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ABSTRACT Effective patient queue management to minimize patient wait delays and patient overcrowding
is one of the major challenges faced by hospitals. Unnecessary and annoying waits for long periods result
in substantial human resource and time wastage and increase the frustration endured by patients. For each
patient in the queue, the total treatment time of all the patients before him is the time that he must wait.
It would be convenient and preferable if the patients could receive the most efficient treatment plan and know
the predicted waiting time through a mobile application that updates in real time. Therefore, we propose a
Patient Treatment Time Prediction (PTTP) algorithm to predict the waiting time for each treatment task for
a patient. We use realistic patient data from various hospitals to obtain a patient treatment time model for
each task. Based on this large-scale, realistic dataset, the treatment time for each patient in the current queue
of each task is predicted. Based on the predicted waiting time, a Hospital Queuing-Recommendation (HQR)
system is developed. HQR calculates and predicts an efficient and convenient treatment plan recommended
for the patient. Because of the large-scale, realistic dataset and the requirement for real-time response,
the PTTP algorithm and HQR system mandate efficiency and low-latency response. We use an Apache
Spark-based cloud implementation at the National Supercomputing Center in Changsha to achieve the
aforementioned goals. Extensive experimentation and simulation results demonstrate the effectiveness and
applicability of our proposed model to recommend an effective treatment plan for patients to minimize their
wait times in hospitals.

INDEX TERMS Apache spark, big data, cloud computing, hospital queuing recommendation, patient
treatment time prediction.

I. INTRODUCTION
A. MOTIVATION
Currently, most hospitals are overcrowded and lack effective
patient queue management. Patient queue management and
wait time prediction form a challenging and complicated
job because each patient might require different phases/
operations, such as a checkup, various tests, e.g., a sugar
level or blood test, X-rays or a CT scan, minor surgeries,

during treatment. We call each of these phases /operations
as treatment tasks or tasks in this paper. Each treatment
task can have varying time requirements for each patient,
which makes time prediction and recommendation highly
complicated. A patient is usually required to undergo
examinations, inspections or tests (refereed as tasks)
according to his condition. In such a case, more than one
task might be required for each patient. Some of the tasks
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are independent, whereas others might have to wait for the
completion of dependent tasks. Most patients must wait for
unpredictable but long periods in queues, waiting for their
turn to accomplish each treatment task.

In this paper, we focus on helping patients complete
their treatment tasks in a predictable time and helping
hospitals schedule each treatment task queue and avoid
overcrowded and ineffective queues. We use massive realistic
data from various hospitals to develop a patient treatment time
consumption model. The realistic patient data are analyzed
carefully and rigorously based on important parameters, such
as patient treatment start time, end time, patient age, and
detail treatment content for each different task. We identify
and calculate different waiting times for different patients
based on their conditions and operations performed during
treatment. The workflow of the patient treatment and wait
model is illustrated in Fig. 1.

FIGURE 1. Workflow of patient treatment and wait model.

Fig. 1 illustrates three patients (Patient1, Patient2, and
Patient3) and a set of treatment tasks required for each
patient. Some tasks can be dependent on a previous one,
e.g., surgery or bandage cannot be done before X-rays.
Tasks {A,B,D} are required for Patient1, whereas task D
must wait for the completion of B. Tasks {E,B,C,A} are
required for Patient2, and tasks {D,E,C} are required for
Patient3. Moreover, there are different numbers of patients
waiting in the queue of each task, for example, 7 patients in
the queue of task A and 5 patients in the queue of task B.

In this paper, a Patient Treatment Time Prediction (PTTP)
model is trained based on hospitals’ historical data. The
waiting time of each treatment task is predicted by PTTP,
which is the sum of all patients’ waiting times in the current
queue. Then, according to each patient’s requested treatment
tasks, a Hospital Queuing-Recommendation (HQR) system
recommends an efficient and convenient treatment plan with
the least waiting time for the patient.

The patient treatment time consumption of each patient in
the waiting queue is estimated by the trained PTTP model.
The whole waiting time of each task at the current time
can be predicted, such as {TA = 35(min), TB = 30(min),
TC = 70(min), TD = 24(min), TE = 87(min)}. Finally,
the tasks of each patient are sorted in an ascending order
according to the waiting time, except for the dependent tasks.
A queuing recommendation is performed for each patient,
such as the recommended queuing {B,D,A} for Patient1,
{B,A,C,E} for Patient2, and {D,C,E} for Patient3.

To complete all of the required treatment tasks in the
shortest waiting time, the waiting time of each task is
predicted in real-time. Because the waiting queue for each
task updates, the queuing recommendation is recomputed in
real-time. Therefore, each patient can be advised to complete
his treatment activities in the most convenient way and with
the shortest waiting time.

B. OUR CONTRIBUTIONS
In this paper, we propose a PTTP algorithm and an HQR
system. Considering the real-time requirements, enormous
data, and complexity of the system, we employ big data
and cloud computing models for efficiency and scalability.
The PTTP algorithm is trained based on an improved
Random Forest (RF) algorithm for each treatment task,
and the waiting time of each task is predicted based
on the trained PTTP model. Then, HQR recommends an
efficient and convenient treatment plan for each patient.
Patients can see the recommended plan and predicted waiting
time in real-time using a mobile application. Extensive
experimentation and application results show that the PTTP
algorithm achieves high precision and performance.

Our contributions in this paper can be summarized as
follows.
• A PTTP algorithm is proposed based on an improved
Random Forest (RF) algorithm. The predicted waiting
time of each treatment task is obtained by the
PTTP model, which is the sum of all patients’ probable
treatment times in the current queue.

• An HQR system is proposed based on the predicted
waiting time. A treatment recommendation with an
efficient and convenient treatment plan and the least
waiting time is recommended for each patient.

• The PTTP algorithm and HQR system are parallelized
on the Apache Spark cloud platform at the National
Supercomputing Center in Changsha (NSCC) to achieve
the aforementioned goals. Extensive hospital data
are stored in the Apache HBase, and a parallel
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solution is employed with the MapReduce and Resilient
Distributed Datasets (RDD) programming model.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 details a PTTP
algorithm and an HQR system. The parallel implementation
of the PTTP algorithm and HQR system on the Apache Spark
cloud environment is detailed in Section 4. Experimental
results and evaluations are presented in Section 5 with
respect to the recommendation accuracy and performance.
Finally, Section 6 concludes the paper with future work and
directions.

II. RELATED WORK
To improve the accuracy of the data analysis with continuous
features, various optimization methods of classification
and regression algorithms are proposed. A self-adaptive
induction algorithm for the incremental construction of
binary regression trees was presented in [1]. Tyree et al. [2]
introduced a parallel boosted regression tree algorithm for
web search ranking. In [3], a multi-branch decision tree
algorithm was proposed based on a correlation-splitting
criterion. Other improved classification and regression tree
methods were proposed in [4]–[6].

