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ABSTRACT Optical motion capture (MOCAP) is a commonly used technology to record the motion of
non-rigid objects with high accuracy in 3D space. However, the MOCAP data has to be processed further
before it can be used. The scattered reconstructed motion data must constitute a human configuration by
labelling process according to the predefined template, and the missing markers have to be reconstructed
to produce a stable motion trajectory. In this work, we propose a novel labelling method for motion
sequences. First, a novel graph matching method is employed to determine the connection relationship
of the scattered motion data for a single frame. Then, Kalman filtering is used for tracking in the motion
sequence. As for the challenge coming from missing markers, we propose a new motion data preprocessing
method considering the bone length constraint, which represents the information of variation in the relative
position of adjacent markers. The processed motion data is input into a Long-Short Term Memory (LSTM)
model to recover the missing markers and de-noise the motion data. The experiment conducted on our own
dataset proves that our labelling method achieves a similar effect to Cortex, which is a commonly used
commercial motion data analysis software. The experiment on CMU dataset demonstrates that our missing
marker reconstruction method can achieve an art-of-state result. The labelling code will be pulished on
https://github.com/Lijianfang6930/Graph-Matching-for-Marker-Labelling

INDEX TERMS Data preprocessing, graph matching, LSTM, MOCAP data.

I. INTRODUCTION
Motion capture is a technique which transforms human
motion in the real world into a digital representation. Yet
many scenarios have to take advantage of the digital repre-
sentation of human motion, like movie special effects [1],
animation production [2], kinematic analysis [3], etc. With
the rapid development of computer vision technology [4]–[6],
marker-based optical motion capture (MOCAP) is playing an
increasingly important role, and several commercial devices
show their reliability to capture human motion, like Motion
Analysis and Vicon. While capturing the human motion,
markers attached on the human body are recorded as 3D
points in a real-world coordinate system for each timestamp
and stored as digital representation [7]. So far, the motion
data in each frame is scattered and our-of-order, each recon-
strcuted marker must be assigned to the predefined location
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on the human body [8], meaning labelling marker trajectory.
Only after accurately and efficiently labelling the marker
trajectory, can the captured motion data be useful. Manual
labelling is a time-consuming, susceptible and mistakable
operation for users. Meanwhile, labelling would become
much more difficult if some markers are failed to be recon-
structed, the phenomenon is caused mainly by self-occlusion
and failure marker detection [9], [10].Missingmarkers would
lead to discrete 3D motion trajectories, sometimes it will
cause adjacent points to disappear for a while, that would
break the related information of spatial domain and time
domain [11].

Commercial processing software has provided a labelling
solution to reduce manual labour, they build a template by
manual initialization, then the subsequent motion trajectories
learn the inner geometry structure of motion data from the
predefined template. Nonetheless, the working mechanism
of commercial software is unaccessible, and too many miss-
ing markers often give rise to failing tracking [12]–[14],
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so missing marker reconstruction would bring about a better
labelling result. Most tradition methods deal with the issue
by the means of graph theory [15], [16]. Some methods
employed interpolation algorithm to fill in the blanks of
missing markers, however, these methods worked only in the
condition of small-scale missing markers [17], and got poor
performance once the markers continuously miss. Later a
more logical thought that using the statistical model to corre-
late markers and dynamics across time was proposed, but the
strategy was still challenging to infer long timemissingmark-
ers. Under the modern view of data-driven model [18]–[21],
Mall et al. [21] novelty proposed two neural-network-based
architectures to model more complicated spatial and tem-
poral correlation, their research achieved state-of-the-art
result, however, they did not consider bone length constraint,
which has been proven to be an important characteristic for
the human skeleton in many types of research [22]. It is
very important to keep constant bone length when MOCAP
data is edited, otherwise, the created human model will be
distorted.

In our previous researches, we have presented an
open-source of multi-view calibration and 3D point recon-
struction method for motion capture system [12]. Here we
are proposing an automatical trajectory labelling method
and missing marker reconstruction method. The proposed
methodology produces a continuous stream of accurate
labelled 3D motion data, and recovers the missing markers
which disapears for an extended period time.We first propose
a novel graph match algorithm to label each marker trajectory
with the help of manual initialization. Instead of using origi-
nal 3D coordinates as human pose representation [18], a data
preprocessing method is proposed to include the informa-
tion of variation in the relative position of adjacent markers.
We train a Long-Short Term Memory(LSTM) model using
the new representation of motion data with bone constraint.
During the test, the pre-trained model maps the corrupted
pose to the true one. Our main contributions are summarized
as follows:

1. A novel trajectory labellingmethod is proposed.We pro-
pose a graph retrieval method to match the predefined tem-
plate of the human body for a single frame, then Kalman
filtering is employed as a tracking strategy for motion
sequences. The method can obtain similar results compared
to commercial motion analysis software.

2. We propose a data preprocessing method to generate a
new representation of motion capture data with bone length
constraint, which contains the information of variation in
the relative position of adjacent markers. We set the pro-
cessed motion data as the input of Long-Short Term Memory
to model complicated spatial and temporal correlation for
human motion. The experimental result shows the effectivity
of our new motion data representation.

