
An Economy-Oriented GPU Virtualization With
Dynamic and Adaptive Oversubscription

Jianguo Yao , Senior Member, IEEE, Qiumin Lu , Run Tian, Keqin Li , Fellow, IEEE, and Haibing Guan

Abstract—GPU is becoming attractive aroundmultiple academic and industrial area because of its massively parallel computing ability.

However, there are still some obstacleswhich the GPU virtualization technologies should overcome to reach their maturity. These

obstacles mainly include the problem of resource allocation strategy to guarantee possible higher yield. This shortage has already

become an obvious barrier to the practical GPU usage in the cloud for satisfying business and academical requirements. There aremany

mature pieces of research in the area of oversubscribed cloud computing to enhance economic efficiency. However, the study onGPU

oversubscription is almost blank for the just started use of GPU in cloud computing. This paper introduces gOver, an economy-oriented

GPU resource oversubscription system based on theGPU virtualization platform. gOver is able to share andmodulate GPU resource

amongworkloads in an adaptive and dynamic manner, guaranteeing the QoS level at the same time.We evaluate the proposed gOver

strategy with designed experimentswith specific workload characteristics. The experimental results show that our dynamic GPU

oversubscription solution improves the economic efficiency by 20%over traditional GPU sharing strategy, and outperforms the static

oversubscriptionmethod bymuch better stability in QoS control.

Index Terms—Economy, GPU virtualization, QoS, resource oversubscription

Ç

1 INTRODUCTION

THE cloud-style systems based on the virtualization tech-
nologies have been widely used based on the resource

scheduling, sharing and isolating functionalities. A physical
server usually divides its finite resources into multiple com-
binations including CPU, GPU, disk and memory, then
offers cloud services based on virtual machines (VMs) [1].
Such virtualized computing environments enable conve-
nient provision and release of shared resources. Since cloud
customers usually tend to overestimate their resource
requirement and occupy only a portion of the offered
resource allocation in reality, the resource utilization ismain-
tained under 20% inmost datacenters [2]. The low-level utili-
zation means that VMs remained idle and resources were
wasted in most time. As a result, resource oversubscription
becomes an appealing strategy to improve cloud resource
utilization. Cloud service providers (CSPs) purposely claim
more VMs than the number they can fully support to achieve
an appreciable rate of return on investment. Many mature
researches about the oversubscription of cloud resources are
focusing onmemory [3], CPU [4], network bandwidth [5], [6]

and power [7]. However, there appears to be a gap in the
study on GPU oversubscription due to the complex schedul-
ing of virtualized GPU in the cloud.

GPU presents a rapid adoption in more general-purpose
applications rather than just graphics rendering for its excel-
lent parallel computing ability, especially the tasks involving
large-scale floating-point arithmetic because the computa-
tion speed of these workloads can be largely accelerated by
employing GPU. Moreover, cloud providers start offering
GPU computing services in recent years. As examples of
Amazon EC2 Elastic GPU [8] and Alibaba GPU Cloud Serv-
ices [9], GPU-available cloud services are now serving as a
new parallel computing option. With such a rising trend in
cloud computing, GPU-intensive workloads from cloud cus-
tomers generate a growing requirement for more powerful
virtualized GPU with satisfying performance and efficient
scheduling strategy.

The previous works on GPU scheduling based on a full
virtualized solution for GPU with the mediated pass-
through GPU virtualization technology. This design enables
almost-native performance when running a single VM. Its
scheduling is time-based and also an improved version of
the round-robin strategy, so it achieves concurrency in a
static environment. However, this scheduling mechanism is
hardly efficient when being applied in the GPU cloud with
huge and disparate applications running concurrently. It is
impossible to dynamically modulate GPU allocation among
VMs according to their load status. So, if the active context
accomplishes its load but allocated time span remains, then
theGPUdevice should stay idle before the scheduled context
switch is triggered. There are always light VMs wasting
resource but heavyVMs suffering lowperformance, let alone
maintain a stable performance level for unpredictable peaks.
As a result, GPU cannot be fully utilized under the cloud cir-
cumstance. For this reason, it has practical significance to

� Jianguo Yao, Qiumin Lu, Run Tian, and Haibing Guan are with Shanghai
Jiao Tong University, Shanghai 200240, China.
E-mail: {jianguo.yao, luqiumin, tianrun, hbguan}@sjtu.edu.cn.

� Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA. E-mail: lik@newpaltz.edu.

Manuscript received 7 June 2021; revised 8 June 2022; accepted 4 August 2022.
Date of publication 18 August 2022; date of current version 7 April 2023.
This work was supported in part by the Program for NSFC under Grant
62032008, in part by STCSM Project under Grant 20510712400, in part by
the Ministry of Education-China Mobile Research Foundation under Grant
MCM20180703, and in part by Alibaba Innovative Research (AIR) Program
and SJTU-Enflame Joint Lab.
(Corresponding author: Jianguo Yao.)
Recommended for acceptance by A.C.M. Melo.
Digital Object Identifier no. 10.1109/TC.2022.3199998

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023 1371

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1142-4496
https://orcid.org/0000-0002-1142-4496
https://orcid.org/0000-0002-1142-4496
https://orcid.org/0000-0002-1142-4496
https://orcid.org/0000-0002-1142-4496
https://orcid.org/0000-0002-8129-2759
https://orcid.org/0000-0002-8129-2759
https://orcid.org/0000-0002-8129-2759
https://orcid.org/0000-0002-8129-2759
https://orcid.org/0000-0002-8129-2759
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0002-4714-7400
https://orcid.org/0000-0002-4714-7400
https://orcid.org/0000-0002-4714-7400
https://orcid.org/0000-0002-4714-7400
https://orcid.org/0000-0002-4714-7400
mailto:jianguo.yao@sjtu.edu.cn
mailto:luqiumin@sjtu.edu.cn
mailto:tianrun@sjtu.edu.cn
mailto:hbguan@sjtu.edu.cn
mailto:lik@newpaltz.edu

apply GPU oversubscription in the cloud to improve eco-
nomic efficiency.

Since the various motivations for GPU resource oversub-
scription are evident, it faces large challenges. First, it ismean-
ingless to statically configure the GPU overbooking ratio for
the unpredictable cloud workloads. Too large overbooking
ratio will cause severe resource overload and even system
crash, while too small overbooking ratio cannot achieve effi-
cient resource utilization and considerable return on invest-
ment. As a result, it is better to take dynamic and adaptive
oversubscription according to actual load conditions to wins
both benefits and service quality. So GPU driver should be
equippedwith the function ofworkloadmonitoring tomaster
the real-time load information and then take them as a refer-
ence to decide overbooking degree. Second,weneed to design
a timely efficient strategy to mitigate the GPU overload on
possible one of the oversubscribed VMs. Oversubscription is
based on the phenomenon that not all customers fully use
their requested resources at the same time, CSPsmust transfer
resources from well-resourced VMs to overloaded VMs in
case users find that the resource supply is not in accordance
with the contract [10]. Namely, the GPU scheduler must be
able to modulate resource allocation across VMs relying on
their varyingworkloads in common case rather than statically
allocated.

We then implement the economy-oriented GPU virtualiza-
tion solution with dynamic oversubscription based on an
open sourceGPU virtualization. For themost critical function,
we present an intelligent and autonomous, performance-
aware GPU overselling strategy. To fulfill this function, we
design a complete self-adaptive GPU scheduling system,
including a continuity of a series of stages, from workload
monitoring to overload detection to overload mitigation.
After mitigation measures being worked out, we then assess
the oversubscription potentially and perform overselling
according to current GPU usage condition. This complete
solution is named as gOver by us in this study. To summarize,
ourwork includes the followingmajor contributions:

� gOver provides a strategy to adaptively oversell new
VMs with virtualized GPU based on real-time moni-
toring, timely detection and mitigation for GPU over-
load. First, this dynamic scheduling and controlling
mechanism offer a better arrangement on the sharing
of required resources among users, which obviously
improve the utilization of the system. Also, the
dynamic oversubscription schema satisfies interests of
cloud providers and provides QoS guarantee for cus-
tomers at the same time. For cloud providers, oversell-
ing amplifies the available GPU resources for selling
and brings significant economic benefits. From the
perspective of customers, the performance demands
are guaranteed all the time because the actual resource
allocation is always being adjusted according to the
requirementmonitoring by ourmechanism.

