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A Novel Open-Set Domain Generalization
Approach via Metalearning-Based Dual-Level

Gradient Alignment for Intelligent Fault Diagnosis
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Abstract—The effectiveness of existing domain generalization-
based fault diagnosis (DGFD) methods usually relies on the
assumption that the label space of the source domain (SD) is
consistent with that of the unseen target domain (TD). However,
in actual industrial scenarios, the unknown fault classes that
do not exist in the SDs may appear in the TD, resulting in the
degradation of the diagnosis accuracies of DGFD methods on the
unseen TD. Therefore, a novel open-set domain generalization
(OSDG) approach via metalearning-based dual-level gradient
alignment (MLDGA) for intelligent fault diagnosis (FD) is pro-
posed. First, a metalearning optimization strategy with dual-level
gradient alignment is designed to optimize the gradient update
directions of the interdomain and interclass tasks simultaneously
by gradient matching, so as to ensure that the decision bound-
aries are located in the optimal positions between each fault
class. Second, an entropy-guided dynamic weighting strategy is
designed to improve the discrimination ability and accuracy of
the model in the multiclass fault classification tasks. Finally,
a classification-clustering dual-guided open decision boundary
construction strategy is designed to improve the recognition
capability of unknown fault classes and the adaptability of
the class decision boundaries in fault classification tasks. The
experimental results confirm that the proposed approach can
effectively identify both known and unknown fault classes.

Index Terms—Domain generalization (DG), fault diagnosis
(FD), gradient matching, metalearning, open set.
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I. INTRODUCTION

ROTATING machinery is an important component in mod-
ern industrial productions, and its health states directly or

indirectly affect the normal operation of mechanical systems,
resulting in problems such as safety, production efficiency, and
economic losses [1]. Therefore, the effective fault diagnosis
(FD) is crucial to ensure the safe operation of mechanical
systems and reduce economic losses. The changes of the work-
ing conditions (also known as domains) will cause the fault
data of different domains to have cross-domain distribution
shift, that is, domain shift [2]. Fault classes are usually closely
related to working conditions. In actual industrial scenarios,
some fault classes that have not been seen in the SDs may
appear in the target domain (TD), leading to label shift. The
samples corresponding to these unseen fault classes are called
the missing unknown fault samples or open-set samples in
the SDs. For this FD, it is called open-set FD (OSFD) [3].
The existence of domain and label shifts has brought great
challenges to OSFD, thus a more effective intelligent FD
strategy is needed.

To solve the label shift problem caused by unknown classes
in the TD in FD, researchers have conducted extensive
research on OSFD methods. Presently, most of the exist-
ing OSFD methods are based on feature extraction using
deep learning networks and enhance open-set recognition
performance by incorporating various unknown-class discrim-
ination mechanisms (such as the extreme value theory, data
augmentation, statistical modeling, and trustworthy learning).
For example, Yu et al. [4] proposed an OSFD method by
combining deep learning network and extreme value theory,
realizing the effective recognition of unknown classes in the
TD. Lundgren and Jung [5] developed a data-driven FD
framework for quantitative analysis and open-set classification,
which uses Kullback–Leibler divergence to model fault data
and adopts the open-set classification algorithm to identify
unknown classes. Peng et al. [6] designed an OSFD framework
based on supervised contrastive learning with negative out-
of-distribution data augmentation, effectively improving the
performance of open-set classification. Mei et al. [7] studied a
conditional variational encoder classifier for extracting features
and exploited the empirical threshold and extreme value theory
to effectively separate unknown fault classes. Wei et al. [8]
put forward a trustworthy deep learning-based OSFD method,
which helps the FD model effectively identify unknown fault
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classes by introducing a new evidential abstention classifier.
Although the aforementioned studies on OSFD provide dif-
ferent solutions to the label shift problem, they failed to fully
consider the coupling effect of domain and label shifts. When
facing the complex industrial scenarios where both domain
and label shifts occur, they still have the problem of significant
decline in FD accuracy, which drives researchers to turn to a
new way to deal with domain and label shifts cooperatively.

To solve the problem of decline in diagnosis accuracy when
OSFD methods are adopted to simultaneously handle domain
and label shifts, researchers have turned their attention to
open-set domain adaptation (OSDA) methods. Some OSDA
methods improve the ability of cross-domain distribution
alignment through the adversarial learning to solve the domain
shift problem, and adjust or expand the classifier structure
to identify unknown classes to solve the label shift problem.
For instance, Zhu et al. [9] offered a multiadversarial learning
domain adaption model, effectively solving the OSFD problem
with incomplete SD diagnosis knowledge by controlling the
weights of samples of known and unknown classes during
adversarial training. Su et al. [10] designed a TD slanted
adversarial network, which uses the TD slanted classifier
to build the adaptive threshold for effectively distinguishing
known and unknown faults. Zhang et al. [11] designed an
intrinsic information-guided open-set domain adaptation net-
work (IODAN), which uses a multi-information integrated
weighting module to embed the weights of the target samples
into the adversarial loss, so as to accurately identify the
unknown fault classes. Wang et al. [12] introduced adversarial
domain adaptation with double auxiliary classifiers for cross-
domain open-set intelligent FD (ADDOS), which realizes
the alignment of the known shared classes by construct-
ing a private class classifier to identify private classes and
using the weighted adversarial mechanism. The other OSDA
methods rely on self-supervised learning and data generation
to identify both known and unknown classes. For example,
Wang et al. [13] devised a self-supervised-enabled OSFD
approach, which extracts fault features via contrastive learning
and uses the squeeze confidence rule to effectively improve
the recognition accuracy of the known and unknown classes.
Weng et al. [14] designed a progressive domain separation
network with multimetric ensemble quantification, effectively
realizing the cross-domain OSFD of motor bearings. The
existing OSDA methods have made significant progress in
unknown class discrimination and effectively addressed the
combined impact of domain and label shifts, but they rely on
the TD data to participate in the model training. However, it is
hard for collecting huge data under various working conditions
on the target devices beforehand for model training in actual
industrial scenarios. The reliance of OSDA methods on the
TD data limits their applicability in real industrial scenarios,
because they are unable to address the issue of the TD data
being unavailable in practice. To solve this issue, domain
generalization (DG) is introduced to realize cross-domain FD
without relying on the TD data.

