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Abstract—As parallel computing tasks rapidly expand in both
complexity and scale, the need for efficient GPU dynamic mem-
ory allocation becomes increasingly important. While progress
has been made in developing dynamic allocators for substantial
applications, their real-world applicability is still limited due to
inefficient memory access behaviors. This paper introduces Align-
Malloc, a novel memory management system that aligns with the
Unified Virtual Memory (UVM) prefetching strategy, significantly
enhancing both memory allocation and access performance in
large-scale dynamic allocation scenarios. We analyze the funda-
mental inefficiencies in UVM access and first reveal the mismatch
between memory access and UVM prefetching methods. To resolve
this issue, AlignMalloc implements a warp-aware memory rear-
rangement strategy that exploits the regularity of warps to align
with the UVM’s static prefetching setup. Additionally, AlignMalloc
introduces an OR tree-based structure within a host-co-managed
framework to further optimize dynamic allocation. Comprehen-
sive experiments demonstrate that AlignMalloc substantially out-
performs current state-of-the-art systems, achieving up to 2.7 x
improvement in dynamic allocation and 2.3 X in memory access.
Additionally, eight real-world applications with diverse memory
access patterns exhibit consistent performance enhancements, with
average speedups 1.5 X.
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I. INTRODUCTION

HE advent of dynamic allocation in the CUDA Toolkit
T represents a significant advancement in GPU computing,
simplifying memory management and eliminating the need for
preallocating resources [1]. This development enhances memory
flexibility and reduces the underutilization risk, allowing for
more precise resource allocation tailored to applications [2],
such as graph analytics [3], [4], genomics [5], and sparse linear
computing [6]. As parallel GPU computing expands, large-scale
dynamic allocation has increasingly garnered the attention of re-
searchers [7], [8], [9], [10]. However, the limitations of CUDA’s
malloc at large scales are characterized by significant synchro-
nization overhead [11] and suboptimal memory utilization that
rarely exceeds 40% [12]. Consequently, these challenges compel
applications that require efficient allocation with extensive data
to revert to static memory pre-allocation [7], [8], [13].

Current research on GPU dynamic memory allocation [1],
similar to CUDA’s malloc, also faces challenges in supporting
scalable scenarios. Our experiments reveal that the dynamic
allocated memory of state-of-the-art (SOTA) systems, such as
Ouroboros [14] and Synchronization allocator [15], are con-
strained to dynamic memory allocations of 2 GB, which is only
about 10% of the physical memory capacity of the devices.
This limitation primarily arises from the inherent design of
GPU memory management systems, which rely heavily on GPU
computing units and storage for all memory operations, often
leading to rapid resource depletion. Gallatin [16], the first to
propose a 3-level van Emde Boas (VEB) tree [17] for supporting
large-scale allocations, still encounters practical difficulties due
to reliance on 64-bit GPU atomic operations and static memory
data structures. To overcome this limitation, SyncMalloc [12] in-
troduces a host-GPU collaborative management framework that
integrates with the GPU’s UVM [18] for large-scale dynamic
allocation, rather than solely coupling with the GPU devices
themselves.

However, current research on GPU dynamic allocation [1],
[12], [16] primarily focuses on the performance of the allocation
itself, while often overlooking the alignment with the GPU’s
memory access behaviors. In practical applications, memory is
allocated just once but accessed multiple times [19]. Ignoring the
performance implications of these repetitive memory accesses
can compromise their effectiveness. For instance, the discrete
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Fig. 1.  Memory Access Performance of Random Walk.

memory blocks designed in Synchronization allocator [15] can
lead to decreased memory coalescing, impacting the overall
memory access efficiency, despite the satisfactory allocation
performance. Moreover, mismatches of memory access
behaviors in UVM systems introduce more significant overhead.
Different from accesses within the GPU, which may result in
LI or L2 cache misses, UVM mismatches often lead to fre-
quent page transfers between the host and the device, causing
more time costs. Through a graph clustering test with random
walk [8], [20], we further discover significant inefficiencies in
UVM access within the current SOTA system [12]. As shown
in Fig. 1, SyncMalloc’s cost is up to 200x higher than the
baseline scenario focusing solely on random access time [20],
with UVM-related costs accounting for half of the total runtime
as the graph scale increases.

