 1) is a random number within [0,1] based on a nor-
mal distribution, while lbj and ubj are lower and upper boundaries
of the jth dimension respectively.

2.3.2. A brief introduction to basic gradient descent algorithm
Gradient descent algorithm (GA) [28] is an optimization algo-

rithm to solve theminimumormaximumvalue along the direction
of gradient descent. This optimizationmethod converges quickly in
the initial stage, but the convergence speed will slow down near
the optimal value. GA is an iterative optimization algorithm for
optimization problems:minf (w). The equation of gradient descent
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Fig. 4. Pareto fronts for ABC and CN-ABC-SAGD.

Fig. 5. Global optimal solutions with ABC and CN-ABC-SAGD.

direction is shown in Eq. (7). Finally, GA can find the optimal
solution by updating formula shown in Eq. (8).

di = −
∂

∂w
f (w)|wi (7)

wi+1 = wi + ρ × di (8)

where ρ is the step length.

2.3.3. A brief introduction to basic simulated annealing algorithm
Simulated annealing (SA) [29] is a general probability algorithm

for finding the optimal solution in a large search space. The SA
algorithm is derived from the simulation of the annealing process
in thermodynamics. In SA, T is an initial temperature, S is the initial

solution, S ′ is a new solution. The incremental temperature △t ′ is
defined by Eq. (9).

△t ′ = C(S ′) − C(S) (9)

where C(S) is an evaluation function, S is replaced with S ′ if △t ′ <
0, otherwise, S is replaced with S ′ according to probability formula
of exp(−△t ′

T ). The optimal solution so far will be found through L
iterations in polynomial time.

2.3.4. The proposed CN-ABC-SAGD algorithm
We propose a CN-ABC-SAGD algorithm on the basis of the

advantages and disadvantages of the algorithms mentioned in
the above Sections 2.3.1, 2.3.2 and 2.3.3. Firstly, we combine the
gradient descent algorithm to make the scout bees move in the
direction of the most probable optimal solution with increasing
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Fig. 6. Global optimal solutions with ABC and CN-ABC-SAGD.

Fig. 7. Box plots of the LT solution obtained by ABC and CN-ABC-SAGD.
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Fig. 8. Box diagram of TC solution set obtained when ω1 = 0.1.

Fig. 9. Box diagram of TC solution set obtained when ω1 = 0.5.

Fig. 10. Box diagram of TC solution set obtained when ω1 = 0.9.

the capability of exploitation for ABC, and it will accelerate the
convergence speed of the algorithm. Secondly, the temperature (T )
of the simulated annealing (SA) is used to adjust the number of
times of the algorithm. When the T < T_min is terminated, the
outer loop is terminated, and the Metropolis criterion in SA can be
used to determinewhether a newsolution is accepteddynamically.

Fig. 11. Box diagram of LT solution set obtained when ω1 = 0.1.

Fig. 12. Box diagram of LT solution set obtained when ω1 = 0.5.

Fig. 13. Box diagram of LT solution set obtained when ω1 = 0.9.

It changes random walk of a scout bee to avoid trapping in a

local optimal solution for improving the capability of exploration.
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Furthermore, the reference of naive Bayesian probability can max-
imize the utility of every a randomly obtained solutions, enhance
the heuristic performance of the basic ABC algorithm and share the
information of thepotential direction of the global optimal solution
selection in each solution, which will increase the convergence
speed. The proposed CN-ABC-SAGD is illustrated as Algorithm 1.

Definition 1. Out degree of node ai. OutDegree(ai) equals the
number of arrow lines that start from node ai.

Definition 2. Uni-assembly node. The node ai belongs to a uni-
assembly node when its OutDegree(ai) = 1.

Definition3. Multi-assembly node. The node ai belongs to amulti-
assembly node when its OutDegree(ai) = k to support assembling
k products.

Definition 4. Final-assembly node. The node ai belongs to a final-
assembly node when its child nodes are all delivering nodes.