DG aims to apply the general knowledge learned from
different SDs into the unseen TD while only using the
SD data [15]. For example, Chen et al. [16] studied an

Fig. 1. Illustrations of DG and OSDG when new unknown classes appear in
the unseen TD.

adversarial domain-invariant generalization (ADIG) frame-
work for improving the DG ability of the FD model on the
unseen TD through the adversarial training. Qian et al. [17]
proposed a relationship transfer DG network (RTDGN), which
uses the adversarial training and inverse entropy loss to
enhance the universality of features in different domains, thus
effectively improving the diagnosis accuracy of the FD model.
Zhao and Shen [18] put forward a DG network driven by
semantic-discriminative augmentation, where the minimization
of the triplet loss and semantic regularization are adopted
for building decision boundaries, thereby improving the DG
ability of the FD model. The existing DG methods solve the
issue of unavailable TD data and enhance the generalization
ability of cross-domain FD model through mechanisms such
as adversarial training and minimization of the triplet loss.
However, their research focus is mainly on the closed-set
DGFD, and they do not deal with the label shift caused
by unknown classes in DGFD, which makes them difficult
to address the unseen fault classes in practical applications,
thus limiting their effectiveness in open-set scenarios. To
cooperatively cope with the three challenges of domain shift,
label shift, and the unavailability of TD data, the open-set DG
FD (OSDGFD) has gradually attracted attention.

The goal of OSDGFD is to address the problems of domain
and label shifts in OSFD and accurately identify known and
unknown classes without accessing the TD data. Fig. 1 gives
the illustrations of DG and OSDG when unknown classes
appear in the TD. Currently, research on OSDGFD remains
limited and can be broadly categorized into the following
directions. First, OSDGFD based on prototype similarity and
reconstruction difference. For example, Liu et al. [19] studied
an adaptive feature reconstruction difference network, which
adaptively constructs decision thresholds based on the feature
reconstruction difference values computed from the formed
class prototypes, thereby improving the recognition ability of
known and unknown fault classes. Zhao and Shen [20] devised
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an adaptive OSDG network (AOSDGN), which can effectively
detect unknown fault modes under unknown working condi-
tions according to the distances between the prototypes and
the samples by constructing local class cluster and outlier
detection modules. Second, OSDGFD based on contrastive
learning. For example, Lu et al. [21] developed a multidomain
contrastive coding framework for learning OSDG representa-
tions, which effectively realizes OSDGFD by exploiting both
the cross-domain generalize knowledge and domain-unique
knowledge. Third, OSDGFD based on data generation and
distribution alignment. For instance, Jian et al. [22] designed
an OSDG framework consisting of the data generation and
feature learning modules, which enhances cross-domain FD
performance under open-set and unseen working conditions
by generating data and improving the distribution alignment
of known classes.

The above studies have made valuable explorations into
the application of OSDG in rotating machinery FD, they
have solved the three intertwined problems of the heteroge-
neous label spaces, unseen TD, and difficulty in predicting
fault modes in the TD in actual industrial productions to
some extent, and are capable of effectively recognizing both
known and unknown classes in the TD. However, the existing
OSDGFD methods lack the ability to quickly adapt to new
domains with different data distributions and stably distin-
guish known and unknown classes when encountering new
FD tasks. Therefore, how to build an intelligent FD model
that can accurately identify unknown faults under unseen
working conditions without accessing the TD is still worth
further exploration. In view of the characteristics of faster
adaptability and stronger generalization of metalearning in the
face of unknown and distribution-shifted tasks, a novel OSDG
approach via metalearning-based dual-level gradient alignment
(MLDGA) for intelligent FD is proposed.

The main contributions of this article are as follows.
1) A metalearning optimization strategy with dual-level

gradient alignment is designed, where the data parti-
tioning at the domain level and class level and the
gradient matching property of metalearning are exploited
to achieve interdomain gradient matching and interclass
gradient matching, which can effectively alleviate the
problems of domain and label shifts in OSDGFD.

2) An entropy-guided dynamic weighting strategy is
designed, which can help the FD model more effectively
identify different fault classes by dynamically assigning
weights to the classification loss.

3) A classification-clustering dual-guided open decision
boundary construction strategy is designed, which
can accurately identify the potential unknown faults
in the TD through the multibinary classifier and increase
the compactness of the class clusters by minimizing the
triplet loss.

4) Extensive experiments are performed on three bearing
and one gearbox datasets, and the results show that the
proposed approach has higher diagnosis accuracies com-
pared to the other methods under OSDGFD scenarios.

The rest of this article is organized as follows. The basic
theory is introduced in Section II. The proposed approach is

TABLE I
COMPARISON BETWEEN OSDG AND THE OTHER

RELATED TASK SETTINGS

described in Section III. The experimental results and analysis
are presented in Section IV. The conclusion and future work
are given in Section V.

II. BASIC THEORY

A. Metalearning

Metalearning, also known as learning to learn, is developed
by drawing inspiration from the human learning process. Met-
alearning is a technique that learns the prior knowledge from
multiple known tasks and relies on the acquired knowledge to
improve the performance of the target task [23]. The goal of
metalearning is to find a high-performance universal algorithm
based on the ability to “learning to learn” metaknowledge,
which enables the model to have faster adaptability and
stronger generalization when applied to unknown tasks d (T )
with different distributions. The objective of the metalearning
is defined as follows:

min
δ

L (T ∼ d (T ) ; δ) (1)

where δ denotes the metaknowledge learned across different
tasks. It is worth noting that δ is learned across multiple
tasks during the metalearning process, and the optimal δ can
minimize the loss L of the new tasks as much as possible.

B. Open-Set Recognition

The objective of open-set recognition is to address the
problem of unknown-class recognition in the real world. In
open-set recognition, the new classes that have not been seen
in the training stage may appear during the testing stage,
requiring the classifier can not only correctly identify known
classes, but also effectively handle unknown classes. In open-
set recognition, the SD and TD have the same known classes,
while the unknown classes appear in the TD, where the
SD and TD are independent and identically distribution. The
comparison between OSDG and the other related task settings
is shown in Table I. In OSDG, the SD and TD are not only
different in the label space, but also different in the data
distribution.

III. PROPOSED APPROACH

A. Problem Definition

In OSDGFD scenarios, multiple SDs with the same label
space (i.e., fault classes) Y are combined to form an SD set
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M , where M = {D1,D2, . . . ,DM}. In M , Dm = {(xi
m, y

i
m)}nm

i=1
represents the mth SD, where m ∈ {1, 2, . . . ,Ns}, nm is the
number of samples of the mth SD, xi

m and yi
m ∈ R

Nc denote
the ith sample of the mth SD and the corresponding true
label, respectively, Ns is the number of SDs, and Nc is the
number of fault classes. Similarly, these data with the extended
label space H = Y ∪ E are combined to form an unseen TD
U = {G1,G2, . . . ,Gu}, where E represents the label space of
unknown classes in the TD and Y ∩ E = ∅. The goal of the
proposed approach is to maximize the utilization of M to
train a model that can generalize to any unseen TD containing
unknown classes. To achieve this goal, according to the idea
of meta-earning, M needs to be split into a metatraining
set MV and a metatesting set MW during model training,
where MV ∪MW = M and MV ∩MW = ∅. The proposed
approach will use the data sampled from MV and MW to
train the model. In the current training epoch of the model,
the metatraining loss function V (ρ) is used for updating the
parameters ρ of the model obtained after the previous training
epoch to the parameters ρ̄ in the metatraining phase, and the
metatesting loss function W (ρ̄) is used to update ρ in the
metatesting phase.