II. RELATED WORK
In the last two decades, Many types of research have made
great progress for trajectory labelling and missing marker

reconstruction, here we present a brief review of the related
works.

A. MISSING MARKER RECONSTRUCTION
There are multiple kinds of motion capture installation to
produce 3D human pose, unfortunately, almost all existing
motion capture system must face the cruel truth that some
missing markers are unavoidable. Recently many researches
provide methods for missing marker reconstruction.

Preliminary occlusion filling related methods employed
interpolation to smooth 3D human motion trajectory
sequence, linear interpolation and splines reacted for
short-time occlusions or occasional missing markers. But the
interpolation was under-performing while the markers dis-
appeared for a long time [23]. Then skeleton-based methods
sprung up, these methods [16], [24], [25] employed human
skeleton models to represent joint characteristics according
to kinematics, and the human structures were repaired from
the obtainedmotion data. Skeleton basedmethods run into the
same difficulty that only worked well for a short segment of
occlusions. Later, with the emergence of machine learning,
many researchers combined machine learning approaches
and dynamical systems. Some researchers directly recon-
structed missing marker from linear models [26]–[28]. They
usually combined PCA and Kalman smoothing together
and operated models in a lower-dimensional space. Other
researches [22], [29], [30], [31] introduced a chain of latent
parameters to model human motion, thus a nonlinear map
could be built from the latent space to the observed motion
data, missing markers could be reconstructed by expectation
maximum (EM) algorithm. These researches increased the
accuracy of long-time missing marker reconstruction, but
strong prior assumptions were imposed on these methods,
leading to poor robust of irregular and complex motion.
Further research is still required before the final goal of
producing stable human motion. The limitation of previous
works pushed researchers to look for new solutions, that
is a neural network approach, which has a powerful abil-
ity to model non-linear mapping. Feng et al. [17] firstly
introduced LSTM to handle missing marker reconstruction.
Then, Holden [32] trained a deep neural network to transform
corrupting human pose to the unbroken one. Mall et al. [21]
improved the above two methods and proposed two much
simpler neural network architectureswith higher computation
speed. Current deep-learning-based methods can achieve art-
of-state accuracy for missing marker reconstruction, but they
resolved the tasks of labelling andmissingmarker reconstruc-
tion independently, as a matter of fact, the two interact with
each other. In conclusion, drawing bone length constraint into
consideration will be beneficial to labelling while recovering
missing markers.

B. LABELLING MAKER TRAJECTORY
A typical motion capture labelling process is composed of
the initialization step and tracking step. There are lots of
researches focused on labelling human motion trajectory.
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The most common treatment is to estimate potential human
skeleton structure according to the predefined human body.
Ringer and Lasenby [33] took the association of segments
of the human configures into consideration, this method
reacted on tracking markers. Yu et al. [34] pre-encoded the
rigid structure information into motion models, the approach
could automatically label markers on multiple targets frame
by frame. In many applications, most researchers [35]–[37]
either built a standard human skeleton, which was easy to
automatically label or utilized joints limits, which deter-
mined by human configuration. Meyer et al. [38] used
T-pose-based initialization instead of manual initialization,
they realized fully automatic labelling process, however, their
method could only label the whole human skeleton struc-
ture, the method could not label specific part of the human
configuration. Xia et al. [14] took advantage of Hungarian
to optimize the soft graph matching problem, the method
realized real-time marker labelling. The latest researches
revealed that the data-driven methods also contributed to
labelling. Kim [39] proposed a BRNN network with attention
mechanism, which is also a deep-learning. Pavlo et al. [40]
proposed deep-learning-based finger animationmodel, which
was a two-stage pipeline based on deep neural network to
reconstruct missing marker and repair joints deformation.
Ghorbani et al. [8] designed a differentiable permutation
learning model for automatic marker labelling, they uti-
lized temporal consistency as a postprocessing method. The
data-driven model could achieve impressive labelling results
while training data and test data were from the same domain,
but the adaptive capacity of the data-driven model needed
further study.

As a kind of data-driven model, the deep-learning-based
methods can achieve a high degree of automation and accu-
racy in the process of labelling, the deep-learning-based
methods are the development tendency. But the perfor-
mance of current deep-learning-based methods for labelling
extremely dependent on the training data, that limits
their application in real world. By contrast, graph match-
ing methods need the process of manual initialization.
However, graph matching methods are not restricted
by data domain, and can realize real-time and online
labelling. In general, graph matching methods are more
suitable in practical application under current technical
framework.

III. METHOD OVERVIEW
Our purpose is to build a skeletal configuration which is
consisted of the capturedmarkers attached on the human body
and obtain continuous motion trajectory of the configura-
tion for motion sequences. In this section, we first propose
a labelling method to confirm the associated markers and
generate configuration automatically according to a prede-
fined template. In order to recover the failure reconstruction
markers and denoise the motion data, inspired by the work
of [18], we propose a data pre-processingmethod to introduce
the bone constraint into the input of LSTMmodel, so that the

FIGURE 1. The process of marker labelling.

input can represent the variation in the relative position of
adjacent markers.