The random forest algorithm [7] is an ensemble classifier
algorithm based on a decision tree, which is a suitable
data-mining algorithm for big data. The random forest
algorithm is widely used in many fields such as fast action
detection via discriminative random forest voting and Top-K
subvolume search [8], robust and accurate shape model
matching using random forest regression voting [9], and a
big data analytic framework for peer-to-peer botnet detection
using random forests [10]. The experimental results in these
papers demonstrate the effectiveness and applicability of the
random forest algorithm. Bernard [11] proposed a dynamic
training method to improve the accuracy of the random
forest algorithm. In [12], a random forest method based on
weighted trees was proposed to classify high-dimensional
noisy data. However, the original random forest algorithm
uses a traditional direct voting method in the voting process.
In such a case, the random forest containing noisy decision
trees would likely lead to an incorrect predicted value for the
testing dataset [13].

Various recommendation algorithms have been presented
and applied in related fields. Meng et al. [14] proposed
a keyword-aware service recommendation method on
MapReduce for big data applications. A travel recommen-
dation algorithm that mines people’s attributes and
travel-group types was proposed in [15]. Yang et. al. [16]
introduced a Bayesian-inference-based recommendation
system for online social networks, in which a user propagates
a content rating query along the social network to his
direct and indirect friends. Adomavicius and Kwon [17]
introduced new recommendation techniques formulti-criteria
rating systems. Adomavicius and Tuzhilin [18] introduced
an overview of the current generation of recommendation
methods, such as content-based, collaborative, and hybrid

recommendation approaches. However, there is no effective
prediction algorithm for patient treatment time consumption
in the existing studies.

The speed of data mining and analysis for big data is
a very important factor [19]. Cloud computing, distributed
computing, and supercomputers offer high-speed computing
power. Both the Apache Hadoop [20] and Spark [21]
are famous cloud platforms that are widely used in
parallel computing and data analysis. Numerous parallel
data-mining algorithms have been implemented based on
the MapReduce [22] and RDD [23] models. In [24]–[27],
various data-mining algorithms were proposed based on
the MapReduce programming model. Apache Spark is an
efficient cloud platform that is suitable for data mining and
machine learning. In the Spark, data are cached in memory,
and iterations for the same data come directly from memory.
Zaharia et al. [28] presented a fast and interactive analytics
over Hadoop data with Spark.

To predict the waiting time for each treatment task,
we use the random forest algorithm to train the patient
treatment time consumption based on both patient and time
characteristics and then build the PTTP model. Because
patient treatment time consumption is a continuous variable,
a Classification And Regression Tree (CART) model is
used as a meta-classifier in the RF algorithm. Because
of the shortcomings of the original RF algorithm and
the characteristics of the patient data, in this paper, the
RF algorithm is improved in 4 aspects to obtain an effective
result from large-scale, high dimensional, continuous, and
noisy patient data. Compared with the original RF algorithm,
our PTTP algorithm based on an improved RF algorithm has
significant advantages in terms of accuracy and performance.
Moreover, there is no existing research on hospital queuing
management and recommendations. Therefore, we propose
an HQR system based on the PTTP model. To the best of
our knowledge, this paper is the first attempt to solve the
problem of patient waiting time for hospital queuing service
computing. A treatment queuing recommendation with an
efficient and convenient treatment plan and the least waiting
time is recommended for each patient.

III. PATIENT TREATMENT TIME PREDICTION ALGORITHM
To build the PTTP model based on both patient and time
characteristics, a PTTP algorithm is proposed. The PTTP
model is based on an improved RF algorithm and is trained
from themassive, complex, and noisy hospital treatment data.

A. PROBLEM DEFINITION AND DATA PREPROCESSING
1) PROBLEM DEFINITION
Prediction based on analysis and processing of massive noisy
patient data from various hospitals is a challenging task.
Some of the major challenges are the following:

(1) Most of the data in hospitals are massive, unstructured,
and high dimensional. Hospitals produce a huge amount
of business data every day that contain a great deal
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of information, such as patient information, medical
activity information, time, treatment department, and
detailed information of the treatment task. Moreover, because
of themanual operation and various unexpected events during
treatments, a large amount of incomplete or inconsistent
data appears, such as a lack of patient gender and age
data, time inconsistencies caused by the time zone settings
of medical machines from different manufacturers, and
treatment records with only a start time but no end time.

(2) The time consumption of the treatment tasks in each
department might not lie in the same range, which can vary
according to the content of tasks and various circumstances,
different periods, and different conditions of patients. For
example, in the case of a CT scan task, the time required for
an old man is generally longer than that required for a young
man.

(3) There are strict time requirements for hospital queuing
management and recommendation. The speed of executing
the PTTP model and HQR scheme is also critical.

2) DATA PREPROCESSING
In the preprocessing phase, hospital treatment data from
different treatment tasks are gathered. Substantial numbers
of patients visit each hospital every day. Let S be a set of
patients in a hospital, and a patient who has been registered
and his information is represented by si. Assume that there
are N patients in S:

S = {s1, s2, . . . , sN },

where each patient si can have specific unchanged
parameters, e.g., name, ID, gender, age, and address. Some
of these parameters are useful to our analysis, whereas others
are not.

Each patient can visit multiple treatment tasks according
to his health condition. Let X |si be a set of treatment tasks for
patient si during a specific visit:

X |si = {x1, x2, . . . , xK },

where each treatment task record xi can consist of multiple
information Y , e.g., task name, task location, department,
start time, end time, doctor, and attending staff:

Y |xi = {y1, y2, . . . , yM },

where yj is a feature variable of the record of treatment task xi.
Here, for a single visit, we have a single record for patient
name, age, gender, and multiple records for treatment tasks,
as shown in Table 1.

The workflow of the preprocessing task can be depicted by
the following steps.

a: GATHER DATA FROM DIFFERENT TREATMENT TASKS
Depending on statistics, the number of patients in a
medium-sized hospital lies between 8,000 and 12,000 per day,
and the number of remedial treatment data records is between
120,000 and 200,000. These data are gathered from different

TABLE 1. Example of treatment records.

