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Abstract—With the emergence of the big data age, the issue of how to obtain valuable knowledge from a dataset efficiently and

accurately has attracted increasingly attention from both academia and industry. This paper presents a Parallel Random Forest (PRF)

algorithm for big data on the Apache Spark platform. The PRF algorithm is optimized based on a hybrid approach combining data-

parallel and task-parallel optimization. From the perspective of data-parallel optimization, a vertical data-partitioning method is

performed to reduce the data communication cost effectively, and a data-multiplexing method is performed is performed to allow the

training dataset to be reused and diminish the volume of data. From the perspective of task-parallel optimization, a dual parallel

approach is carried out in the training process of RF, and a task Directed Acyclic Graph (DAG) is created according to the parallel

training process of PRF and the dependence of the Resilient Distributed Datasets (RDD) objects. Then, different task schedulers are

invoked for the tasks in the DAG. Moreover, to improve the algorithm’s accuracy for large, high-dimensional, and noisy data, we

perform a dimension-reduction approach in the training process and a weighted voting approach in the prediction process prior to

parallelization. Extensive experimental results indicate the superiority and notable advantages of the PRF algorithm over the relevant

algorithms implemented by Spark MLlib and other studies in terms of the classification accuracy, performance, and scalability. With the

expansion of the scale of the random forest model and the Spark cluster, the advantage of the PRF algorithm is more obvious.

Index Terms—Apache spark, big data, cloud computing, data parallel, random forest, task parallel
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1 INTRODUCTION

1.1 Motivation

WITH the continuous emergence of a variety of new
information dissemination methods, and the rise of

cloud computing and Internet of Things (IoT) technologies,
data increase constantly with a high speed. The scale of
global data continuously increases at a rate of 2 times every
two years [1]. The application value of data in every field is
becoming more important than ever. There exists a large
amount of worthwhile information in available data.

The emergence of the big data age also poses serious prob-
lems and challenges besides the obvious benefits. Because of

business demands and competitive pressure, almost every
business has a high demand for data processing in real-time
and validity [2]. As a result, the first problem is how to mine
valuable information frommassive data efficiently and accu-
rately. At the same time, big data hold characteristics such as
high dimensionality, complexity, and noise. Enormous data
often hold properties found in various input variables in
hundreds or thousands of levels, while each one of them
may contain a little information. The second problem is to
choose appropriate techniques thatmay lead to good classifi-
cation performance for a high-dimensional dataset. Consid-
ering the aforementioned facts, data mining and analysis for
large-scale data have become a hot topic in academia and
industrial research.

The speed of data mining and analysis for large-scale data
has also attracted much attention from both academia and
industry. Studies on distributed and parallel data mining
based on cloud computing platforms have achieved abun-
dant favorable achievements [3], [4]. Hadoop [5] is a famous
cloud platform widely used in data mining. In [6], [7], some
machine learning algorithms were proposed based on the
MapReduce model. However, when these algorithms are
implemented based on MapReduce, the intermediate results
gained in each iteration arewritten to theHadoopDistributed
File System (HDFS) and loaded from it. This costs much time
for disk I/O operations and also massive resources for com-
munication and storage. Apache Spark [8] is another good
cloud platform that is suitable for datamining. In comparison
with Hadoop, a Resilient Distributed Datasets (RDD) model
and a Directed Acyclic Graph (DAG) model built on a mem-
ory computing framework is supported for Spark. It allows
us to store a data cache in memory and to perform computa-
tion and iteration for the same data directly from memory.
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The Spark platform saves huge amounts of disk I/O opera-
tion time. Therefore, it is more suitable for data mining with
iterative computation.

The Random Forest (RF) algorithm [9] is a suitable data
mining algorithm for big data. It is an ensemble learning
algorithm using feature sub-space to construct the model.
Moreover, all decision trees can be trained concurrently,
hence it is also suitable for parallelization.

1.2 Our Contributions

In this paper, we propose a Parallel Random Forest (PRF)
algorithm for big data that is implemented on the Apache
Spark platform. The PRF algorithm is optimized based on a
hybrid approach combining data-parallel and task-parallel
optimization. To improve the classification accuracy of PRF,
an optimization is proposed prior to the parallel process.
Extensive experiment results indicate the superiority of PRF
and depict its significant advantages over other algorithms
in terms of the classification accuracy and performance. Our
contributions in this paper are summarized as follows.

� An optimization approach is proposed to improve
the accuracy of PRF, which includes a dimension-
reduction approach in the training process and a
weighted voting method in the prediction process.

� A hybrid parallel approach of PRF is utilized to
improve the performance of the algorithm, combin-
ing data-parallel and task-parallel optimization. In
the data-parallel optimization, a vertical data-
partitioning method and a data-multiplexing method
are performed.

� Based on the data-parallel optimization, a task-
parallel optimization is proposed and implemented
on Spark. A training task DAG of PRF is constructed
based on the RDD model, and different task schedu-
lers are invoked to perform the tasks in the DAG.
The performance of PRF is improved noticeably.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 gives the RF algorithm
optimization from two aspects. The parallel implementation
of the RF algorithm on Spark is developed in Section 4.
Experimental results and evaluations are shown in Section 5
with respect to the classification accuracy and performance.
Finally, Section 6 presents a conclusion and future work.

2 RELATED WORK

Although traditional data processing techniques have
achieved good performance for small-scale and low-
dimensional datasets, they are difficult to be applied to
large-scale data efficiently [10], [11], [12]. When a dataset
becomes more complex with characteristics of a complex
structure, high dimensionality, and a large size, the accu-
racy and performance of traditional data mining algorithms
are significantly declined [13].

Due to the need to address the high-dimensional and
noisy data, various improvement methods have been intro-
duced by researchers. Xu [14] proposed a dimension-reduc-
tion method for the registration of high-dimensional data.
The method combines datasets to obtain an image pair with
a detailed texture and results in improved image registra-
tion. Tao et al. [15] and Lin et al. [16] introduced some classi-
fication algorithms for high-dimensional data to address the

issue of dimension-reduction. These algorithms use multi-
ple kernel learning framework and multilevel maximum
margin features and achieve efficient dimensionality reduc-
tion in binary classification problems. Strobl [17] and Ber-
nard [18] studied the variable importance measures of RF
and proposed some improved models for it. Taghi et al. [19]
compared the boosting and bagging techniques and pro-
posed an algorithm for noisy and imbalanced data. Yu et al.
[20] and Biau [21] focused on RF for high-dimensional and
noisy data and applied RF in many applications such as
multi-class action detection and facial feature detection, and
achieved a good effort. Based on the existing research
results, we propose a new optimization approach in this
paper to address the problem of high-dimensional and
noisy data, which reduces the dimensionality of the data
according to the structure of the RF and improves the algo-
rithm’s accuracy with a low computational cost.

Focusing on the performance of classification algorithms
for large-scale data, numerous studies on the intersection of
parallel/distributed computing and the learning of tree
models were proposed. Basilico et al. [22] proposed a
COMET algorithm based on MapReduce, in which multiple
RF ensembles are built on distributed blocks of data. Svore
et al. [23] proposed a boosted decision tree ranking algo-
rithm, which addresses the speed and memory constraints
by distributed computing. Panda et al. [24] introduced a
scalable distributed framework based on MapReduce for
the parallel learning of tree models over large datasets. A
parallel boosted regression tree algorithm was proposed in
[25] for web search ranking, in which a novel method for
parallelizing the training of GBRT was performed based on
data partitioning and distributed computing.