To address the challenges of UVM mismatches in GPU
memory management, we propose AlignMalloc, a novel dy-
namic allocation system specifically designed to align memory
arrangement with the underlying UVM prefetching strategy for
large-scale applications. By leveraging the unique character-
istics of GPU warps, warp-aware memory rearrangement is
introduced as a strategic guide to optimize memory layouts
during dynamic memory allocation. AlignMalloc provides users
with specific libraries for allocation and access at the application
level. To the best of our knowledge, AlignMalloc is the first
system to comprehensively address both memory allocation and
access performance concurrently.

AlignMalloc is designed to effectively tackle the inefficien-
cies associated with UVM memory access. In our experimental
analysis of a graph clustering scenario, we broaden our under-
standing by identifying a correlation between thread access spar-
sity and the efficiency of UVM prefetching. Further exploration
into tracking page faults within the UVM strategy highlights
a fundamental issue: the dynamic nature of memory access,
which is dictated by the running program’s logic, contrasts with
the static setup of the UVM scheduling and scopes. This mis-
match leads to diminished prefetching hit rates and the increased
prefetching pages, thereby incurring the associated overheads.

To tackle the above foundational discrepancy, AlignMalloc
introduces a warp-aware memory rearrangement that aligns
closely with the underlying UVM prefetching strategy for large-
scale scenarios. Recognizing the homogeneity in memory access
behaviors among threads within a warp, we leverage the regu-
larity introduced by warps to act as a bridge between the static
setup of UVM prefetching and actual memory arrangement,
ensuring consistency. Specifically, we transpose the memory
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layout focusing from on individual threads to the warp-level
behavior, enhancing the prefetching hit rate by coordinating with
UVM prefetching scheduling. Moreover, to further align with
the UVM prefetching scope, AlignMalloc introduces a subtree-
based arrangement that organizes memory across warps, which
is designed to minimize prefetching interference among differ-
ent warps. These adjustments at different granularity levels—
within individual warps (intra-warp) and among multiple warps
(inter-warp) phases—constitute the core of our warp-aware re-
arrangement strategy.

Building on the warp-aware rearrangement strategy, we in-
troduce a host-co-managed memory system within an OR tree-
based structure to enhance the management of dynamic alloca-
tion. This architecture processes memory requests organized by
the GPU warp units to align with warp-aware rearrangement.
Each node of the OR tree recursively stores a logical O R value,
indicating the availability of memory blocks involved by its child
leaf nodes. It allows for an operational time complexity of O(log
n) for the memory allocation without requiring a large amount
of memory space.

Our contributions can be summarized as follows:

® We propose AlignMalloc, a solution that directly addresses
the fundamental issue of inefficiency in UVM prefetching,
significantly enhancing both memory allocation and access
performance for large-scale applications.

e AlignMalloc introduces a warp-aware memory rearrange-
ment, which leverages the regularity and locality inherent
in the warp to align with the UVM static strategies.

* A memory management system within an OR tree-based
architecture co-managed with the host is introduced in
AlignMalloc, to enhance the management of dynamic al-
location with a warp-aware rearrangement strategy.

® Our proposed system, evaluated through comprehensive
experiments, significantly outperforms current SOTA dy-
namic allocators in both allocation and memory access
performance within large-scale scenarios.

1I. BACKGROUND
A. Page Fault Processing in UVM

Unified Virtual Memory (UVM) was introduced in CUDA
6.0 as a paradigm to unify the address spaces of CPUs and
GPUs [21], simplifying memory management in heterogeneous
computing environments. UVM establishes a single unified ad-
dress space, which facilitates seamless memory access for both
host and device kernels under the same virtual environment,
without the need for explicit management of memory-specific
locations. This abstraction allows programmers to focus on tasks
themselves rather than the intricacies of host-device memory
migration, as the UVM driver handles the scheduling of memory
resources across devices.

When a memory resource accessed by a warp is not present
on the local device, a page fault is triggered, causing the warp
to stall while waiting for the remote resource to be fetched [22].
During this waiting period, the warp scheduler proactively swaps
in other non-faulting warps, effectively masking the memory
access latency and maintaining overall device efficiency. To
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further enhance the efficiency of host-device transfers during
fault processing, GPUs employ a batching process for handling
faults. This process involves collecting multiple faults in a page
fault buffer until a predetermined threshold is reached. Once
accumulated, the batch of faults is serviced by the host, which
allocates the appropriate physical pages and transfers them back
to the requesting device. Following the processing, a replay
signal is sent to the device to wake up the warps and the GPU is
instructed to flush the page fault buffer and prepare for the next
iteration of fault handling.

