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As a new generation of Public Bicycle-sharing Systems (PBS), the Dockless PBS (DL-PBS) is an important ap-

plication of cyber-physical systems and intelligent transportation. How to use artificial intelligence to provide

efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for DL-

PBS. In this article, we propose MORL-BD, a dynamic bicycle dispatching algorithm based on multi-objective

reinforcement learning to provide the optimal bicycle dispatching solution for DL-PBS. We model the DL-PBS

system from the perspective of cyber-physical systems and use deep learning to predict the layout of bicycle

parking spots and the dynamic demand of bicycle dispatching. We define the multi-route bicycle dispatching

problem as a multi-objective optimization problem by considering the optimization objectives of dispatching

costs, dispatch truck’s initial load, workload balance among the trucks, and the dynamic balance of bicycle

supply and demand. On this basis, the collaborative multi-route bicycle dispatching problem among multiple

dispatch trucks is modeled as a multi-agent and multi-objective reinforcement learning model. All dispatch

paths between parking spots are defined as state spaces, and the reciprocal of dispatching costs is defined as

a reward. Each dispatch truck is equipped with an agent to learn the optimal dispatch path in the dynamic

DL-PBS network. We create an elite list to store the Pareto optimal solutions of bicycle dispatch paths found

in each action, and finally get the Pareto frontier. Experimental results on the actual DL-PBS show that com-

pared with existing methods, MORL-BD can find a higher quality Pareto frontier with less execution time.
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1 INTRODUCTION

Benefiting from the advantages of zero emissions, flexibility, and convenience, the Public Bicycle-

sharing System (PBS) has become an essential part of urban transportation [11, 14, 23]. PBS has
significant advantages in short-distance travel, and can be easily combined with public transporta-
tion such as buses and subways to solve the problem of “first mile/last mile” [30]. In addition
to the traditional Station/Dock-based PBS (SD-PBS), many enterprises provide a novel type
of Dockless PBS (DL-PBS) [27, 29]. DL-PBS has the following characteristics: flexible parking
spots (also known as parking spots, service points, and bicycle stations), and dynamic changes in
the number of bicycles at each parking spot [12]. Compared with SD-PBS, the significant differ-
ence of DL-PBS is that each parking spot (instead of a fixed bicycle station) not only has a flexi-
ble location but also no fixed parking piles/docks [21]. Users can download a mobile application
to quickly identify nearby DL-PBS parking spots via the bicycles’ global positioning system

(GPS) information, and then scan the Quick-Response (QR) code on the target bicycle to un-
lock and use it [2]. After the trip, users can drop off the bicycle at any parking spots near the
destination. It is very convenient for the public and has become increasingly popular in many
countries.

During the operation of DL-PBS, several problems have been reported, such as difficulty in pick-
ing up or dropping off bicycles, unreasonable station distribution, equipment failures, and serious
imbalance between supply and demand [21, 27]. Without the intervention of bicycle dispatching,
bicycle parking spots will randomly change during operation, and many destroyed bicycles cannot
found in time [17, 28]. For suppliers, the layout of bicycle parking spots and bicycle dispatching
plans are essential to operating profit, bicycle utilization, and user satisfaction. The optimal layout
of bicycle parking spots can maximize the bicycle supply and demand balance by deploying mini-
mum parking spots [25]. In addition, the optimal bicycle dispatching solution requires the smallest
dispatching costs, including the shortest dispatch paths, the least number of dispatched bicycles,
and the minimum dispatching time. Most existing research on public bicycle dispatching focuses
on SD-PBS with fixed bicycle stations and fixed parking spots [11, 19]. However, these methods
do not make full use of large-scale historical riding trajectory records to discover potential riding
rules and dynamic rental requirements.

As a new generation of PBS, DL-PBS is an important application of the Internet of Things, cyber-
physical systems, and Artificial Intelligence (AI) in the field of intelligent transportation [14, 24].
In DL-PBS, massive smart bicycles equipped with GPS-based sensors are connected to a complex
DL-PBS network, and operate on different spatial and temporal scales through real-time bicycle
riding behaviors, exhibiting a variety of distinct behavioral patterns. In DL-PBS, there is uncer-
tainty in bicycle parking spots, dynamic rental behavior, and the number of bicycles required at
each parking spot [2, 11]. In the process of bicycle dispatching, multiple intelligent dispatch trucks
can interact with distributed and moving bicycle sensors in real time, perceive the dynamic sup-
ply and demand of parking spots, and dynamically adjust dispatch routes, thereby improving the
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Fig. 1. Workflow of the proposed DL-PBS dynamic bicycle dispatching (MORL-BD) algorithm based on

multi-objective reinforcement learning. Massive public bicycles with intelligent sensors and the correspond-

ing large-scale cycling trajectory records form a series of spatiotemporal DL-PBS networks, and further get

a graph sequence model. In the MORL-DB algorithm, multiple agents represent multiple dispatch trucks,

find the optimal dispatch routes in a cooperative manner, and jointly achieve the optimization goal.

optimality of dispatch schemes [7]. Therefore, how to use machine learning and AI approaches to
provide efficient bicycle dispatching solutions and meet the dynamic bicycle rental demand is an
essential issue for DL-PBS.

In this article, we propose MORL-BD, a bicycle dispatching algorithm based on multi-objective
reinforcement learning for DL-PBS. The multi-route bicycle dispatching problem is defined as a
multi-objective optimization problem. A multi-agent and multi-objective reinforcement learn-

ing (MORL) algorithm is used to search for candidate Pareto optimal solutions to achieve the
expected optimization goals. Each dispatch truck can automatically detect the bicycles’ trajectory
and real-time inventory of each parking spot through wireless sensors, and dynamically adjust
its dispatch route. An example of the workflow of the proposed MORL-BD algorithm is shown in
Figure 1.

The contributions of this work are summarized as follows:

• We establish a graph sequence model of DL-PBS bicycle stations based on large-scale
spatiotemporal datasets, which can richly express the movement behavior of the DL-PBS
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network in different space-time spaces. Then, the Gated Graph Neural Network (GGNN)

model is used to predict the bicycle station layout and bicycle dispatching demand in the
next time period.
• We define the multi-route bicycle dispatching problem as a multi-objective optimization

problem, and well consider four optimization goals, including dispatching costs, the initial
load of dispatch trucks, the workload balance between dispatch trucks, and the supply and
demand balance of all bicycle stations.
• We propose MORL-BD, a bicycle dispatching algorithm based on multi-agent and multi-

objective reinforcement learning. In MORL-BD, each dispatch truck is equipped with an
agent to perceive and interact with the dynamic DL-PBS environment and learn the optimal
dispatch path. We create an elite list to store the Pareto optimal solution found in each action
and finally find the Pareto frontier.
• We conduct extensive comparative experiments on actual DL-PBS to compare the MORL-BD

algorithm with the multi-objective genetic algorithm, evolutionary algorithm, and particle
swarm optimization algorithm. Experimental results show that MORL-BD can find more
high-quality Pareto frontier and the optimal bicycle dispatching plan with less execution
time.

The rest of the article is structured as follows. Section 2 summarizes the related work.
Section 3 describes the DL-PBS model, the dynamic prediction of bicycle station layout, and the bi-
cycle dispatching problem of public bicycles. Section 4 introduces reinforcement learning (RL)

and the proposed MORL-BD algorithm. Section 5 provides comparison experiments to evaluate
the performance of the MORL-BD algorithm. Finally, Section 6 presents our conclusion.