� gOver equips a GPU native scheduler with dynamic
oversubscription. Since the introduced virtual GPU
platform has offered fine-grained GPU time slot con-
trolling and monitoring, its original scheduling strat-
egy is static and trivial. Our mechanism upgrade its
design with adaptive capacity allocation according

to vGPU utilization and QoS of VMs. The maximum
GPU resource authorized to each VM will be calcu-
lated at the beginning of every scheduling period.
Thus, GPU reallocation happened in time to mitigate
overload under oversubscription.

� Finally, we design the experiments to evaluate our
proposed gOver solution on economic efficiency and
QoS performance. We first analyze GPU utilization
characteristics of some GPU-intensive workloads to
show the necessity of GPU oversubscription. Then
we compare the performance of gOver with non-
oversubscribed GPU virtualization and static over-
subscription method. The results show 20% improve-
ment on economic efficiency compared to traditional
GPU virtualization and much better QoS control over
static oversubscriptionmethod.

The rest of this paper is organized as follows. Section 2
introduces background knowledge and motivation. The
detailed design and implementation of gOver are described
in Section 3. Section 4 analyzes the evaluation methodology
and the experiment results. We give a discussion about the
imperfection of gOver and give future work in Section 5.
Section 6 reviews the related works and Section 7 concludes
the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first summarize the principle and back-
ground in the area of resource oversubscription and the vir-
tualized GPU resources. These descriptions include GPU
virtualization technology and GPU scheduling mechanism
aiming at QoS. Considering the default GPU scheduling
strategy, we then come to the conclusion that there are inef-
ficient factors about the performance and the resource utili-
zation in the current virtualized GPU allocation and then
raise the motivation.

2.1 Resource Oversubscription

Designed as a paradigm that enables flexible access to a pool
of configurable sharing resources (e.g., applications, space,
computing, bandwidth), the cloud has been the best solution
for tenants to migrate local services and then construct an
online deployment [11]. Cloud service providers should face
the explosive requests for cloud resources. But it is an
extremely expensive and difficult work to upgrade hardware
facilities in datacenters. Furthermore, clients tend to demand
the resources far beyond necessity even if only a fraction of
these allocated share actually be utilized during active time,
so the resource wasting is serious. The utilization rate of
servers in datacenters is maintained at below 20% in gen-
eral [2], [12], [13]. From the standpoint of economic effi-
ciency, it is crucial for the future success of cloud providers
to efficiently host more clients on a restricted group of physi-
cal instances.

Considering such mentioned reasons, it is appropriate to
utilize hardware facilities as much as possible within its
maximum capacity limitation to amortize the cost of non-
recurring investments. This solution results in resource
oversubscription, which entails publishing more resources
than are actually available on the cloud to the markets [10].
Oversubscription can be beneficial to the reduction of idle

1372 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

resource, improve utilization of resource and increase reve-
nue. Many academic researches focus on optimal oversub-
scription ratio and the resource scheduling problem in
oversubscribed datacenters [14]. A lot of resources have
been put into oversubscribe, including memory [3], band-
width [5], [6], CPU [4], storage [15] and power [7]. Along
with the listed advantages, the resource oversubscription
also causes disadvantages, which include high resource
contention possibility, resource overload, and inter-user
interference. It might decline service quality and even cause
performance loss. CSPs should apply effective mechanisms
to prevent and alleviate resource overloads, such as VM
quiescing, resource stealing and service live migration [10].

2.2 GPU Virtualization

GPU virtualization technology enables each running VM to
access physical GPU device directly (or partially), rather
than emulating GPU computing by CPU, resulting in a sig-
nificant performance boost. By now, there are device emula-
tion researches like [16]. Also, the API forwarding studies
also include rCUDA [17], [18], [19], [20], Gvim [21],
FairGV [22], AvA [23] and etc. [24], [25], [26], [27] The direct
pass-through [28], [29] and mediated pass-through [30]
have been raised to implement full GPU functions in a vir-
tualized manner. Among them, the mediated pass-through
solution achieves the best performance with sharing capa-
bility and full features, also scalability and live migration.
Under mediated pass-through virtualization, the VM com-
mands directly access GPU in performance critical opera-
tions, while being trapped and emulated by hypervisor
when executing privileged instructions.

Most GPU products are closed source without any
exposed implementations of their virtualized solutions for
commercial reasons. One of the few open-source GPU driv-
ers is named gVirt which is embedded in the Linux kernel
by Intel [31]. gVirt is a product level full GPU virtualization
implementation with detail specifications about scheduling
logic and communication protocols. This project acted as a
research phase in the Intel GPU virtualization solution, and
the whole solution is now published with the name GVT-g.
Based on this solution, it is possible to modify or add fea-
tures in the source code to realize extra functions about vir-
tualized resource sharing and isolating [32]. gVirt employs
mediated pass-through technology as shown in Fig. 1 as its
full GPU virtualization solution to achieve good perfor-
mance, scalability and also secure isolation among VMs.
Multiple VMs share a single physical GPU but each VM
believes its ownership of this physical GPU. Currently,
since the original gVirt contents have already been merged
into the GVT-g product, this project is still being maintained
and extended with more good features such as QoS guaran-
tee and migrations [33], [34].

2.3 QoS in GPU

In the research area, we usually use the notion of QoS to refer
to the performance of cloud services. The improvement and
optimization on such a metric is one of the central research
topics in the area of cloud computing. In the most initial
gVirt solution, there is a completely competitive scheduling
strategy applied to the virtual GPU sharing. A VM with a

resource-intensive workload will request more GPU
resource to reduce the share for others. So, the administrator
is not able to guarantee personalized QoS to different users.
Some applications may require higher performance but
lower priority, while others show the opposite pattern. So
the control of resources allocation is quite important for GPU
QoS services.

In the improved version of gVirt, the QoS of virtual GPU
can be tuned through two parameters: cap and weight. The
parameter cap refers to the limitation of the vGPU resource
which a guest VM can utilize in percentage. So, the configu-
ration on this parameter can manipulate the vGPU resource
consumption. However, the weight is another parameter
which is orthogonal with cap. This factor can maintain the
fairness among guest VMs and then guarantee the mini-
mum resource consumption of a single VM through load
balancing.

2.4 Scheduling in GPU

gVirt is a full-virtualized vGPU implementation with
detailed scheduling strategy and scope communication tun-
nels, which makes it possible to modify or add features in
the source code to realize extra functions about virtualized
resource sharing and isolating [32]. gVirt emulates each
vGPU and conducts GPU device resource scheduling
among vGPUs in a time-sharing scheduling strategy. The
vGPUs are all linked together in a scheduling queue for the
round-robin scheduling. GPU uses time slices to decide
which VM should be activated in this period of time. And
the GPU scheduling strategy triggers context switch in a
fixed time interval. gVirt saves the active vGPU states, then
restores the following picked vGPU context at the end of
every time slice.

The time interval is critical for balancing performance
and efficiency of vGPU. The short scheduling interval can
cause unacceptable scheduling overhead. However, an
excessively long interval often have negative effect on
scheduling granularity and block the fluency of the work-
loads. The scheduling interval in gVirt is 1 ms, and at the
end of it the context switch will be triggered. The active con-
text in every interval under scheduling is shown in Fig. 2.
When a context is switched into the inactive state, the acti-
vated time of the VM should be recorded and then sub-
tracted from the scheduled time limitation. Then the
scheduler validates the candidate VM whether the allocated
interval is exhausted. For example, according to the last
third part shown in Fig. 2, VM1, and VM3 run out their time

Fig. 1. The overall design of current GPU virtualization.

YAO ETAL.: ECONOMY-ORIENTED GPU VIRTUALIZATIONWITH DYNAMIC AND ADAPTIVE OVERSUBSCRIPTION 1373

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

allocation, while VM2 still have some allocated time. As a
result, VM2 is the only schedulable guest in the following
time. The scheduler will suspend running applications on
VM1 and VM3 in the current scheduling cycle.