B. Prefetching Strategy

To mitigate the substantial overhead associated with fault
processing and the subsequent stalling of warps, UVM has
introduced a strategy known as prefetching, which involves
fetching data in advance to the device, effectively reducing
the frequency of page faults [23]. UVM prefetching can be
divided into two types. The first type allows programmers to
provide hints about UVM memory blocks, including preferred
locations, read mostly settings, and access with specific devices.
By leveraging these hints, UVM devises appropriate scheduling
strategies for the memory blocks. However, this prefetching
approach requires programmers to possess a high degree of
foresight regarding the usage patterns of memory blocks.

The second type of prefetching, is dynamically managed
at runtime by the underlying UVM scheduler. This strategy
uses a 64 KB block as the basic unit for prefetching rather
than a standard page. Specifically, during fault processing, the
UVM system assesses data locality by examining the physical
locations of blocks adjacent to the one experiencing the fault.
This locality assessment leverages the Tree-based Neighbor-
hood (TBN) data structure to predict which memory blocks
will likely be needed shortly and fetches them to the device
alongside the faulted block. Our paper primarily focuses on
optimizing the memory arrangement to align with this dynamic
prefetching mechanism, aiming to significantly improve the hit
rate of prefetching.

C. Tree-Based Neighborhood Structure

The TBN is a full binary tree comprising 63 nodes, including
32 leaf nodes, each representing a basic block within a continu-
ous segment of UVM address space. Capable of representing up
to 2 MB of UVM memory, termed a VABlock, the prefetching
scope is confined to this 2 MB segment.

Fig. 2 simplifies this semantics with a 15-node TBN illustra-
tion. The capacity of each tree node reflects the ratio of basic
blocks that are physically present in the device, as covered by
the node’s child leaf nodes. In Fig. 2, Node;’s capacity hits
50%, indicating that two (Blocks; 3) out of the four basic blocks
represented by its child leaf nodes (Blocks(_3) are located in
the target device. When a fault occurs, the node capacities are
updated recursively from the affected leaf node up to the root.
If any node’s capacity surpasses the set maximum threshold
(default set at 50%), the basic blocks corresponding to that
node’s child leaf nodes are transferred to the device as part
of the prefetching operation. For example, in Fig. 2, should a
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fault in Block trigger, N ode;’s capacity would update to 75%,
exceeding the threshold. Subsequently, Blocks, too, would be
prefetched to the device.

III. MOTIVATION

This section motivates the proposed warp-aware rearrange-
ment by analyzing the foundational mismatch between the mem-
ory arrangement and UVM prefetching.

A. A Random Walk Case

In this setup, 1,000 threads perform a random walk on a
graph structure as an adjacency list, dynamically allocating their
linked lists within the UVM space. We vary the graph’s scale
by adjusting node counts and connectivity within the graph. For
instance, the graph scale 1 is defined by setting the number of
nodes at 16 K and the size of each thread’s adjacency list at
128 edges. Fig. 1 highlights the significant overhead caused by
UVM in graph clustering using a dataset [24], [25] commonly
employed by advanced dynamic allocators [1], [16]. To gain
deeper insights, we use page faults and prefetching effectiveness
as key metrics [26]. Fig. 3(a) shows that increased page faults
directly correlate with higher UVM access overhead. Further-
more, as the scale of the graph expands, a significant decrease in
utilization is observed, indicating many pages remain unused.
The evaluation of the random walk case reveals that UVM is
inefficient in managing large-scale graph data.

Theoretically, when the scale of access—specifically, the
quantity of edges and nodes accessed—remains constant, the
amount of memory introduced from the host to the GPU should
also remain stable, regardless of changes in the graph’s scale.
However, experimental results indicate that an increase in the
graph’s scale leads to a corresponding increase in the number
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of UVM pages and overall memory usage. We delve into the
memory access patterns of the application to understand this
phenomenon better. A random walk of a thread involves access-
ing a linked list from the graph’s adjacency list, sequentially
organized in the UVM. The memory allocated to thread; 1 im-
mediately follows the address allocated to thread;. As the graph
expands, the intervals between the memory spaces accessed
by consecutive threads widen. Based on this observation, we
hypothesize that the enlarged intervals which lead each thread to
access broader memory spaces, may incur more irrelevant pages
into the UVM and thereby generating significant overhead.