TABLE 2. Formats of the data for different treatment tasks.

treatment tasks, including registration, medical examination,
inspection, drug delivery, payment, and other related tasks.
The formats of the data for different treatment tasks are shown
in Table 2.

b: CHOOSE THE SAME DIMENSIONS OF THE DATA
The hospital treatment data generated from different
treatment tasks have different contents and formats as well
as varying dimensions. To train the patient time consumption
model for each treatment task, we choose the same features
of these data, such as the patient information (patient card
number, gender, age, etc.), the treatment task information
(task name, department name, doctor name, etc.), and the
time information (start time and end time). Other feature
subspaces of the treatment data are not chosen because they
are not useful for the PTTP algorithm, such as patient name,
telephone number, and address.

c: CALCULATE NEW FEATURE VARIABLES OF THE DATA
To train the PTTP model, various important features of
the data should be calculated, such as the patient time
consumption of each treatment record, day of week for
the treatment time, and the time range of treatment time.
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For example, in the treatment record of the CT scan task
in Table 1, the start time is ‘‘2015-10-10 09:20:00’’ and the
end time is ‘‘2015-10-10 09:27:00’’, the time consumption
for this patient in the treatment is ‘‘420 (s)’’, the day of the
week is ‘‘Saturday’’, and the time range is ‘‘09’’.

d: REMOVE INCOMPLETE AND INCONSISTENT DATA
After calculating new feature variables of treatment data,
the error and noisy data need to be removed. The treatment
records with missing values for critical features are removed
as incomplete data, such as patient gender, patient age, and
task name. The treatment records with negative values of time
consumption are removed as inconsistent data, for instance,
if the end time of the treatment operation is before the start
time, which can occur in cases when a start time is recorded
by a human and an end time is shown by a machine. The
types of data shown above are considered as noisy data in this
paper. The features of the treatment data used in the process
of employing the PTTP algorithm are presented in Table 3.

TABLE 3. Features of treatment data for the PTTP algorithm.

3) CONSTRUCTING TRAINING SUBSETS
FOR THE PTTP MODEL
In the process of employing the PTTP model, the treatment
time consumption of patients with different conditions and
different environments in each treatment task are addressed.
Due to the diverse nature of different medical tasks, the range
of patient treatment time consumption cannot be measured by
an absolute standard.

To improve the accuracy of the PTTP model, an improved
RF algorithm is used to build the PTTP model. k training
subsets are sampled from the original training dataset S in a
bootstrap sampling process. N samples are selected from S
by a random sampling and replacement method in each
sampling period. After the current step, k training subsets are
constructed as a collection of STrain:

STrain = {strain1, strain2, . . . , straink}.

At the same time, the unselected data in each sampling
period are composed as an out-of-bag (OOB) dataset. k OOB
sets are constructed as a collection of SOOB:

SOOB = {SOOB1, SOOB2, . . . , SOOBk},

where k � N , STrain ∈ S, and SOOB ∈ S. These datasets
are used as testing sets after the training process to verify the
classification or regression accuracy of each tree. The process
of the training dataset random sampling for the RF model is
shown in Fig. 2.

FIGURE 2. Process of training dataset random sampling for the
PTTP model.

B. PTTP MODEL BASED ON THE
IMPROVED RF ALGORITHM
To predict the waiting time for each patient treatment task,
the patient treatment time consumption based on different
patient characteristics and time characteristics must first be
calculated. The time consumption of each treatment task
might not lie in same range, which varies according to the
content of tasks and various circumstances, different periods,
and different conditions of patients. Therefore, we use the
RF algorithm to train patient treatment time consumption
based on both patient and time characteristics and then build
the PTTP model.

Because of the limitations of the original RF algorithm
and the characteristics of hospital treatment data, the
RF algorithm is improved in 4 aspects to obtain an effective
result from large-scale, high dimensional, continuous, and
noisy hospital treatment data.

(1) All of the selected (cleaned) features of the data
are used in the training process, instead of m features
selected randomly, as is done in the original RF algorithm,
because the features of the data are limited and the data are
already cleaned of unnecessary features such as patient name,
address, and telephone number.

(2) Because the target variable of the treatment data is
patient treatment time consumption, which is a continuous
variable, a CART model is used as a meta-classifier in the
improved RF algorithm. At the same time, some independent
variables of the data are nominal data, which have different
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values such as time range (0 - 23) and day of week
(Monday - Sunday). In such a case, the two-fork tree model of
the traditional CART cannot fully reflect the analysis results.
Therefore, to construct the regression tree model felicitously,
a multi-branch model is proposed for the construction
process instead of the two-fork model of the traditional
CART algorithm.

(3) Although we have removed part of the error in the
preprocessing, other types of noisy data might also exist.
In some treatment tasks, the time consumption is the time
interval between one patient and the next in the same
treatment. For example, in a payment task, assume that the
operation time point of the last patient in the morning is
‘‘12:00:00’’ and the operation time point of the first patient
in the afternoon is ‘‘14:00:00’’. The time consumption of
the former is ‘‘7200 (s)’’ and is considered as incorrect data
because it is larger than the normal value of ‘‘100 (s)’’.
However, the value ‘‘7200 (s)’’ of time consumption has not
always been incorrect data, such as in a blood examination
task. Therefore, we cannot simply designate one value of
time consumption as noisy data; each must be classified
according to treatment data features. Then, we must identify
and remove the noisy data. In calculating the average
value of the data in each leaf node of the regression
tree, noisy data are removed to reduce their influence on
accuracy.

(4) The original RF algorithm uses a traditional direct
voting method in the prediction process. In such a case,
a RF containing noisy decision trees would likely lead to an
incorrect predicted value for the testing dataset. Therefore,
in this paper, a weighted voting method is employed in the
prediction process of the RF model. Each tree classifier
corresponds to a specified reasonable weight for voting the
testing data. A tree classifier that has high accuracy in
the training process will have a high voting weight in the
prediction process. Hence, the classifier improves the overall
classification accuracy of the RF algorithm, and reduces the
generalization error.

Compared with the original RF algorithm, our
PTTP algorithm based on the improved RF algorithm,
has significant advantages in terms of accuracy and
performance.

1) TRAINING CART REGRESSION TREES OF THE RF MODEL
Because the patient treatment time consumption is the target
feature variable of treatment data S, which is a continuous
value, the type of the single decision tree in the RF model
is a regression tree. Thus, a CART regression tree model is
created for each training subset straini.

The first optimization aspect of the RF algorithm is
in the growing process of each CART tree. All of the
M features of each training data straini are used in the
training process instead of the m features selected randomly
as is done in the original RF algorithm. The main process
of building the regression tree of CART is described as
follows.

a: CALCULATE THE BEST SPLITTING FEATURE VARIABLES
AND THE BEST SPLIT POINT
In each tree node’s splitting process, each feature variable
subspace yj and each potential split point value vp of yj are
chosen to calculate the loss function of (yj, vp), which is
defined as follows:

(yj, vp) = argmin[
∑

x∈RL (yj,vp)

(yi − cL)2

+

∑
x∈RR(yj,vp)

(yi − cR)2], (1)

where a summary of the elements in Eq. (1) is presented
in Table 4.

TABLE 4. Summary of the elements in eq. (1).