A. TRAJECTORY LABELLING BASED ON GRAPH
MATCHING
After obtaining motion data, the markers attained on the
captured object are connected by the manual operation to
general a graph template. During motion capture, the scat-
tered markers need to link to each other, and form a human
configuration according to the predefined template, as shown
in Fig. 1. Given a predefined template gragh and a set of
scattered points, the labelling problem can be solved as a
problem whether there is a subgraph, which is composed of
scattered point sets, similar to the template graph. Our trajec-
tory labelling algorithm is based on graph matching, as show
in Algorithm 1, and the tracking strategy is based on Kalman
filtering. The first stage is data preparation, the real-time
edges and points are grouped according to the range of the
predefined template. Then template edges and points are fur-
ther traversed to find thematching real-time edges and points.
Finally, consecutive frames of MOCAP data are labelled by
Kalman filtering based tracking strategy. The whole process
is shown in Fig. 2.

1) PREPROCESSING SCATTERED POINTS
The predefined template, which is the connection graph of
markers on the captured object, is saved as a template in
advance. The template provides the information of the total
number of reconstructed points, the name and the serial num-
ber of each point, the total number of template graph edges,
the minimum length of graph edges, the maximum length of
graph edges, scalable range of each template graph edge, and
the serial number of endpoints connected by each graph edge.
In the following description, the points in the template are
referred to as template points, and the edges in the template
are referred to as template edges. The template determines the
degree of variability in the human skeletal structure, larger
scalable range of template edges indicates richer changes in
human skeletal structure. During motion capture, the recon-
structed markers in MOCAP data are called real-time points,
the connectted lines between real-time points are called
real-time edges. The real-time points are numbered according
to the sequence of marker reconstruction, the real-time edges
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FIGURE 2. The process of marker labelling.

Algorithm 1 The Marker Labeling Process Based on Gragh
Matching
Input: Template structure, real-time points.
Output: Subgraph similar to the template structure.

// Preparation work before matching template //
1: while i <= m do
2: Filter alternative real-time edges for each template

edge according to the length.
3: end while
4: for i = 1:n do
5: Filter alternative real-time points for the template

point.
6: end for
7: while i <= m do
8: Update alternative real-time edges for each template

edge.
9: end while
//Match the template edge according to the serial num-
ber from small to large //

10: Select the template point with the smallest number as the
starting point, and calculate the real-time point number
matching to the first template point.

11: Calculate the serial number of real-time points matching
to the subsequent template points in turn according to the
specific order of the template edges.

TABLE 1. The list of real-time edges with 46 real-time points.

include all line connecting each pair of real-time points,
the total number of real-time edges is C2

n. In the following
description, we illustrate the labelling method with an exam-
ple. The total number of real-time points is 46, the total num-
ber of real-time edges is C2

46 = 1035, as shown in Table 1,
where Marker1 and Marker2 are the two endpoints of the
real-time edge.

First, all real-time edges are sorted from small to large
according to the length. In this example, there are 5 template
points, these template edges are sorted in a particular order,

TABLE 2. The particular order of the template edges, Marker1 and
Marker2 are the two endpoints of the template edge.

FIGURE 3. Storage form of template points.

FIGURE 4. Storage form of template edges.

and their connection relationship is shown in Table 2. The
serial number of Marker1 is larger than that of Marker2,
and Marker1 is numbered from small to large. The arrange-
ment can improve computational efficiency and avoid repet-
itive searching. Fig. 3 and Fig. 4 show the storage form of
template points and template edges, respectively. The set
of template points, which is sorted, is denoted as Pt

=

{Pt1,P
t
2, · · · ,P

t
i , · · · ,P

t
n}, n is total number of template

points. The set of corresponding template edges is denoted
as Et

= {E t1,E
t
2, · · · ,E

t
u, · · · ,E

t
m}, m is total number of

template edges. The set of sorted real-time points is denoted
as Pr

= {Pr1,P
r
2, · · · ,P

r
j , · · · ,P

r
p}, p is total number of

real-time points. The set of real-time edges is denoted asEr
=

{Er1 ,E
r
2 , · · · ,E

r
v , · · · ,E

r
q }, q is total number of real-time

edges.

2) GROUPING REAL-TIME EDGES
The real-time edges whose length is within a template
edge length range are grouped together as the alternative
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FIGURE 5. The result representation of all alternative matching real-time
edges for E t

1.

TABLE 3. The template edges sharing the same template point Pt
1.

TABLE 4. Partial alternative matching real-time edges in Gp
1 .

matching edges of the template edge, denoted as Ge
=

{Ge
1,G

e
2, · · ·,G

e
u, · · ·,G

e
m}. A real-time edge can correspond

to multiple template edges at the same time. Here we explain
our grouping algorithm in detail though the above example.

The length of Er1 is 3.38, it is not within the range of the E
t
1,

thus Er1 is not the alternative matching edge of E t1, so we need
to try the next template edge Er2 , whose length is 36.37, it is
within the length range of the first template edge, so we chose
Er2 as an alternative matching edge for E t1, and added E

r
2 into

Ge
1. Then we keep on traversing the rest of real-time edges

until all alternative matching real-time edges of E t1 are found,
the result is shown in Fig. 5. Repeating the above operation,
and we can finally get all the alternative matching edges
for Ge.