B. General Access Pattern Evaluation

To validate the hypothesis proposed in Section III-A, we
extend our investigation to more general problems by manip-
ulating the intervals between memory spaces of consecutive
threads. By setting the different padding sizes in the memory
intervals, we elucidate the correlation between the sparsity of
memory intervals and UVM prefetching. Results depicted in
Fig. 3(b) illustrate that the number of page faults increases with
the node padding size; however, this trend begins to plateau
after a padding of 4 KB, eventually stabilizing. Specifically, at
a padding of 4 KB, that is a 2 MB gap between thread accesses,
the number of page faults reached an average of 120 per thread.
Compared to an average of 50 random accesses per thread, half
of the prefetching activity is wasted on unused memory blocks,
highlighting a high volume of irrelevant prefetching faults. How-
ever, when the padding is reduced to 648 or 32 B, the page faults
drop significantly to about 5 per thread, demonstrating a 10 : 1
memory reuse ratio for prefetching. These findings underscore
that different accessed memory sparsity yields markedly differ-
ent impacts on prefetching efficiency. The sparser the thread
access, the greater volume of irrelevant memory introduced by
prefetching.

C. Analysis on UVM Strategy

To investigate how the UVM prefetching strategy fails to
accurately prefetch relevant pages in sparse memory access sce-
narios, we track page faults across designated memory blocks.
Each thread is assigned to access blocks indexed by 0, 1, 2, and
4, each block sized at 64 KB.

Fig. 4(a) shows the occurrence of memory faults when all
threads access blocko 1 in parallel. Specifically, in batchy, the
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page fault buffer collects page faults from block for 14 threads
in warpy and dispatches them to the host for processing. This
procedure is repeated in two subsequent batches for the remain-
ing faults within warpy. The simultaneous triggering of page
faults by the threads within a warp enables the UVM strategy
to process similar memory patterns in batches, which enhances
the optimization of UVM page faults through improved memory
coalescing.

However, Fig. 4(b) reveals prefetching inefficiencies by fo-
cusing on page fault specifics and subsequent prefetching activ-
ities within a thread. At the end of the blocksg 1 accesses, the
prefetcher erroneously brings in blocks during the processing of
blocks’s faults and imports blockss_7 when accessing blocky,
despite no actual access requirements in our access plan. This
misprediction stems from the UVM prefetching strategy, which
predicts future access by determining if memory blocks in the
contiguous UVM context have been migrated to the GPU. Given
that blocksg_4 are already loaded, the strategy assumes a high
likelihood of subsequent accesses to blockss_7, prompting their
premature migration. However, the actual access by threads to
these blocks is highly uncertain due to the block allocation within
the same thread space, introducing potential access misses, mag-
nified across threads sharing similar access logic. Nonetheless,
reducing the memory intervals can substantially alter outcomes.
Since the UVM prefetching strategy remains constant, the previ-
ously unaccessed blockss_7 may be accessed by other threads,
potentially enhancing the prefetching hit rate. Thus, although
batch processing in UVM enhances memory coalescing in page
faulting, the uncertainty in thread access significantly impacts
the effectiveness of UVM prefetching, which arises from the
dynamic nature of thread parallel access.

D. Fundamental Causes

The UVM prefetching strategy, initially modeled after tra-
ditional CPU memory management practices [27], evaluates
data locality by examining the physical locations of memory
blocks adjacent to the fault block within the UVM. However,
this strategy faces challenges within GPU applications where
memory access patterns are dynamically determined by the pro-
gram at runtime. This dynamic nature of parallel execution often
misaligns with the relatively static setup of UVM prefetching
strategies and scopes.

For instance, as depicted in Fig. 5(a), in scenarios involv-
ing large-scale data, each thread may manage multiple basic
blocks. If a page fault occurs at Block;, the UVM prefetching
strategy will decide on prefetching based on whether the ad-
jacent Blocksg o are within the target device, but these UVM
blocks still pertains solely to thready’s space. Essentially, UVM
prefetching analyses the memory usage within T'hread in a
one-dimensional, localized manner similar to CPU analysis for
single process. This strategy, while straightforward, could lead
to erroneous prefetching predictions. In the CPU context, such
errors might not significantly impact performance due to the
serial operation in a single process. However, in GPUs, utilizing
the Single Instruction, Multiple Threads (SIMT) architecture,
an incorrect prefetching prediction at single instruction could
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lead to compounded errors across multiple threads due to sim-
ilar memory access behaviors, thereby exacerbating prefetch-
ing inefficiencies. This raises the question of whether UVM
prefetching in GPUs could be restructured to predict the data
locality across a group of threads simultaneously at a single
instruction point. For example, as depicted in Fig. 5(b), by
predicting access to block ;. for all threads at Instructiony,
prefetching could not only be made more accurate but also pre-
vent the amplification of single-thread prediction errors across
concurrent threads.