In such a case, the variable yj with the smallest value of
the loss function is selected as the best split feature, and the
value vp is used as the split point for yj at the current splitting
tree node.

b: SPLIT THE DATA INTO TWO FORKS
Split the training dataset into two forks by vp in the feature
subspace yj. RL(yj, vp) denotes the first (left) data subset and
RR(yj, vp) denotes the second (right) data subset. These subsets
are defined as follows:

RL(yj, vp) = {x|(yj ≤ vp)},

RR(yj, vp) = {x|(yj > vp)}. (2)

c: CONSTRUCT MULTI-BRANCH FOR THE CART MODEL
Some independent variables of data are nominal data, which
have different values, such as the time range (0 - 23) and
day of week (Monday - Sunday). Therefore, to construct the
regression tree model felicitously, a multi-branch regression
treemodel instead of two-fork treemodel is used constructing
the CART, which is the second optimization aspect of the
RF algorithm. After the tree node split into two forks by
variable yj and value vp in step (2), the same variable yj
continues to be selected to calculate the best split point vpL
for the data in the left branch and vpR for the data in the right
branch. Taking the left branch as an example, the best split
point calculated for the current feature subspace is defined as
follows:

8(vpL |yj) = max
i

8(vi|y). (3)
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The 8(vi|y) is defined as follows:

8(vi|y) = 2PLPR
m∑
j=1

|p(cj|yL)− p(cj|yR)|, (4)

wherePL andPR are the ratios of the amount of data in the left
branch and in the right branch to the entire volume of training
data, respectively. p(cj|yL) is the ratio of the volume of data
that belong to class cj in the left branch to the volume of data
in the left branch.

If the split value of 8(vpL |yj) is greater than the father
node, namely 8(vpL |yj) ≥ 8(vp|yj), then the left branch
continues to split by the variable yj and value vpL . Otherwise,
the remaining feature variables continue to be computed.
The right branch is calculated similarly. Then, each node
and its two subnodes are calculated successively. If the same
variable split exists in both the parent node and the child
node, a node merger operation should be done. Consequently,
a multi-branch node of the tree is constructed. An example of
multi-branch splitting for the CARTmodel is shown in Fig. 3.

FIGURE 3. Example of multi-branch splitting for the CART model.

Repeat steps (1 - 3) until the data in each branch are
classified in one class as a leaf node.

d: CALCULATE MEAN VALUE OF LEAF NODES AFTER
REMOVAL OF NOISY DATA
Although we have removed part of the error data in the
preprocessing, other types of noisy data mentioned above
might exist. Therefore, the third optimization aspect of the
RF algorithm is to reduce the influence that the noisy data
have on the algorithm accuracy. A box-plot-based noise
removal method is performed in the value calculation of each
CART leaf node.

The data in the current leaf node are sorted in ascending
order. Then, the values of three data points Q1, Q2, Q3 of the
box-plot model are calculated, where Q2 is the median data
point andQ1 andQ3 are the lower and upper four digits of the
data, respectively. The inner limit of the noisy data is defined
as follows:

IL = Q1− 1.5(IQR) = Q1− 1.5(Q3− Q1). (5)

The outer limit of the noisy data is defined as follows:

OL = Q3+ 1.5(IQR) = Q3+ 1.5(Q3− Q1). (6)

The data outside the range of {IL,OL} are removed as
noisy data. After removing the noisy data, the average value cj

of the data yj is calculated in each leaf node of the regression
tree. The calculation formula is defined as follows:

cj =
1
k

∑
yj, (IL ≤ yj ≤ OL), (7)

where k is the number of data items in the current leaf node.
This splitting process is repeated until all of the feature

values are generated. A CART regression tree for the training
subset Straini is trained, and the tree model is defined as
follows:

hi(x, 2j) =
N∑
n=1

cnI (x ∈ Rn), (8)

whereN is the number of leaf nodes of the tree,2j is the target
feature variable, and I (·) is an indicator function. A meta
CART regression tree of the PTTP model is shown in Fig. 4.

FIGURE 4. Meta CART tree of the PTTP model.

e: CALCULATE THE ACCURACY OF EACH TREE
After each regression tree of the training subset Straini is built,
the testing subset SOOBi is used to calculate the accuracy of
the meta-classifier tree. The accuracy of a meta-classifier tree
refers to the ratio of average number of votes in correct classes
to all of the error classes, which are classified by the trained
meta-classifier tree. The accuracy of each meta CART tree
hi(x) is defined as follows:

CAi =
I (hi(x, 2j) = y)

I (hi(x, 2j) = y)+
∑
I (hi(x, 2j) = z)

, (9)

where y is a value in the correct class, and z is a value in the
error class (z 6= y).

2) COLLECTING k CART TREES FOR A RF MODEL
After the construction of the k CART regression trees, these
trees are collected for a random forest model. A method of
weighted average addition is used for the RF model, which
is the fourth optimization aspect for the RF algorithm. The
weighted regression result H (X ) of the RF model for the
data X is the average value of k trees, which is defined as
follows:

H (X , 2j) =
1
k

k∑
i=1

[wi × hi(x, 2j)]

=
1
k

k∑
i=1

[CAi × hi(x, 2j)], (10)
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where wi is the weight of tree hi and hi(x, 2j) is a
meta-classifier for a pruning regression tree constructed by
the CART algorithm. The PTTP model based on the random
forest algorithm is shown in Fig. 5.

FIGURE 5. PTTP model based on the RF algorithm.

The detailed steps of the PTTP model based on the random
forest algorithm are presented in Algorithm 1.

C. HOSPITAL QUEUING RECOMMENDATION SYSTEM
BASED ON PTTP MODEL
After training the PTTP model for each treatment task using
historical hospital treatment data, a PTTP-based hospital
queue recommendation system is developed. An efficient and
convenient treatment plan is created and recommended to
each patient to achieve intelligent triage.

Assume that there are various treatment tasks for
each patient according to the patient’s condition, such as
examinations and inspections. Let Tasks={Task1,Task2, . . . ,
Taskn} be a set of treatment tasks that the current patient must
complete, and let Ui = {Ui1, Ui2, . . . , Uim} be a set of
patients in waiting the queue for Taski. The process of the
HQR system based on the PTTP model is shown in Fig. 6.

FIGURE 6. Process of the HQR system based on the PTTP model.

a: PREDICT THE WAITING TIME OF ALL OF THE TREATMENT
TASKS FOR THE CURRENT PATIENT
For each patient Uik waiting in the queue of Taski, the
patient treatment time consumption is predicted by the trained

Algorithm 1 Process of the RF-Based PTTP Algorithm
Input:

STrain: the training datasets;
k: the number of CART trees in the RF model.

Output:
PTTPRF : the PTTP model based on the RF algorithm.

