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The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a
global outbreak. Most governments, enterprises, and scientific research institutions are participating in the
COVID-19 struggle to curb the spread of the pandemic. As a powerful tool against COVID-19, artificial intel-
ligence (AI) technologies are widely used in combating this pandemic. In this survey, we investigate the main
scope and contributions of Al in combating COVID-19 from the aspects of disease detection and diagnosis,
virology and pathogenesis, drug and vaccine development, and epidemic and transmission prediction. In addi-
tion, we summarize the available data and resources that can be used for Al-based COVID-19 research. Finally,
the main challenges and potential directions of Al in fighting against COVID-19 are discussed. Currently, Al
mainly focuses on medical image inspection, genomics, drug development, and transmission prediction, and
thus AT still has great potential in this field. This survey presents medical and Al researchers with a compre-
hensive view of the existing and potential applications of Al technology in combating COVID-19 with the
goal of inspiring researchers to continue to maximize the advantages of Al and big data to fight COVID-19.
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1 INTRODUCTION

Severe Acute Respiratory Syndrome Corona-Virus 2 (SARS-CoV-2) is an emerging human
infectious coronavirus. Since December 2019, the coronavirus disease 2019 (COVID-19) caused
by SARS-CoV-2 was first reported in China and later in most countries in the world [9, 52, 210].
The World Health Organization (WHO) announced on January 30, 2020, that the outbreak
was a Public Health Emergency of International Concern (PHEIC), and confirmed COVID-
19 as a pandemic on March 11, 2020. As of February 26, 2021, this disease has been reported in
216 countries or regions around the world and has resulted in serious consequences, including
112,649,371 confirmed COVID-19 cases and 2,501,229 deaths [207].

Most governments, enterprises, and scientific research institutions are fighting COVID-19 from
all aspects to curb the spread of the disease [43, 48, 51, 137]. Various stakeholders from different
institutions and backgrounds have provided abundant resources and capabilities to support this
disease battle [12, 30, 46, 54, 123, 132, 193]. As far as SARS-CoV-2 is concerned, virology, origin
and classification, physicochemical properties, receptor interactions, cell entry, genomic variation,
and ecology are thoroughly studied [6, 70, 115, 115, 208, 230]. Nucleic acid testing, serologic diag-
nosis, and medical imaging (i.e., chest X-ray or CT imaging) are the main disease detection and
diagnosis methods at present [27, 77, 98, 190, 216]. In terms of pathogenesis, topics such as virus
entry and spread, pathological findings, and immune response are the focus [140, 188, 198, 199]. In
epidemiology, extensive research has been conducted on the source and spectrum of infection, clin-
ical features, epidemiological characteristics, epidemic prediction, and transmission route tracking
[24, 108, 211, 212]. Potential therapeutics of COVID-19 include intensive care, drug development,
and vaccine development [32, 111, 143, 192]. In addition, communication prediction and social
isolation are currently the main social control methods [1, 90, 150, 224].

Artificial intelligence (AI) is defined as a technology that allows computers to imitate human
intelligence to process things, including Machine Learning (ML), knowledge graphs, natural lan-
guage processing, human-computer interaction, computer vision, biometrics, virtual reality, and
augmented reality [23, 107, 182]. ML can be subdivided into traditional ML and deep learning
(DL). Traditional ML methods include logistic regression, decision tree, random forest, K-nearest
neighbor, Adaboost, K-means clustering, density clustering, hidden Markov models, support vector
machine, Naive Bayes, etc [18, 117, 135]. DL is a subset of ML and is a learning method for build-
ing deep structural neural networking models [59, 179]. In addition, ML techniques also include
transfer learning, active learning, and evolutionary learning. In recent years, Al technology has
achieved technological breakthroughs and is widely used in various fields of intelligent medicine,
including medical image inspection, disease-assisted diagnosis, surgery, hospital management, and
medical big data integration [182]. Moreover, Al is actively explored in emerging fields such as sur-
gical robots, wearable devices, new drug discovery, precision medicine, epidemics prevention and
control, and gene sequencing.

Encouragingly, in the short period of time since the outbreak of COVID-19, research in the fields
of industry, medical, and science has successfully used advanced Al technologies in the COVID-19
battle and has achieved significant progress. For example, Al supports the diagnosis of COVID-
19 through medical image inspections and provides non-invasive detection solutions to prevent
medical personnel from contracting infections [4, 23, 107]. Al is used in virology research to
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Table 1. Abbreviations and Descriptions of the Al Methods Used in This Survey

Abbreviation Description Abbreviation Description

CL Chaotic learning MAE Modified auto-encoder

CNN Convolutional neural network MLP Multi-layered perceptron

DCNN Deep CNN Mol2Vec Molecular to vectors

DNN Deep neural network R-CNN Regional convolutional network

DT Decision tree PNN Polynomial neural networks [134]

FCN Fully convolutional network PR Polynomial regression [40]

GA Genetic algorithm RF Random forest [18]

GAE Generative auto-encoder RL Reinforcement learning

GANs Generative adversarial nets RNN Recurrent neural network

GAN Generative adversarial network SVM Support vector machine

GRU Gate recurrent unit SVR Support vector regression [11]

KNN K-nearest neighbor TL Transfer learning

LR Logistic regression t-SNE t-distributed stochastic neighbor em-
bedding [117]

LSTM Long short-term memory [59] VAE Variational auto-encoder [179]

analyze the structure of SARS-CoV-2-related proteins and predict new compounds that can be used
in drug and vaccine development [19, 129, 231]. In addition, Al has achieved virus source track-
ing through genomic research, and has successfully discovered the relationship between SARS-
CoV-2 and the bat virus, as well as the relationship between SARS-CoV and the Middle East
respiratory syndrome-related coronavirus (MERS-CoV) [42, 139, 157]. Moreover, Al learns
large-scale COVID-19 case data and social media data to construct epidemic transmission models
to accurately predict the outbreak time, transmission route, transmission range, and impact of the
disease [109, 141, 145, 163]. Al is also widely used in epidemic prevention and social control, such
as airport security inspections, patient trajectory tracking, and epidemic visualization [156, 156].
There are some studies and surveys on the COVID-19 epidemic and the related machine learning
or artificial intelligence applications. For example, in Reference [175], Shinde et al. summarized
various forecasting techniques for COVID-19, including stochastic theory, mathematical models,
data science, and machine learning techniques. In Reference [171], Shi et al. provided a survey
of Al techniques in imaging data collection, segmentation and diagnosis of COVID-19. However,
most of the existing work only focuses on one or more narrow fields of the COVID-19 fight, leaving
readers difficult to know the scope of the current research on COVID-19.

In this survey, we present a comprehensive view of the landscape and contributions of Al in
combating COVID-19. The main scope of Al in COVID-19 research includes disease detection and
diagnosis, virology and pathogenesis, drug and vaccine development, and epidemic and transmis-
sion prediction. Note that due to the rapid development of the COVID-19 epidemic, we cited many
preprinted references for a comprehensive investigation, which still need to be assessed on their
accuracy and quality through peer review. The main scope of Al in combating COVID-19 is sum-
marized in Figure 1.

The rest of the article is structured as follows. Sections 2-5 discuss the four main scope of Al
against COVID-19. Section 6 summarizes the available data and resources to support COVID-19
research. Section 7 highlights the challenges and potential directions in this field. Finally, Section 8
presents the conclusion. Table 1 gives the abbreviations and descriptions of the AI methods used
in this survey.
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Fig. 1. Main scope of Al technologies in fighting against COVID-19. We collect 2,471 online publications
and resources related to COVID-19, SARS-CoV-2, and 2019-nCoV from databases such as Nature, Elsevier,
Google Scholar, arxiv, biorxiv, and medRxiv. Then, we filter out 443 papers that explicitly use Al methods. In
addition, we list the name of Al technologies used in each field of COVID-19 research.

2 DISEASE DETECTION AND DIAGNOSIS

The diagnosis of virus infection is an important part of COVID-19 research. The current detection
and diagnosis methods used for SARS-CoV-2 virus and COVID-19 disease mainly include nucleic
acid testing, serological diagnosis, chest X-ray and CT image inspection, and other noninvasive
methods.