Focusing on resource allocation and task-parallel execu-
tion in a parallel and distributed environment, Warneke et al.
[26] implemented a dynamic resource allocation for efficient
parallel data processing in a cloud environment. Lena et al.
[27] carried out an energy-aware scheduling of MapReduce
jobs for big data applications. Luis et al. [28] proposed a
robust resource allocation of data processing on a heteroge-
neous parallel system, in which the arrival time of datasets
are uncertainty. Zhang et al. [29] proposed an evolutionary
scheduling of dynamic multitasking workloads for big data
analysis in an elastic cloud.Meanwhile, our team also focused
on parallel tasks scheduling on heterogeneous cluster and
distributed systems and achieved positive results [30], [31].

Apache Spark Mllib [32] parallelized the RF algorithm
(referred to Spark-MLRF in this paper) based on a data-paral-
lel optimization to improve the performance of the algorithm.
However, there exist many drawbacks in the Spark-MLRF.
First, in the stage of determining the best split segment for
continuous features, a method of sampling for each partition
of the dataset is used to reduce the data transmission opera-
tions. However, the cost of this method is its reduced accu-
racy. In addition, because the data-partitioning method in
Spark-MLRF is a horizontal partition, the data communica-
tion of the feature variable gain ratio (GR) computing is a
global communication.

To improve the performance of the RF algorithm and
mitigate the data communication cost and workload imbal-
ance problems of large-scale data in parallel and distributed
environments, we propose a hybrid parallel approach for
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RF combining data-parallel and task-parallel optimization
based on the Spark RDD and DAG models. In comparison
with the existing study results, our method reduces the vol-
ume of the training dataset without decreasing the algo-
rithm’s accuracy. Moreover, our method mitigates the data
communication and workload imbalance problems of large-
scale data in parallel and distributed environments.

3 RANDOM FOREST ALGORITHM OPTIMIZATION

Owing to the improvement of the classification accuracy for
high-dimensional and large-scale data, we propose an opti-
mization approach for the RF algorithm. First, a dimension-
reduction method is performed in the training process.
Second, a weighted voting method is constructed in the pre-
diction process. After these optimizations, the classification
accuracy of the algorithm is evidently improved.

3.1 Random Forest Algorithm

The random forest algorithm is an ensemble classifier algo-
rithm based on the decision tree model. It generates k differ-
ent training data subsets from an original dataset using a
bootstrap sampling approach, and then, k decision trees are
built by training these subsets. A random forest is finally
constructed from these decision trees. Each sample of the
testing dataset is predicted by all decision trees, and the
final classification result is returned depending on the votes
of these trees.

The original training dataset is formalized as S ¼
fðxi; yjÞ; i ¼ 1; 2; . . . ; N; j ¼ 1; 2; . . . ;Mg, where x is a sample
and y is a feature variable of S. Namely, the original training
dataset contains N samples, and there are M feature varia-
bles in each sample. The main process of the construction of
the RF algorithm is presented in Fig. 1.

The steps of the construction of the random forest algo-
rithm are as follows.

Step 1. Sampling k training subsets.

In this step, k training subsets are sampled from the origi-
nal training dataset S in a bootstrap sampling manner.
Namely, N records are selected from S by a random sam-
pling and replacement method in each sampling time. After
the current step, k training subsets are constructed as a col-
lection of training subsets STrain

STrain ¼ fS1; S2; . . . ; Skg:

At the same time, the records that are not to be selected in
each sampling period are composed as an Out-Of-Bag
(OOB) dataset. In this way, k OOB sets are constructed as a
collection of SOOB

SOOB ¼ fOOB1; OOB2; . . . ; OOBkg;
where k� N , Si

T
OOBi ¼ f and Si

S
OOBi ¼ S. To

obtain the classification accuracy of each tree model, these
OOB sets are used as testing sets after the training process.

Step 2. Constructing each decision tree model.

In an RF model, each meta decision tree is created by a
C4.5 or CART algorithm from each training subset Si. In the
growth process of each tree, m feature variables of dataset
Si are randomly selected from M variables. In each tree
node’s splitting process, the gain ratio of each feature vari-
able is calculated, and the best one is chosen as the splitting
node. This splitting process is repeated until a leaf node is
generated. Finally, k decision trees are trained from k train-
ing subsets in the same way.

Step 3. Collecting k trees into an RF model.

The k trained trees are collected into an RF model, which
is defined as

HðX;QjÞ ¼
Xk
i¼1

hiðx;QjÞ; ðj ¼ 1; 2; . . . ;mÞ; (1)

where hiðx;QjÞ is a meta decision tree classifier, X are the
input feature vectors of the training dataset, and Qj is an
independent and identically distributed random vector that
determines the growth process of the tree.

3.2 Dimension Reduction for High-Dimensional
Data

To improve the accuracy of the RF algorithm for the high-
dimensional data, we present a new dimension-reduction
method to reduce the number of dimensions according to
the importance of the feature variables. In the training pro-
cess of each decision tree, the Gain Ratio of each feature var-
iable of the training subset is calculated and sorted in
descending order. The top k variables (k�M) in the
ordered list are selected as the principal variables, and then,
we randomly select ðm� kÞ further variables from the
remaining ðM � kÞ ones. Therefore, the number of dimen-
sions of the dataset is reduced from M to m. The process of
dimension-reduction is presented in Fig. 2.

First, in the training process of each decision tree, the
entropy of each feature variable is calculated prior to the

Fig. 1. Process of the construction of the RF algorithm.

Fig. 2. Dimension-reduction in the training process.
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node-splitting process. The entropy of the target variable in
the training subset Si (i ¼ 1; 2; . . . ; k) is defined as

EntropyðSiÞ ¼
Xc1
a¼1
�pa log pa; (2)

where c1 is the number of different values of the target vari-
able in Si, and pa is the probability of the type of value a
within all types in the target variable subset.

Second, the entropy for each input variable of Si, except
for the target variable, is calculated. The entropy of each
input variable yij is defined as

EntropyðyijÞ ¼
X

v2V ðyijÞ

jSðv;iÞj
jSij EntropyðvðyijÞÞ; (3)

where the elements of Eq. (3) are described in Table 1.
Third, the self-split information IðyijÞ of each input vari-

able is calculated, as defined as

IðyijÞ ¼
Xc2
a¼1
�pða;jÞlog 2ðpða;jÞÞ; (4)

where c2 is the number of different values of yij, and pða;jÞ is
the probability of the type of value awithin all types in vari-
able yj. Then, the information gain of each feature variable is
calculated, as defined as

GðyijÞ ¼ EntropyðSiÞ � EntropyðyijÞ
¼ EntropyðSiÞ

�
X

v2V ðyijÞ

jSðv;iÞj
jSij EntropyðvðyijÞÞ;

(5)

where vðyjÞ 2 V ðyjÞ.
By using the information gain to measure the feature var-

iables, the largest value is selected easily, but it will lead to
an over fitting problem. To overcome this problem, a gain
ratio value is taken to measure the feature variables, and the
features with the maximum value are selected. The gain
ratio of the feature variable yij is defined as

GRðyijÞ ¼ GðyijÞ
IðyijÞ : (6)

To reduce the dimensions of the training dataset, we
calculate the importance of each feature variable according
to the gain ratio of the variable. Then, we select the most
important features and delete the ones with less importance.
The importance of each feature variable is defined as
follows.