2.5 Motivation

Cloud service users tend to have a high-level requirement
against availability and performance in a clustered environ-
ment and usually overestimate their resource needs. Follow-
ing the terms of contracts which the service users have
agreed, service providers submit VMs with a superfluous
capacity to guarantee the QoS level. However, for the most
part, cloud workloads tend to utilize just a fraction of the
assigned resources. Thenmany GPU cycles are just occupied
with no works to run. However, current GPU virtualization
technology achieves concurrency in a static environment. It
is impossible to temporarily adjust resource allocation to
serve the intensive workloads, or maintain a stable perfor-
mance level for instantaneous peaks. The original GPU
scheduling mechanism is hardly efficient when applied in
the GPU cloud where huge applications with disparate per-
formance demand running concurrently. So, the workloads
with different levels of GPU resource requirement never get
an appropriate allocation and then the cloud GPU cannot
have an efficiency utilizationwith less idle resource share.

Then we can summarize the challenges we should face in
designing an efficient economic-oriented mechanism for
optimizing the utilization, economic profit and QoS perfor-
mance of virtualized GPU platform with oversubscription.
First, the static oversubscription is impractical, and only the
dynamic resource allocation can support the execution of
real workloads. Second, the GPU resource utilization with
multiple workloads performs unacceptable under tradi-
tional scheduling strategies since many time slots remain
idle. As a result, a new resource allocation mechanism is
required to improve resource utilization. Finally, since the
target environment should support virtualized GPU resour-
ces, our proposed mechanism should adapt its specific
characteristics.

Facing such a challenge, we investigate the specified
implementation of a GPU virtualization and then support
GPU oversubscription based on it. Our purpose is to imple-
ment an adaptive GPU sharing strategy under cloud over-
subscription to improve economic efficiency. The time slot
allocation to every VM should be dynamically and automat-
ically configurable according to runtime status of work-
loads. Also, the uncontrollable competition on oversold
resources should be overcome to satisfy the user resource
allocation under oversubscription and avoid resource sup-
port violation.

Actually, in GPU virtualization, the general resource
sharing method is to allocate the computation time slots
among different clients under some scheduling strategies

and then virtualize the allocated time slots into virtualized
GPU contexts. Since here some overheads may be caused by
the virtualization implementation, our strategy can certainly
improve the resource utilization. The fact is, even in the sit-
uation that a single workload exclusively occupies the GPU
device, there should still be many time slots keeping idle
with no rendering command executed in the whole execu-
tion time period. However, in our mechanism, the vGPU
contexts can keep receiving and caching rendering com-
mands no matter they are activated or switched down. Since
they are scheduled and activated in a round-robin manner,
the GPU device can keep processing the commands and
reduce the idle time percentage. Under this solution, the
idle overhead which may be caused by resource require-
ment variation or over-provision can all be relieved. Also,
with this proposed mechanism, the service providers can
offer more virtual GPU resources than they actually possess
with the user-defined QoS demand satisfied, which can
obviously bring economic profits to them.

3 DESIGN AND IMPLEMENTATION

This section mainly includes the description about gOver,
our GPU oversubscription strategy design. Resource over-
subscription comes in many forms. In this study, we consol-
idate the guest VMs into a server node. The VM count is
more than the fitting level, which means that the total occu-
pied resources claimed by all the VMs are more than the
physical device capacity.The target of gOver solution can be
summarized as follows: 1) maintaining the parallel perfor-
mance of the concurrent workload executions efficiently on
GPU device. 2) guaranteeing the QoS level for all VMs with
oversubscription. There are two important points that
require attention in designing and implementing the GPU
virtualization with dynamic oversubscription.

� How the GPU oversubscription potential to evaluate.
The load characteristics of every workload are
always different, and therefore resource utilizations
can be changing in tendencies. It needs to design a
suitable method to infer the GPU requirement for
each VM and then accurately assess the oversub-
scription potential.

� How to mitigate performance interference among
VMs. Oversubscription signs a blank cheque on the
GPU capacity supply. All customers have the right
to access the oversold resources. Given the over-allo-
cated circumstance, resource contentions increase a
lot among co-hosting VMs. Disorganized contention
brings adverse impacts on performances. As a result,
it needs to carefully alleviate the interference issue
on performance.

3.1 Overall Design

We then have the description about the complete solution to
construct the GPU virtualization with dynamic oversub-
scription. The top-level structure of gOver is illustrated in
Fig. 3. There are three independent, yet cooperating mod-
ules, which are responsible for monitoring, oversubscribing
and scheduling respectively. The whole architecture is
based on the Xen system.

Fig. 2. VM context switch scheduling among time slices.

1374 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

For the essential first step, we need to monitor the run-
time information on VMs. There are two manifestations of
vGPU overload, one is high vGPU utilization, which reflects
insufficient cap allocation, and the other is low QoS, which
includes goals of availability, throughput, and consistency.
QoS has different forms in different business scenarios. For
this paper, we take the frames per second (FPS) as an exam-
ple measurement of GPU QoS. An application scenario of
this measuring indicator is the Cloud gaming [35], [36],
which has been successfully developed due to the speed-
boosting network. A piece of high-performance GPU can be
distributed to multiple game players. Cloud game also put
forward an urgent requirement of GPU oversubscription.

The oversubscription module is mainly in charge of mak-
ing the overselling decision with the help of five subcompo-
nents. It receives periodic reports of statistical data from the
monitoring module and maintains history data for a limited
time. The overload detection component receives the infor-
mation of vGPU utilization and judges if an overload occurs
on any VM according to historical data. The QoS guarantee
component receives the QoS information and judge if QoS on
VMs is broken. The overload mitigation component receives
their judgment results and computes a suitable cap value to
each VM through a comprehensive analysis of vGPU load
and QoS. The key point is that it may trigger an overselling
behavior if all vGPUs work easily. The controller is in charge
of resetting cap in the vGPU scheduled info.

The scheduling module in kernel driver recalculates the
max timeslice authorized to each VM according to the new
cap value at the beginning of each scheduling period. Then all
active guest servers run under the adjusted resource capacity
limits in every scheduling period to cooperate with oversub-
scription strategy. By applying this architecture, we realize
the dynamic and adaptiveGPU oversubscription in safety.

3.2 Monitoring Module

Resource overallocation is a risky technique for the unpre-
dictable workloads of cloud applications. If the load on a
server suddenly explodes, it would be easy to break the
promise on performance to customers for cloud providers.
So we first propose the monitoring module to master load
fluctuation such that we can take countermeasures in
advance to avoid service collapse. Also, we need to know
the FPS to inspect whether it meets the contract require-
ments with customers. As the name implies, the monitoring

module is responsible for calculating and recording runtime
information of all active virtual machines. In the top-level
structure, the monitoring module is an interface through
which the application workloads can be watched. To realize
the recording of FPS, the LD_PRELOAD linux environment
variable is set to replace the default rendering functions,
then the module can record the rendering timestamp and
then account for the FPS metric. Because FPS does not
require extreme time precision, some discrepancy is
allowed as long as FPS accomplishes on a macro level. There
are no ready-made tools to ask for GPU real-time utilization.
So, the GPU driver should be modified to realize the calcu-
lation of vGPU utilization.

The GPU scheduling is periodic and the percentage value
of cap also need a denominator to do the arithmetical opera-
tion. That is to say, we need a proper period to help calcu-
late the resource ratio that the guest has token. A short
period has better precision but too-short period is meaning-
less as most context cannot be finished during that time. A
longer period has worse precision then end-user may feel
that the performance is not stable, sometimes fast some-
times slow. And as a denominator, it should be easy to help
the percentage calculation, a right value can achieve higher
numerical accuracy and computing efficiency. As a result,
1 s is the choice, considering most benchmark and user
experience, the performance accuracy at per-second level is
enough. We modify the struct of vGPU schedule informa-
tion to maintain a list of variables as Listing 1, including
when the vGPU is scheduled in and out the active queue.
Note that if the task queue is empty in a vGPU, it will not be
scheduled into active and then the next vGPU in order is
checked. So the difference between every pair of inside time
and outside time is fully occupied by vGPU to conduct com-
puting. We add the sum of all difference value in a schedul-
ing period into the busy time. The max timeslice is equal to
the product of cap and the scheduling period. So we can get
the vGPU utilization by dividing the busy time by the max
timeslice.