1: for i = 1 to k do
2: create training subset straini← sampling(STrain);
3: create OOB subset sOOBi← (STrain − straini);
4: create an empty CART tree hi;
5: for each independent variable yj in straini do
6: calculate candidate split points vs← yj;
7: for each vp in vs do
8: calculate the best split point (yj, vp) ←

argmin[
∑

x∈RL (yi − cL)
2
+

∑
x∈RR (yi − cR)

2];
9: end for
10: append node Node(yj, vp) to hi;
11: split data for left branch RL(yj,vp)← {x|yj ≤ vp};
12: split data for right branch RR(yj,vp)← {x|yj > vp};
13: for each data R in {RL(yj,vp), RR(yj,vp)} do
14: calculate 8(vpL |yj)← maxi 8(vi|y);
15: if (8(vp(L|R)|yj) ≥ 8(vp|yj)) then
16: append subnode Node(yj,vp(L|R)) to Node(yj,vp) as

multi-branch;
17: split data to two forks RL(yj,vpL ) and RR(yj,vpR);
18: else
19: collect cleaned data for leaf node Dleaf ←

(IL ≤ yj ≤ OL);
20: calculate mean value of leaf node c ←

1
k

∑
Dleaf ;

21: end if
22: end for
23: remove yj from straini;
24: end for
25: calculate accuracy CAi ←

I (hi(x)=y)
I (hi(x)=y)+

∑
I (hi(x)=z)

for hi
by testing sOOBi;

26: end for
27: PTTPRF ← H (X , 2j)← 1

k

∑k
i=1 [CAi × hi];

28: return PTTPRF .

PTTP model according to the patient’s characteristics (such
as gender and age), time factors (such as the week and month
of the current time), and other factors (such as treatment
departments, available machines, and service windows). The
patient treatment time consumption Tik of patient Uik in
queue is defined as follows:

Tik = H (Xik , 2j)

=
1
k

k∑
i=1

[CAi × hi(x, 2j)], (11)

where Xik is the treatment data of patient Uik , 2j is all of
the independent variables of Xik , CAi is the accuracy weight
of tree hi, and hi(x, 2j) is a result of patient treatment time
consumption predicted by a single CART regression tree.
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Then, all of the predicted patient treatment time
consumption of patients in the queue is added to obtain the
waiting time of Taski, which is defined as Ti. The calculation
formula of Ti is defined as follows:

Ti =
1
Wi

m∑
k=1

Tik , (12)

where Wi is the number of service windows or workbenches
that can provide a service for treatment task Taski in
parallel, m is the number of patients waiting in the queue
of Taski , and Tik denotes the predicted waiting time for the
patient-in-waiting Patientk .

b: SORT ALL OF THE TREATMENT TASKS OF THE CURRENT
PATIENT IN ASCENDING ORDER BY WAITING TIME
All treatment tasks of the current patient are sorted in
ascending order according to the waiting time. If there is any
task that is dependent on another task, these tasks should be
sorted based on their dependencies rather than their waiting
times.

c: PROVIDE A HOSPITAL QUEUING RECOMMENDATION
FOR THE CURRENT PATIENT
Finally, a hospital queuing recommendation with the sorted
treatment tasks is performed for each patient by a mobile
application interface. Each patient can be invited to complete
his treatment activities in the most convenient way with the
least waiting time. The detailed steps of the hospital queuing
recommendation are presented in Algorithm 2.

In Algorithm 2, X contains the information of all of the
treatment tasks for the current patient, such as task name,
doctor name, and the patients waiting in the queue for each
tasks.

IV. PARALLEL IMPLEMENTATION OF THE
PTTP ALGORITHM AND HQR SYSTEM
Massive historical treatment data (comprise more than 5 TB,
and increase every day) are initially stored in HBase. Then,
the PTTP model and HQR system are parallelized in the
Apache Spark cloud platform. Thus, the performance of the
algorithms is improved significantly.

A. PARALLEL IMPLEMENTATION OF THE PTTP MODEL
We parallelize the PTTP model on the Spark cloud platform.
A dual parallelization training process is performed. The
k training subsets are trained in a parallel process, and
k CART regression trees are built at the same time. Then, the
M variables in the training subsets are calculated in parallel
in the node-splitting process of each tree.

The parallel training process of the PTTP model is
implemented in the Spark computing cluster with the RDD
programming model. Distinct from theMapReduce model on
the Hadoop platform, the intermediate results generated in the
training process of the PTTP model are stored in the memory
system on the Spark platform as RDD objects.

Algorithm 2 Process of the Hospital Queuing
Recommendation
Input:

X : the treatment data of the current patient;
PTTPRF : the trained PTTP model based on the RF
algorithm.

Output:
Ts(X ): the recommended tasks with predicted waiting
time.

1: create map Ts(X )← HashMap < string, double >;
2: for each Taski in X do
3: create array Ui[]← patients-in-waiting of Taski;
4: for each patient Uik in Ui do
5: predict time consumption Tik ← PTTPRF ;
6: end for
7: calculate predicted waiting time Ti← 1

Wi

∑m
k=1 Tik ;

8: append waiting time Ts(X )←< Taski,Ti >;
9: end for
10: sort map Ts(X ) in an ascending order;
11: for each < Taski,Ti > in Ts(X ) do
12: if (Taski has dependent tasks) then
13: put records of the dependent tasks before Taski;
14: end if
15: end for
16: return Ts(X ).

The dual parallelization training process of the PTTP
model is shown in Fig. 7.

Before the training process, the treatment data are loaded
from HBase to the Spark Tachyon memory system as an
RDD object. An RDD object RDDoriginal is defined to save
the training dataset. Then, k training subsets are sampled as
k RDD objects from RDDoriginal ; each of them is defined as
RDDtraini. Other k RDD objects are created to save related
OOB subsets; each of them is defined as RDDOOBi. The
k training subsets are allocated to k map tasks at the same time
and are allocated to multiple slave nodes. Then, these training
subsets are calculated in parallel with the RDD programming
model including a series of operations. Finally, k regression
tree models are obtained.

In the RDD programming model, each RDD object
supports two types of operations, i.e., transformation
and action. Transformation operations include a series of
operations on an RDD object, such as map(), filter(),
flatMap(), mapPartitions(), union(), and join(). Then,
a new RDD object is returned from each transformation
operation. Action operations include a series of operations
on an RDD object, such as reduce(), collect(), count(),
saveAsHadoopFile(), and countBykey(), that compute a result
and callback to the driver program or save it to an external
storage system. The detailed steps of the dual parallelization
training process of the PTTP model are presented
in Algorithm 3.

The training processes of each training subset RDDtraini
and the OOB subset RDDOOBi comprise the following stages.
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FIGURE 7. Dual parallelization training process of the PTTP model.

In stage 1, there are buildFeatureData() and
findSplitsFeature() functions, which perform a transforma-
tion operation and an action operation, respectively. In the
buildFeatureData() function, feature subspaces of RDDtraini
are mapped to a new RDD object with M partitions, which
refer to the M feature variables. The loss function of each
feature variable subspace and each potential split point value
of the variable are calculated. In the findSplitsFeature()
function, the results of the variable’s loss function are sorted,
and the feature variable with the least value is selected as
the first node of CART tree Ti, which is created as RDD
object RDDTi.