Definition 1. The importance of each feature variable in a train-
ing subset refers to the portion of the gain ratio of the feature
variable compared with the total feature variables. The impor-
tance of feature variable yij is defined as VIðyijÞ as

VIðyijÞ ¼ GRðyijÞPM
ða¼1ÞGRðyði;aÞÞ

: (7)

The importance values of all feature variables are sorted
in descending order, and the top k (k�M; k < m) values
are selected as the most important. We then randomly select
ðm� kÞ further feature variables from the remaining
ðM � kÞ ones. Thus, the number of dimensions of the data-
set is reduced from M to m. Taking the training subset Si as
an example, the detailed steps of the dimension-reduction
in the training process are presented in Algorithm 1.

Algorithm 1. Dimension-Reduction in the Training
Process

Input:
Si: the ith training subset;
k: the number of important variables selected by VI;
m: the number of the selected feature variables.

Output:
Fi: a set ofm important feature variables of Si.

1: create an empty string array Fi;
2: calculate EntropyðSiÞ for the target feature variable;
3: for each feature variable yij in Si do
4: calculate EntropyðyijÞ for each input feature variable;
5: calculate gain GðyijÞ  EntropyðSiÞ � EntropyðyijÞ;
6: calculate split information IðyijÞ  

Pc2
a¼1�pða;jÞlog 2ðpða;jÞÞ;

7: calculate gain ratio GRðyijÞ  GðyijÞ
IðyijÞ ;

8: end for
9: calculate variable importance VIðyijÞ  GRðyijÞPM

ða¼1Þ GRðyði;aÞÞ
for

feature variable yij;
10: sortM feature variables in descending order by VIðyijÞ;
11: put top k feature variables to Fi½0; . . . ; k� 1�;
12: set c 0;
13: for j ¼ k toM � 1 do
14: while c < ðm� kÞ do
15: select yij from ðM � kÞ randomly;
16: put yij to Fi½kþ c�;
17: c cþ 1;
18: end while
19: end for
20: return Fi.

In comparison with the original RF algorithm, our
dimension-reduction method ensures that the m selected
feature variables are optimal while maintaining the same
computational complexity as the original algorithm. This
balances the accuracy and diversity of the feature selection
ensemble of the RF algorithm and prevents the problem of
classification over fitting.

3.3 Weighted Voting Method

In the prediction and voting process, the original RF algo-
rithm uses a traditional direct voting method. In this case, if
the RF model contains noisy decision trees, it likely leads to
a classification or regression error for the testing dataset.
Consequently, its accuracy is decreased. To address this

TABLE 1
Explanation of the Elements of Eq. (3)

Element Description

yij the jth feature variable of Si, j ¼ 1; 2; . . . ;M.
V ðyijÞ the set of all possible values of yij.
jSij the number of samples in Si.
Sðv;iÞ a sample subset in Si, where the value of yj is v.
jSðv;iÞj the number of the sample subset Sðv;iÞ.
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problem, a weighted voting approach is proposed in this
section to improve the classification accuracy for the testing
dataset. The accuracy of the classification or regression of
each tree is regarded as the voting weight of the tree.

After the training process, each OOB set OOBi is tested
by its corresponding trained tree hi. Then, the classification
accuracy CAi of each decision tree hi is computed.

Definition 2. The classification accuracy of a decision tree is
defined as the ratio of the average number of votes in the correct
classes to that in all classes, including error classes, as classified
by the trained decision tree. The classification accuracy is
defined as

CAi ¼ IðhiðxÞ ¼ yÞ
IðhiðxÞ ¼ yÞ þP

IðhiðxÞ ¼ zÞ ; (8)

where Ið�Þ is an indicator function, y is a value in the correct
class, and z is a value in the error class (z 6¼ y).

In the prediction process, each record of the testing data-
set X is predicted by all decision trees in the RF model, and
then, a final vote result is obtained for the testing record.
When the target variable of X is quantitative data, the RF is
trained as a regression model. The result of the prediction is
the average value of k trees. The weighted regression result
HrðXÞ ofX is defined as

HrðXÞ ¼ 1

k

Xk
i¼1
½wi � hiðxÞ�

¼ 1

k

Xk
i¼1
½CAi � hiðxÞ�;

(9)

where wi is the voting weight of the decision tree hi.
Similarly, when the target feature ofX is qualitative data,

the RF is trained as a classification model. The result of the
prediction is the majority vote of the classification results of
k trees. The weighted classification result HcðXÞ of X is
defined as

HcðXÞ ¼Majorityki¼1½wi � hiðxÞ�
¼Majorityki¼1½CAi � hiðxÞ�: (10)

The steps of the weighted voting method in the predic-
tion process are described in Algorithm 2.

In the weighted voting method of RF, each tree classifier
corresponds to a specified reasonable weight for voting on
the testing data. Hence, this improves the overall classifica-
tion accuracy of RF and reduces the generalization error.

3.4 Computational Complexity

The computational complexity of the original RF algorithm
is OðkMN log NÞ, where k is the number of decision trees
in RF, M is the number of features, N is the number of sam-
ples, and logN is the average depth of all tree models. In
our improved PRF algorithm with dimension-reduction
(PRF-DR) described in Section 3, the time complexity of the
dimension reduction is OðMNÞ. The computational com-
plexity of the splitting process for each tree node is set as
one unit (1), which contains functions such as entropyðÞ,
gainðÞ, and gainratioðÞ for each feature subspace. After the

dimension reduction, the number of features is reduced
from M to m (m�M). Therefore, the computational com-
plexity of training a meta tree classifier is OðMNþ
mN log NÞ, and the total computational complexity of the
PRF-DR algorithm is OðkðMN þmN log NÞÞ.

Algorithm 2.Weighted Voting in the Prediction Process

Input:
X: a testing dataset;
PRFtrained: the trained PRF model.

Output:
HðXÞ: the final prediction result forX.

1: for each testing data x inX do
2: for each decision tree Ti in PRFtrained do
3: predict the classification or regression result hiðxÞ by Ti;
4: end for
5: end for
6: set classification accuracy CAi as the weight wi of Ti;
7: for each testing data x inX do
8: if (operation type == classification) then
9: vote the final resultHcðxÞ  Majorityki¼1½wi � hiðxÞ�;
10: HðXÞ  HcðxÞ;
11: else if (operation type == regression) then
12: vote the final resultHrðxÞ  1

k

Pk
i¼1 ½wi � hiðxÞ�;

13: HðXÞ  HrðxÞ;
14: end if
15: end for
16: returnHðXÞ.