2.1 RT-PCR Detection

Benefitting from the advantages of high sensitivity and specificity, real-time Reverse Transcrip-
tase Polymerase Chain Reaction (RT-PCR) is the current standard detection technology in
diagnosing the SARS-CoV-2 virus and bacterial infections. Using RT-PCR, 9 RNA positives were
detected from pharyngeal swabs of patients, indicating that the SARS-CoV-2 virus had spread in
communities of Wuhan, China, in early January 2020 [98]. The shedding of the SARS-CoV-2 virus
detected in the throat, lungs, and feces suggests multiple routes of virus transmission [208, 216].
However, RT-PCR faces the limitations of complicated sample preparation, low detection efficiency,
and high false-negative rate [98, 203, 213].

Isothermal nucleic acid amplification and blood testing methods are also commonly used for
rapid screening of SARS-CoV-2 [94, 114, 213]. An ML classification method was used for blood
testing to extract important routine hematological and biochemical characteristics and to provide
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Fig. 2. Examples of lung CT images of normal and COVID-19 cases.

COVID-19 classification. In Reference [213], 105 blood test reports were collected, of which 27
were positive samples from patients with confirmed COVID-19. For comparison, negative samples
were collected from patients with ordinary pneumonia, tuberculosis, and lung cancer. Each sample
contains 49 feature variables, including 24 routine hematological and 25 biochemical parameters.
Next, the authors implemented the RF algorithm [18] on the training samples for feature learning
and classification. Based on the extracted 11 key feature variables, they built an RF classifier and
tested 253 samples of 169 patients with suspected COVID-19 and obtained an accuracy of 96.97%.
Although Al technologies rarely directly participate in RT-PCR and blood testing, the viral load and
COVID-19 case data collected in these methods provide important data sources for the subsequent
Al-based analysis.

2.2 Medical Image Inspection

Medical imaging inspection is another widely used clinical approach for COVID-19 detection and
diagnosis. COVID-19 medical image inspection mainly includes chest X-ray and lung CT imaging.
Al technology plays an important role in medical image inspection and has achieved significant
results in image acquisition, organ recognition, infection region segmentation, and disease classi-
fication. It not only greatly shortens the imaging diagnosis time of radiologists but also improves
the accuracy the diagnosis. We will discuss in detail the contributions of Al methods to chest X-ray
and lung CT imaging.

2.2.1 CT Image Inspection. CT imaging provides an important basis for the early diagnosis of
COVID-19. The CT imaging manifestations of COVID-19 are mainly Ground Glass Opacity (GGO)
in the periphery of the subpleural region, and some are consolidated. If a patient’s COVID-19
condition improves, then the area will be absorbed and form fibrous stripes [38, 154, 177]. Examples
of lung CT images of normal and COVID-19 cases are shown in Figure 2.

The progress of Al-based CT image inspection for COVID-19 usually includes the following
steps: Region Of Interest (ROI) segmentation, lung tissue feature extraction, candidate infection
region detection, and COVID-19 classification. The representative Al architecture for CT image
classification and COVID-19 inspection is shown in Figure 3.

The segmentation of lung organs and ROIs is the foundational step in Al-based image inspec-
tion. It depicts the ROIs in lung CT images (i.e., lungs, lung lobes, bronchopulmonary segments,
and infected regions or lesions) for further evaluation and quantification. Different DL models
(i.e., U-Net, V-Net, and VB-Net) have been used for CT image segmentation [29, 107, 185, 215]. In
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Fig. 3. Representative Al architecture for CT image classification and COVID-19 inspection.

Reference [170], Shan et al. collected 549 CT images from patients with confirmed COVID-19 and
proposed an improved segmentation model (called VB-Net) based on the V-Net [110] and ResNet
[61] models. In Reference [29], Chen et al. established a DL model based on the U-Net++ structure
[232] to extract the ROIs from each CT image and detect the training curve of suspicious lesions.
In Reference [215], Xu et al. used a 3D DL model to segment the infection regions from lung CT
images. Then, they built a classification model using ResNet and location-attention structures, and
divided the segmented regional images into three categories, such as COVID-19, influenza-A vi-
ral pneumonia, and normal. In Reference [107], Li et al. used the U-Net segmentation model to
extract lung organs as ROIs from each lung CT image. In Reference [185], Tang et al. used the VB-
Net model [170] to accurately segment 18 lung regions and infected regions from lung CT images,
and further calculated 63 quantitative features.

Focusing on the detection and location of candidate infection regions, different AI methods were
proposed in References [58, 79, 173, 203]. In Reference [58], Gozes et al. used commercial software
to identify lung nodules and small opacity in the 3D lung volume. Then, they constructed a DL
model composed of the U-Net and ResNet structures, where the U-Net module was used to ex-
tract the ROI regions, and the ResNet model was used to detect and classify diffuse turbidity and
ground glass infiltration. In addition, they compared the CT images of 56 patients with confirmed
COVID-19 and 101 non-coronavirus patients, and analyzed the CT features of COVID-19 in detail.
In Reference [173], Shi et al. used a V-Net-based CNN model to segment lung organs and infected
regions from lung CT images. Then, they used the Least Absolute Shrinkage and Selection Oper-
ator (LASSO) method to calculate the best CT morphological features. Finally, based on the best
CT morphology and clinical features, the severity of COVID-19 was predicted and evaluated. In
Reference [203], Wang et al. collected 195 CT images from 44 patients with COVID-19 and 258 CT
images from 55 negative patients. They used the CNN model with the Inception structure [183] to
classify randomly selected ROI images and predict COVID-19 disease. In Reference [79], Huang
et al. used an InferReadTM CT pneumonia tool based on Al to quantitatively evaluate changes in
the lung burden of patients with COVID-19. The tool includes three modules: lung and lobe ex-
traction, pneumonia segmentation, and quantitative analysis. The CT image features of COVID-19
pneumonia are divided into four types: mild, moderate, severe, and critical.

Based on ROI segmentation and candidate infection region detection, the important features of
ROIs and infection regions are extracted for COVID-19 classification [149]. In Reference [149], Qi
et al. collected 71 CT images from 52 patients with confirmed COVID-19 in 5 hospitals. They used
radiobiological methods to extract 1,218 features from each CT image, and then performed LR and
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RF methods on these features to distinguish between short-term and long-term hospital stays. In
Reference [172], Shi et al. used the VB-Net model [170] to segment lung and infection regions
from CT images, and classified them based on 96 features (including 26 volume features, 31 digital
features, 32 histogram features, and 7 surface features). Next, they proposed an iSARF method to
classify features and predict COVID-19 disease. Comparative experiments show that the iSARF
method is superior to LR, SVM, and NN methods. In Reference [229], Zheng et al. proposed a 3D
DCNN model (called DeCoVNet) to detect COVID-19 from CT images. The proposed DeCoVNet
model includes three components: the first component uses vanilla 3D convolutional layers to ex-
tract lung image features, the second component consists of two 3D residual blocks, which perform
element conversion on the 3D feature maps, and the third component gradually extracts the infor-
mation in the 3D feature map through 3D max-pooling, and outputs the probability of COVID-19.
In Reference [180], Song et al. collected 1990 CT images, including 777 images from 88 patients
with COVID-19, 505 images from 100 patients with bacterial pneumonia, and 708 images from 86
healthy people. They proposed a DRE-Net DL model based on a pre-trained ResNet50 structure
and a functional pyramid network. The DRE-Net model extracts the top-K lesion features from
each CT image to predict the classification of patients with COVID-19.

The lack of large-scale data sets is the main challenge that hinders the implementation of
Al-based CT image inspection and affects diagnostic performance. To address these challenges,
strategies such as transfer learning, data augmentation, and “Human-In-The-Loop” were used in
References [170, 227]. In Reference [227], Zhao et al. provided a public COVID-19 CT scan data set,
including 275 COVID-19 cases and 195 non-COVID-19 cases. They used data augmentation and
TL methods to alleviate the shortage of training data. In terms of data augmentation, they used
transformation operations to expand the training data set, such as random transformation, crop-
ping, and rotation. In terms of TL, they pre-trained the DenseNet model [78] on the chest X-ray
data set [204], and then used the pre-trained model to predict COVID-19. In addition, the strategy
of “Human-In-The-Loop” was adopted to reduce the workload of radiologists when annotating
training samples [170]. The radiologists annotated a small portion of training samples in the first
batch of training. Then, they manually corrected the segmentation results in the second batch and
used them as annotations for the images. Iterative training is performed in this way to complete
the annotation of all training samples.