IV. RELATED WORK
A. GPU Dynamic Allocation

Dynamic memory management structures for GPU applica-
tions are generally categorized into three types: array, linked list,
and hybrid. Halloc [28] first introduced an array-based system
that segmented memory into pre-divided fixed-size pages and
utilized arrays to manage the states of these pages. To mitigate
synchronization overhead and prevent race conditions amid mas-
sive parallel memory requests, Halloc employed hash functions
to reduce the frequency of request collisions. Building on this
structure, Pham et al. [15] proposed a Synchronization Allocator
that implemented threads to randomly search for free pages,
applying memory locks at the discrete page level rather than
the broader management operation level, thus minimizing the
granularity of synchronization. To address the significant frag-
mentation caused by static pre-division in array-based systems,
Throughput-Oriented [29] and NBBS [30], employed linked
lists to manage memory segments of flexible sizes, enhancing
adaptability to varying request sizes. Specifically, these systems
progressively subdivided the entire memory space into smaller
buddy blocks until the size met the memory request, thereby
optimizing the utilization of available memory. However, main-
taining the coherence of linked lists in parallel setups can incur
substantial overhead.

Drawing inspiration from the Hoard’s [31] multi-level strat-
egy for CPU, hybrid frameworks like XMalloc [32], ScatterAl-
loc [33], and FDG [34] combined the strengths of both linked
list and array-based structures. These systems managed large
memory allocations using linked lists and governed smaller
allocations with arrays, striking a balance that minimized both
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overhead and fragmentation. To further accommodate diverse
sizes of allocation requests, Ouroboros [14] introduced addi-
tional hierarchical levels, including virtualized queues, chunks,
and pages.

Different from conventional structures, Gallatin [16] intro-
duced vEB trees, designed to support allocation operations with
a complexity of O(log log n). However, due to the limited
atomic capacity of GPUs, Gallatin’s practical performance often
suffered a substantial loss. Additionally, the VEB tree structure
consumed considerable memory resources. In contrast, Align-
Malloc employed a novel OR tree-based management structure
that efficiently handled large memory requests within warp
without requiring extensive memory space. Furthermore, this
structure seamlessly integrated with the warp-aware memory
rearrangement, providing a solid foundation for optimizing
memory access.

B. UVM Prefetching

While existing research on UVM prefetching optimization
acknowledges the issue of overly aggressive prefetching [22], it
has not delved into the underlying causes as comprehensively as
our study. Typically, current research solutions focus on dynam-
ically adjusting the prefetching based on real-time observations
of the GPU environment.

Building on a detailed analysis of the TBN structure in UVM
prefetching strategy [23], Ganguly et al. [35] proposed an online
placement strategy that dynamically adjusted the threshold for
page placement based on memory patterns in CPU-GPU in-
terconnect traffic. To enhance real-time performance and adapt
to seasonal information trends, memory utilization [36] and
historical page fault records [37] were incorporated to guide dy-
namic modifications in prefetching. Concurrently, Yu et al. [38]
proposed a cost model based on these factors and employed
statistical analysis to fine-tune the intensity of prefetching. Al-
ternatively, Li et al. [39] employed throttling of GPU SMs to
modulate prefetching intensity in response to excessive page
faults. Addressing the limitations of throttling in large-scale
scenarios, Kim et al. [40] increased thread concurrency by
dispatching additional thread blocks to an SM. However, merely
reducing prefetching intensity failed to address the underly-
ing problem—the imprecise perception of locality leading to
low prefetching accuracy. Furthermore, Nvidia’s latest UVM
driver release [41] explicitly acknowledged a bug related to the
complex TBN, which prevented support for dynamic threshold
modifications for prefetching.

Different from existing research, AlignMalloc optimizes
memory arrangements during allocation to align with the UVM
prefetching strategy. By preserving the integrity of the underly-
ing UVM strategy, AlignMalloc mitigates potential disruptions
to other applications.