Algorithm 1 CN-ABC-SAGD algorithm

1: Data Collection of all alternative data sets, including their
numbers of groups, numbers, lead-time, cost and probability
of nodes

2: Result GlobalParams,GlobalBestCost,GlobalBestLeadtime
3: Step 1 Extract Sub-Networks from a SCN
4: Calculate OutDegree(ai) for each node ai based on Definition 1
5: Classify node types based on Definitions 2–4
6: Extract Sub-Networks based on these three type of nodes as

Fig. 2
7: Form the solution vector of Sub-Network as Fig. 3.
8: Step 2 Search the global POS using the ABC framework
9: for ∀Sub − Network ∈ SCN do

10: Step 2.1 Send employed bees to find a nectar
11: Generate initial solution vector randomly at an average prob-

ability
12: Evaluate the value of the objective function based on Eq. (1)

13: Calculate the fitness value based on Z(SVt+1) − Z(SVt )
14: Record to solution vector
15: Update Bayesian probability table
16: Step 2.2 Send scout bees to search neighbourhoods of the

nectar
17: for T < T_min do
18: Generate new nectars based on Bayesian probability table

19: Evaluate the objective function based on Eq. (1)
20: Calculate the fitness value based on Z(SVt+1) − Z(SVt )
21: Record to solution vector
22: Record the minimal solution so far
23: if (Z(SVt+1)−Z(SVt ) < 0 | exp(−(Z(SVt+1)−Z(SVt ))/T ) <=

rand(0, 1)) then
24: Accept the best solution so far and update the nectar
25: Update the probability table with Bayesian principle
26: end if
27: end for
28: end for

3. Results and analysis

In order to evaluate the performance of the proposed CN-ABC
and CN-ABC-SAGD algorithms, a test example is used and we put
forward the following situations:

• A total of three products have to bemade in the production of
Bulldozer SCN, [Wheel Loader (WHL), Track Loader (TRL) and
Track-Type Tractor (TTT)]. This SCN covers the whole process
from raw materials to manufacturers and distributors.

• Each product can be assembled with a flow pattern that
requires the selection of a supplier (or suppliers) for every
component used by the product mix.

• Each node has a number of alternative options, out of that one
of them represents an single decision that has its own cost
and lead-time for assembling this product.

• All the experimental data are under ideal conditions with
high stability. There is no other external factors, such as the
shortage of raw materials, bad weather for its uncertainty.

The network topology which represents the Bulldozer SCN is
depicted in Fig. 1. As shown in Fig. 1, the entire SCN has a total
of 38 nodes, with a varying number of 2∼4 blackspots (choices)
in each node. Each assembly node can represent an enterprise.
Among of these nodes, a22, a26 and a35 are final-assembly nodes
for assembling the final product, a17 and a20 are multi-assembly
nodes, andmost nodes are uni-assembly nodes. After extracting sub-
networks from Fig. 1, the set of {a1, a2, a3, . . . , a16, a17} can be
formed as a sub-network to provide public intermediate products
of product WHL, TRL and TTT. Nodes of a18, a19 and a20 can be
formed as another sub network to serve the two products of TRL
and TTT. The set of {a25, a26, a27, a28, a29, a30} can be formed as
a sub-network for serving only one product of TTT. The set of
{a21, a22, a23, a24} can be aggregated as a sub-network for serving
the TRL product. The set of {a31, a32, a33, a34, a35, a36, a37, a38} can
be clustered as a sub network for theWHL product.

In Table 1, we list 30 nodes of raw materials or intermediate
products. Every node has 2∼5 options, and each option has a
different cost Cij (in $) and required lead-time Tij (in days). Table 2
is the set of target markets for the three final products, and each
delivery node has 2 options with parameters of lead-time Tij (in
days) and delivery cost Cij (in $).

In order to measure the global optimization effect of the pro-
posed algorithm, we respectively draw the Pareto front line chart
of the ABC algorithm, and the CN-ABC-SAGD algorithm, as shown
in Fig. 5. In Fig. 5, we can clearly observe the Pareto frontal value of
two differentmethods in the same data set optimizationwhere the
abscissa is the waiting time of the customer (LT ), and the ordinate
is the total cost of the business (TC). With the increase of LT , TC
showed a gradual downward trend.Moreover, it is obvious that the
curve of Pareto peak obtained by the CN-ABC-SAGD algorithm is
lower than which of the ABC algorithm, which proves that the CN-
ABC-SAGD algorithm has a stronger advantage than the basic ABC
algorithm in the search for the global optimal solution. Therefore,
in the same data set, the CN-ABC-SAGD algorithm has a better
global optimum than the ABC algorithm, and has a stronger global
search capability (see Fig. 4).