Listing 1. vGPU Schedule Information

1: struct vGPU_sched_info {

2: tslice_t sched_in_time;

3: tslice_t sched_out_time;

4: tslice_t busy_time;

5: int32_t cap;

6: int32_t initial_cap;

7: int64_t timeslice;

8: int64_t max_timeslice;

9: //more{\ldots}

10: };

3.3 Oversubscription Module

The oversubscription module is mainly deployed in the
hypervisor for the requirement of privileged command exe-
cution. According to the system structure, then the oversub-
scription module can maintain the connections with all the
active guest VMs. The runtime status then can be collected
through the port-like interfaces. At the beginning of the
physical machine release, we have no knowledge about the
customer applications to initialize an oversubscription ratio.

Fig. 3. The overall design of gOver.

YAO ETAL.: ECONOMY-ORIENTED GPU VIRTUALIZATIONWITH DYNAMIC AND ADAPTIVE OVERSUBSCRIPTION 1375

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

So we first sell the physical machines in non-oversubscribed
mode. And then, the overload detection component and the
QoS guarantee component receive the vGPU utilization and
FPS of each VM. We refer to the ith VM as vmi. We define
the vGPU utilization and FPS on vmi as ui and fpsi. The
cloud customer will negotiate with the provider about their
QoS demands and the application running on vmi will set
its FPS requirement as a constant value fpst (t means target)
in advance. Then we initialize the initial cap in vGPU sched-
uled info which is mentioned in Listing 1 according to FPS
demands and GPU hardware performance. The initial cap
is a pessimistic expectation for satisfying heaviest work-
loads under QoS demands of the customer, so the dynamic
cap value which is authorized to vGPU in reality should be
always less than it.

In this module, we mainly propose two critical points to
meet the challenge of dynamic oversubscription. The first
point we propose is the assessment method of GPU over-
subscription potential. We take the overload line of vGPU
utilization as Uo (o means overload). On the one hand, if
any ui exceeds Uo three times in succession according to his-
tory logs, it will send vGPU utilization of all VMs at this
moment with an overload signal to the mitigation compo-
nent. On the other hand, if any fpsi does not satisfy its fpst,
the QoS guarantee component will also send the difference
value as ei ðei ¼ fpst � fpsiÞ with an overload signal to the
mitigation component. As for the mitigation part, there are
two kinds of behaviors. First, if it does not receive any over-
load signal three times in succession, then the physical
machine probably over-provision its GPU resource in the
current state. Suppose there are n VMs, we define the fol-
lowing formula to evaluate whether to oversell VM:
total load ¼ Pn

i¼1 ui � capi, where capi is the capacity per-
centage allocated to vmi. If the total load is less than Ul (l
means lowload), we then publish a new VM to markets. Sec-
ond, if it receives an overload signal, then it will take mitiga-
tion measures. We steal some capacity form the lightest VM
to the overloaded VM. The stolen cap amount depends on
real-time situations. To make performance smooth and
ensure user experience, we set is as small as one-fifth of the
unused cap of the lightest VM. The lightest VM is defined
by comprehensive information analysis on all VMs, taking
care of both vGPU utilization and FPS, whose weights to
measure overload degree is set as wu and we respectively.
The detailed implementation of mitigation method is shown
in Algorithm 1. Note that if the load on one machine is too
heavy, more than one virtual guest send the overload signal,
it should be a severe warning. Because there are hundreds
of thousands of physical machines in datacenters, VM
migration can be done to handle this critical situation.

The second point we propose is the elimination method
of performance interference among oversubscribed VMs.
As mentioned above, we use the cap to restrict the share
limitation of the GPU resource which the guest could be
allocated in a scheduling period. Our cap means the
resource should occupy even if the guest is idle in the cur-
rent period. By setting the cap of each VM appropriately,
we can completely achieve isolation of resources among
VMs and then avoid disorganized contention. The capacity-
restricted scheduling is based on the default round-robin
strategy. For the detailed implementation of capacity, we

add more members to schedule info structure in QEMU and
Xen as Listing 1 to become a clear framework that can adapt
to the dynamic requirement. When a VM is initialized, the
scheduler gets its initial cap from the driver interface in the
file system, where each created VM can be queried for its
configuration parameters including the capacity, then store
it in the schedule managing information. The initial cap is a
threshold reference of the dynamic cap. Every time we write
the cap value in the scheduled info, its GPU share capacity
configuration will be affected in the next scheduling inter-
val. The mechanism of resetting schedule info also enables
that the capacity of a VM can be changed even if the VM is
running. Then the target of the oversubscription module
can be realized that guaranteeing the performance require-
ment of VMs with the reasonable amount of resources as lit-
tle as possible.

Algorithm 1. The Overload Mitigation Procedure

Input:ui, ei of all vmi; OverSignal;
1: if (OverSignal == null) {
2: releaseNewVM();
3: return;
4: }
5: if (OverSignal == warning) {
6: vmMigration();
7: return;
8: }
9: struct vGPU_sche_info �lightest_vgpu;
10: int lightest =MAX INT ;
11: for vmi in VMs {
12: int factor = wu � ui þ we � ei;
13: if (factor < lightest)
14: lightest_vgpu = vmi;
15: }
16: stolen_cap = 0.2�lightest_vgpu! unused_cap;
17: lightest_vgpu! cap -= stolen_cap;
18: OverSignal.vgpu! cap += stolen_cap;

3.4 Scheduling Module

The scheduling module directly conducts time slice alloca-
tion and context switch among vGPU. All the behaviors hap-
pen in the kernel mode, so wemodify the loaded GPU driver
functions which implement these features in the Linux ker-
nel. We first read the initial GPU cap value of the VM from
its configuration file and initialize the vGPU schedule info
including the initial cap. Then we add an interface to set a
timer to regularly change the vGPU schedule information in
memory according to commands from the oversubscription
module. Through this interface, the scheduling process can
then update the max timeslice in the next period so that the
kernel can respond to dynamic oversubscription demands.
The time interval should be less than the scheduling period
to respond quickly and be well adjusted considering over-
head. To make performance smooth during the second time
slot, we divide 1 s into 10 slot that everyone has 100 ms as
shown in Fig. 4. Then we add a function as in Algorithm 2
executed every 100 ms to allocate timeslice for next 100 ms.
The dedicate time slice for vGPU in every 100 ms will also
plus the remaining time slice from last 100 ms to make more
fairness. To ensure that the schedule time residue does not

1376 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

accumulate somuch that it messes the scheduling, the sched-
ule info of VMs will be reset according to capacity every 1 s,
as the target is accurate at the one-second level, no need fur-
ther incremental. Our algorithm about when to pick up next
vGPU is the same to original logic. In the scheduling logic,
the triggered scheduler selects the first VM that still has allo-
cated time slice left as the activating target. And the skipped
VM should wait for the next 100 ms scheduling cycle to be
served.

Algorithm 2.The Dynamic Timeslice Allocation Procedure

Input: struct vGPU_list vgpu_queue; SCHED_PERIOD = 1 s;
SMOOTH_PERIOD = 100 ms;

1: static u64 stage_check;
2: int stage = stage_check++%10;
3: for vgt in vgpu_queue {
4: if (stage == 0) {
5: vgt!max_timeslice = SCHED_PERIOD � vgt!cap;
6: vgt! timeslice = SMOOTH_PERIOD � vgt!cap;
7: } else {
8: vgt! timeslice += SMOOTH_PERIOD � vgt!cap;
9: }
10: }

Algorithm 3. The Next vGPU Pickup

Input: struct vGPU_sche_info �cur_vgpu
1: struct vGPU_sche_info �next_vgpu = cur_vgpu;
2: do {
3: next_vgpu = next_vgpu! next;
4: if (next_vgpu! timeslice > 0) {
5: break;
6: }
7: } while (next_vgpu ! ¼ cur_vgt);
8: if (cur_vgpu! cap> 0 && next_vgpu == cur_vgpu) {
9: return dom0;
10: }
11: return next_vgpu

4 EVALUATION

We then evaluate the gOver solution to verify the function of
our GPU virtualization and the performance of our oversub-
scription method in this section. First, we list the system con-
figurations about the hardware and software adopted in the
following experiments. Second, we analyze the typical char-
acteristics of GPUworkloads to illustrate the reason why it is
necessary to introduce our gOver strategy. After that, the pro-
posed experiments compare our dynamic GPU oversubscrip-
tion with non-oversubscribed GPU virtualization and static

oversubscription as follows. Unlike these two approaches,
the modifiedGPU virtualizationwith dynamic oversubscrip-
tion emphasizes a tradeoff between benefits and quality of
services in a shared system. Our strategy has better economic
efficiency andQoS guarantee under the dynamic control.