4 PARALLELIZATION OF THE RANDOM FOREST

ALGORITHM ON SPARK

To improve the performance of the RF algorithm and mitigate
the data communication cost and workload imbalance prob-
lems of large-scale data in a parallel and distributed environ-
ment, we propose a Parallel Random Forest algorithm on
Spark. ThePRF algorithm is optimizedbased on ahybrid paral-
lel approach combining data-parallel and task-parallel optimi-
zation. From the perspective of data-parallel optimization, a
vertical data-partitioning method and a data-multiplexing
method are performed. These methods reduce the volume of
data and the number of data transmission operations in the dis-
tributed environment without reducing the accuracy of the
algorithm. From the perspective of task-parallel optimization, a
dual-parallel approach is carried out in the training process of
the PRF algorithm, and a task DAG is created according to the
dependence of the RDDobjects. Then, different task schedulers
are invoked to perform the tasks in the DAG. The dual-parallel
training approach maximizes the parallelization of PRF and
improves the performance of PRF. Then task schedulers further
minimize the data communication cost among the Spark clus-
ter and achieve a betterworkload balance.

4.1 Data-Parallel Optimization

We introduce the data-parallel optimization of the PRF algo-
rithm, which includes a vertical data-partitioning and a data-
multiplexing approach. First, taking advantage of the RF algo-
rithm’s natural independence of feature variables and the
resource requirements of computing tasks, a vertical data-
partitioning method is proposed for the training dataset. The
training dataset is split into several feature subsets, and each
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feature subset is allocated to the Spark cluster in a static data
allocation way. Second, to address the problem that the data
volume increases linearly with the increase in the scale of RF,
we present a data-multiplexingmethod for PRF bymodifying
the traditional sampling method. Notably, our data-parallel
optimization method reduces the volume of data and the
number of data transmission operationswithout reducing the
accuracy of the algorithm. The increase in the scale of the PRF
does not lead to a change in the data size and storage location.

4.1.1 Vertical Data Partitioning

In the training process of PRF, the gain-ratio computing
tasks of each feature variable take up most of the training
time. However, these tasks only require the data of the
current feature variable and the target feature variable.
Therefore, to reduce the volume of data and the data com-
munication cost in a distributed environment, we propose a
vertical data-partitioning approach for PRF according to the
independence of feature variables and the resource require-
ments of computing tasks. The training dataset is divided
into several feature subsets.

Assume that the size of training dataset S is N and there
are M feature variables in each record. y0 � yM�2 are the
input feature variables, and yM�1 is the target feature vari-
able. Each input feature variable yj and the variable yM�1 of
all records are selected and generated to a feature subset
FSj, which is represented as

FSj ¼

< 0; y0j; y0ðM�1Þ > ;
< 1; y1j; y1ðM�1Þ > ;

. . . ;
< i; yij; yiðM�1Þ > ;

. . . ;
< ðN � 1Þ; yðN�1Þj; yðN�1ÞðM�1Þ >

2
6666664

3
7777775
;

where i is the index of each record of the training dataset S,
and j is the index of the current feature variable. In such a
way, S is split into ðM � 1Þ feature subsets before dimen-
sion-reduction. Each subset is loaded as an RDD object and
is independent of the other subsets. The process of the verti-
cal data-partitioning is presented in Fig. 3.

4.1.2 Data-Multiplexing Method

To address the problem that the volume of the sampled
training dataset increases linearly with the increase in the

RF scale, we present a data-multiplexing method for PRF by
modifying the traditional sampling method. In each sam-
pling period, we do not copy the sampled data but just note
down their indexes into a Data-Sampling-Index (DSI) table.
Then, the DSI table is allocated to all slave nodes together
with the feature subsets. The computing tasks in the train-
ing process of each decision tree load the corresponding
data from the same feature subset via the DSI table. Thus,
each feature subset is reused effectively, and the volume of
the training dataset will not increase any more despite the
expansion of the RF scale.

First, we create a DSI table to save the data indexes gen-
erated in all sampling times. As mentioned in Section 3.1,
the scale of a RF model is k. Namely, there are k sampling
times for the training dataset, and N data indexes are noted
down in each sampling time. An example of the DSI table of
PRF is presented in Table 2.

Second, the DSI table is allocated to all slave nodes of the
Spark cluster together with all feature subsets. In the subse-
quent training process, the gain-ratio computing tasks of
different trees for the same feature variable are dispatched
to the slaves where the required subset is located.

Third, each gain-ratio computing task accesses the rele-
vant data indexes from the DSI table, and obtains the feature
records from the same feature subset according to these
indexes. The process of the data-multiplexing method of
PRF is presented in Fig. 4.

In Fig. 4, each RDDFS refers to an RDD object of a feature
subset, and each TGR refers to a gain-ratio computing task.
For example, we allocate tasks fTGR1:1; TGR1:2; TGR1:3g to
Slave1 for the feature subset RDDFS1, allocate tasks

Fig. 3. Process of the vertical data-partitioning method.

TABLE 2
Example of the DSI Table of PRF

Data indexes of training dataset

Sampling times

Sample0 1 3 8 5 10 0 � � �
Sample1 2 4 1 9 7 8 � � �
Sample2 9 1 12 92 2 5 � � �
Sample3 3 8 87 62 0 2 � � �
� � � � � � � � � � � � � � � � � � � � � � � �

Samplek�1 9 1 4 43 3 5 � � �

Fig. 4. Process of the data-multiplexing method of PRF.
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fTGR2:1; TGR2:2; TGR2:3g to Slave2 for RDDFS2, and allocate
tasks fTGR3:1; TGR3:2; TGR3:3g to Slave3 for RDDFS3. From the
perspective of the decision trees, tasks in the same slave
node belong to different trees. For example, tasks TGR1:1,
TGR1:2, and TGR1:3 in the Slave1 belong to “DecisionTree1”,
“DecisionTree2”, and “DecisionTree3”, respectively. These
tasks obtain records from the same feature subset according
to the corresponding indexes in DSI, and compute the gain
ratio of the feature variable for different decision trees. After
that, the intermediate results of these tasks are submitted to
the corresponding subsequent tasks to build meta decision
trees. Results of the tasks fTGR1:1, TGR2:1, TGR3:1g are com-
bined for the tree node splitting process of “DecisionTree1”,
and results of the tasks fTGR1:2, TGR2:2, TGR3:2g are combined
for that of “DecisionTree2”.

4.1.3 Static Data Allocation

To achieve a better balance of data storage and workload,
after the vertical data-partitioning, a static data allocation
method is applied for the feature subsets. Namely, these
subsets are allocated to a distributed Spark cluster before
the training process of PRF. Moreover, because of the differ-
ence of the data type and volume of each feature subset, the
workloads of the relevant subsequent computing tasks will
be different as well. As we know, a Spark cluster is con-
structed by a master node and several slave nodes. We
define our allocation function to determine each feature
subset be allocated to which nodes, and allocate each fea-
ture subset according to its volume. There are three scenar-
ios in the data allocation scheme. Examples of the three
scenarios of the data allocation method are shown in Fig. 5.

In Fig. 5, (a) when the size of a feature subset is greater
than the available storage capacity of a slave node, this sub-
set is allocated to limited multiple slaves that have similar
physical locations. (b) When the size of a feature subset is
equal to the available storage capacity of a slave node, the
subset is allocated to the node. (c) When the size of a feature
subset is smaller than the available storage capacity of a
slave node, this node will accommodate multiple feature
subsets. In case (a), the data communication operations of
the subsequent gain-ratio computing tasks occur among the
slave nodes where the current feature subset is located.
These data operations are local communications but not
global communications. In cases (b) and (c), no data com-
munication operations occur among different slave nodes in
the subsequent gain-ratio computation process. The steps of
the vertical data-partitioning and static data allocation of
PRF are presented in Algorithm 3.