We can see the result based on the proposed approach in
Table 3. Each approach takes into account the different weights of
cost and lead-time. Eachweight corresponds to a different solution.
When the weight changes from ω1 = 0.1 to ω1 = 0.9, the TC (in
$) values are obtained for 129020100, 128861700, 128114220,
127123500, 126633900, 126212700, 126450300, 126416100
and 126635700, and the LT (in days) values are 31, 33, 40, 42, 44,
46, 54, 47 and 49 respectively.

Mastrocinque et al. (2013) use the basic ABC to solve the
same problem [17]. Using the same raw data, when the weight
of the TC (in $) changes from ω1 = 0.1 to ω1 = 0.9, TC (in $)
values are obtained from 129652620, 129051300, 128485608,
128332908, 127023480, 126821568, 126500100, 126421236
and 126572640, and the LT (in days) values are 30, 31, 34, 36,
46, 54, 58, 70 and 60 respectively. Fig. 5 is a Pareto fronts line
chart for both LT (in days) and TC (in $) under the same condition
with different algorithms. It can be illustrated that most of the
results obtained by using our proposed algorithms are better than
ABC. Fig. 5(a) is a Pareto fronts line chart for TC (in $) with the
changing weight of TC (in $). When the weight of the objective
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Table 1
Data for solving the Bulldozer SCN.
Node(ai) Number(i) Options(j) Time(Tij) Cost(Cij)

Platform group 1 1 11 575
2 0 690
3 5 592
4 3 630

Wing group 2 1 4 575
2 9 897
3 0 912

Roll over group 3 1 7 4459
2 3 1161
3 0 1167
4 3 1150

Frame 4 1 17 609
2 10 618
3 19 605
4 0 622

Case 5 1 12 2241
2 7 2263
3 15 2200

Brake group 6 1 11 575
2 11 575
3 11 575

Drive group 7 1 8 1553
2 3 1571
3 9 1550
4 5 1563

Plant carrier 8 1 9 155
2 1 157

Frame assembly 9 1 5 620
2 12 612
3 19 605
4 0 622

Transmission 10 1 15 7450
2 10 7618

Drive/brake assembly 11 1 4 1551
2 0 1571
3 9 1550
4 3 1568

Common assembly 12 1 5 8000
2 2 8070

Engine 13 1 6 4596
2 3 4763
3 0 4804
4 5 4676
5 7 4500

Fans 14 1 12 650
2 0 662
3 8 659

Chassis 15 1 7 4320
2 2 4395

Dressed-out engine 16 1 10 4100
2 3 4175

Main assembly 17 1 8 12000
2 2 12150

Track roller frame 18 1 6 3005
2 10 3000
3 2 3045

Suspension T 19 1 7 3600
2 2 3675

Subassembly T 20 1 4 8000
2 1 8300
3 3 8150

Shovel-T 21 1 35 90
2 20 95
3 18 93

Track Loader-TRL 22 1 6 725
2 2 732
3 5 730

Blade 25 1 35 90
2 20 95
3 18 93

Track Type Tractor-TTT 26 1 6 725
2 2 732
3 5 730

(continued on next page)

Table 1 (continued).
Node(ai) Number(i) Options(j) Time(Tij) Cost(Cij)

Wheels 31 1 6 725
2 2 732
3 4 730

Suspensions WHL 32 1 7 3600
2 2 3675

Shovel-W 33 1 35 90
2 20 95
3 18 93

Subassembly WHL 34 1 4 8000
2 1 8300
3 3 8150

Wheel Loader-WHL 35 1 6 725
2 2 732
3 5 730

Table 2
Data for target markets.
Node(ai) Number(i) Options(j) Time(Tij) Cost(Cij)

R1-TRL 23 1 20 300
2 10 7000

R2-TRL 24 1 1 500
2 8 1000

R1-TTT 27 1 10 1200
2 1 2000

R2-TTT 28 1 20 3000
2 10 7000

R3-TTT 29 1 15 1500
2 2 3000

R4-TTT 30 1 1 500
2 8 0

R1-WHL 36 1 10 1200
2 1 2000

R2-WHL 37 1 15 1500
2 2 3000

R3-WHL 38 1 1 500
2 8 1000

function of TC (in $) is increasing, the Pareto fronts have a tendency
to decrease. Fig. 5(b) is a Pareto fronts line chart for LT (in days)
with the varying weight of TC (in $). When the weight of the TC
(in $) objective function is increasing, the weight of LT (in days) in
the objective function is decreasing, and the Pareto fronts value is
gradually increasing. The results show that our proposed CN-ABC-
SAGD algorithm has achieved a better feasibility and efficiency.