3) GROUPING REAL-TIME POINTS
In this stage, real-time points are grouped as alternative
matching points of template points, denoted as Gp

=

{Gp
1,G

p
2, · · ·,G

p
i , · · ·,G

p
n}. Once a real-time pointPrj is deter-

mined matching to template point Pti successfully, then the
corresponding alternative matching real-time edges Ge

u of
E tu whose endpoints include Pti must share more than one
real-time point, these shared real-time points are chosen as the
alternative matching points of template point Pti , and added
into Gp

i . For example, template edges with the endpoint of
template point Pt1 are E

t
1, E

t
2 and E

t
5, as shown in Table 3. The

alternative matching real-time edges of these three template
edges are shown in Table 4, Table 5 and Table 6, respectively.

Here for the sake of simplicity, we only present limited
alternative matching real-time edges for E t1, E

t
2 and E t5. The

real-time edges matching to these three template edges must

TABLE 5. Partial alternative matching real-time edges in Gp
2 .

TABLE 6. Partial alternative matching real-time edges in Gp
5 .

TABLE 7. The definition of E t
1.

FIGURE 6. Points in the circle are the endpoints of alternative real-time
edges of E t

1, E t
2 and E t

5, only Pr
3 is shared by all the alternative real-time

edges of E t
1, E t

2 and E t
5.

share at least one common point, and these shared points are
chosen as the alternative matching points of Pt1, and are added
into Gp

1 . From Fig 6, we can see that only real-time point
Pr3 is shared by Ge

1, G
e
2, G

e
5 (In practice, Pr19 and Pr43 are

the alternative real-time points of Pt1 too), meaning that only
real-time point Pr3 is included in Gp

1 . As shown in Table 4,
only Er122 contains Pr3, so P

r
32, as another endpoint of E

r
122,

is the alternative real-time point of Pt2, which is another
endpoint of E t1. By repeating the above operation, Gp can be
obtained, the results are shown in Table 8.

4) REFINING Ge

After determining the alternative real-time pointsGp for each
template point, Ge can be refined according to Gp. In the
above example, the information ofE t1 is shown in Table 7. The
two endpoints of E t1 are P

t
1 and P

t
2. The alternative matching

points of all template points are shown in Table 8. We can
see that the alternative matching real-time points of Pt1 are
Pr3, P

r
19, and P

r
43, the alternative matching real-time points of

Pt2 are P
r
15, P

r
16, and P

r
32. The alternative matching real-time

edges of E t1 must include the alternative matching real-time
points of Pt1 and P

t
2 at the same time. According to initialGe

1,
which is shown in Table 9, we can see that only Er112 satisfies
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TABLE 8. Real-time points in Gp.

TABLE 9. The alternative matching real-time edges in initial Ge
1.

Marker1 and Marker2 are endpoints of the real-time edge. Distance is the
length of the real-time edge.

the above requirement, Er112 is remain in Ge
1, other edges are

deleted. The finall refined Ge is shown in Table 10.

5) MATCHING TEMPLATE EDGES ONE BY ONE
If the labelling objects are rigid, then the inner structures of
the objects is fixed, the above grouping algorithm are suf-
ficient to confirm the matching relationship between points
and edges. However, for non-rigid targets, their structures are
often flexible and variable, therefore multiple real-time edges
frequently match to the same template edge. In order to solve
this problem, the variable range of template edges should
be appropriate, and all the alternative matching edges have
to be traversed. Only all real-time edges are matched to the
correct template edges, is the frame of motion data labelled
successfully.

The basic idea of traversal is to search all matching cases
of template points and alternative points according to ordered
template edges. If there are multiple alternative real-time
points in Gp

i for template point Pti , then a real-time point
is randomly selected from Gp

i as the matching point of Pti ,
the rest alternative real-time points together with the previ-
ously matched points are stored in the stacks. If the subse-
quent matching process fails, a real-time point is extracted

TABLE 10. The alternative matching real-time edges in Ge. Marker1 and
Marker2 are endpoints of the real-time edge. Distance is the length of the
real-time edge.

from the top of the stack, and a new round of the matching
process is started.

The traversal process starts with E t1, the real-time points
matching to Marker1 and Marker2 of the current template
edge are calculated in turn, the flow chart is shown as
Fig. 7. First, the matching points of Marker2 is determined
by initialization. One of the alternative real-time points of
Marker2(Pt1) is chosen as the matching point, and the other
alternative real-time points are stored in the stack. From
Table 8 we can see that the alternative real-time points of
Marker2 are Pr3, P

r
19 and P

r
43. If P

r
43 is chosen as the matching

real-time point of Marker2, it is not the endpoints of any of
the alternative real-time edge of E t1 in Ge

1, thus P
r
43 cannot

be the matching real-time point of Marker2, neither is Pr19.
In this condition, the algorithm returns back to choose Pr3 as
the matching real-time point of Marker2, Pr3 is the endpoint
of the alternative real-time edge of E t1 in Ge

1, and it is also
within Gp

2 , which is alternative real-time points of Marker1.
At this point, the matching process of Et

1 is ended. Then the
algorithm continues to find the matching real-time edges of
the rest template edges until all template edges are matched
successfully, then the predefined template is considered to be
labelled successfully.