4.1 Experimental Setup

Configurations are all listed in Table 1. We use the Intel NUC
Kit NUC5i5MYHE with extra AGP aperture as the basic
platform for experiments. The CPU processor is the 5th gen-
eration Intel Core processor i5-5300 U 2.30 GHz based on
the Broadwell architecture with the integration of Intel HD
Graphics 5500. The memory ram is 16 GB. Our enhanced
version is developed over the Intel vGPU solution GVT-g
2016q4 in Xen 4.3.0. Also, newer Xen versions are also
acceptable for our mechanism after we patch them with the
GVT-g modification. The kernel part of this project is forked
from Linux kernel v4.3.0 to support the GPU virtualization.
We install Ubuntu 16.04 LTS as the operation system of
hypervisor for virtualization system management. We
choose this long-term support version for its stability,
although newer OS version can hardly affect the evaluation
behavior. Each guest is configured with 2 GB memory and
the same Ubuntu system. In this GPU virtualization solu-
tion, the device emulation environment is QEMU-based,
which provides the device model and the display console.

Benchmarks are chosen as glxgears [37], glmark2 [38] and
plot3D [39] under GVT-g, which is an open-sourced GPU
virtualization platform enabling modification for support-
ing fine-grained context scheduling and monitoring. Only
in such GPU virtualization implementation that our gOver
strategy can be precisely evaluated and sampled. The three
benchmarks represent different GPU workloads in cloud
computing. The first benchmark display continuous scene
with three rotating gears and no other changes. It is an
ultra-lightweight test program. If both the graphical card
and driver work well, the gears will rotate fast. The second
3D benchmark compares the different features and exten-
sions of OpenGL by rendering more than a dozen scenes
and output undulating FPS values. It has an unstable per-
formance with irregular loads of heavy and light tasks. The
third workload renders a revolving 3D terrain shape
through an overlook perspective. This workload acts as a
periodic task with a regular pattern. The graphics display
window is scalable. To ensure that the window size does

Fig. 4. The scheduling period design.

TABLE 1
System Configurations

Mainboard Platform Configuration

Hardware

Platform Intel NUC Kit NUC5i5MYHE
CPU Intel Core i5-5300 U 2.30 GHz
Memory RAM 16GB
Graphics Card Intel HD Graphics 5500

Software
Platform Xen 4.3.0
Kernel Linux 4.3.0
Operating System Ubuntu 16.04 LTS

VM
Memory RAM 2 GB
Kernel Linux 4.3.0
Operating System Ubuntu 16.04 LTS

YAO ETAL.: ECONOMY-ORIENTED GPU VIRTUALIZATIONWITH DYNAMIC AND ADAPTIVE OVERSUBSCRIPTION 1377

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

not affect FPS, we take 960 � 720 resolution as the default
option. These mentioned benchmark workloads are chosen
under the limitation of Intel GPU virtualization platform on
performance and interface support. As a result, there are
only a limited group of workloads with appropriate com-
plexity which can be selected.

Methodology is designed from the unpredictable point of
cloud workloads. We have implemented a testing mecha-
nism that continues submitting random tasks to each idle
VM as an interference effect. In such a situation, all the VMs
contend with each other for the resource of physical GPU.
And the scheduling strategy ensure that task processing
procedures of all the VMs are concurrent. We test the aver-
age GPU utilization and service QoS under three virtualiza-
tion solutions, the original gVirt, our gOver modification,
and the static oversubscription. During running time, we
collect the vGPU utilization and QoS values for analysis on
economic efficiency. Apart from the initial cap definition,
the other configuration parameters are all set the same in all
the following evaluations. Also, to avoid the initialization
disturbance may happen at the beginning period, all the
testing workloads are repeated three times in the execution.
Then the evaluation results illustrated below are the aver-
age record of multiple repetitions. In addition, other prior
solutions about GPU scheduling can hardly be compared
with our mechanism in a normalized situation because
these solutions were usually constructed in a non-virtual-
ized environment, or realized virtualization through API
forwarding on closed-sourced platform.

4.2 Workload Property Analysis

Before the experiment properly starts, we need a detailed
analysis of the properties of possible workloads to prove the
necessity of adopting oversubscription inGPUvirtualization.
We only create one virtual machine on the physical server
and allocate a series of GPU capacity values to the VM to run
benchmarks, meanwhile, we record the vGPU utilization and
FPS every second. Figs. 5 and 6 show the changes of vGPU
utilization and FPS in different GPU capacities respectively.
From the data analysis of three representative GPU bench-
marks, we can easily find that different workloads are signifi-
cantly different in resource requirement to reach the same
QoS level and theQoS exceeds their necessity inmost case.

First we come to the vGPU utilization curve of glxgears
in constant GPU capacity levels of 8%, 15%, 20%, 50% as
depicted in Fig. 5a. In the graph, theX-axis refers to the run-
time time point record, and the Y -axis refers to the corre-
sponding utilization record of the vGPU status. Obviously,
there is an inverse correlation relation between the vGPU
utilization and GPU capacity of the VM. The larger GPU
capacity, the lower vGPU utilization. When we allocate half
of the physical GPU resource to run glxgears, its utilization
even cannot reach 20% all the time. That means it does not
take that many resources to render graphics. We then come
to the FPS curve of glxgears in Fig. 6a. In this figure, the
X-axis refers to the vGPU capacity allocation recorded as
percentage, and the Y -axis refers to the relevant FPS record.
We have conducted a series of capacity values to observe
the FPS changes along with time. The broken line in this

Fig. 5. vGPU resource share of a) glxgears, b) glmark2 and c) plot3D under different capacity constraints. The red dotted line indicates the vGPU
overload.

Fig. 6. Workload FPS of a) glxgears, b) glmark2 and c) plot3D under different capacity constraints. The red dotted line indicates the FPS demands of
three benchmarks.

1378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

figure refers to the average FPS level under different capac-
ity constraints. In addition, the error bar refers to the
recorded upper and lower bound of FPS value in the whole
execution period. As the error bars show, it seems that the
FPS record still has vibrations even if the GPU capacity is a
constant configuration.

According to the figure, the relationship between the
capacity allocation and the workload FPS follows a high-
fitting linear relation if the capacity share is under 15%,
which is an appropriate configuration range. However,
workload FPS becomes stable when capacity exceeds 15%,
which is another piece of evidence for the fact that
glxgears are a low-footprint application. If GPU virtualiza-
tion is in the form of average resources allocation among
VMs, the VM running glxgears tasks will waste a lot of
GPU time slices.

And the second workload example is glmark2. The
Fig. 5b illustrates the vGPU utilization record under 3 con-
stant GPU capacity configuration levels, that is, 30%, 50%
and 70%. The vGPU utilization is at a good level when the
allocated capacity is more than 50%. Form the curve of 30%,
we can find that the vGPU utilization is generally higher
than 80% and even exceeds 95% several times which is a
vGPU overload signal. At the same time, according to the
corresponding runtime FPS in Fig. 6b, the FPS is obviously
vibrating and always lower than 100 which is far away from
the standard value of glmark2. So the demand for GPU
resources of glmark2 is at a relatively high level than
glxgears. That is also the reason why fair GPU allocation is
detrimental for heavy tasks in cloud computing. We can see
in the 50% situation in Fig. 6b, the average FPS is 304.9, but
the vibration can be from 214 to 350. It violates the service
quality requirement for quite a while where should be pro-
visionally allocated more than 50% capacity. That is the rea-
son why our gOver dynamic oversubscription is necessary
for GPU virtualization.