Figs. 6 and 7, we use CN-ABC-SAGD algorithm and ABC al-
gorithm to obtain the optimal solution of 20 box plot drawn in
the same weight conditions, the choices of weights were ω1 =

0.1, ω2 = 0.9, ω1 = ω2 = 0.5 and ω1 = 0.9, ω2 = 0.1.
The black box in Figs. 6 and 7 shows the solution obtained by

using the CN-ABC-SAGD algorithm, and the red box represents the
solution obtained based on the basic ABC algorithm. Obviously,
whether it is TC value or LT value, the solution drawn by the
CN-ABC-SAGD is lower than that of the solution drawn by the
ABC, that is, the majority of the solution values are smaller. The
experimental results prove that the proposed CN-ABC-SAGD has
obvious advantages than the basic ABC algorithm.

4. Comparative experimental study

Jianhua Jiang, Di Wu et al. put forward ABC algorithm based on
complex network and naive Bayes classifier in Fast Multi-objective
Pareto Optimization on Supply Chain Network, named as CN-ABC-
NBC. We compare the performance of the three proposed algo-
rithms: CN-ABC, CN-ABC-NBC and CN-ABC-SAGD. Because the CN-
ABC-SAGD algorithm uses parallel solution in the searching pro-
cess, it is unreasonable to compare the minimum iteration times
with other algorithms. Therefore, we only compare the capabilities
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Table 3
The global optimal solution obtained based on the proposed CN-ABC-SAGD.
Node(ai) z*

Index Option(j) Option(j) Option(j) Option(j) Option(j) Option(j) Option(j) Option(j) Option(j)

Platform group 1 3 1 3 4 4 1 1 4 1
Wing group 2 2 2 3 1 3 3 2 2 3
Roll over group 3 4 4 3 4 4 4 4 4 4
Frame 4 4 4 4 4 4 2 4 1 3
Case 5 2 3 1 3 3 3 3 3 3
Brake group 6 3 1 2 1 1 1 3 3 3
Drive group 7 4 3 4 4 1 3 2 1 3
Plant carrier 8 2 1 2 2 2 2 1 2 2
Frame assembly 9 4 4 4 4 4 4 4 4 4
Transmission 10 2 2 2 2 1 1 2 1 2
Drive/brake assembly 11 1 4 1 4 3 4 1 3 1
Common assembly 12 2 2 2 2 2 2 1 2 2
Engine 13 5 5 5 5 5 5 1 5 5
Fans 14 1 3 2 2 3 3 2 2 2
Chassis 15 1 1 1 1 2 2 2 2 2
Dressed-out engine 16 2 2 2 1 1 1 2 2 2
Main assembly 17 2 2 2 2 2 2 1 2 2
Track roller frame 18 2 2 2 2 2 2 2 2 2
Suspension T 19 1 1 1 1 1 1 1 1 1
Subassembly T 20 2 2 2 2 2 1 1 1 1
Shovel-T 21 3 3 3 3 3 3 3 3 3
Track Loader-TRL 22 2 2 2 2 2 2 2 2 2
Blade 23 2 2 2 1 1 1 1 1 1
Travk Type Tractor-TTT 24 1 1 1 1 1 1 1 1 1
Wheels 25 3 3 3 3 3 3 3 3 3
Suspensions WHL 26 2 2 2 2 2 2 2 2 2
Shovel-W 27 1 1 1 1 1 1 1 1 1
Subassembly WHL 28 2 2 1 1 1 1 1 1 1
Wheel Loader-WHL 29 2 2 1 1 1 1 1 1 1
R1-TRL 30 2 2 2 2 2 2 2 2 2
R2-TRL 31 1 1 1 1 1 1 1 1 1
R1-TTT 32 1 1 1 1 1 1 1 1 1
R2-TTT 33 3 3 2 3 3 3 3 3 3
R3-TTT 34 2 2 1 1 1 1 1 1 1
R4-TTT 35 2 2 2 2 2 2 2 2 2
R1-WHL 36 2 2 2 2 1 1 1 1 1
R2-WHL 37 2 2 2 2 1 1 1 1 1
R3-WHL 38 1 1 1 1 1 1 1 1 1