In stage 2, there are two split() functions and a
findBestSplits() function. In the first split() function, the
training subset RDDtraini is split into two forks by a split
point in the current feature subspace, which is shown
as RDDL/Rtree in Fig. 8. For each branch, there is a
findBestSplits() function. In the findBestSplits() function, the
same feature variables continue to be selected, and the results
of sets of the potential splitting values for the current feature
subspace are calculated. The best split point is obtained for
the data in the branch, such as RDDsplitfeature2. Then, if the
split value is greater than the father node, the branch continues
to split by the current feature variable and the best split
point in the second split() function. Otherwise, the other
remaining feature variables continue to be computed. If the
current tree node is not a leaf node, repeat stages (1 - 2) to
compute the next feature, except for the features that exist in
tree nodes. Alternatively, if the current node is a leaf node,
go to stage 3.

FIGURE 8. Parallelization recommendation process of the HQR system.

In stage 3, there are a noisyDataClear() function and
a mean() function. The noisy data of each leaf node are
cleaned in the noisyDataClear() function. Then, in the
mean() function, the average value of the data is calculated,
which is the value of the leaf node of the RDDTi.

The splitting process is repeated until all of the feature
variables are calculated. A tree model RDDTi for the training
subset RDDtraini is trained. Finally, the OOB subset RDDOOBi
against the training subset RDDtraini is used to test the
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Algorithm 3 Dual Parallelization Training Process of the
PTTP Model
Input:

RDDoriginal : the treatment data loaded from HBase;
k: the number of CART trees in the RF model.

Output:
PTTPRF : the PTTP model based on the RF algorithm.

1: trees← SparkContext.parallelize(1 to k , slices).map
2: initialize subsets (RDDtraini, RDDOOBi)←

randomSplit(RDDoriginal);
3: initialize feature subspaces Fsub← RDDtraini;
4: Fsub.parallelize(0 to Fsub.length).map
5: calculate candidate split points splits← Fsub;
6: calculate best split Splitbest ← node.findBest-

Splits(Fsub, splits).sortByKey().top(1);
7: append node to treei;
8: split data to two forks (RDDL , RDDR)← node.

split(Splitbest );
9: if(8(RDDL |RDDR) ≥ 8(Splitbest )) then
10: append subnode to node as multi-branch;
11: split data to two forks (RDDL2, RDDR2)←

subnode.split(Splitbest2);
12: else
13: clean noisy data RDDleaf ← RDDL |RDDR.

noisyDClean();
14: calculate mean value of leaf node c← RDDleaf .

mean();
15: endif
16: endmap.groupBykey().reduce();
17: build CART treei← new CARTModel(nodes);
18: calculate accuracy CAi← treei.getAc(RDDOOBi);
19: return (treei, CAi);
20: endmap.collect();
21: PTTPRF ← RandomForestModel(trees);
22: return PTTPRF .

accuracy of the tree RDDTi, and the accuracy of RDDTi is
computed as the weight in a getAccuracy() function. Taking
advantage of the cloud-computing platform and a distributed
memory management mechanism, the performance of the
parallel method is improved evidently.

B. PARALLEL IMPLEMENTATION OF THE HQR SYSTEM
Usually, there are a number of treatment tasks for each
patient, and many patients waiting in the queue of each
treatment task. Therefore, a parallel HQR system is
implemented for each patient if there is more than one
treatment task for the patients. The process of the parallel
HQR system is shown in Fig. 8.

Assume that there are n treatment tasks for the current
patient to complete and that there is a number of patients
waiting in the queue of each treatment task. In the
parallelization solution, n RDD objects are created to refer
to the n treatment tasks. There is a number of partitions in
each RDD object that refer to patients waiting in the queue of

Algorithm 4 Parallelization Recommendation Process of the
HQR Algorithm
Input:

RDDTasks: the treatment tasks data of the current patient;
PTTPRF : the trained PTTP model based on the RF
algorithm.

Output:
Ts: the recommended treatment tasks list with predicted
waiting time.

1: Ts← RDDTasks.map
2: Taski ⇒
3: Ui← getWaitingPatients(Taski);
4: Ti← Ui.map
5: Uik ⇒
6: predict time consumption Tik ←

PTTPRF .predict(Uk .vars);
7: endmap
8: (Uik ,Tik ).collect().reduce();
9: return predicted waiting time (Taski,Ti);
10: endmap
11: (Taski,Ti).reduceByKey();
12: sort tasks list Ts← Ts.sortByTime();
13: for each (Taski,Ti) in Ts(X ) do
14: if (Taski has dependent tasks) then
15: put records of the dependent tasks before Taski;
16: end if
17: end for
18: return Ts.

each task. Let partition Uij be the jth patient waiting for the
ith treatment task.
Step 1: For each patient Uij in a task Taski, the time

consumption of the patient might generate in the ith task,
as predicted by the trained PTTP model. In this step, the
time consumption for each patient Uij is calculated with the
k trained CART trees of the RF-based PTTP model in a
shuffle() function, and the predicted patient treatment time
consumption Tij is derived.
Step 2: The patient treatment time consumption of all of

the patients in each task is added in a sum() function, and the
predicted waiting time Ti of each task is obtained. An RDD
object (Taski,Ti) is created for each task.
Step 3: The predicted waiting times for all of the tasks

for the current patient are sorted in ascending order with
a sort() function. A new RDD object Ts is created to save
the sorted waiting times of all of the treatment tasks. Hence,
the parallel hospital queuing recommendation schema for the
current patient is performed. The detailed steps of the parallel
HQR algorithm are presented in Algorithm 4.

V. EXPERIMENTS AND APPLICATIONS
In this section, the accuracy and performance of the proposed
algorithm are evaluated through a series of experiments.
The algorithm is applied to an actual hospital project
in China. Section 5.1 presents the experimental settings.
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The experiment result analysis of the PTTP algorithm and
the HQR system are presented in Section 5.2, Section 5.3
presents the accuracy and robustness evaluation, and
performance evaluation is provided in Section 5.4.

A. EXPERIMENT AND APPLICATION SETUP
The HQR system consists of two main modules: a decision
maker and recommendation module and a mobile application
interface module. In the decision maker and recommendation
module, treatment data are transmitted to the HBase database
in NSCC from hospitals regularly.

The system and experiments are performed on a Spark
cloud platform, which is constructed at the National
Supercomputing Center in Changsha to achieve the
aforementioned goals. Each computing node runs Linux
operating system Ubuntu 12.04.4, with 2 Intel Xeon
Westmere EP CPUs, 6 cores, 2.93GHZ, and 48GB memory.
All of the nodes are connected by a high-speed Gigabit
network and are configured with Hadoop 2.6.0 and
Spark 1.6.0. The algorithm is implemented in Java 1.7.0
and Scala 2.11.7. In our experiments, datasets covering three
years (2012 - 2014) are chosen from an actual hospital
application, as shown in Table 5.

TABLE 5. Datasets from an actual hospital application.