It is commendable that several works provide open-source code of the designed models and
online COVID-19 CT image inspection systems. For example, Li [107], Zheng [229], and Zhao [227]
published the proposed DL models on GitHub [81]. In addition, Song et al. provided an online CT
diagnosis service [180], and Wang et al. provided a public website for uploading and testing lung
CT images [203]. In Reference [29], Chen et al. developed a public online CT diagnostic system,
and anyone can upload CT images for self-diagnosis. More detailed information about Al-based
CT image segmentation and classification methods is provided in Table 2 and Figure 4.

2.2.2 Chest X-ray Image Inspection. Compared with CT images, chest X-ray (CXR) images are
easier to obtain in radiological inspections. Although CXR imaging is a typical imaging method
used for the diagnosis of COVID-19, it is generally considered to be less sensitive than CT imaging.
Some CXR images of patients with early COVID-19 showed normal characteristics. Radiological
signs of COVID-19 CXR images include airspace opacity, GGO, and later mergers. In addition, the
distribution of bilateral, peripheral, and lower regions is mainly observed [116, 153]. Examples
of CXR images of normal and COVID-19 cases are shown in Figure 5. The Al-based CXR image
inspection usually includes steps such as data preprocessing, DL model training, and COVID-19
classification. The representative Al architecture for CXR image classification and COVID-19 in-
spection is shown in Figure 6.

ACM Computing Surveys, Vol. 54, No. 8, Article 158. Publication date: October 2021.



158:8 J. Chen et al.

Table 2. Al-based CT Image Segmentation and Classification Methods for COVID-19 Inspection

Literature Data Data COVID-19 Al methods ACC/ Sensitivity Specificity
sources size cases AUC

Chen [29]* private 35,355 20,886  U-Net++ 95.24% 100% 94.0%
Gozes [58] private 157 56 U-Net, ResNet 99.6% 98.2% 92.2%
Huang [79] private 842 842 U-Net — — —
Li [107]? private 4,356 1,325  U-Net, ResNet 96.0% 90.0% 96.0%
Qi [149] private 52 52 LR,RF 97.0%  100% 75.0%
Shan [170] private 549 549 V-Net, ResNet - — —
Shi [172] private 2,685 1,658 RF 87.9% 90.7% 83.3%
Shi [173] private 196 196 V-Net 89.0% 82.2% 82.8%
Song [180]*  private 1,990 777  DRE-Net 94.0%  93.0% —
Tang [185] private 176 176 ~ RF 87.5% — —
Wang [203]*  private 453 195 Inception 73.1%  74.0% 67.0%
Xu [215] private 618 219 ResNet 86.7% — —
Zhao [227]° [227] 470 275  DenseNet 84.7%  76.2% —
Zheng [229]°  private 630 630 DeCoVNet 90.1% 90.7% 91.1%

Thttp://121.40.75.149/znyx-ncov/index. https://github.com/bkong999/COVNet.git. 3http://biomed.nscc-gz.cn/server/
Ncov2019. *https://ai.nsce-tj.cn/thai/deploy/public/pneumonia_ct. >https://github.com/UCSD-AI4H/COVID-CT. ®https://
github.com/sydney0zq/covid-19-detection.

Al methods

95.24%

96.0%

Literature on applications of COVID-19 CT image inspection

Fig. 4. Relationship between Al methods and applications of COVID-19 CT image inspection.

Unlike CT images, CXR image segmentation is more challenging, because the ribs are projected
onto soft tissues, which is confused with image contrast. In this way, most DL models focus on
the classification of the entire CXR image, while few works are devoted to segmenting the ROIs
and lung organs from CXR images. In Reference [60], Mahdy et al. used a classification method to
classify COVID-19 on CXR images through a multilevel threshold and SVM. A multilevel image
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Fig. 5. Examples of chest X-ray images of normal and COVID-19 cases.
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Fig. 6. Representative Al architecture for CXR image classification and COVID-19 inspection.

segmentation threshold was used to segment lung organs from the background, and then the SVM
module was used to classify the infected lungs from the uninfected lungs.

Focusing on the classification of COVID-19 based on CXR images, several studies built Al-based
classification models by nesting or combining existing ML and DL models. In Reference [65],
Hemdan et al. proposed a DL framework (called COVIDX-Net) to help radiologists automatically
diagnose COVID-19 based on CXR images. The proposed framework integrates 7 DCNN models
with different structures, such as VGG19 [176], DenseNet201 [78], ResNetV2 [26], InceptionV3, In-
ceptionResNetV2 [182], Xception [35], and MobileNetV2 [162]. Each model is separately trained
on CXR images to classify the patient’s status as COVID-19 positive or negative. In Reference
[169], Sethy et al. used different DCNN models in a SVM classifier to diagnose COVID-19 based
on CXR images. Eleven DCNN models are used as image feature extractors, including AlexNet,
GoogLeNet, DenseNet, Inception, ResNet, VGG, XceptionNet, and InceptionResNet. Then, the SVM
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classifier classifies the extracted image features to determine whether the input image is COVID-
19. In Reference [23], Castiglioni et al. collected CXR data (610 images, including 324 COVID-19
cases) from Lombardy, Italy, and constructed a DCNN model to predict COVID-19. The DCNN
model is equipped with 10 CNN models, each of them uses the ResNet-50 structure and has been
pre-trained on the ImageNet data set. In Reference [8], Ioannis et al. evaluated the performance
of 5 DCNN models for medical image classification, including VGG19, MobileNetV2, Inception,
Xception, and InceptionResNetV2. To address the shortcomings of the small-scale COVID-19 data
set, each model is pre-trained on the ImageNet data set using the TL strategy. In Reference [130],
Narin et al. also used 3 typical DCNN models (i.e., ResNet50, InceptionV3, and InceptionResNetV2)
to classify COVID-19 from a small-scale CXR data set (100 images, including 50 COVID-19 cases).

Another group of works constructed specific DL models for COVID-19 classification [225]. For
example, Zhang et al. proposed a new DL model, which consists of a backbone network, a clas-
sification module, and an anomaly detection module [225]. The backbone network extracts the
features of each input CXR image. The classification and anomaly detection modules, respectively,
use the extracted features to generate classification scores and scalar anomaly scores. In Reference
[201], Wang et al. introduced a COVID-Net DCNN model to identify COVID-19 cases based on
CXR images. The COVID-Net model uses a large number of convolutional layers in a projection-
expansion-projection design pattern. They collected 13,800 CXR images from 13,725 patients
(including 183 COVID-19 patients) to establish a CXR database (called COVIDx) for training
COVID-Net. It is commendable that the authors provided an open-source code of the proposed
model and the COVIDx database.

Similar to CT images, in CXR image inspection, there is also a lack of large-scale data sets for
DL model training. In Reference [119], Maghdid et al., respectively, used CNN and AlexNet [102]
models to train CXR and CT images and diagnose COVID-19 cases. Among them, the AlexNet
model is pre-trained on the ImageNet data set to perform COVID-19 classification on the data sets
in References [36, 116, 133]. Unlike existing TL and image augmentation methods, Afshar et al.
designed a capsule network model (named COVID-CAPS) suitable for small-scale CXR data sets
[2]. Each layer of the COVID-CAPS model contains multiple capsules, and each capsule represents
a specific image instance at a specific position through multiple neurons. The capsule module [67]
uses protocol routing to capture alternative models of spatial information and attempts to reach
a consensus on the existence of objects. In this way, the protocol uses information from instances
and objects to identify the relationship between them without the need for large-scale data sets.
More detailed information about Al-based methods for CXR image classification and COVID-19
inspection is shown in Table 3 and Figure 7.

2.3 Other Detection Technologies

In addition to RT-PCR detection and image inspection techniques, some noninvasive measurement
methods have also been used for the diagnosis of COVID-19, including cough sound judgment and
breathing pattern detection.

(1) Monitoring COVID-19 through Al-based cough sound analysis.