B. OSDGFD Framework via MLDGA

To train an intelligent FD model that can accurately identify
unknown faults under unknown working conditions under the
scenario where the TD cannot be accessed, an OSDGFD
framework via MLDGA is constructed, as shown in Fig. 2.
The OSDGFD via MLDGA mainly includes the following
three steps.

1) Step 1 (Data acquisition and preprocessing:) The vibra-
tion data of the rotation machinery are collected via
acceleration sensors. The collected vibration data are
divided into the SDs and TD according to different
OSDGFD tasks. To better extract the fault features from
the vibration data, the vibration data are converted into
2-D time–frequency (TF) images by using short-time
Fourier transform (STFT), which are used as the input
of MLDGA.

2) Step 2 (MLDGA:) First, the SD data are divided into
the metatraining sets and metatesting sets according
to different tasks. Second, the metatraining set and
metatesting set are used as the inputs to coopera-
tively and iteratively train the FD model. In each
iteration, the metatraining loss is used to update the
model parameters, and the metatesting loss is used
to optimize the model parameters. Through multi-
ple iterations, an OSDGFD model that can effec-
tively identify unknown fault classes in the TD is
trained.

3) Step 3 (FD:) First, the unseen TD data are converted into
2-D TF images by STFT. Second, the 2-D TF images are
input into the trained FD model. Finally, the values of
the positive output channel of the multibinary classifier
are used as confidence score to determine the known
and unknown fault classes.

C. Metalearning Optimization Strategy With Dual-Level
Gradient Alignment

To solve the problem that the FD accuracy of the model
is significantly reduced due to the phenomena of domain
and label shifts under OSDGFD scenarios, a metalearn-
ing optimization strategy with dual-level gradient alignment
is designed, as shown in Fig. 3. Specifically, first, to
achieve interdomain gradient matching and interclass gradient
matching simultaneously, MV and MW are further divided
into a metatraining set (MV1 ,MW2 ) and a metatesting set
(MV2 ,MW1 ), and the loss functions corresponding to MV1 ,
MV2 , MW1 , and MW2 are defined as V1, V2, W1, and W2,
respectively. Notably, the label space between MV1 and MV2

and that between MW1 and MW2 are not intersected, but the
label space between MV1 and MW1 and that between MV2 and
MW2 are the same. Second, the metatraining set (MV1 ,MW2 )
is input into the model R for training, to obtain the metatrain-
ing loss LMtrain , where R includes a feature extractor F , a
fault classifier C , and a multibinary classifier ‖C‖ composed
of multiple binary classifiers. At this time, the gradient update
directions between different tasks are inconsistent. Third, the
parameters of R are updated with LMtrain to obtain the model
R′. Fourth, the metatesting set (MV2 ,MW1 ) is input into R′

for training, to obtain the metatesting loss LMval. Finally, the
parameters of the model R are optimized using LMval, at this
point an iteration is completed. Repeating the above steps,
after t training epochs, the gradient update directions between
different metalearning tasks are basically the same, and the
problems of the domain and label shifts can be effectively
solved.

The metaobjective function of training the FD model is
defined as follows:

Lmobj = min
ρ

(V1 (ρ) + W2 (ρ) + γ (V2 (ρ̄) + W1 (ρ̄))) (2)

where γ represents the weight ratio between the metatraining
loss and the metatesting loss, ρ denotes the parameters of
the model obtained after the previous training epoch, and ρ̄
indicates the model parameters updated after metatraining. ρ̄
is defined as follows:

ρ̄ = ρ − η
�
V ′1 (ρ) + W ′

2 (ρ)
�

(3)

where V ′1(ρ) and W ′
2(ρ) denote the gradients corresponding

to V1(ρ) and W2(ρ) respectively, and η represents the learning
rate of the FD model in the metatraining phase. In the
metatesting phase, the model parameters ρ̄ after metatraining
are used to update the model parameters ρ

ρ = ρ − µ
�
V ′1 (ρ) + W ′

2 (ρ) + γ
�
V ′2 (ρ̄) + W ′

1 (ρ̄)
��

(4)

where µ is the learning rate of the FD model in the metatesting
phase.

To further verify that the proposed metalearning optimiza-
tion strategy with dual-level gradient alignment can achieve
interdomain gradient matching and interclass gradient match-
ing simultaneously, the first-order Taylor expansion [24] is
performed on V2(ρ̄) and W1(ρ̄) in (2)

V2 (ρ̄) = V2 (ρ) − η · V ′2 (ρ) ·
�
V ′1 (ρ) + W ′

2 (ρ)
�

(5)
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Fig. 2. OSDGFD framework via MLDGA.

and
W1(ρ̄) = W1(ρ) − η ·W ′

1 (ρ) · (V ′1 (ρ) + W ′
2 (ρ)) (6)

where V ′2 (ρ) and W ′
1 (ρ) are the gradients corresponding to

V2(ρ) and W1(ρ), respectively. At this time, the metaobjective
function of training the FD model is transformed into

Lmobj = min
ρ

(V1 (ρ) + W2 (ρ) + γ (V2 (ρ) + W1 (ρ))

−ηγ
�
V ′1 (ρ) · V ′2 (ρ) + V ′1 (ρ) ·W ′

1 (ρ)

+W ′
2 (ρ) · V ′2 (ρ) + W ′

2 (ρ) ·W ′
1 (ρ)

��
. (7)

It can be seen from the first term V1(ρ)+W2(ρ)+γ(V2(ρ)+
W1(ρ)) and the second term ηγ(V ′1(ρ) · V ′2(ρ) + V ′1(ρ) ·
W ′

1(ρ) + W ′
2(ρ) · V ′2(ρ) + W ′

2(ρ) · W ′
1(ρ)) in (7), the

optimization objectives are as follows.

1) Minimizing the losses of the FD model on the meta-
training set and metatesting set.

2) Maximizing the dot products between the gradients
corresponding to the metatraining loss and metatesting
loss, so as to find a position in the weight space where
the included angle between the gradients corresponding
to different losses is small. The small included angle
between gradients means that the FD tasks correspond-
ing to the two losses will not conflict with each other.
In the second term in (7), the dot products (includ-
ing V ′1(ρ) · V ′2(ρ), V ′1(ρ) · W ′1(ρ), W ′2(ρ) · V ′2(ρ),
W ′2(ρ) ·W ′1(ρ)) between the gradients corresponding
to any two losses that either comes from different
domains or contains different fault classes are calculated
and summed, which proves that the proposed met-
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Fig. 3. Illustration of the metalearning optimization strategy with dual-level
gradient alignment.