2 RELATED WORK

Accurate prediction of bicycle rental demand is an important prerequisite for public bicycle dis-
patching and PBS rebalancing [15, 22]. Mimura et al. [16] proposed a time-series generation model
to predict the number of bicycle transfers per hour and the bicycle rental demand. Li and Zheng
[11] introduced an adaptive transition-constrained clustering algorithm to classify public bicycle
stations. They used a similarity-based Gaussian regression to predict the location of different pro-
portions of stations and the bicycle demand of each station. Considering the relationship between
the location of bicycle stations and transport stations, Tang et al. [22] carried out a method for
adjusting the location and scale of PBS pools in a bike-and-ride multi-modal transport system.
Ghosh et al. [7] discussed the congestion or starvation of bicycle stations caused by unpredictable
bicycle rental activities. They offered an optimization method to predict bicycle riding routes and
expected rental demand. The existing studies are mainly aimed at traditional SD-PBS, including
bicycle station planning and bicycle rental demand prediction. However, there is limited research
conducted on emerging DL-PBS.

Imbalanced bicycle supply is one of the major problems faced by PBS [9, 13, 32]. Zhao
et al. [32] studied the dispatching and management of DL-PBS and established a semi-open dis-
patching model based on fuzzy time windows. Hu and Liu [9] built a mathematical model of the
location between bicycle stations and dispatch centers, and carried out the optimal dispatching
route with the minimized operating cost, passenger travel cost, and dispatching cost. Different
from SD-PBS, the bicycle dispatching of DL-PBS is more complex due to the uncertainty of the
location of bicycle stations and the requirements of bicycles. Liu et al. [13] focused on the DL-
PBS bicycle dispatching and divided the DL-PBS networks by the K-means clustering algorithm.
They built a bicycle dispatching model based on a rolling horizon dispatching algorithm, which
can effectively guide bicycle redistribution between bicycle stations. Although there have been
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some studies on bicycle dispatching and bicycle supply balance, most of them treat the problem as
a static problem with single-objective or multi-objective optimization problems. In DL-PBS, due
to dynamic bicycle rental demand and dynamic bicycle parking spots, it is difficult to perform
bicycle dispatching and maintain the balance of bicycle supply among different bicycle drop-off
stations.

RL methods were introduced in the existing literature to achieve bicycle rebalance without
human intervention [3, 6, 12, 17]. Li et al. [12] developed a spatiotemporal RL model of bicycle
layout, which can reposition bicycle stations and minimize customer losses. The spatiotemporal
RL model is applied to each station cluster to learn the corresponding reposition strategy. Chen
et al. [3] used the Q-learning algorithm to formulate the personalized bicycle travel plan, and used
a dynamic and flexible position insertion method to automatically adjust the trips. Duan and Wu
[6] discussed the impact of bicycle underflow and overflow on the PBS service and urban traffic
congestion. Pan et al. [17] constructed a deep RL framework to motivate users to rebalance public
bicycles. They modeled the bicycle rebalancing problem as a Markov decision process, and used
the deep deterministic strategy gradient method to capture the spatial and temporal dependence
of bicycle stations. Although these methods provided a variety of incentive mechanisms, due to
factors such as user riding purpose and participation, these methods only played a limited role in
practical applications without the intervention of manual dispatching, which makes it difficult to
rebalance the system.

In current research of multi-objective optimization problems and MORL, the standard concept of
optimality is replaced by Pareto optimality [8, 18, 20]. Parisi et al. [18] formulated an RL strategy
gradient method to learn Pareto boundary in multi-objective Markov decision problems, where
the continuous approximation of Pareto boundary is generated for each gradient climb operation.
Ruiz-Montiel et al. [20] discussed a MORL method that uses non-convex Pareto boundaries to gen-
erates deterministic non-dominated strategies in multi-objective Markov decision problems. To
solve the effect of MORL on the optimal strategy under different preference conditions, Yang et
al. [26] adopted a MORL algorithm with linear preference. Even though different RL and MORL
approaches have been proposed for multi-objective optimization problems and applications, the
existing MORL methods have parameter configuration problems and scalarization limitations. In
addition, in our work, we define the multi-route bicycle dispatching problem as a multi-objective
optimization problem by considering multiple conflicting optimization objectives. In this case, the
standard MORL methods may face limitations and inefficiently find the Pareto frontier of the pro-
posed problem.

Different from the existing work of DS-PDS networks, we focus on the dynamic prediction of
bicycle station layout and bicycle dispatching requirements in actual DL-PBS networks. We model
the DL-PBS network from the perspective of cyber-physical systems and construct a graph se-
quence model of bicycle parking spots based on historical spatiotemporal cycling and dispatching
trajectory records. In addition, different from traditional single-truck-based dispatching, we de-
fined the problem as a multi-route bicycle dispatching problem. Moreover, we apply the MORL
algorithm to the multi-route bicycle dispatching problem and use multiple agents to collaborate
and interact with the dynamic DL-PBS environments, which can efficiently find the Pareto frontier
between multiple conflicting objectives.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will describe the DL-PBS model and use a clustering algorithm and a deep learn-
ing model to predict the dynamic layout of bicycle parking spots and dispatching requirements. In
addition, the bicycle dispatching problem is formulated as a multi-objective optimization problem
by considering four conflicting objectives.
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Fig. 2. Example of the main components of DL-PBS, where the left image is a mobile application, the middle

image is a bicycle with a lock module based on the QR code, and the right image is a bicycle parking spot.

3.1 DL-PBS Model

Different from the traditional SD-PBS, multiple DL-PBS suppliers deploy their own DL-PBS in each
city. They are allowed to place a large number of public bicycles in all permitted parking areas, such
as roadsides, parks, entrances to communities, and shopping centers. A certain number of bicycles
parked in the same location will naturally form a bicycle parking spot, also known as drop-off/pick-
up position, a self-service point, and a bicycle station. Each parking spot has no strict boundaries
and a limitation to the number of bicycles. In this way, the bicycle station layout of DL-PBS is
more flexible than that of SD-PBS, and the number of bicycles provided at each parking spot is not
limited by parking piles or docks. Therefore, the location and scale of bicycle spots can be adjusted
dynamically according to the demand of cycling, so as to achieve high flexibility. An example of the
main components of the DL-PBS system is shown in Figure 2. In this work, a DL-PBS includes five
main components, including public bicycles, bicycle parking spots, dispatching centers, a mobile
application, and a bicycle dispatching and management system:

(1) Public bicycles: Each DL-PBS supplier provides a large number of public bicycles with unique
appearance. Each bicycle is equipped with a GPS module to record its position in real time.
In addition, it is also equipped with a lock module based on the QR code.

(2) Dockless bicycle parking spots: DL-PBS suppliers deploy public bicycles in permitted parking
areas of the city, such as roadsides, parks, entrances to communities, and shopping centers. A
dense group of bicycles forms a temporary dockless bicycle parking spot. Note that there are
no strict restrictions on the location and size of parking spots, as well as no fixed parking piles
or docks at each parking spot. When all bicycles at a parking spot are removed, the parking
spot will disappear automatically. On the contrary, when several bicycles are parked in the
same location, a bicycle parking spot will be formed naturally. In this way, DL-PBS suppliers
can easily move bicycles and the parking spot at low cost.