In Reference [166], Schuller et al. discussed the potential application of computer audition
(CA) and Al in analyzing the cough sounds of patients with COVID-19. They first analyzed the
ability of CA to automatically recognize and monitor speech and cough under different seman-
tics (such as breathing, dry and wet coughing or sneezing, speech during colds, eating behaviors,
drowsiness, or pain). Then, they applied the CA technology to the diagnosis and treatment of
patients with COVID-19. However, due to the lack of available data sets and annotation infor-
mation, there are few studies on this technology in diagnosing COVID-19. It is encouraging that
Orlandic et al. provided a COUGHVID cough dataset for COVID-19 diagnosis, which contains
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Table 3. Al-based Methods for CXR Image Classification for COVID-19 Inspection

Literature Data sources  Data  COVID-19 Al methods Accuracy/ Sensitivity Specificity
size cases AUC
Afshar [2]T [36, 131] 100 50 COVID-CAPS 95.70% 90.00% 95.30%
Castiglioni [23] private 610 324 ResNet 89.00% 78.00% 82.00%
Toannis [8] [36, 93, 105] 1,427 224 VGG, MobileNet, Incep- 96.78% 98.66% 96.46%
tion, Xception, Inception-
ResNet
Mahdy [60] private 40 25 SVM 97.48% 95.28% 99.70%
Hemdan [65] [36, 152] 50 25 VGG, DenseNet, ResNet, 83.00% 91.00% 91.00%
Inception, InceptionRes-
Net, Xception, MobileNet
Maghdid [119]  [36,116,133] 170 60 CNN, AlexNet 94.00% 100% 88.00%
Narin [130] [36, 131] 100 50 ResNet, Inception, Incep- 98.00% 96.00% 98.00%
tionResNet
Sethy [169] [36, 131] 50 25 AlexNet, DenseNet, 95.38% 97.29% 93.47%
GoogLeNet,  Inception,
ResNet, VGG, Xception,
InceptionResNet, SVM
Wang [201]? [20,36, 131] 13,800 183 COVID-Net 92.6% 87.10% 96.40%
Zhang [225] [36, 204] 1,531 100 CAAD 95.18% 96.00% 70.65%

Thttps://github.com/ShahinSHH/COVID-CAPS. 2https://github.com/lindawangg/COVID-Net.
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Fig. 7. Relationship among CXR data sets, Al methods, and applications of CXR image inspection.

20,000 crowdsourced cough records [138]. The cough records are labeled by experienced pulmo-
nologists, and medical abnormalities are accurately diagnosed, thus providing a high-quality train-
ing dataset for MI/AI methods. Similarly, in Reference [83], Igbal et al. also discussed an abstract
framework that uses the voice recognition function of mobile applications to capture and ana-
lyze the cough sounds of suspicious persons to determine whether they are healthy or suffering
from a respiratory disease. In Reference [205], Wang et al. analyzed the respiratory patterns of
patients with COVID-19 and other breathing patterns of patients with influenza and common
cold. In addition, they proposed a respiratory simulation model (called BI-AT-GRU) for COVID-
19 diagnosis. The BI-AT-GRU model includes a GRU neural network with a bidirectional and at-
tention mechanism, and can classify six types of clinical respiratory patterns, such as Eupnea,
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Tachypnea, Bradypnea, Biots, Cheyne-Stokes, and Central-Apnea. To facilitate the analysis of
COVID-19 cough sounds, we further collect eight groups of human cough sound datasets con-
taining patients with confirmed COVID-19, as shown in Table 3 in Supplementary Material.

(2) COVID-19 diagnosis based on non-invasive measurements.

In Reference [120], Maghdid et al. designed an abstract framework for COVID-19 diagnosis
based on smart phone sensors. In the proposed framework, smart phones can be used to collect
the disease characteristics of potential patients. For example, the sensor can acquire the patient’s
voice through the recording function and the patient’s body temperature through the fingerprint
recognition function. Then, the collected data are submitted to an Al-supported cloud server for
disease diagnosis and analysis.

3 VIROLOGY AND PATHOGENESIS

The virology and pathogenesis of SARS-CoV-2 is the most important scientific research in the fields
of biology and medicine. Scientists have analyzed the virus characteristics of SARS-CoV-2 through
proteomics and genomic studies [6, 70, 115]. In the field of virology, the origin and classification of
SARS-CoV-2, physical and chemical properties, receptor interactions, cell entry, and the ecology
and genomic variation of SARS-CoV-2 have been studied [115, 208, 230]. We mainly discuss the
contribution of Al in the pathological research of SARS-CoV-2 from the perspective of proteomics
and genomics.

3.1 Proteomics

Since the advent of SARS-CoV-2, there have been a large number of research achievements in
proteomics. Five types of structural proteins of SARS-CoV-2 have been confirmed, including nu-
cleocapsid (N) proteins, envelope (E) proteins, membrane (M) proteins, and spike (S) proteins
[139, 198, 228]. Other proteins translated in the host cells essential for virus replication, such as
non-structural protein 5 (NSP5) and 3C-like protease (3CLpro), have also attracted the at-
tention of researchers. In addition, several studies have shown that SARS-CoV-2 uses the human
Angiotensin-Converting Enzyme 2 (ACE2) to enter the host [70, 230]. In this field, Al tech-
niques are used to predict protein structures and analyze the interaction network between pro-
teins and drugs. The representative Al architecture used for protein structure prediction is shown
in Figure 8.

In References [167, 168], Senior et al. used DL models to implement the AlphaFold system for
protein structure prediction. The AlphaFold system uses the ResNet model [61] to analyze the
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covariance and amino acid residue contacts in the homologous gene sequences, and predict the cor-
responding protein structures. The AlphaFold system consists of a feature extraction module and a
distance prediction neural network. The feature extraction module is responsible for searching for
protein sequences similar to the input protein sequences and constructing multiple sequence
alignments (MSA). The module simultaneously generates residual position and sequence con-
tour features, and inputs the output of 485 feature parameters into the distance prediction neural
network. The distance prediction neural network is a two-dimensional (2D) ResNet structure,
which is responsible for accurately predicting the distance between all residue pairs in every two
protein sequences. The authors added a one-dimensional output layer to the network to predict
the accessible surface area, distance map, and secondary structure of each residue. Finally, the
generated potential is optimized by gradient descent to generate protein structures.

Based on References [167, 168], Jumper et al. used the AlphaFold system to predict the structure
of SARS-CoV-2 membrane proteins [87]. They published the predicted protein structures such
as 3a, Nsp2, Nsp4, Nsp6, and papain-like proteases. Although the structure of these proteins has
not been verified by clinical trials, this publication allows researchers to quickly conduct SARA-
CoV-2 studies. In Reference [139], Ortega et al. used a computational method to detect changes
in the S1 subunit of the spike receptor-binding domain and identify mutations in the SARS-CoV-
2 spike protein sequence, which may be beneficial for studying human-to-human transmission.
They collected sequences from the Protein Data Bank (PDB) [15] and used the SWISS-MODEL
software [10] to construct a SARS-CoV-2 spike protein model. Then, the Z-dock software [144]
was used to dock the spike protein and ACE2, and a clustering algorithm was used to cluster the
docking results. The work indicated that the SARS-CoV-2 spike protein has a higher affinity for
human ACE2 receptors.

Another branch of Al-assisted proteomics research involves finding new compounds and drug
candidates for the treatment of COVID-19 by building an interactive network and knowledge
graph between proteins and drugs. Please see Section 4 for details.

3.2 Genomics

Genomics is mainly used in SARS-CoV-2 to analyze the origin of SARS-CoV-2, vaccine devel-
opment, and PT-PCR detection. Various Al algorithms are applied to compare the similarity of
gene sequences, gene fragments, and miRNA predictions [42, 157]. In Reference [157], Randhawa
et al. used different ML methods to analyze the pathogen sequence of COVID-19, and identified the
inherent characteristics of the viral genomes, thereby rapidly classifying new pathogens. They col-
lected the complete reference genome of the COVID virus from NCBI [46], the bat S-coronavirus
from GISAID [54], and all available virus sequences from Virus-Host DB [127]. By using chaotic
game representation, each genomic sequence was mapped to the corresponding genomic signal
in a discrete digital sequence [86]. In addition, the amplitude spectrum of these genomic signals
was calculated by using a discrete Fourier transform. On this basis, they used six ML classification
models to train the above sequence distance matrix and compared their performance. Finally, they
conducted the trained ML models on 29 COVID-19 sequences to classify COVID-19 pathogens. The
results of this work support the hypothesis that COVID-19 originated in bats and its classification
as a ff-coronavirus.

In addition, the amplitude spectrum of these genomic signals is calculated by using a discrete
Fourier transform. On this basis, they used 6 ML classification models (such as linear discrimi-
nant, linear SVM, quadratic SVM, fine KNN, subspace discriminant, and subspace KNN) to train
the sequence distance matrix and compared their performance. Finally, they performed a well-
trained ML model on 29 COVID-19 sequences to classify COVID-19 pathogens. The results of
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this work support the following hypothesis: COVID-19 originated in bats and is classified as type
J-coronavirus.