Fig. 4. Illustration of the entropy-guided dynamic weighting strategy.

alearning optimization strategy with dual-level gradient
alignment can achieve interdomain gradient matching
and interclass gradient matching simultaneously, thereby
enabling the FD model to learn the common decision
boundaries suitable for different fault classification tasks
under open-set recognition scenarios.

D. Entropy-Guided Dynamic Weighting Strategy

In the actual industrial scenarios, there will
inevitably be some indistinguishable fault samples [15],
which may be located near the decision boundaries and are
easy to be predicted as the wrong fault classes. Therefore, an
entropy-guided dynamic weighting strategy is designed, as
shown in Fig. 4.

The strategy first calculates the entropy according to the
confidences of the prediction classes of each sample, and then
uses the calculated entropy to dynamically assign the con-
fidence weight for the corresponding sample. These weights
will be used to weight the classification loss to help the model

effectively distinguish the features of different fault classes,
so as to improve the FD ability of the model. Specifically,
first, the entropy corresponding to each sample is calculated
by using the probability distribution of the prediction classes
of each sample through (8), so as to measure the uncertainty
of each sample and give a smaller confidence weight to
the sample with large entropy (i.e., the sample with low
confidence). The entropy corresponding to the ith sample xi

m
of the mth SD is defined as follows:

Q
�
C
�
F
�
xi

m

���
= −

NcX
c=1

p
�
ŷi

m = c
�

log
�
p
�
ŷi

m = c
��

(8)

where c denotes the class label and ŷi
m is the prediction label

of xi
m. Second, according to the entropy corresponding to xi

m
obtained by (8), the confidence weight w i

m corresponding to
xi

m is calculated by

w i
m = 1 −

Q
�
C
�
F
�
xi

m

���
log (Nc + 1)

(9)

and compressed to (0, 1], where log (Nc + 1) denotes the max-
imum entropy value corresponding to the samples containing
Nc fault classes. According to (9), the samples with large
entropy values represent the samples that are difficult to be
distinguished, and the weights are close to 0. The samples
with small entropy values represent the samples that are easy
to be identified, and the weights are close to 1. Finally,
the calculated w i

m corresponding to xi
m is applied to the

classification loss

LC =
1
Ns

NsX
m=1

 
1

nm

nmX
i=1

w i
m ·J

�
C
�
F
�
xi

m

��
, yi

m

�!
(10)

where J (·) denotes the cross-entropy loss function. By using
the entropy-guided dynamic weighting strategy, the separation
between classes can be promoted effectively and the FD ability
of the model can be enhanced.

E. Classification-Clustering Dual-Guided Open Decision
Boundary Construction Strategy

In OSDGFD, there may be some unknown fault classes in
the TD that have not been seen in the SDs. To effectively
identify unknown classes in the TD, a classification-clustering
dual-guided open decision boundary construction strategy is
proposed. In the OSDGFD framework via MLDGA shown
in Fig. 2, this strategy uses the triplet loss in the metric
learning method to increase the compactness of the clusters,
and accurately identifies the potential unknown faults in the
TD through the multibinary classifier. In the FD model, the
fault feature representations are first obtained from the SD data
through the feature extractor F , and then the fault feature
representations are input into the multibinary classifier ‖C‖
for classification. ‖C‖ contains k binary classifiers, where each
binary classifier is trained to detect whether the sample belongs
to the corresponding fault class. For the sample (xi

m, y
i
m), its

loss Lmbc on multiple binary classifiers is defined as follows:

Lmbc
�
xi

m, y
i
m

�
= − log

�
p
�
ŷi

m = yi
m

ˇ̌
xi

m

��
−min

j,y
log

�
1 − p

��
ŷi

m

�l
= j
ˇ̌̌
xi

m

��
(11)
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Fig. 5. Illustration of improving the adaptability of the class decision
boundaries in fault classification tasks by minimizing the triplet loss.

where p((ŷi
m)l = j|xi

m) represents the output probability of the
lth (1 ≤ l ≤ k) binary classifier in ‖C‖ for xi

m. During the
FD phase, k binary classifiers are used and the values of their
positive output channels are selected as the confidence score
of xi

m

confmbc
�
xi

m

�
= p

��
ŷi

m

�argmaxk
l=1

�
p
�
(ŷi

m)l
=c
�� ˇ̌̌̌

xi
m

�
. (12)

If the confidence score is greater than the preset threshold
value ω, the sample is determined as a known class and a
specific class label is generated for it. Otherwise, the sample
is determined as an unknown class. The candidate values of
ω are traversed in the threshold interval thre range, and the
optimal value of ω is determined by evaluating and screening
according to the diagnosis accuracy. thre range is defined as
follows:

thre range

=
n

pmin +
pmax − pmin

h − 1
× i

ˇ̌̌
i = 0, 1, . . . , h − 1

o
(13)

where pmin and pmax denote the minimum value and the
maximum value of the predicted class probabilities of the
samples, respectively, and h represents the number of divisions
of thre range.

The proposed MLDGA improves the adaptability of the
class decision boundaries in fault classification tasks by min-
imizing the triplet loss, as depicted in Fig. 5. By minimizing
the triplet loss, the distances between samples of different
classes can be increased, so as to form a clearer discrimination
boundary [25]. In the triplet loss, each triplet includes three
kinds of samples: anchor sample sa

i , positive sample sp
j , and

negative sample sn
w. The triples are split into the simple,

semidifficult, and difficult triplets according to the distances
between different kinds of samples, which are defined as
follows:8̂̂̂̂

ˆ̂̂<̂
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TABLE II
WORKING CONDITIONS OF HUST, PU, AND PHM DATASETS

where θ denotes a certain margin to be positive. The opti-
mization objective of the FD model is to form clear decision
boundaries in the feature space by reducing the distances
between samples of the same classes and increasing the
distances between samples of different classes. During model
training, it is necessary to optimize the distance between the
samples sa

i and sp
j of the same classes to be closer than the

distance between the samples sa
i and sn

w of different classes.
The triplet loss Ltri is defined as follows:

Ltri =

NtriX
i=1

h
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�
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i

�
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�
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j

�
‖22 −F

�
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�
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�
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�
‖22 + θ

i
+

(15)

where the training set contains Ntri triples and [·]+ =

max(0, ·).

F. Parameter Updating

The total objective loss function of the proposed OSDGFD
model via MLDGA in the training process is

Ltotal = LC + Lmbc + λLtri (16)

where λ is a trade-off parameter. The training process of
the proposed OSDGFD model via MLDGA is described in
Algorithm 1.