V. DESIGN OF ALIGNMALLOC

To address the fundamental discrepancy in UVM access,
AlignMalloc introduces a warp-aware memory rearrangement
strategy that aligns the memory access layout with the underly-
ing UVM prefetching strategy for large-scale dynamic allocation
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applications. Warps, serving as logical units in GPU, provide a
stable basis for predicting memory access due to the consistent
access behavior exhibited by the threads within a single warp,
making them ideal intermediaries to bridge the gap between
the dynamic memory access arrangements and the static setup
of UVM prefetching. By shifting the focus from individual
threads to whole warps, the strategy can leverage the inherent
regularity in warp behavior, significantly enhancing the accuracy
of prefetching by achieving memory coalescence.

The warp-aware strategy consists of two phases, each address-
ing different granularity levels. The intra-warp rearrangement
is fine-grained, focusing on rearranging the memory layout of
individual threads within a warp to align closely with the UVM
scheduling units. Such alignment enables the UVM strategy to
accurately detect and respond to the thread access similarity
within a warp. For the inter-warp rearrangement, memory allo-
cated to a warp is aligned with the UVM prefetching scope,
effectively synchronizing the execution logic partitions with
UVM’s overall strategy and scope. This alignment ensures that
prefetching within each warp remains independent, preventing
interference from other warps.

A. Intra-Warp Rearrangement

During the intra-warp rearrangement phase, we refine the
memory layout within each warp to align with UVM scheduling
units, enhancing prefetching accuracy. As shown in Fig. 6, the
dynamic memory requests from threads ¢y through ¢,,_; within
a warp are divided into tiles according to the UVM’s scheduling
unit of 64 KB. Any remaining portions that do not meet this size
are further subdivided into segments of 2¢ x 4 KB,i € Z. The
system distributes tiles of each thread into Virtual Blocks (VBs)
alternately within the UVM space, rearranging the memory
layout with fine granularity to align with prefetching units. While
the existing UVM prefetching strategy, which predicts the mem-
ory locality based on its contexts in the GPU device, remains
unchanged, the UVM memory layout is adjusted to better match
this strategy. When a thread accesses a memory block in UVM,
the adjacent memory blocks accessed by other threads within the
same warp tend to exhibit highly similar access behaviors. Thus,
if a memory block triggers a page fault, the adjacent blocks are
likely to be accessed soon, taking advantage of the regularity in
warp behavior. This rearrangement shifts the UVM prefetching
from predicting the access behavior of individual threads to
anticipating the collective behavior of multiple threads within
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a warp, which achieves memory coalescence within warps,
consequently enhancing the accuracy of prefetch predictions.

In actual UVM scheduling, page faults are handled in batches
rather than individually. This batch processing may split page
faults within a warp, potentially causing deviations from the
warp-aware scheduling. To maximize prefetching, we optimize
the memory access pattern of threads within a warp. For instance,
the initial part of the pattern is arranged in the sequence thread of
0,1,2,4,6, etc., where prefetching is most likely to be activated.
The sequence thread of 3, 5, 7, and so forth is placed towards the
end of the pattern as targets for future prefetching. Additionally,
at the end of the batch, we ensure the pattern remains sufficiently
discrete to provoke prefetching for the next batch.

AlignMalloc employs a systematic address translation to map
user thread’s memory access (Userqqqr,) to the corresponding
UVM address (UV M,q4-). When memory is accessed via the
AlignMalloc-specific library, U serqqq; is passed as a parameter
to retrieve the actual address. The translation starts by utilizing
the base address of the dynamic memory space to establish
the initial offset (OF). This offset serves as a critical step in
determining the block offset (O B), which identifies the specific
block containing the data. (O B) is calculated as follows:

OB = OF/64 KB M

Following this, the translation to the actual UVM address is
computed using a specific formula:

UV Mgaar =Userqqar+(OBxW S+ Lane;p —OB) x 64
)
where W S represents the number of threads in the current warp,
and Lanerp denotes the thread ID within that warp.