6) TRACKING STRATEGY
After labelling the markers of the current frame, the matching
relationship of each real-time point and template point in
each view is recorded. Tracking strategy is used to label
the continuous trajectory in the motion sequence. The most
commonly used Kalman filtering is employed for tracking
in our method. When matching the feature points of the first
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FIGURE 7. The flow chart of searching the alternative real-time edges of
one template edge.

frame to the second frame, the velocity and acceleration of the
filter are 0, so the predicted position of the feature points of
the second frame will coincide with that of the first frame.
To address this problem, The method proposed in [41] is
utilized to determine the trajectory of each marker in the
first three frames. From the fourth frame on, the markers are
tracked by Kalman filter, and all the markers are matched to
the template points according to the previous frame. Once the
tracking object is missing, then we employ the above graph
matching method to reconstruct the predefined template.

B. MISSING MARKER RECONSTRUCTION WITH BONE
CONSTRAINT BY LSTM
Recent researches have proven that deep neural network can
achieve art-of-state to denoise motion data and cover missing
markers, they are able to model more suitable spatial and
temporal correlations of human motion. In these methods,
missing marker reconstruction is resolved as a separate task.
However, in practical application, the motion of markers is
enslaved to the bone constraint. Inspired by the thought,
we propose a data pre-processing operation to introduce bone
constraint into original motion data. The processed motion
data represents the variation in the relative position of adja-
cent markers. In the training phase, the LSTM model is
trained with the input of the procedural motion sequence,

the trained model has the characteristic that human bones
remain unchanged with time.

1) STANDARDIZING DATA
The motion capture data of human body records the spatial
position and motion trajectory information of markers. Gen-
erally, motion capture data is directly represented as the form
of three-dimensional coordinates of the markers in a world
coordinate system. The motion data is stored with translation
and rotation information of each marker, the rotation infor-
mation is represented by Euler angles. The representation of
MOCAP data in the world coordinate system can be decoded
from AMC and ASF files, such representation of MOCAP
data by coordinate is complex and changeable in the world
coordinate system even for similar movement. Feng et al. pro-
posed a method to standardize MOCAP data [42], [43], their
method translated the coordinates of the markers into local
coordinates relative to the root by translation and rotation.
This kind of standardization reflects the similarity of motion
data better, but only benefits to coordinate recover, and still
does not take the bone constraint into account. Different
from the researches of Feng et al., in this paper, the 3D
coordinates of each marker in the world coordinate system
are transformed into the 3D local coordinates, which indicates
the coordinate difference between adjacent markers.

The relative distance between two markers on the same
bone represents the length of the bone. However, different
people are likely to have different bone lengths, leading
to a large difference in the standardized coordinates even
generated by the same motion path and mode. Therefore,
we should first standardize the bone length of the motion
sequence. Human configuration can be divided into multiple
bone chain. Supposing that there is a bone chain consisted
of multiple joints, denoted as Ci

= {Pi
1,P

i
2, · · ·,P

i
n}, i is the

serial number of bone chain, n is the total number of joints in
the bone chain. The standardization process of bone length is
shown in Algorithm 2,

ysk = 1yk−1 +
yik − y

i
k−1∥∥yik − yik−1∥∥2 Lk,k−1, (1)

1yk = ysk − y
i
k , (2)

Y ik is the initial coordinates of point Pik , which is the
child node of Pik−1. Lk,k−1 is the bone length between the
joints of Pi

k and Pi
k−1. Y

s
k is the standardized coordinates

of point Pik . The standardized MOCAP data is denoted as
F = {F1,F2, · · ·,FN}, N is total number of frames. The
jth frame standardized MOCAP data is denoted as Fj =

[xj1, yj1, zj1, xj2, yj2, zj2, · · ·, xjn, yjn, zjn]. xjm, yjm and zjm is
the X-axis, Y-axis and Z-axis coordinates of mth joints of jth
frame, respectively.

At this point, F still represents the MOCAP data in the
world coordinate system, our purpose is to transform the
coordinates into local coordinate system. An elementary
transformation matrix is defined according to the hierarchy
of joints. F1 = E × F denotes the difference in coordinates
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Algorithm 2 The Standardization Process of Bone Length

Input: Yi /I Y i is the set of the initial coordinates of
points in Ci I/

Output: Ys /I Y s is the set of the standardized coordi-
nates of points in Ci I/

1: 1y1 = 0, ys1 = yi1 /I ys1 is the standardized
coordinate of Pi

1, y
i
1 is the initial coordinate of Pi

1, 1y1
will be explained in the following part I/

2: for k = 2 : n do
3: Calculate ysk according to Eq. (1)
4: Calculate 1yk according to Eq. (2)
5: end for

between the markers connected by the same bone throughout
the motion sequence. For example, if points Pi1, P

i
2 and Pi3

are located on the same bone, then F1j can be denoted as
F1j = [xj1, yj1, zj1, xj2−xj1, yj2−yj1, zj2−zj1, xj3−xj2, yj3−
yj2, zj3 − zj2]T . The transformed coordinates represent the
difference of adjacent markers located on the same bone,
and it reflects the relative positions of each marker. To take
advantage of the bone constraint, the motion data need to be
processed by Eq. (3) further,