IV. EXPERIMENTS

A. Experimental Setup

1) Description of Experimental Datasets: To verify the
effectiveness of the proposed MLDGA in OSFD, extensive
experiments are performed on the Huazhong University of
Science and Technology (HUST) dataset [26], Paderborn
University (PU) dataset [27], and Prognostics and Health
Management (PHM) 2009 dataset [28]. The vibration data
of HUST, PU, and PHM datasets are collected from the test
rigs shown in Fig. 6(a)–(c), and their sampling frequencies
are 25.6, 64, and 66.67 kHz, respectively. Table II gives
the working condition information of HUST, PU, and PHM
datasets. Tables III and IV show the information of fault
classes of HUST, PU, and PHM datasets, respectively. In
this experiment, the vibration data of different fault classes
collected under each working condition shown in Table II
are selected from HUST, PU, and PHM datasets, and split
into nonoverlapping samples with a length of 2048, which are
converted into 2-D TF images by STFT.
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Algorithm 1 Training Process of the Proposed OSDGFD
Model via MLDGA
Require: The SDs M , the fault classes Y , the learning rate η

and µ, the weight ratio γ, the trade-off parameter λ, and
the maximum number of epochs nt.

1: Randomly initialize the training parameters ρ of the
model;

2: for t = 1tont do
3: Randomly split M and Y into (MV ,MW ) and (Y,Y),

respectively;
4: Divide MV and MW into the metatraining set

(MV1 ,MW2 ) and the metatesting set (MV2 ,MW1 ), respec-
tively;

5: Metatraining phase:
6: Randomly choose the samples SV1 and SW2 from

(MV1 ,Y1)
and (MW2 ,Y2), respectively;

7: Calculate the gradients V ′1(ρ)+W ′
2(ρ) with SV1 and

SW2 ;
8: Calculate the losses LC, Lmbc, and Ltri by Eqs. (10),

(11), and (15) with SV1 and SW2 , respectively;
9: Calculate the total metatraining loss: LMtrain = LC +

Lmbc+
λLtri;

10: Update the parameters: ρ̄← ρ − η(V ′1(ρ) + W ′
2(ρ));

11: Metatesting phase:
12: Randomly choose the samples SV2 and SW1 from

(MV2 ,Y1)
and (MW1 ,Y2), respectively;

13: Calculate the gradients V ′2(ρ̄)+W ′
1(ρ̄) with SV2 and

SW1 ;
14: Calculate the losses LC, Lmbc, and Ltri by Eqs. (10),

(11),
and (15) with SV2 and SW1 , respectively;

15: Calculate the total metatesting loss: LMval = LC+Lmbc+
λLtri;

16: Calculate the total loss: Ltotal = LMtrain + LMval;
17: Update the parameters: ρ← ρ − µ(V ′1(ρ) + W ′

2(ρ)+
γ(V ′2(ρ̄) + W ′

1(ρ̄)));
18: end for
19: Return the trained model

2) Evaluation Metrics: In this experiment, the three evalu-
ation metrics, namely OS∗, UK, and H-score, are used as the
evaluation criteria for the performance of different FD meth-
ods. OS∗ = Ek/Nk denotes the prediction accuracy of known
classes, where Ek is the number of test samples of known
classes correctly predicted and Nk is the number of test
samples of all known classes. UK = Eu/Nu represents the
prediction accuracy of unknown classes, where Eu is the
number of test samples of unknown classes correctly predicted
and Nu is the number of test samples of all unknown classes.
H-score = 2 · OS∗ · UK/(OS∗ + UK) indicates the harmonic
mean of OS∗ and UK. When the prediction accuracies of both
the known and unknown classes are high, H-score is larger.

3) Comparison Methods: To better evaluate the effective-
ness of the proposed MLDGA, the comparative experiments

TABLE III
INFORMATION OF FAULT CLASSES OF HUST AND PU DATASETS

TABLE IV

INFORMATION OF FAULT CLASSES OF PHM DATASET

between the MLDGA and the following five different OSDG
methods and three different OSDA methods are conducted on
different transfer tasks listed in Table V: M1, M2, AOSDGN
[20], MDCC [21], DWDAAN [22], OSBP [29], IODAN [11],
and ADDOS [12]. The key difference between the OSDG
and OSDA methods is that, during model training, the former
cannot access the TD data, whereas the latter can. In Table V,
the experimental settings of the transfer tasks are mainly
designed according to the distribution differences between the
SDs and TD and the core index (i.e., openness) for measuring
the FD ability of the model under the open-set scenarios,
where openness = 1 − (Y/H) and the definitions of Y and H
are given in Section III-A. Here, the openness is set between
0.14 and 0.43 to avoid that too low openness degenerates into
the closed-set DG problem or too high openness causes the
problem of ignoring diagnosis of known classes. The relevant
experimental settings of eight different comparison methods
are described as follows.

1) M1: It adopts ADIG [16] as the DG method and uses
OpenMax [30] for open-set recognition. Specifically,
ADIG is a DGFD method, which uses the adversarial
training between the feature extractor and the domain
classifier to obtain the domain invariant features related
to the faults, thereby improving the generalization of
the FD model. OpenMax uses the extreme value theory
to calculate the classification probability. The classes
whose classification probabilities are lower than the
preset threshold are regarded as unknown classes. The
main optimization parameters of ADIG are given in [16].

2) M2: It adopts RTDGN [17] as the DG method
and uses OpenMax for open-set recognition. Specifi-
cally, RTDGN is a DGFD method, which reduces the
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Fig. 6. Test rigs for HUST, PU, and PHM. (a) HUST test rig [26]. (b) PU test rig [27]. (c) PHM test rig [28].

TABLE V

TRANSFER TASK INFORMATION ON HUST, PU, AND PHM DATASETS

distribution discrepancies between the SDs and TD via
the adversarial training between the feature extractor
and multiple domain classifiers, thereby improving the
generalization performance of the model on the TD.
The main optimization parameters of RTDGN are given
in [17].

3) AOSDGN: It is a classic OSDGFD method. It improves
the compactness of clusters by minimizing the triplet
loss, thereby learning the domain-invariant representa-
tions. Meanwhile, the unknown classes are identified
according to the distances between the samples and the
constructed class prototypes. In AOSDGN, the batch
size and maximum training epochs are set to 100 and
1024, respectively, and the hyperparameters µ, β, and δ
are set to 1, 1, and 1.2, respectively.

4) MDCC: It is an advanced OSDGFD method, which
achieves multidomain contrastive coding by introduc-
ing a new contrastive encoding task and loss, thereby
reducing interdomain and intraclass discrepancies and
facilitating the separation of private classes. In MDCC,
the number of iterations and the mini-batch in the
initialization phase are set to 1000 and 128, respectively.
After the initialization phase, the learning rate and the
maximum number of iterations are adjusted to 0.001
and 4000, respectively, and the hyperparameter λ is set
to 0.45.