ω1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ω2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
TC (in $) 129020100 128861700 128114220 127123500 126633900 126212700 126450300 126416100 126635700
LT (in days) 31 33 40 42 44 46 54 47 49

of the four algorithms in obtaining the optimal solution. In the
comparative study, we select three representative weights of TC ,
that is, ω1 = 0.1 and ω2 = 0.9, ω1 = ω2 = 0.5, and ω1 = 0.9 and
ω2 = 0.1. Each algorithm in the weights were randomly obtained
20 optimal solution, and the results of mapping the box diagram as
follows.

When ω1 = 0.1 in Fig. 8, whether it is the solution set of the
maximum and minimum value and average value, using the CN-
ABC-SAGD algorithm by TC solution is obviously superior to the
other algorithms used in the solution, and the solution set is more
concentrated in a smaller cost value fluctuates near.

When ω1 = 0.5 in Fig. 9, the maximum value obtained by
the CN-ABC-SAGD algorithm is the same as that of the CN-ABC
algorithm, which is higher than the maximum of the solution set
obtained by the CN-ABC-NBC algorithm, and is lower than the
maximum value of the solution set obtained by the ABC algorithm.
Its minimum value is higher than the CN-ABC-NBC and CN-ABC
algorithm, but less than the ABC algorithm, the solution set is also
more concentrated. The maximum and minimum values of the
CN-ABC-NBC algorithm are lower than those obtained by the CN-
ABC algorithm, and the solution set is relatively concentrated than
the CN-ABC algorithm, but the average value is relatively high.
The solution set of ABC algorithm is more concentrated, but the
maximum, theminimum and the average value are relatively high,
and the solution set is also fluctuating near the larger cost value.

When ω1 = 0.9 in Fig. 10, the maximum, minimum and
mean values of the solution set are significantly higher than those
obtained by the CN-ABC-NBC andCN-ABC algorithmsusing the CN-
ABC-SAGD algorithm, and the solution sets are relatively dispersed
and the fluctuation is quite large. But the solution set obtained
by three kinds of algorithms is lower than that obtained by ABC
algorithm. The maximum, minimum and mean values of the solu-
tion set obtained by the CN-ABC-NBC algorithm are lower than the
maximum of the solution set obtained by the CN-ABC algorithm.
The solution set of ABC algorithm is more concentrated, but the
maximum, theminimum and the average value are relatively high,
and the solution set is also fluctuating near the larger cost value.

When ω1 = 0.1 in Fig. 11, the maximum, minimum and
mean values of the solution set are significantly higher than those
obtained by the CN-ABC-NBC andCN-ABC algorithmsusing the CN-
ABC-SAGD algorithm, and the solution sets are relatively dispersed
and the fluctuation is quite large. But the solution set obtained
by three kinds of algorithms is lower than that obtained by ABC
algorithm. The maximum value of the solution set obtained by the
CN-ABC-NBC algorithm is significantly higher than that of the CN-
ABC algorithm, and is relatively dispersed. The solution obtained
by the CN-ABC algorithm is very concentrated.

When ω1 = 0.5 in Fig. 12, the LT solution obtained by using
the CN-ABC-SAGD algorithm is lower than that obtained by the
CN-ABC algorithm, and themaximum andmean value obtained by
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CN-ABC-NBC are minimal. The degree of dispersion of the four al-
gorithms is not significant, but themaximum,minimum andmean
values of CN-ABC-SAGD, CN-ABC and CN-ABC-NBC algorithms are
lower than those obtained by the ABC algorithm.

When ω1 = 0.9 in Fig. 13, whether it is the maximum, the
minimum and the average value of the solution set, the LT solu-
tion obtained by using the CN-ABC-SAGD algorithm is obviously
better than that obtained by using other algorithms. The solutions
obtained by CN-ABC-NBC and CN-ABC algorithms are better than
those obtained by the ABC algorithm.