F2 = sign(F1� F1), (3)

� represents Hadamard product, Eq. (3) can calculate the
square of every element of F1. At the same time, symbolic
information is retained to eliminate the ambiguity of rela-
tive position brought by square. The symbol for the missing
markers in F1 can inherit from the corresponding point of the
adjacent frame. Given that the bone length does not change,
the sum of the absolute values of the three coordinates of the
same point in F2 is a constant, as shown in Eq. (4),

Ta × F2b = Ta × F2c = L, (4)

L is the bone length matrix, which is consisted of a bone
length of the bone chain. Ta is the transformation matrix,
which is used to compute the sum of the absolute values
of the three coordinates of the same point in F2. The bone
length invariance ofMOCAP data can be kept by maintaining
this constraint during missing marker reconstruction. F2b
and F2c are any two frames of MOCAP data in F2. F2 is
the MOCAP data after standardization with bone constraint,
the standardized processing reduces the variability of similar
motion data. Meanwhile, the whole process is reversible,
as shown in Eq. (5),

F = E−1{sign(F1)�
√
sign(F1) ∗ F2}, (5)

To show that the above process does not destroy the corre-
lation of motion sequence, the singular value spectrum dia-
gram of the original motion sequence X and the transformed
motion sequence F2 are shown in Fig. 8. The curve of F2
and X approach 0 at the same speed, or even F2 approaches
0 first, indicating that the transformed motion sequence F2
has a lower rank and its data correlation is not reduced or
even higher than the original data.

FIGURE 8. The singular value spectrum diagram of original motion
sequence X and the transformed motion sequence F2.

2) TRAINING LSTM MODEL WITH TRANSFORMED MOTION
SEQUENCE
Missing marker reconstruction can be regarded as mapping
motion sequence with missing points to a complete motion
sequence, Long-Short Term Memory (LSTM) has shown the
powerful effect for sequence-to-sequence mapping [18]. Our
network is enlightened by [18]. Motion data with missing
marker is derived from complete original complete motion
data, details will be explained in Section 4. Supposing that x
is the true pose, and x̄ is the corrupted pose. x̄ can be mapped
to x by Eq. (6).

x ≈ C−1(x̄), (6)

C is the mappint from x̄ to x, we use LSTMmodel as function
approximation. While training the LSTM model, Gaussian
additive noise is also added into the corrupted pose as Eq. (7),

x̄t = Mt (x̄ +N (0, σ (X ) ∗ α)), (7)

σ (X ) is the standard deviation of training dataset, α is a coef-
ficient of proportionality, it is set as the value of 0.3 [18]. The
input of LSTM model is the standardized motion data with
bone constraint, which represents the relative position change
of the adjacent marker points, the output of LSTM is trans-
formed to the original coordinate representation of markers
by Eq. (5). Though this way, the trained LSTM model can
not only mine the correlation between successive frames but
alsomaintain the spatial correlation betweenmarkers in every
frame.

IV. EXPERIMENT AND EVALUATION
In this section, we present the experiment results of labelling
marker trajectory and missing marker reconstruction. The
evaluation of labelling marker trajectory is based on our
motion dataset, while evaluation of missing marker recon-
struction is based on CMU Mocap Dataset.

Our motion dataset was captured by MotionAnalysis,
which included 16 infrared fish-eye cameras. Our motion
dataset contains 21 motion sequences, including 4 motion
sequence with one subject and 17 motion sequence with
2 subjects. Motions sequence with one subject has 36, 40,
50, 60 marker points, motion sequence with two subjects
has 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,170, 180
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FIGURE 9. Real motion capture scene and its corresponding MOCAP data
with 40 markers. (a) presents the marker location on human body in real
capture scene. (b) shows the reconstructed template in the corresponding
motion sequence.

FIGURE 10. Marker position on the subject, the markers in the red circle
is used in our test.

190, 200 marker points, all these motion data are presented
as 3D coordinates in a predefined word coordinate system,
and sampled at the rate of 60Hz. Fig. 9 shows a frame of
real motion capture scene and its corresponding MOCAP
data. The activities in each motion sequence include multiple
common actions, like jumping, walking, running, Tai Chi, and
so on. There are also some interactive activities between the
motion sequences with two people.

To evaluate the effect of our labelling method, we define a
template with 36 points, and then count ratio of the frames
with the successfully reconstructed template in the motion
sequence, we denote the ratio as RF. Fig. 10 shows the
predefined template. As for missing marker reconstruction
error calculation, we use Root Mean Squared Error (RMSE)
over the missing markers.

CMU Mocap Dataset is a big database for motion cap-
ture. In Fig. 10, we show the marker location during motion

TABLE 11. The Key setting of LSTM model.

capture, we can see that there are 41 markers on the sub-
jects. In the experiment, each MOCAP sequence is turned
into the hips-centre coordinate scheme. 3D coordinates of
the joints are generated by translating joint angles from the
BVH file, the source code of 3D coordinate extraction is
provided by the paper [18]. The validation dataset consists of
the 2 motion sequences from pantomime, sports, jumping and
general motion. The test dataset includes motion sequences
of basketball, boxing and jump. The training dataset includes
all the 25 motion sequence folders except for the validation
dataset and the test dataset.