Also, compared with the vGPU utilization of plot3D in
Fig. 5c, we can see that for the same 50% capacity, the
glxgears uses only 20% and the glmark2 use less than 50%,
but plot3D uses more than 90% vGPU resources which is a
serious danger sign. Also, under the same QoS level that the
FPS target is 30, we know that the workload plot3D requires
about 50% GPU share from the data in Fig. 6c, which is a
required value about 7 times comparing to the glxgears
workload. Supposing that we allocate the same share of
GPU resource to the three workloads mentioned above, the
plot3D never reaches the pleasant QoS target. However, the
workload glxgears usually occupies more resource than
enough. This is a clear evidence of the necessity to the
gOver.

4.3 Performance Analysis

We then focus on the experiment results about our gOver
GPU capacity allocation strategy with dynamic oversub-
scription reflected from the graphs and the descriptions in
this section. After that, the improvement compared to the
resource scheduling strategies based on traditional GPU vir-
tualization with the static GPU oversubscription should be
discussed. Based on the illustrated records, the necessity
and the advantage of our solution with dynamic oversub-
scription can be solidly reflected.

4.3.1 Comparison With gVirt

The traditional gVirt solution schedules the vGPU contexts
under a fair strategy, where each context get the same
resource allocation share. First, we can have a glance at
Fig. 7, which illustrates the total physical GPU utilization
variations in a time period under our gOver system and tra-
ditional gVirt solution. Based on the gVirt kernel system,
we generate three virtual machines and randomly assign
one workload from benchmarks mentioned above to each of
them. In this scenario, we use the Intel GPU tools [40] to
select the total physical GPU utilization on the hypervisor.
From the gVirt line in Fig. 7, we can see that although the
utilization is relatively flat, the overall level is lower than
60%, which indicates that the physical GPU is not fully lev-
eraged. The random workloads assignment conforms to the
real cloud environment. The average GPU utilization of
three workloads is 57.4%, which indicates GPU is idle and
wasted for nearly half the time. Based on our gOver modifi-
cation to gVirt, we generate two virtual machines with a
50% capacity at first and then conduct monitoring and
adaptive overselling. From the gOver line, we know that
the overselling behavior happens at about 20 s, 70 s, 140 s,
and 160 s. The co-hosting VMs in the physical server is
growing from 2 to 6 at the end. From the GPU utilization
varying under gOver system, we can find that it is lower
than gVirt at the beginning, but soon rise to 60%, then con-
tinue to climb along with the increased overbooking ratio,
and achieve about 95% at last. The average GPU utilization
is about 76.4% under gOver system, achieving an improve-
ment of 20 percent. The overbooking ratio means the over
published GPU capacities over 100%, to be specific, the ratio
3 scenario represents we publish 300% GPU capacity with 6
VMs. In our gOver system, the GPU overbooking ratio
increases from 1 to 3 and the income surpasses traditional
gVirt solution by nearly 20%.

4.3.2 Comparison With Static Oversubscription

The offline static oversubscription method usually sets the
overbooking ration based on experience before the physical
server releases. We conduct four groups of experiments on
the overbooking ratio at 1.5, 2, 3 and 4. And then we assign
random workloads to run under these four ratios. We calcu-
late the average GPU utilization and QoS broken time pro-
portion in 5 minutes which is enough to represent the overall
result. From the experimental results showed in Fig. 8, we see
that the GPU utilization is unsatisfactory when overbooking

Fig. 7. The comparison on vGPU utilization between gVirt (traditional
allocation) and gOver.

YAO ETAL.: ECONOMY-ORIENTED GPU VIRTUALIZATIONWITH DYNAMIC AND ADAPTIVE OVERSUBSCRIPTION 1379

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

ration is lower than 3, but when we set a higher ratio above 3,
it seems that the QoS guarantee during more than 50% of the
five-minute evaluation time may be broken, which means
that the service QoS level is severely failed. Since the vGPU
resource utilization has reached a considerable level under 3
and 4 overselling ratios, the QoS contravention possibility is
unacceptable for the cloud service providers, because the
possible oversell profit can hardly cover the contract violation
compensation claimed by the customers. By our overload
detection and immediate mitigation to do adaptive oversub-
scription in GPU driver, we can both achieve high-level
vGPU resource utilization up to 95% and keep the FPS value
in control with a broken time less than 1%, which is imper-
ceptible to customers. We select the FPS curve of glmark2
under our gOver system and the overbooking ratio of 1.5
which is seemly optimal to be a static setting in Fig. 9. The
glmark2 is allocated 33% GPU resources under overselling
factor of 1.5. In our gOver solution, the GPU capacity allo-
cated to glmark2 is always changing along with the work-
loads environments on the physical server. From the curve of
over ratio 1.5, we find out the result that the recorded execu-
tion FPS of workload glmark2 declines during the period
between 110 s an 230 s. This reflects the fact that the per-frame
rendering tasks in this time period require more vGPU
resource than the allocated 33% vGPU share. Although over-
subscription is exploited to earn more economic interests, the
static overselling ratio is inflexible to the changeful cloud
workload. So our adaptive overselling strategy results in
good performance with well-pleasing FPS hold as the gOver
curve shows. Obviously, this evaluation results illustrate that
this system can cope with significant workload behavior
change in the whole time period. Since our gOver solution
provides dynamic GPU resource allocation adjustment dur-
ing the execution, the resource utilization can be improved
and the user QoS level can be guaranteed according to the
optimization target.

4.4 Analysis on Economic Efficiency and QoS

Our next experiment compares the economic efficiency and
QoS of the light-fit, heavy-fit and random workloads place-
ment at the physical server of our gOver system. The light-
fit placement allocates glxgears on all published VMs and
the heavy-fit placement allocates glmark2 on all published
VMs. The overselling number of VMs is up to 6 when run-
ning lightweight tasks at all VMs, but there is no overselling
behavior happening when running heavyweight tasks on
VMs. So the economic efficiency of the light-fit case can

achieve six times over heavy-fit case. By building our gOver
kernel system, we can get very high economic efficiency
within one physical server when there are light workloads
in the cloud environment. But in reality, there are always
co-hosting heavy and light VMs on a physical machine. The
cloud workloads are fluctuating along with time as random
workload placement method. We conduct five times of ran-
dom benchmark allocation experiments and get the average
overselling number of VMs is also up to 4, which is a con-
siderable benefit over non-oversubscribed GPU virtualiza-
tion solution.

5 DISCUSSION

Since the GPU efficiency can have significant improvement
in the situation that multiple workloads running on one
GPU with the proposed gOver solution, it may be difficult
to estimate precisely the actual average performance benefit
that a cloud platform with our strategy applied. The fact is
that even the same benchmark with slightly modified
parameters may result in different practical evaluation data
record. To ensure effectiveness and safety, some parameters
of the overload mitigation procedure need to be adjusted
according to a real cloud environment. Our experiments are
based on one physical GPU which can only accommodate
very few VMs and cannot conduct VM migration to handle
overload emergency. For plenty of servers in the cloud,
gOver can perform better due to more resource coordina-
tion. With the help of oversubscription, the resource alloca-
tion efficiency of the virtualized GPU can have a significant
improvement in the cloud.

In this paper, our introduced benchmarks are all graphic
workloads and then the evaluations are all processed with
the scheduling in graphic GPU mode. However, the Intel
GPU supports the GPGPU functionality interfaces such as
OpenCL to act as a GPGPU device. In this scenario, there is
no change on the behavior of the GVT-g GPU virtualization.
That is to say, our proposed gOver mechanism allows the
GPGPU workload scheduling and performance optimiza-
tion if necessary. But the FPS can no longer be used as the
performance quality metric for monitoring in this case. In
this situation, processed unit task count per interval should
be a better choice for performance metric.

Currently, only the Intel graphics processor platform can
be supported by the proposed gOver implementation.
Other industrial GPU vendors include Nvidia and AMD
never publish the open-source version of their GPU driver

Fig. 8. Average GPU Utilization and FPS broken time under different
static oversubscription ratios and gOver stragety. Fig. 9. The FPS variation in comparison of gOver and 1.5 overbooking

ratio.