Through the above comparison we cannot find that the pro-
posed CN-ABC-SAGD algorithm to the TC value is significantly
better than other algorithms, but it is better than theABC algorithm
is slightly worse than the CN-ABC-NBC and CN-ABC algorithm
when the weight ω1 = 0.1. When the weight ω1 = 0.5, the results
obtained by CN-ABC-SAGD are not very different from those of the
CN-ABC-NBC and CN-ABC algorithms, but also better than the ABC
algorithm.When ω1 = 0.9, the value of the LT obtained by the CN-
ABC-SAGD algorithm is obviously better than other algorithms, but
the TC value is better than the ABC algorithm but is slightly worse
than the CN-ABC-NBC and CN-ABC algorithm. This is because the
search range of the solution of the CN-ABC-SAGD algorithm in the
solution is greater than that of the other algorithms, when the
weight of an index is obviously greater than that of another index,
the algorithm has a very good result in solving the weighted index
value, and the other index value should be relatively poor. When
the weights of two indexes are not big, the algorithm is slightly
worse than the CN-ABC-NBC and CN-ABC algorithms. Similarly,
when the weight of an index is significantly greater than that of
another index, the effect of CN-ABC-NBC and CN-ABC algorithm is
slightly worse than that of the CN-ABC-SAGD algorithm. However,
regardless of the weight, the CN-ABC-SAGD, CN-ABC-NBC and CN-
ABC algorithms are obviously better than the ABC algorithm.

Based on this, when enterprise decision-makers show obvious
tendency to some indexes, using CN-ABC-SAGD algorithm can help
them to obtain supply chain decision-making scheme quickly and
efficiently. When there is no obvious inclination, CN-ABC-NBC
and CN-ABC algorithms can help them to obtain the supply chain
decision-making scheme quickly and efficiently.

5. Conclusions

In order to solve the problem of complex supply chain decision-
making, the ABC algorithm based on gradient descent and simu-
lated annealing is proposed. The optimal management decision of
a three-layer Bulldozer supply chain is taken as an example with a
multi products and manufacturing centers. The supply chain con-
sists of 38 nodes and 105 optional supplier enterprises for a total
possible solutions of 1.284×1016. In the process of solving the cost
and lead-time of two indicators as the bi-objective functions, each
of the cost of the corresponding supply chain of the manufacturer
(or factory) combination has a unique lead-time. In the process of
solving the complex network, gradient descent algorithm changes
the randomdirection of the scout bees, simulated annealing speeds
up the convergence of the algorithm, and it avoids falling into
the local optimal solution. The experimental results show that the
proposed CN-ABC-SAGD algorithm is better than the basic ABC and
CN-ABC algorithm to find the optimal solution which is closer to
the real, and has higher efficiency.

We hope that using the proposed complex network oriented
model and meta-heuristic approach will assist logistics managers
in making supply chain operation management decision for their
complex SCN that considering various issues, such as multiple raw
materials, multiple assembling centers, multiple sub-assembling
nodes, multiple delivery nodes. Consideration of the interest rate
related with the production procedure with the total cost and the
lead-time.

For engineers, this paper proposes another way to make opti-
mization for SCN problems. For a typical SCN optimization prob-
lem, the solution is notmodelled as a simple selection for all nodes,
but it can be modelled with its sub-networks derived from the
whole SCN. The proposed approach provides another mechanism
that the optimization procedure can be computed in parallel. The
approach of extracting sub-networks froma SCN is simple and easy
to be implemented for engineers. Because of the strength of the
proposed CN-ABC-SAGD algorithm, it is helpful when the SCN is
real a complex network.

For industry, the topology of SCN becomes more and more
complex, and it increases the difficulty of finding acceptable op-
timal solutions in a limited time. The proposed CN-ABC-SAGD
approachprovides an interesting ideawith a ‘‘divide-and-conquer’’
mechanism, that is an efficient and effective approach to simplify
the complexity of a SCN.

The limitations and shortcomings of this paper can be stated as:
because of the complexity of SCN, only two objective functions of
total cost and lead-time are considered. For the future researches,
we recommend following directions: (1) more objective functions
can be investigated, (2) other meta-heuristic approaches can be
examined as its extensions, (3) more nodes can be applied into
the test example that can increase the complexity of the SCN to
evaluate its effectiveness.
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