Our labelling method is implemented by MATLAB2017,
themotion data is exported fromCortex software, which is the
professional tools for building skeleton, monitoring motion,
modelling dynamics and camera calibration. The methods
for standardizing motion capture data are implemented by
Python 3.6, the source code provided in [18] is employed
as the implementation code of the LSTM model, whose
setting is shown in Table 11. We conduct our experiment
on RTX2070 GPU, 16GB RAM and Intel i7-8700 CPU
3.19 GHz. The operating system is Ubuntu 16.04.

A. LABELLING EVALUATION
In this part, we will evaluate the proposed marking method
from three aspects based on our MOCAP data. First, we test
different values of the scalable range of template edges.
Then we calculate and analyse the RF value for successfully
identifying the predefined template in the motion sequence
with different markers. At last, we present some successful
labelling examples.

1) THE SCALABLE RANGE OF TEMPLATE EDGES
Theoretically, our labelling method can achieve good results
for rigid bodies, since rigid bodies have constant intrinsic
structure. When the motion capture objects are non-rigid
body, the internal structures dynamically change, thus appro-
priately increasing the value of the scalable range of tem-
plate edges, which is denoted as the threshold in the follow-
ing introduction, can improve the success rate of labelling.
However, the larger threshold will lead to more real-time
points and real-time edges per retrieval, thus the labelling
process will cost more time. In this experiment, we esti-
mate the value of the threshold through experience, we test
different values of the threshold from 2 to 40. We ran-
domly pick 100 frames from each motion sequence of our
dataset, and obtain the average value of RF for very threshold,
the experimental result is shown in Fig. We can see that the
average RF value becomes larger with the increase of the
threshold, while after the value of the threshold reaching to
20, the increase in average RF value starts to be very slow.
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FIGURE 11. The average RF values corresponding to different threshold
values.

FIGURE 12. The structure of the predefined template.

Increasing the threshold further would bring more compu-
tation time but limited improvement, so we set the value of
the of the scalable range of template edges as 20. Our further
test results show that our method can successfully generate
predefined templates in most common human poses.

2) LABELLING RESULT ANALYSIS
This part introduces the overall performance of our method
across motion sequence with a different number of markers
by using a predefined template, as shown in Fig. 12. We con-
duct two experiments, first we test our labelling method on
the motion sequences whose all markers coincide exactly
with the template points, then we proceed our experiment
on the motion sequences with a different number of makers.
We divide the valid motion sequence into three parts. In the
first part, the activity of the subjects in the motion sequence is
changing from a T-pose to a normal walking status. In the sec-
ond part, the subjects walk at normal speed. In the third part,
the subjects do movements with a larger range of motion,
like jumping, ticking, and so on. The difficulty of labelling
increases with the increase in the size of the movement.

For the first experiment, we find that the RF value can reach
100% for the first part motion sequence, 98.5% for the second
part motion sequence, and 93.8% for the third part motion
sequence. In the absence of interference of other points, our
method can construct the template completely for T-pose. RF
decreased by 1.5% as the size of movement becomes bigger,
the result is almost perfect for normal human motion. As for
the hardest part of motion sequence, the third part, the value
of RF can still reach 93.8%, that is an ideal result in practice,
and it achieves the effect similar to that of Cortex through our
observation.

FIGURE 13. The experimental result with the introduction of
interferential markers.

TABLE 12. The value of RF of our method and Cortex on part 2 motion
sequences.

The second experiment introduces the disturbance of other
irrelevant markers, the result is shown in Fig. 13. We can see
that the disturbance markers do not influence the effect of
T-pose labelling, the value of RF reaches 100% on all parts
of the motion sequence. As long as the size of movement
becomes bigger, the performance of our method decreases,
the value of RF drops 14.6% at most on part 2 motion
sequence, and 19.1% at most on part 3 motion sequence.
Meanwhile, the increase of the number of markers also gets
the value of RF down, the value of RF drops 12.6% on part
2 motion sequence, and 12.1% on part 3 motion sequence.
Further observation found that some failure labelling was
due to the failure of marker reconstruction, the actual per-
formance of our method should be better. The experimental
results can still prove the effectivity of our method.

We compare ourmethod to Cortex and test the performance
of our method and Cortex on 5 part 2 motion sequences with
40, 80, 120, 160, and 200 markers, respectively. The results
are shown in Table 12, we can see that ourmethod can achieve
similar result comparing to Cortex software, the average
value of RF is only 1.2% difference.

We present the labelling samples of 10th, 310th, and 610th
frame on motion sequence with 40, 80, 120, and 160 markers,
motion sequence with 40 markers have only one subject,
while the rest motion sequences have two subjects. Although
the reconstructedmarkers in somemotion sequenceswith two
subjects are quite dense, our method can still recognize the
template successfully in both subjects, as shown in Fig. 14,
Fig. 15, Fig. 16 and Fig. 17.We also present a sample of walk-
ing motion sequence for the full-body template in Fig. 18,
the result proves the applicability of our method further.