(3) Bicycle dispatching centers: Multiple bicycle dispatching centers are deployed in different ar-
eas of each city. Each dispatching center has multiple dispatch trucks, which are responsible
for dispatching bicycles in a limited area. Note that the location of each dispatching center
is fixed.

(4) Mobile application (App): Users can download a mobile application from the DL-PBS website
or scan the QR code on any public bicycle. The App provides functions including bicycle GPS
positioning, QR code scanning, unlocking, payment, and bicycle tracking. Namely, users can
find the nearest bicycles via the App, scan the QR code on a bicycle to unlock it, and pay the
rent after the travel. They also can log in the App to track their historical riding records.
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Fig. 3. Example of the graph sequence model of DL-PBS. Each graph represents the graph model of the DL-

PBS network in a spatiotemporal subset. At each vertex (a parking spot), we can observe the return (move

in) and rental (move out) behavior of bicycles, which leads to vertex update.

(5) Bicycle dispatching and management system: The bicycle dispatching and management sys-
tem is responsible for maintaining and managing the basic information of all bicycles, park-
ing spots, and dispatching centers of the entire DL-PBS. It also contains functions such as
bicycle positioning, trajectory tracking, parking spot prediction, and dispatching plan rec-
ommendation.

3.2 Layout Prediction of Bicycle Parking Spots

In this work, historical bicycle GPS and trajectory records of the DL-PBS are used to construct
the corresponding graph model of bicycle parking spots. According to the administrative region
of the city and the time periods, historical records are divided into a series of spatiotemporal data
subsets. Each subset represents the bicycle GPS information and corresponding cycling records of
an administrative area (e.g., city, administrative district, or county) in a certain time period (e.g.,
1 day or 1 week). In our previous work [2], we used the Domain Adaptive Density Clustering
(DADC) algorithm to cluster bicycle parking spots, then constructed a weighted directed graph
model based on the clustering results.

We establish a weighted digraph model G = (V , E) for the DL-PBS network in each spatiotem-
poral subset, where the set of verticesV represents the bicycle parking spots, and the set of edges
E represents the cycling trajectories between parking spots. Each vertexvi ∈ V has three attribute
values (μi , ψi , φi ), where μi indicates the number of bicycles parked at the spot, and ψi and φi in-
dicate the latitude and longitude of vi . Each edge ei j ∈ E has two attribute values (di j ,wi j ), which
indicate the actual distance between spots vi and vj and the corresponding number of cycling
records. Note that di j = dji , but wi j � w ji .

We further study the dynamic behavior of bicycle rental and return and the update of parking
spots. With the rental and return of bicycles, the number of bicycles available at each parking spot
dynamically changes. In addition, new spots may appear and some current spots may disappear.
We perform bicycle parking spot clustering on each spatiotemporal subset to construct the cor-
responding graph model, then combine graph models from multiple time periods to construct a
graph sequence model. An example of the graph sequence model of DL-PBS is shown in Figure 3.
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LetGS = {G1, . . . ,Gt } be a DL-PBS graph sequence model of a certain spatial subset. According
to the latitude and longitude coordinates of each vertex, we establish a connection between the
vertices of different graph models. In other words, vertices with the same or similar latitude and
longitude coordinate values are regarded as the same vertices in the graph sequence model. Then,
we can calculate the update of each vertex across time periods. Considering the matching errors
of vertices caused by the imprecise GPS information, we introduce a fusion factor ϵ for vertex
connection. Namely, for a vertex vi in graph Gt and a vertex vj in graph Gt+1, if |φi − φ j | ≤ ϵ and
|ψi −ψj | ≤ ϵ , vertices vi and vj are treated as the same vertex. In practical applications, the value
of ϵ is manually set based on experience. In this work, the effective threshold is set as ϵ = 3 (m).

Assuming that μi,t and μi,t+1 are the number of bicycles at vi in Gt and Gt+1, respectively. The
updating of each vertex vi between two adjacent graph models Gt and Gt+1 can be divided into
five cases:

(1) The number of bicycles remains the same at vi : If vi exists in both Gt and Gt+1, and μi,t+1 =

μi,t , it means that the same number of bicycles at vi is maintained between t and t + 1.
Namely, the number of bicycles arriving at vi is equal to the number of bicycles leaving vi .

(2) The number of bicycles at vi decreases: If vi exists in both Gt and Gt+1, and μi,t+1 < μi,t , it
means that the number of bicycles at vi decreases. Namely, the number of bicycles arriving
at vi is less than the number of bicycles leaving vi .

(3) The number of bicycles at vi increases: If vi exists in both Gt and Gt+1, and μi,t+1 > μi,t , it
means that the number of bicycles at vi decreases between t and t + 1. Namely, the number
of bicycles arriving at vi is more than the number of bicycles leaving vi .

(4) New parking spot emerges: If vi does not appear in Gt but in Gt+1, it means that vi is newly
generated in the period between t and t + 1. μi,t+1 is the number of bicycles at vi in t + 1,
which is equal to the number of bicycles arriving in time point t + 1 minus the number of
bicycles departing.

(5) Parking spot disappears: If vi only appears in Gt but does not appear in Gt+1, it means that
vi disappears between time points t and t + 1.

We trained the GGNN model [10] on the constructed graph sequence models and used the GGNN
model to predict the bicycle station layout for the next time period. For specific implementation
details, please refer to our previous work [2]. The structure of the GGNN model for bicycle station
prediction is shown in Figure 4.

As shown in Figure 4, based on the graph sequence {G1, . . . ,Gt } of historical bicycle parking
spots, we use the GGNN model to predict the graph model Gt+1 = (Vt+1,Et+1) for the next time
period t + 1. In the set of predicted vertices Vt+1, we obtain the position (ψi , φi ) of each vertex vi

in time period t + 1 and the number of bicycles μi required at vi . At the same time, we also obtain
the set of predicted edges Et+1 between vertices in Vt+1. For each edge ei j ∈ Et+1, we calculate its
actual distance di j and predict the number of cycling records wi j between vertices vi and vj .

3.3 Bicycle Dispatching Requirements

Based on the actual graph model Gt of the current time period and the predicted graph model
Gt+1 of the next time period, we can calculate the bicycle dispatching requirements in the next
time period. Then, the corresponding bicycle dispatching demand graph modelGD

t+1 is established.
An example of bicycle dispatching demand calculation is illustrated in Figure 5.