Algorithm 3. Vertical Data-Partitioning and Static Data
Allocation of PRF

Input:
RDDo: an RDD object of the original training dataset S.

Output:
LFS : a list of the indexes of each feature subset’s RDD
object and the allocated slave nodes.

1: for j ¼ 0 to ðM � 2Þ do
2: RDDFSj  RDDo.map
3: < i; yij; yiðM�1Þ > RDDo.verticalPartition(j);
4: end map.collect()
5: slaves findAvailableSlaves().sortbyIP();
6: if RDDFSj.size < slaves½0�.availablesize then
7: dataAllocation(RDDFSj, slaves½0�);
8: slaves½0�.availablesize slaves½0�.availablesize -

RDDFSj.size;
9: LFS  < RDDFSj:id; slaves½0�:nodeid > ;
10: else
11: while RDDFSj 6¼ null do
12: (RDD

0
FSj,RDD

00
FSjÞ dataPartition(RDDFSj, slaves½i�.

availablesize));
13: dataAllocation(RDD

0
FSj, slaves½i�);

14: RDD
0
FSj.persist();

15: slaves½i�.availablesize slaves½i�.availablesize -
RDD

0
FSj.size;

16: slavesids slaves½i�:nodeid;
17: RDDFSj  RDD

00
FSj;

18: i iþ 1;
19: end while
20: LFS  < RDDFSj:id; slavesids > ;
21: end if
22: end for
23: return LFS .

In Algorithm 3, RDDo is split into ðM � 1Þ RDDFS

objects via the vertical data-partitioning function first. Then,
each RDDFS is allocated to slave nodes according to its vol-
ume and the available storage capacity of the slave nodes.
To reuse the training dataset, each RDD object of the feature
subset is allocated and persisted to Spark cluster via a
dataAllocationðÞ function and a persistðÞ function.

4.2 Task-Parallel Optimization

Each decision tree of PRF is built independent of each other,
and each sub-node of a decision tree is also split indepen-
dently. The structures of the PRF model and decision tree
model make the computing tasks have natural parallelism.
Based on the results of the data-parallel optimization, we
propose a task-parallel optimization for PRF and implement
it on Spark. A dual-parallel approach is carried out in the
training process of PRF, and a task DAG is created accord-
ing to the dual-parallel training process and the dependence
of the RDD objects. Then, different task schedulers are
invoked to perform the tasks in the DAG.

4.2.1 Parallel Training Process of PRF

In our task-parallel optimization approach, a dual-parallel
training approach is proposed in the training process of
PRF on Spark. k decision trees of the PRF model are built in
parallel at the first level of the training process. And
ðM � 1Þ feature variables in each decision tree are

Fig. 5. Example of three scenarios of the data allocation.
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calculated concurrently for tree node splitting at the second
level of the training process.

There are several computing tasks in the training process
of each decision tree of PRF. According to the required data
resources and the data communication cost, the computing
tasks are divided into two types, gain-ratio computing tasks
and node-splitting tasks, which are defined as follows.

Definition 3. Gain-ratio-computing task (TGR) is a task set that
is employed to compute the gain ratio of a feature variable from
the corresponding feature subset, which includes a series of cal-
culations for each feature variable, i.e., the entropy, the self-split
information, the information gain, and the gain ratio. The
results of TGR tasks are submitted to the corresponding subse-
quent node-splitting tasks.

Definition 4. Node-splitting task (TNS) is a task set that is
employed to collect the results of the relevant TGR tasks and
split the decision tree nodes, which includes a series of calcula-
tions for each tree node, such as determining the best splitting
variable holds the highest gain ratio value and splitting the tree
node by the variable. After the tree node splitting, the results of
TNS tasks are distributed to each slave to begin the next stage of
the PRF’s training process.

The steps of the parallel training process of the PRF
model are presented in Algorithm 4.

According to the parallel training process of PRF and the
dependence of each RDD object, each job of the program of
PRF’s training process is split into different stages, and a
task DAG is constructed with the dependence of these job
stages. Taking a decision tree model of PRF as an example,
a task DAG of the training process is presented in Fig. 6.

There are several stages in the task DAG, which corre-
spond to the levels of the decision tree model. In stage 1,
after the dimension-reduction, ðm� 1Þ TGR tasks (TGR1:0 �
TGR1:ðm�2Þ) are generated for the ðm� 1Þ input feature varia-
bles. These TGRs compute the gain ratio the corresponding
feature variable, and submit their results to TNS1. TNS1 finds
the best splitting variable and splits the first tree node for
the current decision tree model. Assuming that y0 is the best
splitting variable at the current stage, and the value of y0 is
in the range of fv01; v02; v03g. Hence, the first tree node is
constructed by y0, and three sub-nodes are split from the

node, as shown in Fig. 6b. After tree node splitting, the
intermediate result of TNS1 are distributed to all slave nodes.
The result includes information of the splitting variable and
the data index list of fv01; v02; v03g.

Algorithm 4. Parallel Training Process of the PRF Model

Input:
k: the number of decision trees of the PRF model;
TDSI : the DSI table of PRF;
LFS : a list of the indexes of each feature subset’s RDD
object and the allocated slave nodes.

Output:
PRFtrained: the trained PRF model.

1: for i = 0 to ðk� 1Þ do
2: for j = 0 to ðM � 2Þ do
3: load feature subset RDDFSj loadData(LFS ½i�);

//TGR:
4: RDDðGR;bestÞ  sc.parallelize(RDDFSj).map
5: load sampled data RDDði;jÞ  (TDSI ½i�, RDDFSj);
6: calculate the gain ratio GRði;jÞ  GRðRDDði;jÞÞ;
7: end map

//TNS :
8: RDDðGR;bestÞ.collect().sorByKey(GR).top(1);
9: for each value yðj;vÞ in RDDðGR;bestÞ do
10: split tree nodeNodej  < yðj;vÞ; Value > ;
11: appendNodej to Ti;
12: end for
13: end for
14: PRFtrained Ti;
15: end for
16: return PRFtrained.

In stage 2, because y0 is the splitting feature, there is no
TGR task for FS0. The potential workload balance problem
of this issue will be discussed in Section 4.3.4. New TGR

tasks are generated for all other feature subsets according to
the result of TNS1. Due to the data index list of fv01; v02; v03g,
there are no more than 3 TGR tasks for each feature subset.
For example, tasks TGR2:11, TGR2:12, and TGR2:13 calculate the
data of FS1 with the indexes corresponding to v01, v02, and
v03, respectively. And the condition is similar in tasks for
FS2 � FSðm�2Þ. Then, the results of tasks fTGR2:11, TGR2:21,

TGR2:ðm�2Þ1g are submitted to task TNS2:1 for the same sub-

tree-node splitting. Tasks of other tree nodes and other
stages are performed similarly. In such a way, a task DAG
of the training process of each decision tree model is built.
In addition, k DAGs are built respectively for the k decision
trees of the PRF model.