5) DWDAAN: It is an advanced OSDGFD method, which
uses ACGAN to generate open-set data for simulating
unknown faults, thereby alleviating the phenomena of
label shift. Moreover, it adopts a dual-level weighted
mechanism to reduce distribution discrepancies. The
main optimization parameters of DWDAAN are given
in [22].

6) OSBP: It is a classic OSDA method based on adversarial
training, which is mainly used to solve the domain
adaptation problem that the TD class set contains the SD
class set. The main optimization parameters of OSBP are
provided in [29].

7) IODAN: It is an advanced OSDA-based FD (OSDAFD)
method, mainly solving the domain adaptation problem
that the TD class set contains the SD class set. The
method realizes the diagnosis of unknown and known
fault classes through the weighted domain adversarial
training between the feature extractor and the clas-
sifier. In IODAN, the batch size, maximum training
epochs, and learning rate are set to 64, 150, and 0.001,
respectively.

8) ADDOS: It is an advanced OSDAFD method. In
ADDOS, the weighted domain adversarial training is
carried out between the feature extractor and the private
class classifier, and the dual auxiliary classifier module
is constructed to realize the simultaneous recognition of
unknown and known fault classes. The main optimiza-
tion parameters of ADDOS are provided in [12].

To ensure fair comparison, the same data preprocessing is
performed for all comparison methods. The model training
and FD are conducted on NVIDIA RTX 2070 Super GPU.
These comparison methods adopt the same backbone network
structures as MLDGA. Table VI shows the network structure
of the proposed MLDGA. Fig. 7 shows the model structure
and parameters of MLDGA.

4) Setting of Hyperparameters: The proposed MLDGA
contains eight hyperparameters, and the specific parameter
values are set as follows. The metatraining learning rate η,
metatesting learning rate µ, learning rate ε, weight ratio γ
between the metatraining and metatesting losses, batch size,
and maximum training epochs are set to 0.0001, 0.0001, 0.01,
1.0, 32, and 300, respectively. For the hyperparameter θ used
in calculating the triplet loss, refer to [25], the value of θ is
searched from {0.1, 0.5, 1.0, 1.5, 2.0, 2.5} according to the grid
search method. As shown in Fig. 8, when θ = 2.0, MLDGA
obtains the best average H-score on different transfer tasks.
Therefore, θ is set to 2.0. For the hyperparameter λ used in
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Fig. 7. Model structure and parameters of the proposed MLDGA.

TABLE VI

NETWORK STRUCTURE OF THE PROPOSED MLDGA

calculating the total objective loss function, the value of λ is
searched from {0.1, 0.5, 0.8, 1.0, 2.0} according to the grid
search method. As shown in Fig. 9, when λ = 0.8, MLDGA
achieves the best average H-score on different transfer tasks.
Therefore, λ is set to 0.8.

Fig. 8. H-scores obtained on different transfer tasks of PU dataset with
different values of θ.

B. Comparison With Different OSDGFD Methods

The H-scores obtained by the proposed MLDGA and five
different OSDGFD methods on HUST, PU, and PHM datasets
are shown in Tables VII –IX, respectively. On HUST dataset,
the average H-score of MLDGA is 17.34%, 14.97%, 9.14%,
6.22%, and 4.51% higher than those of M1, M2, AOSDGN,
MDCC, and DWDAAN, respectively, indicating that MLDGA
has high diagnosis accuracies on both known and unknown
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TABLE VII

H-SCORES (%) OF DIFFERENT OSDGFD METHODS ON HUST DATASET

Fig. 9. H-scores obtained on different transfer tasks of PU dataset with
different values of λ.

TABLE VIII

H-SCORES (%) OF DIFFERENT OSDGFD METHODS ON PU DATASET

TABLE IX
H-SCORES (%) OF DIFFERENT OSDGFD METHODS ON PHM DATASET

classes when facing different OSDG tasks. On the more
complex PU dataset, the average H-score of MLDGA is
19.05%, 16.74%, 11.94%, 6.63%, and 5.81% higher than
those of M1, M2, AOSDGN, MDCC, and OSDG-DGM-
FLM, respectively, showing that the FD accuracy of MLDGA
is still better than those of these comparison methods on
the more complex bearing fault datasets. The main reason
is that MLDGA can maintain high discrimination ability
in the face of class confusion caused by combined faults
through the gradient matching between different tasks, the
proposed entropy-guided dynamic weighting strategy, and the

Fig. 10. OS∗ and UK achieved by different OSDGFD methods on the TD of
HUST dataset. (a) OS∗. (b) UK.

classification-clustering dual-guided open decision boundary
construction strategy. On PHM dataset, the average H-score of
MLDGA is 14.66%, 13.44%, 9.28%, 3.97%, and 4.13% higher
than those of M1, M2, AOSDGN, MDCC, and DWDAAN,
respectively, indicating that MLDGA still has superior diag-
nosis performance in OSDGFD of the gearbox. There are
the compound faults in both PU and PHM datasets, resulting
in the obvious distribution discrepancies between the SDs
and TD. However, it can be seen from Tables VIII and IX
that the average H-score of MLDGA is higher than those
of the other comparison methods on eight different transfer
tasks, showing that MLDGA can effectively deal with com-
plex OSDGFD scenarios and has strong robustness and FD
ability.

The OS∗ and UK obtained by MLDGA and five different
OSDGFD methods on HUST, PU, and PHM datasets are
shown in Figs. 10–12, respectively. It can be seen that the
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Fig. 11. OS∗ and UK achieved by different OSDGFD methods on the TD of
PU dataset. (a) OS∗. (b) UK.

OS∗ and UK obtained by MLDGA on different transfer tasks
are better than those obtained by the other methods on the
whole. For example, as shown in Fig. 10(a) and (b), on the
transfer tasks H3 and H9, the OS∗ and UK of MLDGA are
94.25% and 91.33%, and 95.79% and 97.32%, respectively,
which are significantly better than the other methods. This
is because MLDGA forms the decision boundaries in the
middle region between the class clusters in the decision
space through dual-level gradient alignment of the interdomain
and interclass, and the unknown samples are more likely to
appear near the decision boundaries, thereby improving the
probability of the known and unknown classes to be correctly
identified. As shown in Fig. 11(a) and (b), on the transfer task
P3, the OS∗ of MLDGA is 87.14%, which is 2.54% lower than
that of DWDAAN. However, the UK of MLDGA is 91.63%,
which is 9.64% higher than that of DWDAAN. This shows
that MLDGA can more effectively distinguish the known and
unknown fault classes at the same time.