Given Gt = (Vt ,Et ) and Gt+1 = (Vt+1,Et+1), we establish a dispatching demand graph model
GD

t+1 = (V D
t+1,E

D
t+1) of the time period t +1, which is an undirected complete graph. For each vertex

vi ∈ (Vt ∩ Vt+1), if μi,t = μi,t+1, then note it as a stable spot. The set of all stable spots in Vt and
Vt+1 is defined as V S

t,t+1 = {vi |vi ∈ Vt ∩ Vt+1 and μi,t = μi,t+1}. We create a set of vertices V D
t+1
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Fig. 4. The structure of the GGNN model for bicycle station prediction. The input of GGNN is the constructed

graph sequences {G1, . . . ,Gt } of historical bicycle parking spots, and the output is the predicted graph model

Gt+1 for the next time period.

based on Vt and Vt+1:

V D
t+1 = (Vt ∪Vt+1) −V S

t,t+1, (1)

in which all vertices in Vt and Vt+1 are first included into V D
t+1, then all stable vertices in V S

t,t+1

are removed from V D
t+1. We continue to calculate the number of bicycles to be dispatched at each

vertex vi :

μD
i,t+1 = μi,t+1 − μi,t . (2)

In addition, we create the edges ED
t+1 based on Et and Et+1. Different from the directed edges in Et

and Et+1, we define the undirected edges ED
t+1 for GD

t+1:

ED
t+1 = Et ∪ Et+1. (3)

Then, for each edge ei j ∈ ED
t+1, we remove the opposite edge eji from ED

t+1 if eji ∈ ED
t+1. The

detailed steps of constructing the DL-PBS bicycle dispatching demand graph model are described
in Algorithm 3.1. Assuming that N is the number of vertices (bicycle stations) in the predicted
graph model Gt+1 and M is the number of edges (trajectory routes) in Gt+1, the time complexity
of Algorithm 3.1 is O (M + N ).

3.4 Problem Formulation

Based on the bicycle dispatching requirements, we define the bicycle dispatching problem in this
section. Generally, there are multiple DL-PBS dispatching centers in each city, each dispatching

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 34. Publication date: September 2021.



34:10 J. Chen et al.

Fig. 5. Construction process of the bicycle dispatching demand graph model. Based on the graph model

of the current time period and the predicted graph model of the next time period, the bicycle dispatching

demand graph model in the next time period is constructed by considering the update of vertices.

ALGORITHM 3.1: Construction of the bicycle dispatching demand graph model of DL-PBS
Require:

Gt : the actual graph model at the current time period t ;
Gt+1: the predicted graph model for the next time period t + 1;

Ensure:
GD

t+1: the bicycle dispatch graph model of t + 1.

1: Combine vertices from Vt and Vt+1: V D
t+1 ← Vt ∪Vt+1;

2: for each vertex vi in V D
t+1 do

3: if vi ∈ Vt and vi ∈ Vt+1 and μi,t = μi,t+1 then

4: Remove vi from V D
t+1;

5: else
6: Calculate the number of bicycles to be dispatched μ D

i,t+1 ← μi,t+1 − μi,t ;

7: Combine edges from Et and Et+1: ED
t+1 ← Et ∪ Et+1;

8: for each edge ei j in ED
t+1 do

9: if ei j ∈ ED
t+1 and eji ∈ ED

t+1 then

10: Remove eji from ED
t+1;

11: Create a bicycle dispatch graph model GD
t+1 ← (V D

t+1, ED
t+1 );

12: return GD
t+1.

center has multiple dispatch trucks, and each dispatch truck is responsible for several bicycle park-
ing spots. Given a bicycle dispatching demand graph model GD

t+1 and a set of dispatch trucks
K = {K1, . . . ,KM }. In this way, the bicycle dispatching optimization problem is transformed into a
traveling salesman problem with several closed loops, namely the multi-route bicycle dispatching
problem. Each dispatch truck executes a dispatching loop, which is defined as follows.

Definition 1 (Dispatching Loop). The dispatching loop is a directed closed link and is completed
by a dispatch truck. The dispatch truck loads a certain number of bicycles from a dispatching
center according to the dispatching plan, completes the bicycle deployment tasks at each parking
spot in the dispatching plan, and then returns to the dispatching center.
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In each dispatching loop, the number of parking spots, the route of dispatching, and the number
of initially loaded bicycles on the trucks are dynamically determined according to the correspond-
ing dispatching plan.

Definition 2 (Multi-route Bicycle Dispatching Solution). In a DL-PBS of a spacial subset (e.g., a
city), given the bicycle dispatching demand graph model GD

t+1 and a set of dispatch trucks K =
{K1, . . . ,KM }, each dispatch truck completes a disjoint dispatching loop. All dispatching loops
form a multi-route bicycle dispatching solution.

The model parameters of the multi-route bicycle dispatching problem are defined as follows:

• GD
t+1 = (V D

t+1,E
D
t+1): the bicycle dispatching demand graph model of time period t + 1;

• K = {K1, . . . ,KM }: all dispatch trucks;
• Q : the maximum carrying capacity of each dispatch truck;
• τd : the travel time cost of a dispatch truck within unit distance;
• τu : the operation time cost of loading and unloading each bicycle;
• μD

i : the number of bicycles to be dispatched at spot vi ;
• ei j ∈ [0, 1]: the edge between vertices vi and vj , if an edge exists between vi and vj , then
ei j = 1, otherwise, ei j = 0;
• di j : the distance of edge ei j ;
• L = {L1, . . . ,Lm , . . . ,LM }: the set of dispatching loops of all dispatch trucks;
• Lm = {ei j }: the set of edges (dispatch paths) in them-th dispatching loop;
• qm : the number of bicycles currently loaded on them-th dispatch truck;
• q0

m : the number of bicycles initially loaded on them-th dispatch truck;
• qMax

m : the maximum number of bicycles loaded on them-th dispatch truck.

3.4.1 Optimization Objectives. In this work, the optimization objectives of the multi-route bi-
cycle dispatching problem include four aspects: minimizing the dispatching costs, minimizing the
number of initially loaded bicycles on the trucks, maximizing the workload balance between dis-
patch trucks, and maximizing of the supply and demand balance of all parking spots.

(1) Minimum dispatching costs. The bicycle dispatching cost includes the travel cost Ctravel of
dispatching loops and the time cost Ctime of loading and unloading bicycles. The length of dis-
patch paths refers to the sum of the length of dispatching loops completed by all dispatch trucks.
Therefore, we define the travel cost of all dispatching loops as

Ctravel =
∑

Lm ∈L

∑
ei j ∈Lm

di j . (4)

The time cost Ctime of dispatching loops refers to the travel time of dispatching loops and the
operation time of loading and unloading bicycles at each parking spot:

Ctime =
∑

Lm ∈L

∑
ei j ∈Lm

(
di j × τd + μ

D
i × τu

)
. (5)

Since the number of bicycles to be dispatched in GD
t+1 is fixed, the time cost of loading bicycles

in the entire graph is fixed. In addition, the time cost of travel is proportional to the distance of
dispatching loops. Therefore, it is easy to prove that the time cost of dispatching loops is linearly
related to the travel cost, and the minimum value of the travel cost must lead to the minimum time
cost. In the following, we only consider the travel cost as dispatching cost.

(2) Minimum initial load of the dispatch trucks. In the bicycle dispatching process, some parking
spots need to add bicycles (unload from the dispatch truck), whereas others need to remove bicycles
(load to the dispatch truck). In this way, the dispatch trucks do not need to start at full-load in the
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Fig. 6. Example of calculation of the number of bicycles initially loaded on the trucks and the maximum

number of bicycles loaded. There are 13 vertices (+5, +4, –6, +3, –10, +5, +8, +5, –3, +2, –4, –5, +4) in a

dispatching loop, where a positive number indicates that the vertex needs to add bicycles, and a negative

number indicates that the vertex needs to remove bicycles. We can calculate that the number of bicycles

initially loaded is equal to 14 by using Equation (7), and the maximum number of bicycles loaded is equal to

18 by using Equation (8).

initial state. For a certain dispatching loop, we can calculate the number of bicycles to be dispatched
at each bicycle spot and obtain the number of bicycles to be initially loaded to the current dispatch
truck. Assuming that μD

i is the number of bicycles to be dispatched at parking spot vi , q
i
m is the

number of bicycles that is required to be loaded or the number of available spaces on the m-th
dispatch truck, defined as follows:

q1
m = μD

1 ;

q2
m = μD

1 + μ
D
2 ;

. . .

qi
m =

∑
vi ∈ei j ,ei j ∈Lm

μD
i .