In Reference [42], based on three ML methods (such as DT, Naive Bayes, and RF), Demirci et al.
performed miRNA prediction on the SARS-CoV-2 genome, and identified miRNA-like hairpins and
microRNA-mediated SARS-CoV-2 infection interactions. They collected the complete COVID-19
genome from NCBI [46] and human-mature miRNA sequences from miRBase [101]. The genomic
sequences are transcribed and divided into multiple overlapping fragments, which are folded into
a secondary structure to extract the hairpin structure. On this basis, the authors used the three
ML methods to predict the category of each hairpin and determine the similarity between the
hairpins and human miRNA. They searched for mature miRNA targets in human and SARS-CoV-2
genes, and analyzed the potential interactions between SARS-CoV-2 miRNAs and human genes
and between human miRNAs and SARS-CoV-2 genes. Finally, the gene ontology of SARS-CoV-2
miRNA targets in human genes was analyzed, and the PANTHER classification system was used
to evaluate the similarity between SARS-CoV-2 miRNA candidates and the mature miRNAs of any
known organism [126].

In Reference [125], Metsky et al. used genomic and Al technologies to design nucleic acid de-
tection assays and improve the current SARS-CoV-2 RT-PCR test. They developed a CRISPR tool
that uses enzymes to edit the genome by cutting specific genetic code chains, and used different
ML methods to predict the diversity of the target genome. The authors designed an RT-PCR test
method through the CRISPR tool, which can effectively detect 67 respiratory viruses, including
SARS-CoV-2.

4 DRUG AND VACCINE DEVELOPMENT

Based on proteomics and genomics research, a variety of drug and vaccine development programs
have been proposed for SARS-CoV-2 and COVID-19. The application of Al in the development
of new drugs and vaccines is one of the main contributions in smart medicine, and it plays an
important role in the battle against COVID-19.

4.1 Drug Development

In the field of drug development, Al technologies can screen existing drug candidates for COVID-
19 by analyzing the interaction between existing drugs and COVID-19 protein targets. In addition,
Al technologies can also help discover new drug-like compounds against COVID-19 by construct-
ing new molecular structures that inhibit proteases at the molecular level. The representative Al
architecture used for new drug-like compound discover is shown in Figure 9.

Drug development can be divided into small-molecule drug discovery and biological prod-
uct development. The discovery of small-molecule drugs mainly focused on chemically
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synthesized small molecule active substances, which can be made into small-molecule drugs
through chemical reactions between different organic and inorganic compounds. One group of
Al-based drug development focuses on discovering new drug-like compounds at the molecular
level. In References [14, 174], Beck et al. proposed a DL-based molecule transformer-drug tar-
get interaction (MT-DTI) model to predict potential drug candidates for COVID-19. The MT-
DTI model uses the SMILES strings and amino-acid sequences to predict the target proteins with
a 3D crystal structure. The authors collected the amino-acid sequences of 3C-like proteases and
related antiviral drugs and drug targets from NCBI [46], Drug Target Common (DTC) [186], and
BindingDB [113] databases. In addition, they used a molecular docking and virtual screening tool
(AutoDock Vina [194]) to predict the binding affinity between 3,410 drugs and SARS-CoV-2 3CLpro.
The experimental results provided 6 potential drugs, such as Remdesivir, Atazanavir, Efavirenz, Ri-
tonavir, Dolutegravir, and Kaletra (lopinavir/ritonavir). Note that Remdesivir shows promising in
clinical trials. In Reference [129], Moskal et al. used Al methods to analyze the molecular simi-
larity between anti-COVID-19 drugs (termed “parents”) and drugs involving similar indications to
screen out second-generation drugs (termed “progeny”) of COVID-19. They first used the Mol2Vec
[84] method to convert the molecular structure of the parent drugs into a high-dimensional vector
space, treated the drug molecule as a “sentence,” and mapped its molecular substructure to a “word.”
Then, they used the VAE [179] model to generate SMILES strings with 3D shape and pharmaco-
dynamic properties to the given seed molecule [56]. In addition, CNN, LSTM, and MLP models
are used to generate the corresponding SMILES strings and molecules. The authors selected 71
parent drugs from the literature as seed molecules, and 4456 drugs from ZINC [233] and ChEMBL
as candidate progeny drugs [49].

In Reference [19], Bung et al. committed to the development of new chemical entities of SARS-
CoV-2 3CLpro based on DL technology. They constructed an RL-based RNN model to classify
protease inhibitor molecules and obtained a smaller subset that favored the chemical space. Then,
they collected 2515 protease inhibitor molecules in the SMILES format from the ChEMBL database
as training data, where each SMILES string is regarded as a time series, and each position or symbol
is regarded as a time point. The output of small molecules is docked to the 3CLpro structure with
minimal energy and ranked according to the virtual screening score obtained by selecting anti-
SARS-CoV-2 candidates [194]. In Reference [184], Tang et al. analyzed 3CLpro with a 3D structure
similar to SARS-CoV, and evaluated it as an attractive target for the development of anti-COVID-
19 drugs. They proposed an advanced deep Q learning network (called ADQN-FBDD) to generate
potential lead compounds of SARS-CoV-2 3CLpro. They collected 284 molecules reported as SARS-
CoV-2 3CLpro inhibitors. An improved BRICS algorithm [41] was used to split these molecules
to obtain the target fragment library of SARS-CoV-2 3CLpro. Then, the proposed ADQN-FBDD
model trains each target fragment and predicts the corresponding molecules and lead compounds.
Through the proposed Structure-based Optimization Policy (SBOP), they finally obtained 47
derivatives that inhibit SARS-CoV-2 3CLpro from these lead compounds, which are regarded as
potential anti-SARS-CoV-2 drugs.

Another group of studies focuses on screening candidate biological products of COVID-19. Bi-
ological products are protein products with therapeutic effects, which mainly bind to specific cell
receptors involved in the disease process. Biological products are prepared from microbial cells
(such as genetically modified bacteria, yeast, or mammalian cell strains) through a biotechnology
process. In Reference [73], Hu et al. established a multi-task DL model to predict the possible bind-
ing between potential drugs and SARS-CoV-2 protein targets, to select drugs that can be used for
SARS-CoV-2. They first collected 8 SARS-CoV-2 viral proteins from GHDDI [51] as potential tar-
gets. The proposed DL model is based on the AtomNet model [181, 197] and includes a shared
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Table 4. Al-based COVID-19 Drug Development Methods

Literature Al methods Role of Al methods COVID-19 targets  Potential drugs
Tang [184]" RL, DQON predict molecules and lead com- 3CLpro 47 compounds
pounds for each target fragment
Zhavoronkov [228]% 28 ML generate new molecular struc- 3CLpro 100 molecules
tures for 3CLpro

Bung [19] RNN, RL classify protease inhibitor 3CLpro 31 compounds
molecules

Hofmarcher [71]* ChemAlI predict inhibitory effects of mole- 3CLpro, PLpro 30,000 molecules
cules on COVID-19 proteases

Kadioglu [89] NN, Naive bayes construct drug likelihood predic- spike protein, - - - 3 drugs
tion model

Hu [73] DL predict binding between drugs 3CLpro, RdRp, - - - 10 drugs
and protein targets

Beck [14, 174] MT-DTI predict binding affinity between 3CLpro, RdRp, 6 drugs
drugs and protein targets helicase, - - -

Moskal [129] VAE, CNN, generate SMILES strings and — 110 drugs

LSTM, MLP molecules

https://github.com/tbwxmu/2019-nCov. 2https://www.insilico.com/ncov-sprint. >https://github.com/ml-jku/sars-
cov-inhibitors-chemai.

layer to learn the joint representation of all tasks and a task processing layer to perform specific
tasks. By fine-tuning the DL model using a coronavirus-specific data set, the model can predict
the possible binding between the drugs and the protein targets and output the binding affinity
score. Based on existing studies, RdRp, 3CLpro, and papain-like protease have been confirmed as
the three principal targets of SARS-CoV-2 [53, 140, 198]. Based on the prediction results [106, 202],
the authors selected the top 10 potential drugs with a high likelihood of inhibiting each target. In
Reference [89], Kadioglu et al. used High-Performance Computing (HPC), virtual drug screen-
ing, molecular docking, and ML technologies to identify SARS-CoV-2 drug candidates. After per-
forming virtual drug screening and molecular docking, two supervised ML models(such as NN and
Naivebayes) are used to analyze clinical drugs and test compounds to construct corresponding drug
likelihood prediction models. Several approved drugs were selected as SARS-CoV-2 drug candi-
dates, including drugs for hepatitis C virus (HCV), enveloped ssRNA virus, and other infectious
diseases.