C. Comparison With Different OSDAFD Methods

The H-scores obtained by the proposed MLDGA and three
different OSDAFD methods on the HUST, PU, and PHM
datasets are depicted in Fig. 13(a)–(c), respectively. The
H-scores of MLDGA are higher than those of OSBP on
HUST, PU, and PHM datasets, respectively. For example, on
the task H1, the H-score of MLDGA is 95.83%, which is
19.08% higher than that of OSBP, showing that MLDGA can
still effectively identify known and unknown classes without

Fig. 12. OS∗ and UK achieved by different OSDGFD methods on the TD of
PHM dataset. (a) OS∗. (b) UK.

accessing the TD data. Compared with IODAN and ADDOS,
the average H-score of MLDGA on HUST, PU, and PHM
datasets is slightly lower. For instance, on the task G3, the
H-score of MLDGA is 92.72%, which is 0.32% and 1.45%
lower than that of IODAN and ADDOS, respectively. This
is mainly because IODAN and ADDOS let the TD data
participate in the model training, while MLDGA does not.
Although MLDGA does not access the TD data during model
training, the diagnosis performance gap between MLDGA and
the two advanced OSDAFD methods, IODAN and ADDOS, is
small, showing that MLDGA has strong cross-domain transfer
ability. MLDGA introduces a dual-level gradient alignment
strategy in the gradient updating, so that the model can not
only learn the SD features, but also reduce the impact of the
interdomain and interclass discrepancies, so as to maintain
better classification performance under the unseen TD.

D. Cross-Machine OSDGFD on PU and HUST Datasets

To further verify the OSDGFD capability of MLDGA
under cross-machine scenarios, the comparative experiments
are carried out under the two different cross-machine scenarios
listed in Table X.

Fig. 14 indicates the H-scores of different OSDGFD meth-
ods under different cross-machine scenarios. As can be seen
from Fig. 14, since the OSDGFD tasks under the cross-
machine scenarios are more complex than those under the
cross-working condition scenarios, the H-scores obtained by
all methods under the cross-machine scenarios are significantly
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Fig. 13. H-scores of the proposed MLDGA and three different OSDAFD methods on HUST, PU, and PHM datasets. (a) On HUST dataset. (b) On PU
dataset. (c) On PHM dataset.

TABLE X
CROSS-MACHINE FD TASK INFORMATION

TABLE XI
WORKING CONDITIONS OF RFB DATASET

reduced. However, the proposed MLDGA achieves the best
performance on all cross-machine FD tasks. For example, the
average H-score obtained by MLDGA is superior to other
OSDGFD methods under HUST → PU. Taking the transfer
task CH2 with an openness of 0.43 as an example, the average
H-score obtained by MLDGA is 60.45% on CH2, which is
8.5%, 3.61%, and 4.12% higher than AOSDGN, MDCC, and
DWDANN, respectively. Under PU → HUST, the average
H-score obtained by MLDGA is 71.29% on the transfer task
CP1 with an openness of 0.29, which is 10.12%, 3.54%,
and 4.62% higher than AOSDGN, MDCC, and DWDANN,
respectively. The experimental results achieved under two
cross-machine scenarios prove that the proposed MLDGA
can still effectively balance the known class recognition and
unknown class detection in the face of significant distribu-
tion discrepancies, showing a strong cross-machine OSDGFD
capability.

E. Comparison With Different OSDGFD Methods on Real
Factory Bearing Dataset

To further verify the practicability of the proposed MLDGA
in real industrial scenarios, the additional experiments are

Fig. 14. H-scores obtained with four different OSDGFD methods under two
different cross-machine scenarios. (a) HUST → PU. (b) PU → HUST.

carried out on a real factory bearing (RFB) dataset [31]
from a real factory environment. This experiment aims to
evaluate the OSDGFD ability of MLDGA under the real
distribution discrepancies and compare it with five different
OSDGFD methods. The RFB dataset consists of naturally
developed defective bearings obtained at four different rotat-
ing speeds in the actual production, as shown in Table XI.
The RFB dataset includes four different health states: HC,
rolling-element deviation (RD), rolling-element missing (RM),
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TABLE XII
INFORMATION OF FAULT CLASSES OF RFB DATASET

TABLE XIII
TRANSFER TASK INFORMATION ON RFB DATASET

and yarn stick (YS), as seen in Table XII. The proposed
MLDGA and five different OSDG methods carried out
comparative experiments on different transfer tasks shown
in Table XIII.

The H-scores obtained by MLDGA and five different
OSDGFD methods on RFB dataset are shown in Table XIV.
On the RFB dataset, the average H-score obtained by MLDGA
is 17.28%, 18.18%, 12.29%, 6.3%, and 6.99% higher than
that obtained by M1, M2, AOSDGN, MDCC, and DWDAAN,
respectively. This indicates that MLDGA can more fully cap-
ture and balance the distribution discrepancies of complex data
in real industrial scenarios through the metalearning mecha-
nism with dual-level gradient alignment, the entropy-guided
dynamic weighting strategy, and the classification-clustering
dual-guided open decision boundary construction strategy,
which is significantly superior to the other OSDGFD methods
on RFB dataset.

F. Ablation Experiments

To validate the role of different components in MLDGA,
the eight variants A1, A2, A3, A4, A5, A6, A7, and A8 of
MLDGA are adopted for conducting ablation experiments on
PU and PHM datasets. A1 is the base version of MLDGA
without adopting any strategy. A2 is that the metalearning
optimization strategy with dual-level gradient alignment is
only adopted in MLDGA. A3 is that the entropy-guided
dynamic weighting strategy is only adopted in MLDGA. A4 is
designed to identify unknown faults using only the multibinary
classifier in MLDGA. A5 is that the triplet loss is only adopted
to increase the compactness of the class clusters in MLDGA.
A6 is that the entropy-guided dynamic weighting strategy is
not adopted in MLDGA. A7 is that the multibinary classifier
is not used to identify unknown faults in MLDGA. A8 is that
the triplet loss is not adopted to increase the compactness of
the class clusters in MLDGA. Tables XV and XVI present the

H-scores obtained from MLDGA and its eight variants on PU
and PHM datasets, respectively.