B. MISSING MARKER RECONSTRUCTION EVALUATION
To prove the effectivity of our data preparation method
on LSTM-based missing marker reconstruction, we chose
12 markers which constitute the bones of the arm and the
calf from CMU dataset, other markers are not included in the
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FIGURE 14. The visualization of labelling results of motion sequence with 40 markers. (a) is the result of 10th frame;(b) is the result of 310th
frame;(c) is the result of 610th frame.

FIGURE 15. The visualization of labelling results of motion sequence with 100 markers. (a) is the result of 10th frame;(b) is the result of 310th
frame;(c) is the result of 610th frame.

FIGURE 16. The visualization of labelling results of motion sequence with 120 markers. (a) is the result of 10th frame;(b) is the result of 310th
frame;(c) is the result of 610th frame.

TABLE 13. Comparison results of RMSE value under the condition of 2 missing markers and 4 missing markers with 0.1 duration gap. The unit of
measurement is centimeter.

evaluation, as shown in Fig. 10. The length of the bone can be
obtained from the CMU dataset. For the test, we delete two
points(a wrist joint and an ankle joint) and four points(two
wrist joint and two ankle joints) in the motion sequence,

respectively, as shown in Fig. 19. The experimental setup
follows an experiment in [18], which is the baseline of
our experiment, the only difference is that we employ the
12 markers which are shown in Fig. 10(a) instead of all
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FIGURE 17. The visualization of labelling results of motion sequence with 160 markers. (a) is the result of 10th frame;(b) is the result of 310th
frame;(c) is the result of 610th frame.

FIGURE 18. The fully template labelling result of a walking motion sequence.

41 markers, and the missing points are specified rather than
random. We repeat the experiment of Taras method [18] with
all 41 markers according to their guidance, Taras method
inputs original motion data into the LSTMmodel without our
motion data preprocessingmethod, andwe only calculates the
RMSE of the specific 12 markers in the test. Besides, a stan-
dard interpolation method is accomplished and tested on the
12 markers motion sequences. The evaluation is divided into
two parts, the first experiment part sets the duration gap
of missing markers as 0.1s. In the second part experiment,
the length of the gap is set as 100 frames, 150 frames,
200 frames, 250 frames and 300 frames, respectively.

Table 13 shows the experimental results of the first part
experiment. We can see that the increase in missing markers
makes RMSE get higher, and declines the performance of
our method. As the missing markers increase from 2 to 4,
the RMSE of the interpolation method goes up by 0.38 on
average, 0.31 for Taras method and for ours. Our method
has the smallest RMSE change as the number of missing
markers increases, the results also show that the stability of
our method is the highest. The interpolation method obtains
the least this is due to the short duration gap. The RMSE value
of our method is 0.36 lower than Taras method for average
with two missing markers, and 1.5 for average with four
markers. Our method can achieve better results as the missing

FIGURE 19. The 12 markers used for markers and their connection. (a) is
the unbroken human skeleton structure; (b) is the human skeleton with a
missing wrist joint and an ankle joint; (c) is the human skeleton with two
missing wrist joints and two ankle joints.

markers increase. The result indicates that the new represen-
tation of themotion sequence generated by our methodmakes
an impact in our experiment.

In the second part experiment, we show the adaptive capac-
ity of our method to the different length of gaps, the experi-
mental results are shown in Fig. 20. The interpolation method
fails to reconstruct the missing markers with a long gap.
Both our method and Taras method have strong adaptability
to the long gap. Moreover, our method shows lower RMSE
than Taras method for each frame gap, and the longer the
gap, the smaller the RMSE of our method. It proves that
our method has stronger adaptability to long gaps in our
experiment, even better even better than Taras method.
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FIGURE 20. The comparison of the average value of RMSE with different
length of gap.

FIGURE 21. Reconstruction result of motion sequences with four missing
markers by our method and Taras method.(a) is the groud-truth, (b) is the
sample with four missing markers, (c) is the missing marker
reconstruction sample by our method, (d) is the missing marker
reconstruction sample by Taras method.

In Fig. 21, we show the visualization results of Taras
method and our method on motion sequences from CMU
dataset. The number of missing markers is four. We can see
that the missing marker reconstruction result of our method
more like the ground-truth rather than the result of Taras
method.

V. CONCLUSION
This study presents a novel trajectory labelling method based
on graph matching and a motion data representation for
missing marker reconstruction. After defining a template
manually whose scalable range of the template edges is set
as 20mm empirically, the predefined graph template is tra-
versed to match the real-time scattered points successfully in
a single frame, and a Kalman filtering based tracking strategy
is employed to track consecutive motion trajectory. Experi-
ments show that our method can label the trajectory of most
common human motion, and achieve similar labelling result
comparing to Cortex software. To reconstruct the missing
markers, we propose a new motion data presentation with
information of variation in the relative position of adjacent
markers. The experiment shows that the new presentation
improves the accuracy and stability of the LSTM model,
which is the art-of-state in missing marker reconstruction.

Since there are lots of traversal search and comparison
operations in our labelling method, in the future, we intend
to optimize the labelling method further. We also plan to
improve the tracking strategy to combine the missing marker
reconstruction method.
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