1380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

software. As a result, we cannot modify the proposed gOver
implementation for the compatibility on such GPU plat-
forms. However, the principle and the concept which con-
struct our design are applicable even if the architectures are
different. It is obvious that the concept of GPU oversub-
scription can always be practical in improving scheduling
efficiency among multiple VM contexts. Since we just aim at
virtual server GPU resources in this paper, it can be a gen-
eral scheduling strategy among various accelerator compu-
tation platforms such as GPGPUs and AI-specific chips.
Actually, if some loss on the controlling granularity is toler-
able, it is able to migrate and deploy our mechanism to the
platforms provided by other vendors with no support of
open-source device driver. In the platforms from the ven-
dors like NVIDIA and AMD, we can still construct similar
scheduling system with user-space function-library level
control under the task level granularity.

Also, according to our knowledge, currently vendors like
NVIDIA provide GPU virtualization functionalities, but the
available resource scheduling policies in such virtualization
still remain trivial, including FIFO and round-robin, and all
the resource share configurations are statically fixed. Obvi-
ously, with the development of GPU performance, the sig-
nificance of gOver method will become more and more
important for general-purpose applications.

6 RELATED WORK

To support multi-user sharing in business applications, many
pieces of research have been conducted to realize GPU
resource virtualization and improve its performance. The
Intel GPU virtualization solution offers the virtual GPU con-
texts to the virtual machines with GPU resource requirement
by employing mediated pass-through technology, where
VMs candirectly access hardware source in performance criti-
cal operations while being trapped and emulated by hypervi-
sor when executing privileged instructions [31]. Next, the
Ballooning technique [41] and the gScale [42] are the examples
which improve the GPU virtualization performance by mem-
ory optimizations. Along with these researches, [43], [44], [45]
are examples of other GPU resource allocation optimization
works. Even though the GPU virtualization technology has
already got some practical design and come to mature imple-
mentation in some area, reaching a high-level virtual GPU
resource utilization is still challenging in the cloud for custom-
er’s overestimation of their demands. There are many mature
researches in the area of oversubscribed cloud computing
about memory [3], CPU [4], [15], bandwidth [5], [6], stor-
age [15] and power [7]. However, there appears to be a gap in
the study onGPUoversubscription due to the complex sched-
uling of virtualizedGPU.

Comparedwith the similar researches recently proposed on
GPU scheduling, resource oversubscription andGPU resource
virtualization, the strategy proposed in our research aims at
the effect on economic profit and resource utilization perfor-
mance when introducing oversubscription schema into GPU
resource scheduling. Also, in our research, the scheduled GPU
resources are virtualized and shared among multiple virtual
machine instances. With the help of the open-sourced Intel
platform, our scheduling strategy can dynamically control the
GPU device in a fine-grained time-slot level. The mentioned

studies above for GPU resource scheduling usually pay more
attention to the non-virtualized task-level GPU scheduling, or
implement the virtual GPU controlling on the function library
level in a solution based onAPI forwarding design. These proj-
ects cannot offer the virtual GPU controlling in the time-slice
granularity. Also, the oversubscription schema that our
research introduces takes the economic profit of service pro-
vider as the target while considering resource utilization and
user QoS improvement when designing the optimization. This
optimization target may have some differences from other
researches.

7 CONCLUSION

In this paper, we have developed an adaptive GPU oversub-
scription technology gOver according to the open-source Intel
GPU virtualization solution. This technology applies to the
datacenters which provide virtualized GPU computing ser-
vice. We introduce three collaborated modules to fulfill
dynamic capacity allocation under GPU oversubscription.
First, the monitoring module is in charge of calculating
real-time vGPU load conditions. Then, the oversubscription
module decides whether to oversell newVMs based onmoni-
toring data. It also takes timelymeasures to mitigate overload
by adjusting GPU allocation among VMs. We design and
implement a controller to reset the cap authorized to each VM
according to mitigation measures. At last, the static time-
based scheduling is upgraded with adaptive capacity alloca-
tion according to real-time vGPU utilization and QoS of VMs.
The maximum GPU resource authorized to each VM will be
calculated at the beginning of every scheduling period. This
adaptive and dynamic oversubscription schema satisfies
interests of cloud providers and provides QoS guarantee for
customers at the same time. The evaluation shows that our
gOver performs 20% improvement on economic efficiency
compared to traditional GPU virtualization and much better
QoS control over static oversubscriptionmethod.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
constructive comments and feedback that greatly helped us
improve the final paper.

REFERENCES

[1] F. Lombardi and R. Di Pietro, “Secure virtualization for cloud
computing,” J. Netw. Comput. Appl., vol. 34, pp. 1113–1122, 2011.

[2] L. Tom�as and J. Tordsson, “Improving cloud infrastructure utili-
zation through overbooking,” in Proc. 2013 ACM Cloud Autonomic
Comput. Conf., 2013, Art. no. 5.

[3] M. R. Hines, A. Gordon, M. Silva, D. Da Silva, K. Ryu, andM. Ben-
Yehuda, “Applications know best: Performance-driven memory
overcommit with ginkgo,” in Proc. IEEE 3rd Int. Conf. Cloud Com-
put. Technol. Sci., 2011, pp. 130–137.

[4] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Virtual machine
migration in an over-committed cloud,” in Proc. IEEE Netw. Opera-
tions Manage. Symp., 2012, pp. 196–203.

[5] N. Jain, I. Menache, J. S. Naor, and F. B. Shepherd, “Topology-
aware VM migration in bandwidth oversubscribed datacenter
networks,” in Proc. Int. Colloq. Automata Lang. Programm., 2012,
pp. 586–597.

[6] D. Breitgand and A. Epstein, “Improving consolidation of virtual
machines with risk-aware bandwidth oversubscription in com-
pute clouds,” in Proc. IEEE Int. Conf. Comput. Commun., 2012,
pp. 2861–2865.

YAO ETAL.: ECONOMY-ORIENTED GPU VIRTUALIZATIONWITH DYNAMIC AND ADAPTIVE OVERSUBSCRIPTION 1381

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

[7] X. Fu, X. Wang, and C. Lefurgy, “Howmuch power oversubscrip-
tion is safe and allowed in data centers,” in Proc. 8th ACM Int.
Conf. Autonomic Comput., 2011, pp. 21–30.

[8] Amazon EC2 elastic GPU. 2016. [Online]. Available: https://
amazonaws-china.com/cn/ec2/elastic-gpus/

[9] Alibaba cloud elastic GPU service. 2016. [Online]. Available:
https://www.alibabacloud.com/product/gpu

[10] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding of
oversubscription in cloud,” in Proc. 2nd USENIX Workshop Hot
Topics Manage. Internet, Cloud, Enterprise Netw. Serv., 2012,
Art. no. 7.

[11] H. Huang et al., “Towards exploiting CPU elasticity via efficient
thread oversubscription,” in Proc. 30th Int. Symp. High-Perform.
Parallel Distrib. Comput., 2021, pp. 215–226. [Online]. Available:
https://doi.org/10.1145/3431379.3460641

[12] I. S. Moreno and J. Xu, “Neural network-based overallocation for
improved energy-efficiency in real-time cloud environments,” in
Proc. IEEE 15th Int. Symp. Object/Component/Service-Oriented Real-
Time Distrib. Comput., 2012, pp. 119–126.

[13] H. Zhou, J. Yao, H. Guan, and X. Liu, “Comprehensive understand-
ing of operation cost reduction using energy storage for IDCs,” in
Proc. IEEE Int. Conf. Comput. Commun., 2015, pp. 2623–2631.

[14] I. S. Moreno and J. Xu, “Customer-aware resource overallocation
to improve energy efficiency in realtime cloud computing data
centers,” in Proc. IEEE Int. Conf. Service-Oriented Comput. Appl.,
2011, pp. 1–8.

[15] R. Yang et al., “Performance-aware speculative resource oversub-
scription for large-scale clusters,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 7, pp. 1499–1517, Jul. 2020.

[16] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proc. USENIX Annu. Tech. Conf., 2005, Art. no. 41.

[17] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ort�ı,
“rCUDA: Reducing the number of GPU-based accelerators in
high performance clusters,” in Proc. Int. Conf. High Perform. Com-
put. Simul., 2010, pp. 224–231.

[18] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU accelerated high per-
formance computing in virtual machines,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process., 2009, pp. 1–11.