Facing the known COVID-19 protease target 3CLpro, Zhavoronkov et al. designed a small-
molecule drug-discovery pipeline to produce 3CLpro inhibitors, and used 3CLpro’s crystal struc-
ture, homology modelling and co-crystallized fragments to generate 3CLpro molecules [228]. They
collected the crystal structure of COVID-19 3CLpro from Reference [219] and constructed a ho-
mology model. At the same time, molecules activity to various proteases were extracted from Ref-
erences [49, 82] and constituted a protease peptidomimetic data set with 5,891 compounds. Then,
they used 28 ML methods (such as GAE, GAN, and GA) and RL strategies to separately train the
input data sets (e.g., crystal structure, homology model, and co-crystal ligands), and generated
new molecular structures with a high score. In Reference [71], Hofmarcher et al. used the ChemAI
DL model [147] based on the SmilesLSTM structure [69] to test the resistance of the molecules
to COVID-19 protease. They collected 3.6 million molecules from ChEMBL [49], ZINC [233], and
PubChem [95] databases and formed a training data set. Then, the ChemAI model is trained on
the data set in a multi-task parallel training way, where the output neurons of the model repre-
sent the biological effects of the input molecules. The authors used the ChemAI model to predict
the inhibitory effects of these molecules on the 3CLpro and PLpro proteases of COVID-19. These
molecules have a binding, inhibitory, and toxic effect on the targets. A list of COVID-19 drug
development methods based on Al technology is provided in Table 4.
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4.2 Vaccine Development

Currently, there are three types of COVID-19 vaccine candidates, such as whole virus vaccines,
recombinant protein subunit vaccines, and nucleic acid vaccines [34, 226]. Al technology has par-
ticipated in the design and development of COVID-19 vaccine. Compared with the explicit appli-
cations in other fields, Al technology is usually used in the sub-processes of vaccine development
in an implicit manner.

The Al algorithms of netMHC and netMHCpan are used to develop COVID-19 vaccines for
epitope prediction [66, 88, 206]. In Reference [66], Herst et al. obtained the SARS-CoV-2 protein
sequences from GenBank and used the MSA algorithm to trim the nucleocapsid phosphoprotein
sequences into possible peptide sequences. On this basis, they used netMHC and netMHCpan
AT algorithms to train and predict peptide sequences [7, 88]. The pan variant of netMHC inte-
grates the in vitro objects of 215 HLAs for prediction. Finally, they used the average value of the
ANN, SVM, netMHC and netMHCpan methods to calculate vaccine candidates. In Reference [206],
Ward et al. downloaded the SARS-CoV-2 nucleotide sequences from NCBI [46] and GISAID [54]
databases, and generated a consensus sequence for each SARS-CoV-2 protein. The sequences can
be used as references for prediction, specificity, and epitope mapping analysis. Next, the authors
used different epitope prediction tools to predict B cell epitopes and map them to the amino acid
sequences of each gene. On this basis, they used the Al-based netMHCpan algorithm to predict
HLA-1 peptides and obtained a total of 2,915 alleles in all peptide lengths. The BLASTp tool [5] was
used to map the short amino acid epitope sequences to the canonical sequences of SARS-CoV-2 pro-
teins. Finally, the authors provided an online tool that provides functions of SARS-CoV-2 genetic
variation analysis, epitope prediction, coronavirus homology analysis, and candidate proteome
analysis.

In Reference [136], Ong et al. used ML and Reverse Vaccinology (RV) methods to predict and
evaluate potential vaccines for COVID-19. They used RV to analyze the bioinformatics of pathogen
genomes to identify promising vaccine candidates. They obtained the SARS-CoV-2 sequences and
all the proteins of six known human coronavirus strains from the NCBI [46] and UniProt [13]
databases. Then, they used Vaxign and Vaxign-ML [63, 135] to analyze the complete proteome of
the coronavirus and predicted its service biological characteristics. Next, they used LR, SVM, KNN,
RF, and XGBoost methods to improve the Vaxign-ML model, and predicted the protein levels of all
SARS-CoV-2 proteins. The nsp3 protein was selected for phylogenetic analysis, and the immuno-
genicity of nsp3 was evaluated by predicting T cell MHC-I and MHC-II and linear B-cell epitopes.

In Reference [151], Qiao et al. used DL to predict the patient’s neoantigen mutation and iden-
tified the best T-cell epitope for the peptide-based COVID-19 vaccines. They first sequenced the
diseased cells in the patient’s blood and extracted six human leukocyte antigen (HLA) types
and T-cell receptor (TCR) sequences. Then, they proposed the DeepNovo model to train patient’s
immune peptides and to identify the best T-cell epitope set based on a person’s HLA alleles and im-
mune peptide group information. The DeepNovo model uses LSTM and RNN structures to capture
sequence patterns in peptides or proteins, and predicts HLA peptides from conserved regions of
the virus, thereby predicting new mutant antigens in patients. In addition, they used the IEDB tool
[196] to predict the immunogenicity of 177 peptides. They suggested designing an epitope-based
COVID-19 vaccine specifically for each person based on his/her HLA alleles.

The prediction of immune stimulation ability is an important part of vaccine design [155, 159].
Different ML methods and position-specific scoring matrices (PSSM) are usually used to pre-
dict epitope and immune interactions, thereby predicting the production of adaptive immunity
in the target host. In Reference [155], Rahman et al. used immuno-informatics and comparative
genomic methods to design a multi-epitope peptide vaccine against SARS-CoV-2, which combines
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the epitopes of S, M, and E proteins. They used the Ellipro antibody epitope prediction tool [80] to
predict linear B-cell epitopes on the S protein. In addition, Sarkar et al. studied the epitope-based
vaccine design against COVID-19 and used the SVM method to predict the toxicity of the selected
epitopes [164]. In Reference [146], Prachar et al. used 19 epitope-HLA combination prediction tools
including IEDB, ANN, and PSSM algorithms to predict and verify 174 SARS-CoV-2 epitopes.

5 EPIDEMIC AND TRANSMISSION PREDICTION

Thanks to the developed information and multimedia technology, the outbreak and spread of
COVID-19 were reported timely and accurately. The number of suspected, confirmed, cured, and
dead COVID-19 cases in each country/region is announced in real-time. In addition, passenger
travel trajectories and related big data are shared for scientific research. Based on a wealth of data,
numerous researchers have participated in the prediction, spread, and tracking of the COVID-19
outbreak.

5.1 Patient Mortality and Survival Rate Prediction

Researchers collected clinical COVID-19 case data and used different Al methods to extract im-
portant features and to predict the mortality and survival rate of patients with COVID-19. The
representative Al architecture used for patient mortality and survival rate prediction is shown in
Figure 10.

In Reference [145], Pourhomayoun et al. used six Al methods to predict the mortality of pa-
tients with COVID-19. They used public data of patients with COVID-19 from 76 countries/regions
around the world [214], and counted 112 features, including 80 medical annotations and disease
features and 32 features from the patients’ demographic and physiological data. Based on the fil-
tering method and wrapper method, 42 best features were extracted, such as demographic fea-
tures, general medical information, and patient symptoms. On this basis, six Al methods (such as
SVM, NN, RF, DT, LR, and KNN) are used to predict the mortality of patients with COVID-19. In
Reference [165], Sarkar et al. used the RF model to analyze the records of 433 patients with COVID-
19 from Kaggle [39], and identified the important features and their impact on mortality. Experi-
mental results show that patients over 62 years of age have a higher risk of death. In References
[217, 218], Yan et al. analyzed a blood sample data set of 404 patients with COVID-19 in Wuhan,
China, and used the XGBoost classification method [33] to select three important biomarkers to
predict the survival rate of individual patients. Experimental results with an accuracy of 90% in-
dicate that higher LDH levels seem to play an important role in distinguishing the most critical
COVID-19 cases.