(6)

The number q0
m of bicycles required to be initially loaded on the m-th dispatch truck is

calculated as

q0
m = max

(
q1

m , q
2
m , . . . , q

i
m , . . .

)
, (7)

where qi
m is the number of bicycles currently loaded on the m-th dispatch truck. Note that each

dispatching loop Lm is a directed closed link and the order of edges (dispatch paths) and vertices
(parking spots) in Lm is fixed. Based on q0

m , we can further calculate the maximum number of
bicycles loaded on them-th dispatch truck:

qMax
m = q0

m −min
(
q1

m , q
2
m , . . . , q

i
m , . . .

)
. (8)

Hence, we define the number of bicycles initially loaded on all dispatch trucks as

q0 =
∑

Lm ∈L

q0
m . (9)

Given a dispatching loop with 13 vertices, an example of the calculation of the initial load and
maximum load of the current dispatch truck is illustrated in Figure 6.

(3) Maximum workload balance of the dispatch trucks. The workload of each dispatch truck is
related to the length of the dispatch loop and the number of bicycles dispatched. Therefore, the
dispatching time cost of the dispatching loop is used as the dispatching workload of each dispatch
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truck. We use the reciprocal of the standard deviation of dispatching time cost to calculate the
workload balance BW between dispatch trucks, defined as follows:

BW =

√√√√√���
1

M

∑
Lm ∈L

(
Ctime,m −Ctime

)2���
−1

, (10)

where M is the number of dispatch trucks,Ctime,m is the dispatching time cost of them-th dispatch-

ing loop, and Ctime is the average value of the dispatching time cost of all dispatching loops.
(4) Maximum balance of the supply and demand of all bicycle spots. Since the bicyce rental and

return situations of each spot changes over time, when a dispatch truck arrives at a target spot,
the number of bicycles that need to be dispatched at the spot is not always equal to the number
in the dispatch plan. Therefore, the number of bicycles to be dispatched needs to be adjusted
dynamically to meet the expected demand. For example, when adding bicycles to a spot, if the
number of bicycles available on the dispatch truck is less than the number of bicycles required
at the target spot, and the difference is less than the threshold value of εd , we will continue to
perform dispatching at the spot with the available number of bicycles on the truck. Assuming that
spot vi requires to add μD

i bicycles, but there are qm (0 < μD
i − qm ≤ εd ) bicycles loaded on the

m-th dispatch truck. In this case, after adding qm bicycles to vi , the difference between the supply
and demand of vi is

ψi = qm − μD
i . (11)

Conversely, when removing bicycles from a spot, if the available free space on the dispatch truck
is less than the number of bicycles to be removed, we only remove the limited number of bicycles
from the target spot. Assuming that spotvi requires to remove μD

i bicycles, but there areQ−qm (0 <

μD
i − (Q − qm ) ≤ εd ) free space available on the dispatch truck. In this case, after removing qm

bicycles from vi , the difference between the supply and demand of vi is

ψi = μD
i − qm . (12)

Therefore, the balance between the supply and demand in the dispatching loops is the sum of the
absolute value of the balance between the supply and demand of all spots in all dispatch loops,
which is defined as follows:

BS =
∑

Lm ∈L

∑
vi ∈Lm

(exp (−|ψi |)). (13)

Definition 3 (Multi-objective Bicycle Dispatching Problem). Based on the preceding description,
the conflicting multi-objective target considered in the multi-route bicycle dispatching problem
is comprised of four aspects: minimum dispatching costs, minimum initial load of the dispatch
trucks, maximum workload balance of the dispatch trucks, and maximum balance of the supply
and demand of all bicycle spots. The multi-objective bicycle dispatching problem is formalized as
follows:

Minimize: F1 =
∑

Lm ∈L

∑
ei j ∈Lm

di j ,

Minimize: F2 =
∑

Lm ∈L

q0
m ,

Maximize: F3 =

√√√√√���
1

M

∑
Lm ∈L

(
Ctime,m −Ctime

)2���
−1

,

Maximize: F4 =
∑

Lm ∈L

∑
vi ∈Lm

(exp (−|ψi |)),

(14)
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where function F1 is to minimize the dispatching costs, function F2 is to minimize the number
of bicycles initially loaded on all dispatch trucks, function F3 is to maximize the balance of the
workload between dispatch trucks, and function F4 is to maximize the balance of the supply and
demand of all bicycle spots.

3.4.2 Constraints. The multi-route bicycle dispatching problem is subjected to the following
constraints:

(1) In a dispatching solution, there is no overlap between all dispatching loops:

L1 ∩ L2 ∩ · · · ∩ L |L | = ∅. (15)

(2) In a dispatching solution, each vertex vi can only be visited once, namely

N∑
j=1, j�i

ei j = 1, (16)

where N is the number of vertices in V D
t+1.

(3) The number of bicycles currently loaded on each dispatch truck Km does not exceed its
maximum carrying capacity qm at any time:

qm ≤ Q,∀Km ∈ K . (17)

(4) The number μD
i of bicycles dispatched at any parking spotvi , including adding to or removing

from the parking spot, must not exceed the maximum carrying capacity of the dispatch truck:

μD
i ≤ Q,∀vi ∈ V D

t+1. (18)

3.4.3 Pareto Optimality. Since there is usually no unique and perfect solutions for multi-
objective problems, we use Pareto optimal solutions [1] to find the optimal solutions to the bicycle
dispatching problem. The Pareto optimal solution is applied in the objective function to obtain a
set of non-inferior solution vectors, which can form the Pareto frontier in the target space. We
define the Pareto dominance and Pareto optimality of the multi-objective bicycle dispatching

(MBD) problem as follows.

Definition 4 (Pareto Dominance of the multi-objective bicycle dispatching Problem). Given the
multi-objective optimization function F = (F1, F2, F3, F4) in Equation (14) of the MDB problem

with four objectives, and �U = [u1,u2,u3,u4] and �V = [v1,v2,v3,v4] are two candidate values of

this function. If and only if solution �U is partially less than solution �V , then �U dominates �V . In

other words, for each component ui and vi in �U and �V , we can obtain that ui ≤ vi .

Definition 5 (Pareto Optimality of the multi-objective bicycle dispatching Problem). In the multi-

objective bicycle dispatching problem, given a solution �U = [u1,u2,u3,u4], if and only if there is no

an alternative solution �V = [v1,v2,v3,v4] that satisfies �V dominates �U , then solution �U is Pareto
optimal.