In Table 5, the departments of the hospital include the
financial room, the Emergency Department (ED), CT scan,
MR scan, B-model ultrasound, color Doppler ultrasound,
nuclear medicine, and the pharmacy. There are various
treatment tasks in each department.

B. EXPERIMENT RESULT ANALYSIS
We analyze the patient treatment time consumption of the
CT scan task with time factors and patient characteristics.
Because of the content of the activities and various
circumstances, the patient treatment time consumption of
treatment tasks in each department can vary. At the same
time, the time consumption in the same department might
be different due to the different treatment tasks, different
periods, and different conditions of patients.

1) TREATMENT TIME CONSUMPTION WITH TIME FACTORS
The CT scan treatment task quantities are depicted in Fig. 9.
As seen in Fig. 9, there are two peaks of the CT scan task
every day. The first peak comes from 8 am to 11 am, and
the second peak comes from 2 pm to 5 pm. The nadir point
of each day is in the range of 0 am -7 am in the morning,
12 pm to 1 pm at noon, and 6 pm to 11 pm in the evening.
The overall number of patients per weekend day is less than
that on individual weekdays.

FIGURE 9. CT scan task quantities in each week period.

After the training process of the PTTP algorithm, the time
consumptions of all of the treatment tasks in the experiment
are trained. The time consumption of CT scan task with time
factors (part) is shown in Fig. 10.

FIGURE 10. Treatment time consumption of the CT scan task with time
factors (part).

Each point in Fig. 10 refers to a value of one leaf node in
the regression trees of the PTTP model. Consider 9 am on
a weekday for a CT scan task to be an example of a peak
time scenario; the average output of a CT scan operation is
approximately 40 every day. There are 43,200 records at the
leaf nodes of the CART tree model. The time consumption
is close to 240 s (approximately 4.0 min) for a CT scan task.
Conversely, at the nadir point, there are 0 or 1 CT scan tasks
in each hour. There are 0 - 1095 (1 × 365 days × 3 years)
records at the leaf node of the tree model.

Obviously, because there are approximately 43,200
(40 × 365 days × 3 years) records at the leaf node for peak
time case, the value of trained treatment time consumption
is smooth and steady. At the nadir point, the value of trained
treatment time consumption is undulate because of the small
number of training samples. Consequently, having fewer
records in each leaf node of the tree model results in less
accuracy.
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2) TREATMENT TIME CONSUMPTION WITH
PATIENT CHARACTERISTICS
The treatment time consumption of a CT scan task with
patient characteristics (part) is shown in Fig. 11.

FIGURE 11. Treatment time consumption of the CT scan task with patient
characteristics (part).

As seen in Fig. 11, for patients with ages ranging from
20 to 40, time consumption of each CT scan task is
approximately 245 s (approximately 4.1 min) for both men
and women. As age increases, the time required for each
patient’s CT scan task increases. For example, the time
consumption for a male patient at age 90 is approximately
786 s (approximately 13.1 min). At the same time, generally
speaking, the time consumption for a female patient is greater
than that for a male in the same age range.

3) HQR SYSTEM IN A MOBILE APPLICATION
To elaborate the working of the HQR system, an example
experiment is discussed below. One patient is considered to
be an example scenario. The patient must undergo various
treatment tasks, such as a doctor checkup, a CT scan, an
MR scan, a pharmacy visit to obtain prescribed medicines,
and a payment task. As mentioned above, a set of treatment
tasks for the current patient is submitted to the decisionmaker
and recommendation module through a mobile interface. The
mobile interface of the HQR system is shown in Fig. 12.
Because the language of the mobile application is Chinese,
we have translated the language from Chinese to English.

The predicted waiting time of all of the treatment
tasks is calculated by the PTTP model. Then, a treatment
recommendation with the least waiting time is advised.
Fig. 12(a) shows that there are 10 people waiting for the
CT scan before the current patient (including the people
waiting in the queue and in processing), and the predicted
waiting time is 26.0 min. Fig. 12(b) shows the details of the
waiting queue for the CT scan. We can see the characteristics,
predicted time consumption, and the status of each person in
the queue. For example, the treatment time consumption of a
15-year-old male is 6.0 min, which is close to the trained time
consumption of 350 s (shown in Fig. 11). The total predicted
time consumption of 10 people is 78.0 min, and there

FIGURE 12. Mobile interfaces of the HQR system. (a) Recommended
tasks list. (b) Details of the waiting queue.

are 3 machines available in parallel. Therefore, the predicted
waiting time of the current patient is 26.0 min. Moreover,
the status of the waiting queue is updated in real-time. The
experimental results show that the HQR system provides a
recommendation with an effective treatment plan for patients
to minimize their wait times in hospitals.

4) AVERAGE WAITING TIME FOR PATIENTS
To evaluate the efficiency of our HQR system, various
experiments about average waiting time for patients in the
with-HQR case with that in the without-HQR case are
performed. Each case is under the treatment data with
5000 patients and 20,000 treatment records. We accounted
and compared the average waiting time of patients in the
with-HQR case with that in the without-HQR case. The
results of comparison are presented in Fig. 13.

FIGURE 13. Average waiting time for patients.

It is easy to observe from Fig. 13 that the advantage of
the average waiting time of patients in cases of with-HQR is
greater than in cases of without-HQR. Moreover, the more
patients treatment tasks are, the more obvious is for this
advantage. When the number of tasks required for each
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patient is equal to 2, the average waiting time of each
patient is approximately 15 min in the without-HQR case (the
original case), while 12 min in the with-HQR case. When
there are 6 treatment tasks required for each patient, the
average waiting time is approximately 118 min in the former
case, while 63 min in the latter case.

C. ACCURACY AND ROBUSTNESS ANALYSIS
To evaluate the accuracy and robustness of our improved-RF-
based PTTP algorithm, we implemented the PTTP algorithm
based on the original random forest (refereed as PTTP-ORF).
The accuracies of the PTTP algorithm and PTTP-ORF
algorithm are analyzed under different ratios of noisy data.

1) RESULTS EVALUATION OF NOISE REMOVAL
In Section 3.2.2, a noise removal method is introduced in
the training process of the regression tree model. The effect
of noise removal is validated and analyzed. Six groups of
leaf node data in the regression tree models are discussed in
experiments, the specific conditions of the six groups of leaf
nodes are shown in Table 6.

TABLE 6. Specific conditions of six leaf nodes in the experiments.

The results of noise removal for the PTTP algorithm are
presented in Fig. 14.

FIGURE 14. Noisy data removal results for the PTTP algorithm.