Compared with A1, the average H-score of MLDGA on PU
and PHM datasets is increased by 34.41% and 36.85%, respec-
tively, which shows that by using the entropy-guided dynamic
weighting strategy, the multibinary classifier that can identify
unknown classes, and the triplet loss that can increase the
compactness of the cluster, MLDGA can effectively identify
known and unknown classes. Compared with A1, the average
H-score of A2 on PU and PHM datasets is increased by
9.59% and 16.76%, respectively, which indicates that the dual-
level gradient alignment can alleviate the gradient direction
conflict between different tasks and make the gradient update
directions more consistent, thus enhancing the generalization
ability of the FD model under the domain and label shifts.
Compared with A1, the average H-score of A3 on PU and
PHM datasets is increased by 3.38% and 5.19%, respectively,
which shows that MLDGA can enhance the discriminative
ability of the FD model by using the entropy to dynamically
allocate the reliability weight for the corresponding samples.
Compared with A1, the average H-score of A4 on PU and
PHM datasets is increased by 16.39% and 21.40%, respec-
tively, which indicates that the identification of unknown fault
classes by using multibinary classifier can avoid misjudg-
ing unknown classes to known classes, thereby improving
the FD accuracy of the model under the open-set scenario.
Compared with A1, the average H-score of A5 on PU and
PHM datasets is increased by 4.24% and 5.80%, respectively,
which shows that the feature boundaries of known classes
can be optimized by minimizing the triplet loss between fault
features, making it easier for the FD model to identify known
and unknown fault classes. Compared with A6, the average
H-score of MLDGA on PU and PHM datasets is increased
by 12.26% and 10.55%, respectively, which indicates that the
FD model can identify different fault classes more effectively
by dynamically assigning weights to the classification loss.
Compared with A7, the average H-score of MLDGA on
PU and PHM datasets is increased by 21.37% and 16.36%,
respectively, this is because MLDGA can more accurately
identify the unknown fault classes in the TD by using the
multibinary classifier to calculate the confidence scores of the
samples to determine the unknown classes. In the face of
unseen fault classes, the multibinary classifier can dynamically
adjust the decision boundary of the classifier, avoiding the
degradation of diagnosis performance caused by the existence
of unknown fault classes in the TD. Compared with A8, the
average H-score of MLDGA on PU and PHM datasets is
increased by 9.78% and 9.44%, respectively, which indicates
that MLDGA can minimize the triplet loss between fault
features, allowing the FD model to bring the samples of the
same classes closer and push the samples of different classes
farther, thereby enhancing the discriminative ability of fault
features.

G. Visualization Analysis of FD Results

To analyze the learning ability of different OSDGFD meth-
ods for domain-invariant features, t-SNE technology is adopted
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TABLE XIV

H-SCORES (%) OF DIFFERENT OSDGFD METHODS ON RFB DATASET

TABLE XV

H-SCORES (%) OF THE PROPOSED MLDGA AND ITS
EIGHT VARIANTS ON PU DATASET

TABLE XVI

H-SCORES (%) OF THE PROPOSED MLDGA AND ITS EIGHT
VARIANTS ON PHM DATASET

to map the fault features extracted by different OSDGFD meth-
ods into the 2-D space for visualizations. Fig. 15 illustrates
the feature visualizations of the diagnosis results of different
OSDGFD methods on the TD under the transfer task H2 of
HUST dataset. As shown in Fig. 15(a), in the FD results of M1,
the features of the five fault classes, including the unknown
class, all exhibit varying degrees of interclass overlap, which
makes it difficult to form the decision boundaries of the
fault classes. It can be observed from Fig. 15(b) and (c)
that in the FD results of AOSDGN and MDCC, although
the features belonging to the same fault class are relatively
concentrated, there is a significant interclass overlap between
the features of the unknown class (i.e., class 6) and known
classes (e.g., class 4), reducing the classification performance
of AOSDGN and MDCC. It can be observed from Fig. 15(d)
that MLDGA performs best in terms of clustering effect, with
more compact intraclass structure and more obvious interclass
separation phenomenon, and the overlap between the features
of the unknown class (i.e., class 6) and other known classes

Fig. 15. Feature visualizations of the diagnosis results of different OSDGFD
methods on the TD under the transfer task H2 of HUST dataset. (a) M1.
(b) AOSDGN. (c) MDCC. (d) MLDGA.

is small. This indicates that MLDGA has superior OSDGFD
performance and clearer classification boundaries.

To further analyze the FD performance of different
OSDGFD methods on each fault class, the confusion matrix
is introduced to analyze the FD results on the transfer task
P1 of PU dataset. Fig. 16 shows the confusion matrices of
different OSDGFD methods on the transfer task P1. As seen
in Fig. 16, MLDGA has higher FD accuracies in both known
and unknown fault classes. For instance, on the second fault
class (i.e., OF1), the FD accuracy of MLDGA is 92.43%,
which is 14.02%, 12.33%, and 9.28% higher than those of
M1, AOSDGN, and MDCC, respectively. This indicates that
MLDGA can well handle the domain and label shift problems
between multiple SDs and the unseen TD under the scenarios
where the unknown fault classes occur in the unseen TD.
On the unknown fault class (i.e., IF+OF2), the FD accuracy
of MLDGA is 96.21%, which is 31.16%, 16.98%, 9.60%
higher than those of M1, AOSDGN, and MDCC, respectively.
This is because MLDGA can construct a more reasonable
classification decision boundary, thus reducing the possibility
of known fault classes being incorrectly classified as unknown
fault classes and improve the detection ability of the model for
unknown fault classes.
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Fig. 16. Confusion matrices of different OSDGFD methods on the transfer task P1 of PU dataset. (a) M1. (b) AOSDGN. (c) MDCC. (d) MLDGA.

V. CONCLUSION

In this article, a novel OSDG approach via MLDGA for
intelligent FD is proposed, which successfully addresses the
problems of domain and label shifts caused by unknown fault
classes on the unseen TD. The metalearning optimization
strategy with dual-level gradient alignment is adopted, and
the gradient update directions of the interdomain and inter-
class tasks are simultaneously optimized by gradient matching
to effectively realize the interdomain gradient matching and
interclass gradient matching, thereby ensuring that the class
decision boundaries are reasonably located in the optimal posi-
tions of different fault classes. Moreover, the entropy-guided
dynamic weighting strategy and the classification-clustering
dual-guided open decision boundary construction strategy are
adopted, significantly improving the ability to distinguish
known and unknown fault classes. Extensive experiments are
performed on HUST, PU, PHM, and RFB datasets to verify the
effectiveness of the proposed approach. The average H-scores
of the proposed approach reach 91.36%, 90.31%, 89.29%,
and 84.53%, respectively. The OS∗ and UK of the proposed
approach are better than those of the other comparison meth-
ods on the whole.

In practical industrial applications, the proposed MLDGA
still has some limitations. First, due to the high resource cost

and data privacy protection, it is often difficult for a single
user to collect enough data to build a data-driven FD model
with reliable performance. Therefore, federated learning can
be considered to alleviate this problem. Second, not only the
unknown fault classes may appear in the unseen TD, but also
the label space between the SDs and that between the SDs
and TD are uncertain, that is, universal DG. Therefore, the
FD method combining federated learning with universal DG
will be further explored in the future work to better meet the
actual industrial application requirements.
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