4 BICYCLE DISPATCHING BASED ON MORL

In this section, we will introduce the multi-agent MORL to find the Pareto optimal solution of
the multi-objective bicycle dispatching problem. We will define the state space, available actions,
immediate rewards, and learning process in detail.
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4.1 Multi-objective Reinforcement Learning

The target problem of a single agent RL model is usually described as a Markov decision process,
whereas a multi-agent MORL model is usually described as a Markov game, where the learning
task corresponds to a quaternion E = 〈M, S, A, P , R〉, where M is the number of players, namely
agents and dispatch trucks; S = {s1, . . . , s |S | } denotes the state space of the target problem, which is
a joint state of multiple agents; A = {A1, . . . ,AM } denotes the set of actions available in each state;
P denotes the probability of state transition by using various actions in each state; and R represents
the rewards obtained by the actions executed in each state. For the current state s , we can execute a
joint action a = (a1, . . . ,aM ) to transfer to the next potential state s ′with the transition probability
p (s ′|s,a) and a reward r (s,a).

The purpose of RL is to find the optimal strategy π to maximizes the expected reward R. The
goal can be represented by a Q-value, which records the expected reward for each state-action
pair:

Q (s,a) ← Q (s,a) + α
[
r (s,a) + γ max

a′
Q (S ′,a′) −Q (s,a)

]
, (19)

where r is the reward for reaching s ′ state, γ is a discount factor, and α is the learning rate.
Different from the single-objective RL algorithms, in the MORL algorithm, the target problem

is updated to a multi-objective problem to find multiple conflicting optimization goals. In this way,
the reward r in Equation (19) is updated to a reward vector �r .

4.2 MORL-based Bicycle Dispatching (MORL-BD)

In the MORL-BD algorithm, we provide a bicycle dispatching demand graph model GD
t+1 and a

set of dispatch trucks K = {K1, . . . ,KM }. In this section, we will describe the state space, available
actions, immediate rewards, and learning process of MORL-BD to find the Pareto optimal solution.

4.2.1 State Space of MORL-BD. In the MORL-BD algorithm, the state space represents all bi-
cycle parking spots that can be visited by all dispatch trucks and the number of bicycles needs to
be dispatched in each dispatching loop. Let S = {s1, . . . , s |S | } be the state space of the MORL-BD
algorithm, and |S | is the candidate states. Since the number of parking spots is N and the number
of dispatch trucks is M , the average number of spots responsible for each dispatch truck is N /M�.
For each state si ∈ S , the next state s ′ represents the set of all of the next possible spots and the
number of bicycles to be dispatched at the next spot. In the multi-agent MORL model with multi-
ple dispatching loops, each state can be expressed as si = {si,1, . . . , si,M }. si,m ∈ si is the set of all
dispatching tasks assigned to the m-th dispatch truck Km ∈ M at state si . In our implementation,
the current value of the decision variable is used to determine the parking spot to be accessed and
the number of bicycles to be dispatched in the current state si .

In each decision state, each dispatch truck performs only one dispatching task by using available
actions—that is, visiting a bicycle spot and dispatching a certain number of bicycles. The maximum
decision states of the MORL-BD problem depends on the total number of parking spots in the entire
dispatching demand graph and the workload of each dispatch truck. Note that |S | < (N +2), where
s1 is the initial state from the dispatching center to the first bicycle parking spot, and sN is the final
state from the last bicycle parking spot in a dispatching loop to the dispatching center.

4.2.2 Action Set. The action set of the MORL-BD algorithm refers to the set of all actions that
can be executed in each state. Because the dispatching demand graph is not a fully connected graph,
and the number of bicycles to be dispatched at each parking spot is different, the set of actions
available to each dispatch truck is different in each state. In addition, due to the real-time rental and
returning behavior of each parking spot in the dispatching process, the actual number of bicycles
to be dispatched at each spot may be different from the dispatching plan. In this case, the actions
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Fig. 7. Example of the relationship between dynamic bicycle dispatching requirements and available actions

over different time periods. Assuming that the current state is s = (v1,+10), the candidate states at t0 are

{s ′1 = (v2,−15), s ′2 = (v5,+12), s ′3 = (v4,−18), s ′4 = (v3,+19)}. The candidate states of s at t1 are updated to

{s ′1 = (v2,−11), s ′2 = (v5,+18), s ′3 = (v4,−24), s ′4 = (v3,+19)}.

available in the current state si are represented asAi = {(s ′1,a1,p1, r1), . . . , (s ′|Ai |,a |Ai |,p |Ai |, r |Ai | )}.
Each candidate state s ′ is expressed as s ′ = (vj , μ

D
j ). In other words, vj is the bicycle parking spot

maybe visited by the current dispatch truck, and μD
j is the number of bicycles to be dispatched atvj .

Figure 7 shows an example of the relationship between dynamic bicycle dispatching requirements
and available actions over different time periods.

4.2.3 Immediate Reward Vector. In the MORL-BD algorithm, we use an immediate reward vec-
tor instead of a single reward for each action. By performing action ai , the immediate reward
vector of each state si is defined as

�r (si ,ai ) = [�r 1 (si ,ai ),�r 2 (si ,ai ),�r 3 (si ,ai ),�r 4 (si ,ai )]T , (20)

where �r 1 (si ,ai ) = [r 1
i,1, . . . , r

1
i,M ] is the joint rewards of the optimization goal of dispatching costs

of all agents (dispatch trucks), �r 2 (si ,ai ) = [r 2
i,1, . . . , r

2
i,M ] is the joint rewards of the optimization

goal of the number of bicycles initially loaded on all dispatch trucks, �r 3 (si ,ai ) = [r 3
i,1, . . . , r

3
i,M ] is

the joint rewards of the optimization goal of the workload balance between dispatch trucks, and
�r 4 (si ,ai ) = [r 4

i,1, . . . , r
4
i,M ] is the joint rewards of the optimization goal of the supply and demand

balance of all bicycle spots. For the current state si = (vi , μ
D
i ) at decision step i by executing

action ai ∈ A, the reward components r 1
i,m to r 4

i,m of them-th agent (dispatch truck) are calculated
as follows:

r 1
i,m =

1

dji

∑
Lm ∈L

∑
eji ∈Lm

dji ,

r 2
i,m =

1

q0
m

∑
Lm ∈L

q0
m ,

r 3
i,m =

B′W
B′′

W

,

r 4
i,m =

B′S
B′′

S

,

(21)

where eji = (vj ,vi ), and vj is the previous bicycle parking spot of vi visited by the same dis-
patch truck in the previous state. B′W is the workload balance of the dispatching solution when
vi is included in Lm , whereas B′′W is the corresponding value when vi is not included in Lm . This
explanation applies to B′S and B′′S .

4.2.4 State Value Evaluation. In each bicycle dispatching loop Lm , the immediate reward vector
�r (si ,ai ) is calculated by applying the components [ri,1, ri,2, ri,3, ri,4] in the objective functions in
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Fig. 8. Example of state transition in a bicycle dispatching loop based on the dispatching demand graph

model in Figure 7.

Fig. 9. Dynamic update of the dispatching loop based on real-time bicycle rental behavior and state transi-

tion in Figure 8.