Fig. 14(a) is a box plot of a leaf node with the condition
of ‘‘CT-1’’. The patient treatment time consumption
in this case is between 0 and 2500 s (approximately
0.0 - 41.6 min). The boundaries of the box plot in this case are

0 and 480 s (approximately 8.0 min), and the median value is
240 s (approximately 4.0 min). That is, most of the patient
treatment time consumption data are in this range, which
is understandable for people in the 25-45 age range in the
treatment operation of a CT scan task. In Fig. 14(b), time
consumption is in the range 0 - 8000 s (approximately
0.0 - 133.3 min) for male aged 65 - 85 in the CT scan task.
After noise removal, the time range is changed to 0 - 1995; the
median value is 710 s (approximately 11.8min). In Fig. 14(c),
the time consumption range is 0 - 1740 s (approximately
0.0 - 29.0 min) after noise removal, rather than the range
of 0 - 2500 s. The median value is 720 s (approximately
12.0 min) for one treatment of the MR scan task.

Two examples of noisy data removal from patient treatment
time consumption are shown in Fig. 15.

FIGURE 15. Examples of noisy data removal from patient treatment time
consumption.

Fig. 15(a) and Fig. 15(b) show the patient treatment
time consumption of a leaf node before and after noise
removal. After noise removal, the range of the value is
changed from (0 - 35,000) to (0 - 1000), and the value range
decreases by 97.14%. The number of records decreases from
3000 to 2582. Namely, the number of noisy data points is
equal to 418, and the noise rate is 13.93%. Fig. 15(c) and
Fig. 15(d) depict the patient treatment time consumption of
another leaf node before and after noise removal. After noise
removal, the range of the value is changed from (0 - 3500)
to (0 - 700), and the value range decreases by 80.00%. The
number of records decreases from 1320 to 1185. The number
of noisy data points is equal to 135, and the noise rate is
10.23%. Summarizing, after noise removal, the value ranges
of patient treatment time consumption obviously decrease.

2) ALGORITHM ACCURACY ANALYSIS WITH
DIFFERENT TREE SCALES
To illustrate the accuracy of the PTTP algorithm, various
experiments are performed on the dataset shown in Table 5.
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Each case is under different scales of the decision tree.
By counting the average accuracies of the algorithms, the
different accuracies of various environments are compared
and analyzed. The results are presented in Fig. 16.

FIGURE 16. Accuracy of different algorithms with different tree scales.

Fig. 16 shows that the average accuracy of the PTTP
algorithm based on different improved random forest
algorithms is not high when the number of regression trees in
each algorithm is equal to 10. With an increase in the number
of decision trees, the average accuracy increases gradually
and tends toward a convergence condition. The accuracy
of the PTTP algorithm is greater than that of PTTP-ORF
by 3.72% on average and 5.10% in the best case, when
the number of decision trees is equal to 200. Consequently,
compared with PTTP-ORF, the PTTP algorithm, which has
been optimized in four aspects, can significantly increase the
accuracy.

3) ALGORITHM ACCURACY ANALYSIS UNDER
DIFFERENT NOISE RATIOS
To demonstrate the accuracy of our algorithm, we conduct
experiments with algorithms, such as the PTTP and
PTTP-ORF. We construct the noisy data by modifying the
values of the original data randomly according to different
noise ratio requirements. The scales of the noise ratios are
located in the range of {1%, 4%, 8%, 12%, 16%, 20%, 24%,
28%, 32%, 36%, 40%}. The number of training samples in
the cases is 100,000, and the number of regression trees in
the random forest model is 500. The result of comparative
analysis is presented in Fig. 17.

Fig. 17 states that in each case, when the proportion of
noisy data increases, the average accuracy of PTTP-ORF
decreases quickly. When the scale of noisy data increases
from 1% to 40%, the accuracy of PTTP-ORF decreases from
88.70% to 74.50%. Therefore, noisy data have a significant
degree of influence on PTTP-ORF. Accuracy of PTTP-ORF
is influenced by a large volume of noisy data. In addition,
as the proportion of noisy data increases, the tendency of the
accuracy of our PTTP algorithm decrease is steady. When the

FIGURE 17. Accuracy of different algorithms under different noise ratios.

proportion of noisy data increases from 1% to 50%, the
average accuracy of PTTP decreases from 91.90% to 82.60%.

Obviously, the average accuracy of PTTP is greater than
that of the other two algorithms under each condition of
noise ratio. Consequently, the PTTP algorithm can reduce
the influence of noisy data effectively and achieve good
robustness.

D. PERFORMANCE EVALUATION
1) PERFORMANCE EVALUATION OF THE PTTP ALGORITHM
To evaluate the performance of the PTTP algorithm, four
groups of historical hospital treatment data are trained at
different scales of the Spark cluster. The sizes of these
datasets are 50GB, 100GB, 300GB, and 200GB. The scale of
slave nodes of the Spark cluster in each case increases from
5 to 80. By observing the average execution time of the PTTP
algorithm in each case, different performances across various
cases are compared and analyzed. The results are presented
in Fig. 18.

FIGURE 18. Performance evaluation of the PTTP algorithm.

From Fig. 18, the advantage of the parallel algorithm in
cases of large-scale data is greater than in cases of small-scale
data. The benefit is more obvious when the number of slave
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nodes increases. As the number of cluster nodes increases
from 5 to 80, the average execution time of the PTTP model
decreases from 879 to 285 s for 300GB of data, and decreases
from 328 to 81 s for 50GB of data.

2) PERFORMANCE EVALUATION OF THE HQR SYSTEM
The performance of the HQR system is evaluated in
this section. Data for three groups of patients’ queuing
guidance requirements are executed at the Spark cluster at
different scales. The volumes of requirements data for the
recommendation are 500, 1000, and 2000. The scale of slave
nodes of the Spark cluster in each example increases from
5 to 80. The average execution time of the HQR system for
each case is shown in Fig. 19.

FIGURE 19. Performance evaluation of the HQR system.

In the case of the 5 nodes in the Spark cluster, the average
execution time of HQR is 8.5 s for 500 requirements, 17.6 s
for 1000, and 26.5 s for 2000. In the case of 80 nodes in the
Spark cluster, the average execution time of HQR is 0.9 s
for 500 requirements, 1.9 s for 1000, and 2.7 s for 2000.
As the number of cluster nodes increases from 5 to 80, the
average execution times of the HQR system in the three
groups decrease at the ratios of 8.85, 9.21 and 9.63 times.
The actual operational results of the algorithm are close to
the theoretical results.

VI. CONCLUSION
In this paper, a PTTP algorithm based on big data and the
Apache Spark cloud environment is proposed. A random
forest optimization algorithm is performed for the PTTP
model. The queue waiting time of each treatment task is
predicted based on the trained PTTP model. A parallel
HQR system is developed, and an efficient and convenient
treatment plan is recommended for each patient. Extensive
experiments and application results show that our PTTP
algorithm and HQR system achieve high precision and
performance.

Hospitals’ data volumes are increasing every day. The
workload of training the historical data in each set of
hospital guide recommendations is expected to be very
high, but it need not be. Consequently, an incremental

PTTP algorithm based on streaming data and a more
convenient recommendation with minimized path-awareness
are suggested for future work.
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