4.2.2 Task-Parallel Scheduling

After the construction of the task DAGs of all the decision
trees, the tasks in these DAGs are submitted to the Spark
task scheduler. There exist two types of computing tasks in
the DAG, which have different resource requirements and
parallelizables. To improve the performance of PRF effi-
ciently and further minimize the data communication cost
of tasks in the distributed environment, we invoke two dif-
ferent task-parallel schedulers to perform these tasks.

In Spark, the TaskSchedulerListenermodulemonitors the
submitted jobs, splits the job into different stages and tasks,
and submits these tasks to the TaskScheduler module. The

Fig. 6. Example of the task DAG for a decision tree of PRF.
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TaskScheduler module receives the tasks and allocates and
executes them using the appropriate executors. According to
the different allocations, the TaskSchedulermodule includes
three sub-modules, such as LocalScheduler, Cluster
Scheduler, and MessosScheduler. Meanwhile, each task
holds five types of locality property value: PROCESS
LOCAL, NODE LOCAL, NO PREF , PACK LOCAL, and
ANY . We set the value of the locality properties of these two
types of tasks and submit them into different task schedulers.
We invoke LocalScheduler for TGR tasks and Cluster
Scheduler to perform TNS tasks.

(1) LocalScheduler for TGR tasks.
The LocalScheduler module is a thread pool of the local

computer, all tasks submitted byDAGScheduler is executed
in the thread pool, and the results will then be returned to
DAGScheduler. We set the locality property value of each
TGR as NODE LOCAL and submit it to a LocalScheduler
module. In LocalScheduler, all TGR tasks of PRF are allo-
cated to the slave nodes where the corresponding feature
subsets are located. These tasks are independent of each
other, and there is no synchronization restraint among
them. If a feature subset is allocated to multiple slave nodes,
the corresponding TGR tasks of each decision tree are allo-
cated to these nodes. And there exist local data communica-
tion operations of the tasks among these nodes. If one or
more feature subsets are allocated to one slave node, the
corresponding TGR tasks are posted to the current node.
And there is no data communication operation between the
current node and the others in the subsequent computation
process.

(2) ClusterScheduler for TNS tasks.
The ClusterScheduler module monitors the execution sit-

uation of the computing resources and tasks in the whole
Spark cluster and allocates tasks to suitable workers. As
mentioned above, TNS tasks are used to collect the results of

the corresponding TGR tasks and split the decision tree
nodes. TNS tasks are independent of all feature subsets and
can be scheduled and allocated in the whole Spark cluster.
In addition, these TNS tasks rely on the results of the corre-
sponding TGR tasks, therefore, there is a wait and synchroni-
zation restraint for these tasks. Therefore, we invoke the
ClusterScheduler to perform TNS tasks. We set the locality
property value of each TNS as ANY and submit to a
ClusterScheduler module. The task-parallel scheduling
scheme for TNS tasks is described in Algorithm 5. A diagram
of task-parallel scheduling for the tasks in the above DAG is
shown in Fig. 7.

Algorithm 5. Task-Parallel Scheduling for TNS Tasks

Input:
TSNS : a task set of all TNS submitted byDAGScheduler.

Output:
ERTS : the execution results of TSNS .

1: createmanager new TaskSetManager(TSNS);
2: append to taskset manager activeTSQueue manager;
3: if hasReceivedTask == false then
4: create starvationTimer scheduleAtFixedRate

(new TimerTask);
5: rank the priority of TS2 activeTSQueue.FIFO();
6: for each task Ti in TS2 do
7: get available worker executora from workers;
8: ERTS  executora.launchTask(Ti.taskid);
9: end for
10: end if
11: return ERTS .

4.3 Parallel Optimization Method Analysis

We discuss our hybrid parallel optimization method from
five aspects as follows. In comparison with Spark-MLRF
and other parallel methods of RF, our hybrid parallel opti-
mization approach of PRF achieves advantages in terms of
performance, workload balance, and scalability.

4.3.1 Computational Complexity Analysis

As discussed in Section 3.4, the total computational com-
plexity of the improved PRF algorithm with dimension-
reduction is OðkðMN þmN log NÞÞ. After the paralleliza-
tion of the PRF algorithm on Spark, M features of training
dataset are calculated in parallel in the process of dimen-
sion-reduction, and k trees are trained concurrently. There-
fore, the theoretical computational complexity of the PRF

algorithm is OðkðMNþmN log NÞ
k�M Þ 	 OðNðlogN þ 1ÞÞ.

4.3.2 Data Volume Analysis

Taking advantage of the data-multiplexing method, the
training dataset is reused effectively. Assume that the vol-
ume of the original dataset is ðN �MÞ and the RF model’s
scale is k, the volumes of the sampled training dataset in the
original RF and Spark-MLRF are both ðN �M � kÞ. In our
PRF, the volume of the sampled training dataset is
ðN � 2� ðM � 1ÞÞ 	 ð2NMÞ. Moreover, the increase of the
scale of PRF does not lead to changes in the data size and
storage location. Therefore, compared with the sampling
method of the original RF and Spark-MLRF, the data-

Fig. 7. Task-parallel scheduling based on the DAG in Fig. 6.
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parallel method of our PRF decreases the total volume of the
training dataset for PRF.

4.3.3 Data Communication Analysis

In PRF, there exist data communication operations in the
process of data allocation and the training process.
Assume that there are n slaves in a Spark cluster, and the
data volume of the sampled training dataset is ð2NMÞ. In
the process of data allocation, the average data communi-

cation cost is ð2MN
n Þ. In the process of the PRF model train-

ing, if a feature subset is allocated to several computer
nodes, local data communication operations of the subse-
quent computing tasks occur among these nodes. If one
or more feature subsets are allocated to one computer
node, there is no data communication operation among
different nodes in the subsequent computation process.
Generally, there is a small amount of data communication
cost for the intermediate results in each stage of the deci-
sion tree’s training process. The vertical data-partitioning
and static data allocation method mitigates the amount of
data communication in the distributed environment and
overcomes the performance bottleneck of the traditional
parallel method.

4.3.4 Resource and Workload Balance Analysis

From the view point of the entire training process of PRF in
the whole Spark cluster, our hybrid parallel optimization
approach achieves a better storage and workload balance
than other algorithms.One reason is that because the different
volumes of feature subsets might lead to different workloads
of the TGR tasks for each feature variable, we allocate the fea-
ture subsets to the Spark cluster according to its volume. A
feature subset with a large volume is allocated to multiple
slave nodes. And the corresponding TGR tasks are scheduled
among these nodes in parallel. A feature subsets with a small
volume are allocated to one slave node. And the correspond-
ing TGR tasks are scheduled on the current node.

A second reason is that with the tree nodes’ splitting, the
slave nodes where the split variables’ feature subsets are
located will revert to an idle status. From the view point of
the entire training process of PRF, profit from the data-mul-
tiplexing method of PRF, each feature subset is shared and
reused by all decision trees, and it might be split for differ-
ent tree nodes in different trees. That is, although a feature
subset is split and useless to a decision tree, it is still useful
to other trees. Therefore, our PRF not only does not lead to
the problem of waste of resources and workload imbalance,

but also makes full use of the data resources and achieves
an overall workload balance.