Equation (13). For each dispatch truck, since the current state si is located at spot vi , we update
the state value of the current state by calculating the following:

�U (si ,ai ) ← �U (si ,ai ) + α
{
�r (si ,ai ) + γ

[
max
a′ ∈A

�U (s ′,a′) − �U (si ,ai )
]}
, (22)

where a′ is the candidate actions in the state si , and it consists of the collection of all connected
parking spots and the number of bicycles to be dispatched on the target spots. Then, we compare
the reward vector with the existing Pareto optimal vectors to decision the candidate actions with

the highest immediate rewards. Once a Pareto optimal solution �U = [u1,u2,u3,u4] is found, we
save it into an elite list and finally form the Pareto frontier. An example of state transition in a
bicycle dispatching loop is shown in Figure 8.

In Figure 8, the state transfer is started from the dispatching center to the first bicycle parking
spot by using the MORL-BD algorithm. At each state si , we can generate the candidate actions
Ai = {ai } with all candidate subsequent states. In addition, we continue to calculate the immediate
reward vector �r (s ′,a′) for each action selection (s ′,a′), then execute state transition. According
to the immediate rewards and state transition, we can obtain the Pareto frontier based on the
Pareto optimal solutions. An example of dynamic update of the dispatching loop based on real-
time bicycle rental behavior and state transition is shown in Figure 9.

As shown in Figure 9, suppose the capacity of the dispatch truck is 60 bicycles and the initial
number of bicycles is 43. The initial dispatching loop of the truck is {(v0,−9), (v1,+10), (v2,−15),
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(v5,+12), (v8,+23), (v7,+21), (v4,−18), (v3,+19), (v6,−20)}. At time t1, the truck arrives at the
parking spot v5, and the number of bicycles to be dispatched is dynamically updated from +18 to
+12. In this case, the number of available bicycles on the truck will be (43 – 5 – 10 + 11 – 18) =
21, which is lower than the number of bicycles required at spot v8 (28). Therefore, the truck must
changes the dispatching loop and go to the spot v4 to load more bicycles.

The detailed steps of the bicycle dispatching algorithm based on multi-object reinforcement
learning (MORL-BD) is described in Algorithm 4.1. Since K is the maximal number of search
iterations in MORL-BD, m is the number of dispatching loops, and |A| is the number of the ac-
tion set, so the time complexity of Algorithm 4.1 is O (Km |A|).

ALGORITHM 4.1: Bicycle dispatching algorithm based on multi-object reinforcement learning
(MORL-BD)
Require:

GD
t+1: the bicycle dispatch graph model of t + 1;

M : the dispatch trucks;
K : the maximal number of search iterations for MORL-BD;

Ensure:
S (P ): the Pareto optimal solution of GD

t+1.
1: Generate a set of dispatching loops L = {L1, . . . , Lm };
2: Initialize a state s0 = [(v1, a1 ), . . . , (vm, am )] at each dispatching center;
3: Initialize a Pareto optimal solution S (P ) = ∅;
4: while k ≤ K do
5: for each Lm in L do
6: Generate the action set Ai = {ai } for the current dispatch truck Mm ;
7: for each action ai in Ai do
8: Calculate immediate reward vector �r (si , ai ) by using Equation (20);

9: Update the state value �U (si , ai ) by using Equation (22);
10: Find the optimal action (s ′, a′);
11: Perform state movement s ← s ′;
12: Form a dispatching solution �U ;

13: if �U dominates all solutions �V in S (P ) then

14: Add �U in S (P ): S (P ) ← �U ;
15: return S (P ).

5 EXPERIMENTS

5.1 Experimental Setting

We conduct extensive comparative experiments on an actual DL-PBS to compare the proposed
MORL-BD algorithm with the multi-objective genetic algorithm (NSGA-II) [5], evolutionary al-
gorithm (MOEA/D) [31], and particle swarm optimization (MOPSO) algorithm [4]. Large-scale
historical bicycle GPS records and cycling trajectory records are gathered from an actual DL-PBS
system in China. There are 2,118,190 GPS records and 372,193,743 trajectory records in Beijing,
China. First, the dataset is divided into 8 spatial subsets according to the districts, and each of
them is further split into 94 spatiotemporal subsets by days. Then, we perform the bicycle park-
ing spot clustering and graph model construction on each spatiotemporal subset, and establish a
graph sequence model of bicycle parking spots. In addition, based on the graph sequence of pre-
vious time periods, we forecast the bicycle station layout of the subsequent time periods to create
the dispatching demand graph model. Finally, we perform the comparison algorithms based on
the dispatching demand graphs to discuss the experiment results and evaluate the performance of
these algorithms.

5.2 Experiment Result Discussion

The data of an actual DL-PBS in the Dongcheng and Xicheng districts of Beijing is used in this ex-
periment. The historical records from January 1, 2019, to October 23, 2019 are gathered for bicycle
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Fig. 10. Predicted layout of bicycle parking spots and the corresponding dispatching demand graph of an

actual DL-PBS in Beijing, China.

Table 1. Value of Optimization Objectives in Dispatching Solutions Using All Methods

Methods Lengths of Dispatch

Paths (km)

Average Number of

Initial Load for Each

Truck

Work

Balance

Average Balance of

Supply and

Demand

MORL-BD 106.36 59.34 0.87 0.83
MOPSO 114.19 63.17 0.79 0.72
NSGA 120.87 60.21 0.78 0.80
MOEA/D 117.53 67.90 0.70 0.69

parking spot clustering and graph model construction. By using the GGNN algorithm, we predict
the layout of bicycle parking spots on October 24, 2019, including the location of each bicycle
station and the number of bicycles required at each spot. The predicted layout of bicycle parking
spots and the corresponding dispatching demand graph of an actual DL-PBS in Beijing is shown
in Figure 10.

As shown in Figure 10(a), we obtain 56 micro bicycle parking spots (each spot can accommodate
5 to 10 bicycles) and 98 small parking spots (accommodating 10 to 20 bicycles), 61 medium parking
spots (accommodating 20 to 30 bicycles), and 20 large parking spots (accommodating more than 30
bicycles). In addition, based on the actual spot layout on October 23, 2019, and the predicted spot
layout on October 24, 2019, we calculate the bicycle dispatching requirements on October 24. We
further construct the corresponding dispatching demand graph model, as shown in Figure 10(b).

Given three dispatching centers and nine dispatch trucks, we respectively use the MORL-BD,
MOPSO, NSGA-II, and MOEA/D algorithms to find the multi-route bicycle dispatching plans. The
dispatching solutions of all algorithms are shown in Figure 11 and Table 1.

As shown in Figure 11(a), in the solution of MORL-BD, the total length of dispatch paths of all
dispatching loops is 106.36 km, the average number of initial load of each dispatch truck is 59.34
(bicycles), the work balance between the dispatch trucks is 0.87, and the average balance of supply
and demand at all spots is 0.83. In contrast, in the solution of MOPSO (shown in Figure 11(b)), the
total length of dispatch paths of all dispatching loops is 114.19 km, the average number of initial
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Fig. 11. Dispatching solutions of MORL-BD, MOPSO, NSGA-II, and MOEA/D algorithms.

load of each dispatch truck is 63.17 (bicycles), the work balance between the dispatch trucks is
0.79, and the average balance of supply and demand at all spots is 0.72. In the solution of NSGA-II
(shown in Figure 11(c)), the total length of dispatch paths of all dispatching loops is 120.87 km,
the average number of initial load of each dispatch truck is 60.21 (bicycles), the work balance
between the dispatch trucks is 0.78, and the average balance of supply and demand at all spots
is 0.80. In the solution of MOEA/D (shown in Figure 11(d)), the total length of dispatch paths of
all dispatching loops is 117.53 km, the average number of initial load of each dispatch truck is
67.90 (bicycles), the work balance between the dispatch trucks is 0.70, and the average balance of
supply and demand at all spots is 0.69. Experimental results show that the dispatching solution
found by MORL-BD is better than the comparison algorithms in four optimization objectives. We
will evaluate the dispatching costs, Pareto optimality, and algorithm performance of each algo-
rithm in the subsequent sections.
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Fig. 12. Dispatching cost comparison of the algorithms on different dispatch cases.