5.2 Outbreak and Transmission Prediction

BlueDot [17] and Metabiota [124] are two Al companies that made accurate predictions for the
COVID-19 outbreak. BlueDot collected large-scale heterogeneous data from various sources, such
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Table 5. Al Methods used for COVID-19 Outbreak and Transmission Prediction
Literature Data sources Methods Country/region
Huang [76] Yang [220], WHO [207] CNN, LSTM, MLP, GRU China
Hu [74, 75] The Paper [142], WHO [207] MAE, clustering China
Yang [222] Baidu [12] SEIR, LSTM China
Fong [44, 45] NHC [132] SVM, PNN China
Ai [3] WHO [47, 207] ANFIS, FPA China, USA
Rizk [160] WHO [207] ISACL-MFNN USA, Italy, Spain
Giuliani [55] Ttaly [137] EMTMGL Ttaly
Marini [121, 122] Swiss population Enerpol Switzerland
Lai [103] TATA [118], Worldpop [209] ML Global
Punn [148] JHU CSSE [43] SVR, PR, DNN, LSTM, RNN Global
Lampos [104] MediaCloud [123], PHE [57], ECDC [48] Transfer learning Global
Total confirmed cases New confirmed cases Total cured cases New cured case Total deaths New deaths
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Fig. 11. Representative Al architecture used for COVID-19 outbreak prediction.

as news reports, global ticketing data, animal diseases, global infectious disease alerts, and real-
time climate conditions. Then, it used filtering tools to narrow its focus; used various ML and
Natural Language Processing (NLP) techniques to detect, mark, and display the potential risk
frequency of COVID-19; and finally predicted the outbreak time of transmission. It is worth men-
tioning that 9 days before the official announcement of the COVID-19 outbreak, BlueDot has
accurately predicted the epidemic of COVID-19 and cities with a high risk of virus outbreaks.
Metabiota collected large-scale data from social and nonsocial sources (such as biology, socioe-
conomic, political, and environmental data), and used technologies such as Al, ML, big data,
and NLP to accurately predict the outbreak, spread, and intervention measures of COVID-19.
More Al-based methods used for COVID-19 outbreak and transmission prediction are shown in
Table 5.

Although the source of the COVID-19 epidemic has not yet been identified, it was first reported
in Wuhan, China. Therefore, the outbreak and spread of COVID-19 in China have received exten-
sive attention. In Reference [76], Huang et al. used 4 DL models (such as CNN, LSTM, GRU, and
MLP) to train and predict COVID-19 cases from seven severely epidemic cities in China. The input
of these DL models are the features of COVID-19 cases, including the number of confirmed cases,
cured cases, and deaths. Based on the input of the previous 5 days, each model can predict the
number of COVID-19 cases in the following few days. The representative Al architecture used for
the COVID-19 outbreak prediction is shown in Figure 11.
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In References [74, 75], Hu et al. used Al methods such as MAE and clustering algorithms to
predict the number of confirmed COVID-19 cases in different provinces and cities in China. They
divided 34 provinces and cities in China into nine groups based on the prediction results, and
further predicted the spread of COVID-19 between provinces and cities. In Reference [222], Yang
et al. used the SEIR model [92] and the LSTM model to predict COVID-19 in China. The population
migration data and the latest COVID-19 epidemiological data from Baidu [12] were input into
the SEIR model to derive the epidemic curves. In addition, they used the 2003 SARS data to pre-
train the LSTM model to predict COVID-19 in the following few days, in which epidemiological
parameters (such as the transmission, incubation, recovery probability, and the number of deaths)
were selected as input features. Both SEIR and LSTM models predict the daily peak of infection in
the first week of February will be 4,000. In References [44, 45], Fong et al. obtained early COVID-
19 epidemiological data from NHC [132]. Then, they used traditional time series data analysis
methods (such as ARIMA, Exponential, and Holt-Winters), ML methods (such as KR, SVM, and
DT), and Al methods (such as PNN) to analyze and predict future outbreaks.

In addition to China, the outbreak and spread of COVID-19 in other countries (including the
United States, Italy, Spain, Iran, and Switzerland) have also received widespread attention. In
Reference [3], Ai et al. proposed an improved ANFIS method [85] to predict the number of COVID-
19 cases. The proposed system connects fuzzy logic and neural networks, and uses an enhanced
flower pollination algorithm [221] for model parameter optimization and model training. In Ref-
erence [160], Rizk et al. proposed an improved Multi-layer Feed-forward Neural Network
(ISACL-MFNN) model, which uses an internal search algorithm (ISA) to optimize model pa-
rameters and a CL strategy to enhance ISA performance. From the official COVID-19 data set
reported by the WHO [207], data from January 22, 2020, to April 3, 2020, in the United States,
Italy, and Spain were collected to train the ISACL-MFNN model and to predict the confirmed cases
within the next 10 days. In Reference [55], Giuliani et al. collected the number of infected people in
various provinces of Italy [137], and used the EMTMGL model to simulate and predict the spatial
and temporal distribution of COVID-19 infection in Italy. They collected daily epidemic data and
saved them in a time series data format, and then used LR and LSTM models to make predictions,
thereby obtaining the outbreak and spread trend of COVID-19 in Iran. In References [121, 122],
Marini et al. developed an agent-based Al platform, which accepts the entire Swiss population as
input data to simulate and predict the spread of COVID-19 in Switzerland. It simulates people’s
daily trajectories by calibrating micro-census data, and effectively predicts individual contacts and
possible transmission routes.

Many studies have likewise focus on predicting the spread of COVID-19 worldwide. They col-
lected alarge amount of travel data, mobile phone data, and social media data, and used Al methods
to accurately predict the potential spread and transmission route of COVID-19. In Reference [103],
Lai et al. collected a large amount of travel and mobile phone data from Reference [209], and con-
structed a corresponding model to predict the risk of COVID-19 transmission in different countries.
On this basis, they established an air travel network model between domestic cities and cities in
other countries to predict risk cities at home and abroad. In Reference [148], Punn et al. used 2 ML
models (e.g., SVR [11] and PR [40]) and 3 DL regression models (e.g., DNN, LSTM [59], and RNN)
to predict real-time COVID-19 cases. In Reference [104], Lampos et al. used an automatic crawling
tool to obtain daily confirmed COVID-19 case data and related articles from online media, such
as MediaCloud [123], Public Health England (PHE) [57], and European Centre for Disease Preven-
tion and Control (ECDC) [48]. They used the TL strategy to transfer the COVID-19 model of the
disease-spreading country that are still in the early stage of the epidemic curve, achieving the epi-
demic prediction in the target country. In addition, companies such as Microsoft Bing [16], Google
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[193], and Baidu [12] have aggregated multiple available data sources and developed a COVID-19
global tracking system to provide a visual tracking interface.

In addition to Al methods, various methods based on statistics and epidemiology are also used to
predict the outbreak and spread of COVID-19. In Reference [62], He et al. collected the highest viral
load in the pharyngeal swabs of 94 patients with confirmed COVID-19. They fitted a generalized
additive model with identification links and smooth spline curves to analyze their overall trend. A
gamma distribution was fitted to the transmission pair data to evaluate the serial interval distribu-
tion. The results of statistical analysis indicated that the patients with confirmed COVID-19 have
reached the peak of virus shedding before or during symptom onset, and some kinds of transmis-
sion may occur before the initial symptoms appear. In Reference [200], Wang et al. determined a set
of technical indicators that reflect the infection status of COVID-19, such as the number of infection
cases in the hospital, daily infection rate, and daily cured rate. Next, they proposed a calculation
method based on statistical theory to quantify the iconic characteristics of each period and predict
the turning point in the development of the epidemic. In addition, numerous studies based on the
Susceptible-Infected-Recovered (SIR) and SEIR models have studied the spread of COVID-19
from an epidemiological perspective. Please see References [21, 112, 161, 178, 187, 191, 223] for
more information.

5.3 Social Control

When COVID-19 appeared, most countries in the world adopted different forms of social control,
social alienation, school closures, and blockade measures to prevent the spread of the epidemic
[195]. AI technologies have been widely used in epidemic control and social management, includ-
ing individual temperature detection, video tracking, contact tracking, intelligent robots, and so
on. Many countries have used smart devices equipped with Al to detect suspicious persons in pub-
lic transportation places, such as airports and train stations. For example, infrared cameras are
used to scan high temperatures in a crowd, and different AI methods perform efficient analysis
to detect whether an individual is wearing a mask in real time. In addition, DL-based video track-
ing technology was used to detect and track suspicious COVID-19 patients in public places [28].
Moreover, at the entrances and exits of cities, the identity information of each passing person was
collected. Then, Al-based systems are used to efficiently query the travel history and trajectory
of each passing individual to check whether they are from areas seriously affected by COVID-19
[31, 189].