[19] C. R. F. Silla, S. Iserte, and J. Prades, “On the benefits of the remote
GPU virtualization mechanism: The rCUDA case,” Concurrency
Comput.: Pract. Exp., vol. 29, no. 13, pp. 1–29, 2017.

[20] C. R. S. Iserte, J. Prades, and F. Silla, “Transparent I/O-aware GPU
virtualization for efficient resource consolidation,” in Proc. 16th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., 2016, pp. 131–140.

[21] V. Gupta et al., “GViM: GPU-accelerated virtual machines,” in
Proc. 3rd ACM Workshop Syst.-Level Virtualization High Perform.
Comput., 2009, pp. 17–24.

[22] C. H. Hong, I. Spence, and D. S. Nikolopoulos, “FairGV: Fair and
fast GPU virtualization,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 12, pp. 3472–3485, Dec. 2017.

[23] H. Yu, A.M. Peters, A. Akshintala, and C. J. Rossbach, “AvA: Accel-
erated virtualization of accelerators,” in Proc. 25th Int. Conf. Architec-
tural Support Program. Lang. Oper. Syst., 2020, pp. 807–825. [Online].
Available: https://doi.org/10.1145/3373376.3378466

[24] C. Smowton, “Secure 3D graphics for virtual machines,” in Proc.
2nd Eur. Workshop Syst. Secur., 2009, pp. 36–43.

[25] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. De Lara,
“VMM-independent graphics acceleration,” in Proc. 3rd Int. Conf.
Virtual Execution Environ., 2007, pp. 33–43.

[26] M. Dowty and J. Sugerman, “GPU virtualization on vmware’s
hosted I/O architecture,” ACM SIGOPS Oper. Syst. Rev., vol. 43,
pp. 73–82, 2009.

[27] N. M. Gonzalez and T. Elengikal, “Transparent I/O-aware GPU
virtualization for efficient resource consolidation,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2021, pp. 131–140.

[28] D. Abramson et al., “Intel virtualization technology for directed I/
O,” Intel Technol. J., vol. 10, no. 3, pp.179–192, 2006.

[29] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, and Y. Jiang,
“Towards high-quality I/O virtualization,” in Proc. Israeli Exp.
Syst. Conf., 2009, Art. no. 12.

[30] L. Xia, J. Lange, P. Dinda, and C. Bae, “Investigating virtual pass-
through I/O on commodity devices,” ACM SIGOPS Operating
Syst. Rev., vol. 43, pp. 83–94, 2009.

[31] K. Tian, Y. Dong, and D. Cowperthwaite, “A full GPU virtualiza-
tion solution with mediated pass-through,” in Proc. USENIX Conf.
USENIX Annu. Tech. Conf., 2014, pp. 121–132.

[32] Igvtg-kernel. 2016. [Online]. Available: https://github.com/intel/
Igvtg-kernel/tree/2016q4–4.3.0

[33] Q. Lu et al., “gMig: Efficient vGPU live migration with overlapped
software-based dirty page verification,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 31, no. 5, pp. 1209–1222, May 2020.

[34] Q. Lu, J. Yao, H. Guan, and P. Gao, “gQoS: A QoS-oriented GPU
virtualization with adaptive capacity sharing,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 4, pp. 843–855, Apr. 2020.

[35] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: Archi-
tecture and performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21,
Jul./Aug. 2013.

[36] S. Wang and S. Dey, “Rendering adaptation to address communi-
cation and computation constraints in cloud mobile gaming,” in
Proc. IEEE Glob. Telecommun. Conf., 2010, pp. 1–6.

[37] glxgears, 2019. [Online]. Available: https://github.com/
mattn/go-glxgears

[38] glmark2, 2020. [Online]. Available: https://github.com/
glmark2/glmark2

[39] plot3d, 2019. [Online]. Available: http://www.geeks3d.com/
gputest/

[40] intelgputools, 2020. [Online]. Available: https://github.com/
mkuoppal/intel-gpu-tools

[41] Y. Dong, M. Xue, X. Zheng, J. Wang, Z. Qi, and H. Guan,
“Boosting GPU virtualization performance with hybrid shadow
page tables,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2015,
pp. 517–528.

[42] M. Xue et al., “gScale: Scaling up GPU virtualization with
dynamic sharing of graphics memory space,” in Proc. USENIX
Conf. Annu. Tech. Conf., 2016, pp. 579–590.

[43] J. Yao, Q. Lu, H.-A. Jacobsen, and H. Guan, “Robust multi-resource
allocation with demand uncertainties in cloud scheduler,” in Proc.
IEEE 36th Symp. Reliable Distrib. Syst., 2017, pp. 34–43.

[44] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers,” in Proc.
22nd Int. Conf. Architectural Support Program. Lang. Oper. Syst.,
2017, pp. 17–32.

[45] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of service support for fine-grained sharing on GPUs,” in
Proc. 44th Annu. Int. Symp. Comput. Archit., 2017, pp. 269–281.

Jianguo Yao (Senior Member, IEEE) received the
BE, ME and the PhD degrees from the Northwest-
ern Polytechnical University (NPU), Xian, Shaanxi,
China, in 2000, 2007, and 2010, respectively. Cur-
rently, he is a professor and associate dean of the
School of Software, Shanghai Jiao Tong University,
and the director of SJTU-Enflame Joint Lab. His
research interests are cloud computing, virtualiza-
tion, and industrial Big Data.

Qiumin Lu received theME degree from Jiao Tong
University, Shanghai, China, in 2017. Currently, he
is working toward the graduate degree with the
Shanghai Key Laboratory of Scalable Computing
and Systems, School of Software, Shanghai Jiao
Tong University. His research interests mainly
include GPU virtualization, feedback control appli-
cations, and concurrent programming.

Run Tian received the ME degree from Jiao Tong
University, Shanghai, China, in 2019. She is cur-
rently working toward the graduate degree with
the Shanghai Key Laboratory of Scalable Com-
puting and Systems, School of Software, Shang-
hai Jiao Tong University. Her research interests
mainly include GPU virtualization and oversub-
scription resource scheduling.

1382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

https://amazonaws-china.com/cn/ec2/elastic-gpus/
https://amazonaws-china.com/cn/ec2/elastic-gpus/
https://www.alibabacloud.com/product/gpu
https://doi.org/10.1145/3431379.3460641
https://doi.org/10.1145/3373376.3378466
https://github.com/intel/Igvtg-kernel/tree/2016q4--4.3.0
https://github.com/intel/Igvtg-kernel/tree/2016q4--4.3.0
https://github.com/mattn/go-glxgears
https://github.com/mattn/go-glxgears
https://github.com/glmark2/glmark2
https://github.com/glmark2/glmark2
http://www.geeks3d.com/gputest/
http://www.geeks3d.com/gputest/
https://github.com/mkuoppal/intel-gpu-tools
https://github.com/mkuoppal/intel-gpu-tools

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Uni-
versity of New York. He is also a National distin-
guished professor with Hunan University, China.
His current research interests include cloud com-
puting, fog computing and mobile edge computing,
energy-efficient computing and communication,
embedded systems and cyber-physical systems,
heterogeneous computing systems, Big Data com-
puting, high-performance computing, CPU-GPU
hybrid and cooperative computing, computer archi-

tectures and systems, computer networking, machine learning, intelligent
and soft computing. He has authored or coauthored more than 860 journal
articles, book chapters, and refereed conference papers, and has received
several best paper awards. He is currently an associate editor of the ACM
Computing Surveys and theCCFTransactions onHighPerformanceCom-
puting. He is a Member of Academia Europaea (Academician of the Acad-
emy of Europe).

Haibing Guan received the PhD degree from
Tongji University, in 1999. He is a professor of the
School of Electronic, Information and Electronic
Engineering, Shanghai Jiao Tong University, and
the director of the Shanghai Key Laboratory of
Scalable Computing and Systems. His research
interests include distributed computing, network
security, network storage, green IT, and cloud
computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

YAO ETAL.: ECONOMY-ORIENTED GPU VIRTUALIZATIONWITH DYNAMIC AND ADAPTIVE OVERSUBSCRIPTION 1383

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 17,2023 at 23:53:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