4.3.5 Algorithm Scalability Analysis

We discuss the stability and scalability of our PRF algo-
rithm from three perspectives. (1) The data-multiplexing
method of PRF makes the training dataset be reused effec-
tively. When the scale of PRF expands, namely, the num-
ber of decision trees increases, the data size and the
storage location of the feature subsets need not change. It
only results in an increase in computing tasks for new
decision trees and a small amount of data communication
cost for the intermediate results of these tasks. (2) When
the Spark cluster’s scale expands, only a few feature sub-
sets with a high storage load are migrated to the new com-
puter nodes to achieve storage load and workload balance.
(3) When the scale of the training dataset increases, it is
only necessary to split feature subsets from the new data
in the same vertical data-partitioning way, and append
each new subset to the corresponding original one. There-
fore, we can draw the conclusion that our PRF algorithm
with the hybrid parallel optimization method achieves
good stability and scalability.

5 EXPERIMENTS

5.1 Experiment Setup

All the experiments are performed on a Spark cloud plat-
form, which is built of one master node and 100 slave nodes.
Each node executes in Ubuntu 12.04.4 and has one Pentium
(R) Dual-Core 3.20 GHz CPU and 8 GB memory. All nodes
are connected by a high-speed Gigabit network and are con-
figured with Hadoop 2.5.0 and Spark 1.1.0. The algorithm is
implemented in Scala 2.10.4. Two groups of datasets with
large scale and high dimensionality are used in the experi-
ments. One is from the UCI machine learning repository
[33], as shown in Table 3. Another is from a actual medical
project, as shown in Table 4.

In Tables 3 and 4, DatasizeðOriginalÞ refers to the origi-
nal size of the data from the UCI and the project, and
DatasizeðMaximumÞ refers to the peak size of data sampled
by all of the comparison algorithms.

In the Spark platform, the training data not be loaded into
the memory as a whole. Spark can be used to process data-
sets that are greater than the total cluster memory capacity.
RDD objects in a single executor process are accessed by an
iteration, and the data are buffered or thrown away after the
processing. The cost of memory is very small when there is
no requirement of caching the results of the RDD objects. In
this case, the results of the iterations are retained in a mem-
ory pool by the cachemanager.When the data in thememory
are not applicable, they will be saved on disk. In this case,

TABLE 3
Datasets from the UCI Machine Learning Repository

Datasets Instances Features Classes Data Size

(Original)

Data Size

(Maximum)

URL Reputation

(URL)

2,396,130 3,231,961 5 2.1 GB 1.0 TB

You Tube Video

Games (Games)

120,000 1,000,000 14 25.1 GB 2.0 TB

Bag of Words

(Words)

8,000,000 100,000 24 15.8 GB 1.3 TB

Gas sensor arrays

(Gas)

1,800,000 1,950,000 15 50.2 GB 2.0 TB

TABLE 4
Datasets from a Medical Project

Datasets Instances Features Classes Data size
(Original)

Data size
(Maximum)

Patient 279,877 25,652 18 3.8 GB 1.5 TB
Outpatient 3,657,789 47,562 9 10.6 GB 1.0 TB
Medicine 7,502,058 52,460 12 20.4 GB 2.0 TB
Cancer 3,568,000 46,532 21 5.8 GB 2.0 TB
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part of the data can be kept in the memory and the rest is
stored in the disk. Therefore, the training data with the peak
size of 2.0 TB can be executed on Spark.

5.2 Classification Accuracy

We evaluate the classification accuracy of PRF by compari-
son with RF, DRF, and Spark-MLRF.

5.2.1 Classification Accuracy for Different Tree Scales

To illustrate the classification accuracy of PRF, experiments
are performed for the RF, DRF [18], Spark-MLRF, and PRF
algorithms. The datasets are outlined in Tables 3 and 4.
Each case involves different scales of the decision tree. The
experimental results are presented in Fig. 8.

Fig. 8 shows that the average classification accuracies of
all of the comparative algorithms are not high when the
number of decision trees is equal to 10. As the number of
decision trees increases, the average classification accuracies
of these algorithms increase gradually and have a tendency
toward a convergence. The classification accuracy of PRF is
higher than that of RF by 8.9 percent, on average, and 10.6
percent higher in the best case when the number of decision
trees is equal to 1,500. It is higher than that of DRF by 6.1
percent, on average, and 7.3 percent higher in the best case
when the number of decision trees is equal to 1,300. The
classification accuracy of PRF is higher than that of Spark-
MLRF by 4.6 percent on average, and 5.8 percent in the best
case when the number of decision trees is equal to 1,500.

Therefore, compared with RF, DRF, and Spark-MLRF, PRF
improves the classification accuracy significantly.

5.2.2 Classification Accuracy for Different Data Sizes

Experiments are performed to compare the classification
accuracy of PRF with the RF, DRF, and Spark-MLRF algo-
rithms. Datasets from the project described in Table 4 are
used in the experiments. The experimental results are pre-
sented in Fig. 9.

The classification accuracies of PRF in all of the cases are
greater than that of RF, DRF, and Spark-MLRF obviously
for each scale of data. The classification accuracy of PRF is
greater than that of DRF by 8.6 percent, on average, and
10.7 percent higher in the best case when the number of
samples is equal to 3,000,000. The classification accuracy of
PRF is greater than that of Spark-MLRF by 8.1 percent, on
average, and 11.3 percent higher in the best case when the
number of samples is equal to 3,000,000. For Spark-MLRF,
because of the method of sampling for each partition of the
dataset, as the size of the dataset increases, the ratio of the
random selection of the dataset increases, and the accuracy
of Spark-MLRF decreases inevitably. Therefore, compared
with RF, DRF, and Spark-MLRF, PRF improves the classifi-
cation accuracy significantly for different scales of datasets.

5.2.3 OOB Error Rate for Different Tree Scales

We observe the classification error rate of PRF under differ-
ent conditions. In each condition, the Patient dataset is cho-
sen, and two scales (500 and 1,000) of decision trees are
constructed. The experimental results are presented in
Fig. 10 and Table 5.

When the number of decision trees of PRF increases, the
OOB error rate in each case declines gradually and tends to a
convergence condition. The average OOB error rate of PRF is
0.138 when the number of decision trees is equal to 500, and
it is 0.089when the number of decision trees is equal to 1,000.

5.3 Performance Evaluation

Various experiments are constructed to evaluate the perfor-
mance of PRF by comparison with the RF and Spark-MLRF

Fig. 8. Average classification accuracy for different tree scales.

Fig. 9. Average classification accuracy for different data sizes.

Fig. 10. OOB error rates of PRF for different tree scales.

TABLE 5
OOB Error Rates of PRF for Different Tree Scales

Tree = 500 Tree = 1,000

Rate OOB Class1 Class2 OOB Class1 Class2

max 0.207 0.270 0.354 0.151 0.132 0.318
min 0.113 0.051 0.092 0.067 0.010 0.121
mean 0.138 0.094 0.225 0.089 0.056 0.175

CHEN ET AL.: A PARALLEL RANDOM FOREST ALGORITHM FOR BIG DATA IN A SPARK CLOUD COMPUTING ENVIRONMENT 929



algorithms in terms of the execution time, speedup, data
volume, and data communication cost.

5.3.1 Average Execution Time for Different Datasets

Experiments are performed to compare the performance of
PRF with that of RF and Spark-MLRF. Four groups of train-
ing datasets are used in the experiments, such as URL,
Games, Outpatient, and Patient. In these experiments, the
number of decision trees in each algorithm is both 500, and
the number of Spark slaves is 10. The experimental results
are presented in Fig. 11.