Al technology is also used for contact tracking of patients with COVID-19 [91]. For each pa-
tient with confirmed COVID-19, personal data (such as mobile phone positioning data, consump-
tion records, and travel records) can be integrated to identify potential transmission trajectories
[50]. In addition, when people are in a state of social isolation, mobile phone positioning and
Al frameworks can assist the government better understand the status of individuals [158]. In-
telligent robots are used to perform on-site disinfection and product transfer, and mobile phone
positioning functions are used to detect and track the distribution and flow of personnel. During
the COVID-19 pandemic, Bluetooth technology was used in contact tracing APPs and deployed in
many countries [72]. Moreover, various countries/regions such as China, Canada, Singapore, Aus-
tralia, France, Germany, and the United Kingdom, have deployed different contact tracing systems
to effectively track public contacts and locate persons suspected of COVID-19 [97]. For example,
in China, a system of QR code was used to track the infected or potentially infected people [100].
The Canadian government has published several Apps for COVID-19 contact tracing, such as the
COVID Alert App, Canada COVID-19 self-assessment tool, and ArriveCAN [22]. In Singapore, a
real-time locating system (TraceTogether App) was developed to track public contacts during the
COVID-19 pandemic [68].
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Another group of studies focuses on the impact of various social control strategies on the spread
of COVID-19. In Reference [64], Hellewell et al. proposed a random propagation model to ana-
lyze the success rate of different social control approaches to prevent the spread of COVID-19.
By quantifying parameters such as contact tracking and quarantined cases, the model analyzes
the maximum number of cases tracked every week and measures the feasibility of public health
work. In Reference [96], Kissler et al. established a mathematical model to assess the impact of
interventions on the prevalence of COVID-19 in the United States, and recommended the use of
intermittent grooming measures to maintain effective control of COVID-19. Koo et al. [99] ap-
plied the population and personal behavior data of Singapore to the influenza epidemic simulation
model and assessed different social isolation strategies for the dynamic transmission of COVID-19.
Similarly, Chang et al. [25] constructed a simulation model to evaluate the propagation and control
of COVID-19 in Australia. The model analyzes the propagation characteristics of COVID-19 and
the impact of different control strategies on the propagation results.

6 DATA AND RESOURCES

The implementation and performance improvement of Al greatly depends on a large-scale avail-
able data and resources. Therefore, we compiled available public resources that can be used for
COVID-19 disease diagnosis, virology research, drug and vaccine development, and epidemic and
transmission prediction. Three types of data and resources are summarized, including medical im-
ages, biological data, and informatics resources. Due to space limitation, the detailed description
of data and resources is provided in the supplementary file.

7 CHALLENGES AND FUTURE DIRECTIONS

Although AI technologies have been used in fighting against COVID-19 and many studies have
been published, we note that the application and contribution of Al in this work is still relatively
limited. We summarize the main challenges currently faced by Al against COVID-19 and provide
the corresponding suggestions.

7.1 Challenges
At present, the application of Al in COVID-19 research mainly faces five challenges:

e Lack of available large-scale training data. Most Al methods rely on large-scale annotated
training data, including medical images and various biological data. However, due to the
rapid outbreak of COVID-19, there is insufficient data available for Al In addition, annotat-
ing training samples is very time-consuming and requires professional medical personnel.

e Data imbalance between positive and negative samples. There is a serious proportional im-
balance between positive COVID-19 samples and negative samples (data resources without
COVID-19). For data sets of medical images, biology samples, and cough sounds, negative
samples are relatively easy to obtain from historical publications. However, there are lim-
ited positive COVID-19 samples can be collected, which further affects the accuracy and
robustness of Al algorithms in COVID-19 diagnosis.

e Massive noisy data and rumors. Relying on the developed mobile Internet and social media,
massive noise information and fake news about COVID-19 have been published on vari-
ous online media without rigorous review. However, Al algorithms seem to be powerless
in judging and filtering the noise and erroneous data. This problem limits the accuracy and
application of Al algorithms, especially in epidemic prediction and transmission analysis.

e Limited knowledge in the intersection of computer science and medicine. Many Al scien-
tists are from computer science, but the application of Al in the COVID-19 battle requires
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in-depth cooperation in computer science, medical imaging, bioinformatics, virology, and
many other disciplines. Therefore, it is crucial to coordinate the cooperative work of
researchers from different fields and integrate the knowledge of multiple subjects to jointly
respond to COVID-19.

e Data privacy and human rights protection. In the era of big data and Al the cost of obtaining
personal privacy data is very low. Faced with public health issues such as COVID-19, many
governments hope to obtain various types of personal information, including mobile phone
positioning data, personal travel trajectory data, and patient disease data. How to effectively
protect personal privacy and human rights during information acquisition and Al-based
processing is an issue worthy of discussion and attention.

7.2 Future Directions

In addition to the applications investigated in this survey, Al can also contribute to the COVID-19
battle from the following 11 potential directions:

(1) Non-contact disease detection. In CXR and CT image detection, the use of non-contact au-
tomatic image acquisition can effectively avoid the risk of infection between radiologists
and patients during the COVID-19 pandemic. Al can be used for patient posture positioning,
standard section acquisition of CXR and CT images, and movement of camera equipment.

(2) Few-shot learning and transfer learning. Focusing on the serious imbalance between the
positive COVID-19 samples and negative samples, few-shot Learning, meta-learning, and
transfer learning have the potential to be further applied in COVID-19 research [37, 128].
After learning a large amount of data in a certain category, few-shot Learning algorithms
can quickly detect a new category and obtain high accuracy by learning only a small number
of samples. Transfer learning relaxes the assumption that training data must be independent
and identically distributed (i.i.d) with test data, and effectively solve the problem of insuffi-
cient training data and imbalanced sample categories.

(3) Remote video diagnosis. Al and NLP technologies can be used to develop remote video di-
agnosis systems and chat robot systems, and provide the public with COVID-19 disease
consultation and preliminary diagnosis.

(4) Patient prognosis management. In addition to long-term tracking and management of pa-
tients with COVID-19, Al technology (such as intelligent image and video analysis) can also
be used to automatically monitor patient behavior during follow-up monitoring and prog-
nostic management.

(5) Biological research. In the field of biological research, Al can be used to discover the protein
structures and features of viruses by accurately analyzing biomedical information, such as
large-scale protein structures, gene sequences, and viral trajectories.

(6) Drug and vaccine development. Al can be used not only to discover potential drugs and vac-
cines but also to simulate the interaction between drugs and proteins and between vaccines
and receptors, thereby predicting the potential responses of patients with COVID-19 with
different constitutions to drugs and vaccines.

(7) Identification and filtering of fake news. Al can be used to reduce and eliminate fake news
and noise data on online social media platforms to provide reliable, correct, and scientific
information about the COVID-19 pandemic.

(8) Impact simulation and evaluation. Various simulation models can use Al to analyze the im-
pact of different social control strategies on disease transmission. Then, they can be used to
explore more effective and scientific disease prevention and social control methods.
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(9) Patient contact tracking. By constructing social relationship networks and knowledge
graphs, Al can identify and track the trajectories of people in close contact with patients
with COVID-19, to accurately predict and control the potential spread of the disease.

(10) Intelligent robots. Intelligent robots are expected to be used in applications such as disinfec-
tion and cleaning in public places, product distribution, and patient care.

(11) Intelligent Internet of Things. Al is expected to be combined with the Internet of Things to
be deployed in customs, airports, railway stations, bus stations, and business centers. In this
case, we can quickly identify suspicious COVID-19 virus and patients through intelligent
monitoring of the environment and personnel.

8 CONCLUSIONS

In this survey, we investigated the main scope and contributions of Al in combating COVID-19.
Compared with the pandemic of SARS-CoV in 2003 and MERS-CoV in 2012, Al technologies have
been successfully applied to almost every corner of the COVID-19 battle. The application of Al
in COVID-19 research can be summarized in four aspects, such as disease detection and diagno-
sis, virological research, drug and vaccine development, and epidemic and transmission prediction.
Among them, medical image analysis, drug discovery, and epidemic prediction are the main bat-
tlefields of AI against COVID-19. We also summarized the currently available data and resources
for Al-based COVID-19 research, including medical imaging data, biological data, and informatics
resources. Finally, we highlighted the main challenges and potential directions in this field. This
survey provides medical and Al researchers with a comprehensive view of the current and poten-
tial contributions of Al in combating COVID-19, with the goal of inspiring them to continue to
maximize the advantages of Al and big data to combat this pandemic.
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