5.3 Dispatching Cost Comparison

We conduct three groups of comparative experiments to evaluate the dispatching costs of the
MORL-BD, MOPSO, NSGA-II, and MOEA/D algorithms. In the first group of experiments, the
number bicycle parking spots is set in the range of [50, 100, 150, 200, 250, 300, 350], with a total
of 10,000 dispatched bicycles and 10 dispatch trucks. In the second group of experiments, we fix
the number of bicycle parking spots and dispatch trucks to 100 and 10, respectively, and adjust
the number of dispatched bicycle from 2 × 103 to 14 × 103. In the third group of experiments, we
fix the number of bicycle parking spots and dispatched bicycles to 100 and 10,000, respectively,
and adjust the number of dispatch trucks from 5 to 35. According to Equation (4), we consider the
length of dispatch paths as the dispatching cost of each algorithm. The comparison results of the
dispatching costs of these algorithms are shown in Figure 12.

As can be seen from Figure 12(a), as the number of bicycle parking spots increases, the length
of dispatch paths of each algorithm increases significantly. However, it is clearly observed that
our MORL-BD algorithm has lower dispatching cost than other algorithms. For example, when
the number of bicycle parking spots is equal to 350, the length of dispatch paths of MORL-BD is
195.04 km, the dispatching length of MOPSO is 220.02 km, the dispatching length of NSGA-II is
266.18 km, and the dispatching length of MOEA/D is 321.34 km. It can be seen from Figure 12(b)
that when there is a fixed scale of bicycle parking spots, the increase in the number of dispatched
bicycles will increase the dispatching costs of these algorithms. This is because the change in
the number of dispatched bicycles at each spot will affect the visiting order of the spots, thereby
affecting the dispatching route and its length. MORL-BD always incurs the lowest cost and is less
sensitive to the increase of number of dispatched bicycles. It can be seen from Figure 12(c) that
with the increase in the number of dispatch trucks, the length of the dispatch paths found by each
algorithm gradually becomes shorter and finally tends to be stable. This is because the increase in
the number of dispatch trucks will produce multiple dispatching loops, making each dispatching
loop more compact, thereby effectively shortening the length of the dispatch paths. Again, MORL-
BD incurs the lowest cost.

5.4 Pareto Frontier and Optimal Vectors

We use the first group of experiments in the previous section to discuss the Pareto frontier found
by each algorithm, and to evaluate the effectiveness and feasibility of each algorithm. The experi-
mental results are shown in Figure 13.
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Fig. 13. Pareto frontier and optimal vectors of the algorithms.

Figure 13(a), (b), and (c) plot the distribution of Pareto frontier found by the MORL-BD, MOPSO,
NSGA-II, and MOEA/D algorithms in the target space of four optimization objectives. Among
them, 74 Pareto solutions are found by MORL-BD, whereas 52 are found by MOPSO, 37 are found
by NSGA-II, and 32 are found by MOEA/D. To clearly show the Pareto frontier of each algorithm,
we only draw the top 8 Pareto optimal solutions of each algorithm. The Pareto optimal objective
vector of MORL-BD is distributed in the range of [106.36, 52.08, 0.44, 0.47] × [135.82, 81.14, 0.88,
0.89], that of MOPSO is distributed in [114.19, 58.83, 0.35, 0.32] × [136.25, 80.09, 0.77, 0.72], that
of NSGA-II is distributed in the range of [109.28, 56.11, 0.37, 0.29] × [132.18, 84.16, 0.81, 0.88], and
that of MOEA/D is distributed in the range of [107.22, 58.54, 0.31, 0.39] × [131.86, 84.49, 0.85, 0.90].
Hence, the range of the Pareto optimal objective vector found by MORL-BD is wider than the range
found by the other algorithms. In addition, the objective vectors found by MORL-BD dominate the
majority of objective vectors found by the other algorithms, which means that MORL-BD can find
high-quality Pareto optimal solutions.

5.5 Algorithm Performance Evaluation

We conduct three groups of comparative experiments to evaluate the performance of MORL-BD,
MOPSO, NSGA-II, and MOEA/D algorithms. The first group is carried out under parking spots of
different scales, with the number of parking spots gradually increasing from 50 to 350. The sec-
ond group is conducted on dispatched bicycles of different scales, where the number of bicycles
gradually increases from 2,000 to 14,000. The third group is conducted under a different number
of dispatch trucks, increasing from 5 to 35. In each comparison experiment, all algorithms are
executed on a high-performance computer equipped with an Intel Core i5-6400 eight-core CPU,
32 GB of DRAM, and 2 TB of main memory. The performance comparison results of these algo-
rithms are shown in Figure 14.

It can be obvious from Figure 14 that the execution time of the comparison algorithms increases
with the increase of the data scale. However, in each case, the execution time of our MORL-BD al-
gorithm is significantly shorter than that of the comparison algorithms. For example, when the
number of bicycle parking spots is equal to 200, the execution time of MORL-BD is 53.68 (s),
whereas the execution times of MOEA/D, NSGA-II, and MOPSO are 96.74 (s), 94.80 (s), and 81.76
(s), respectively, as shown in Figure 14(a). In addition, the increase in the number of dispatch trucks
significantly affects the number of iterations in each algorithm, thereby resulting in an increase in
the execution time of each algorithm. For example, when the number of dispatch trucks increases
from 5 to 35, the execution time of MORL-BD increases from 21.08 (s) to 216.64 (s), whereas the
execution time of MOEA/D increases from 28.34 (s) to 357.25 (s), the execution time of NSGA-II
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Fig. 14. Performance evaluation of the comparative algorithms under different dispatching situations.

increases from 34.98 (s) to 495.38 (s), and the execution time of MOPSO increases from 37.91 (s)
to 652.10 (s), as shown in Figure 14(c). Similar observation can be made when the number of dis-
patched bicycles is increased as shown in Figure 14(b). Therefore, experimental results show that
MORL-BD is superior to the comparison algorithms in performance and can efficiently achieve
the optimization objectives of bicycle dispatching.

6 CONCLUSION

This article presented the MORL-based bicycle dispatching (MORL-BD) algorithm and provided
the optimal bicycle dispatching solutions for DL-PBS. The requirements of multi-route bicycle
dispatching of DL-PBS were described, and a dispatching demand graph model was created. The
multi-route bicycle dispatching problem was defined as a multi-objective optimization problem
with four optimization objectives. In addition, the MORL-BD algorithm was used to search candi-
date Pareto optimal solutions for bicycle dispatching routes. The Pareto optimal solution found in
each action was saved to find out the Pareto frontier. Experimental results on the actual DL-PBS
datasets show that the proposed MORL-BD algorithm outperforms the comparison algorithms in
terms of effectiveness and performance.
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