When the data size is small (e.g., less than 1.0 GB), the
execution times of PRF and Spark-MLRF are higher than
that of RF. The reason is that there is a fixed time required
to submit the algorithms to the Spark cluster and configure
the programs. When the data size is greater than 1.0 GB, the
average execution times of PRF and Spark-MLRF are less
than that of RF in the four cases. For example, in the
Outpatient case, when the data size grows from 1.0 to
500.0 GB, the average execution time of RF increases from
19.9 to 517.8 seconds, while that of Spark-MLRF increases
from 24.8 to 186.2 seconds, and that of PRF increases from
23.5 to 101.3 seconds. Hence, our PRF algorithm achieves a
faster processing speed than RF and Spark-MLRF. When
the data size increases, the benefit is more noticeable. Tak-
ing advantage of the hybrid parallel optimization, PRF
achieves significant strengths over Spark-MLRF and RF in
terms of performance.

5.3.2 Average Execution Time for Different

Cluster Scales

In this section, the performance of PRF on the Spark plat-
form for different scales of slave nodes is considered. The
number of slave nodes is gradually increased from 10 to
100, and the experiment results are presented in Fig. 12.

In Fig. 12, because of the different data sizes and contents
of the training data, the execution times of PRF in each case
are different. When the number of slave nodes increases
from 10 to 50, the average execution times of PRF in all cases
obviously decrease. For example, the average execution

time of PRF decreases from 405.4 to 182.6 seconds in the
Gas case and from 174.8 to 78.3 seconds in the Medicine
case. By comparison, the average execution times of PRF in
the other cases decrease less obviously when the number of
slave nodes increases from 50 to 100. For example, the aver-
age execution time of PRF decreases from 182.4 to 76.0 sec-
onds in the Gas case and from 78.3 to 33.0 seconds in the
Medicine case. This is because when the number of the
Spark slaves greater than that of training dataset’s feature
variables, each feature subset might be allocated to multiple
slaves. In such a case, there are more data communication
operations among these slaves than before, which leads to
more execution time of PRF.

5.3.3 Speedup of PRF in Different Environments

Experiments in a stand-alone environment and a Spark
cloud platform are performed to evaluate the speedup of
PRF. Because of the different volume of training datasets,
the execution times of PRF are not in the same range in dif-
ferent cases. To observe the comparison of the execution
time intuitively, a normalization of execution time is taken.
Let Tði;saÞ be the execution time of PRF for dataset Si in the
stand-alone environment, and first normalized to 1. The
execution time of PRF on Spark is normalized as

T
0
i ¼

Tði;saÞ
Tði;saÞ

¼ 1 Stand� alone;

Tði;SparkÞ
Tði;saÞ

Spark:

8><
>:

(11)

The speedup of PRF on Spark for Si is defined as

Speedupði;SparkÞ ¼
T
0
ði;SparkÞ
T
0
ði;saÞ

: (12)

The results of the comparative analyses are presented in
Fig. 13. Taking benefits of the parallel algorithm and cloud
environment, the speedup of PRF on Spark tends to increase
in each experiment with the number of slave nodes. When
the number of slave nodes is equal to 100, the speedup fac-
tor of PRF in all cases is in the range of 60.0-87.3, which is
less than the theoretical value (100). Because there exists
data communication time in a distributed environment and
a fixed time for the application submission and configura-
tion, it is understandable that the whole speedup of PRF is
less than the theoretical value. Due to the different data

Fig. 11. Average execution time of the algorithms for different datasets.

Fig. 12. Average execution time of PRF for different cluster scales.
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volumes and contents, the speedup of PRF in each case is
different.

When the number of slave nodes is less than 50, the
speedup in each case shows a rapid growth trend. For
instance, compared with the stand-alone environment, the
speedup factor of Gas is 65.5 when the number of slave
nodes is equal to 50, and the speedup factor of Patient is
61.5. However, the speedup in each case shows a slow
growth trend when the number of slave nodes is greater
than 50. This is because there are more data allocation, task
scheduling, and data communication operations required
for PRF.

5.3.4 Data Volume Analysis for Different RF Scales

We analyze the volume of the training data in PRF against
RF and Spark-MLRF. Taking the Games case as an example,
the volumes of the training data in the different RF scales
are shown in Fig. 14.

In Fig. 14, due to the use of the same horizontal sampling
method, the training data volumes of RF and Spark-MLRF
both show a linear increasing trend with the increasing of
the RF model scale. Contrary, in PRF, the total volume of all
training feature subsets is 2 times the size of the original
training dataset. Making use of the data-multiplexing
approach of PRF, the training dataset is effectively reused.
When the number of decision trees is larger than 2, despite
the expansion of RF scale, the volume of the training data
will not increases any further.

5.3.5 Data Communication Cost Analysis

Experiments are performed for different scales of the Spark
cluster to compare the Data Communication Cost (CDC) of
PRF with that of Spark-MLRF. The suffer-write size of slave
nodes in the Spark cluster is monitored as the CDC of the
algorithms. Taking the Patient case as an example, the
results of the comparison of CDC are presented in Fig. 15.

From Fig. 15, it is clear that the CDC of PRF are less than
that of Spark-MLRF in all cases, and the distinction is larger
with increasing number of slave nodes. Although Spark-
MLRF also uses the data-parallel method, the horizontal
partitioning method for training data makes the computing
tasks have to frequent access data across different slaves. As
the number of slaves increases from 5 to 50, the CDC of
Spark-MLRF increases from 350.0 to 2,180.0 MB. Different
from Spark-MLRF, in PRF, the vertical data-partitioning
and allocation method and the task scheduling method
make the most of the computing tasks (TGR) access data
from the local slave, reducing the amount of data transmis-
sion in the distributed environment. As the number of
slaves increases from 5 to 50, the CDC of PRF increases from
50.0 to 320.0 MB, which is much lower than that of Spark-
MLRF. Therefore, PRF minimizes the CDC of RF in a distrib-
uted environment. The expansion of the cluster’s scale does
not lead to an obviously increase in CDC . In conclusion, our
PRF achieves a superiority and notable advantages over
Spark-MLRF in terms of stability and scalability.

6 CONCLUSION

In this paper, a parallel random forest algorithm has been
proposed for big data. The accuracy of the PRF algorithm is
optimized through dimension-reduction and the weighted
vote approach. Then, a hybrid parallel approach of PRF
combining data-parallel and task-parallel optimization is
performed and implemented on Apache Spark. Taking
advantage of the data-parallel optimization, the training
dataset is reused and the volume of data is reduced signifi-
cantly. Benefitting from the task-parallel optimization, the
data transmission cost is effectively reduced and the perfor-
mance of the algorithm is obviously improved. Experimen-
tal results indicate the superiority and notable strengths of
PRF over the other algorithms in terms of classification
accuracy, performance, and scalability. For future work, we
will focus on the incremental parallel random forestFig. 14. Size of training dataset for different RF scales.

Fig. 13. Speedup of PRF in different environments.

Fig. 15. Data communication costs of PRF and Spark-MLRF.
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algorithm for data streams in cloud environment, and
improve the data allocation and task scheduling mechanism
for the algorithm on a distributed and parallel environment.
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