B. Inter-Warp Rearrangement

When the memory layout across warps is densely allocated
and controlled by a single prefetching unit, the warp prefetching
strategy may be adversely affected by adjacent warps, potentially
introducing irrelevant pages from them. For instance, consider
the memory distribution depicted in Fig. 2, where the mem-
ory managed by subtree rooted at [Ny represents the tail end
of warpy’s memory blocks, while subtree No represents the
beginning portion of memory for warp;, both within the same
VABIlock. When a page fault triggered by blockg occurs, and
because Np’s capacity exceeds its maximum threshold, blocks
is prefetched to the device. Concurrently, because the combined
capacity of Ny exceeds 50%, it triggers the prefetching of all
blocks (blockss_7) under No, which are actually part of warp; .
Although prefetching blocks aligns with the access patterns of
warpy, dragging blocks from warp; into the prefetch operation
due to the mismatch of the actual usage patterns can lead to
irrelevant data being fetched.

To minimize this cross-warp interference in prefetching de-
cisions, AlignMalloc employs an inter-warp rearrangement that
precisely aligns the memory allocated to each warp with the
UVM prefetching scope. Specifically, our method leverages a
dynamic subtree-based strategy that utilizes padding within the
unified virtual space. This padding serves to distinctly delineate
the prefetching boundaries for each warp, ensuring that the
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Algorithm 1: Initialization of PortionSpace.
1:  Create PortionSpace with VABlocks
2: Build PortionTree as a binary full tree
3: for each node n in PortionTree do
4. FreeNodeArray[n] < 1
5: end for

UVM prefetching scheduling is concentrated exclusively on
the memory segments being accessed by the current warp, thus
avoiding influence from other warps. Additionally, this strategy
ensures these paddings are primarily retained within the virtual
space and not translated into physical memory space during
prefetching.

Fig. 7 delineates how the warp memory is organized with the
size, M,,. When M,, exceeds the VABlock size (2 MB), the
allocated memory of a warp is divided into 2 MB blocks, as
shown in Fig. 7(I). For any portions under 2 MB, Fig. 7(II) illus-
trates the subtree-based arrangement that consolidates these seg-
ments into a VABlock’s space. Specifically, a warp space sized
2! x 64 KB is structured for M,,, where 2(-1) x 64 KB <
M, < 2" x 64 KB, i € Z. Within a VABlock, a binary full
subtree of height 7 + 1, matching the leaf node configuration
of TBN, is allocated for this warp space, named warptree. The
allocation of these subtrees must satisfy that the binary full trees
formed by the parents of the root nodes of any two adjacent
warptrees within a VABlock do not overlap. Fig. 7 exemplifies
the arrangement of two warp subtrees, and the respective formula
is defined as follows:

VTl, T2 S V;g, T{ OTQI = @
where 7(T7) = p(r(T1)), r (T3) = p (r(T2)) (3)

where V; represents the set of warptrees within a VABlock
space, and p and r denote the functions to get the parent node
and root node, respectively.

Portions smaller than 2 MB are arranged using a subtree-
based algorithm within a dedicated UVM space, PortionSpace.
PortionSpace consists of 2048 VABlocks and is managed by
a binary full tree structure, PortionTree, based on the TBN
model, as shown in Algorithm 1. A bit array, FreeNodeArray, is
employed to represent the free status of nodes in PortionTree. If
a binary subtree rooted at a node has all its leaf nodes available
(i.e., unallocated), the corresponding element is marked as ‘1°;
otherwise, it is marked as ‘0’. When allocating a portion of
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Algorithm 2: Memory Allocation in PortionTree.

Require: Requested size M),

1: S« 2Mos2(Mp/64KB)[ 64 KB
2: h < [logy(M,/64KB)] +1
3: retAddr < —1
4:  for each node n at height h do
5: if FreeNodeArray[n] == 1 then
6: Allocate memory to a leaf node under subtree n
7. ret Addr < address of FreeNodeArray[n]
8: /* update node status x/
9: p < leaf node index allocated
10: while p is not root do
11: p < parent of p
12: if any child node of p is marked O then
13: FreeNodeArray[p] < 0
14: end if
15: end while
16: break
17: end if
18: end for

19: returnret Addr

size M, the portion is expanded to the nearest size that fits

a binary subtree, Q[IOgQ(%)] x 64 KB, forming a warptree.
The subtree-based algorithm, shown in Algorithm 2, searches
FreeNodeArray to identify a free node at the height of the
parent node of the root, ﬂogg(%ﬂ + 1. Once a free node
is located, the portion is allocated to the corresponding leaf
node in PortionTree. Following the allocation, the node status is
recursively updated from the leaf node upwards to the root.

Before demonstrating how our subtree-based arrangement ef-
fectively prevents interference from other warps during prefetch-
ing processes, we delve into the underlying prefetching strategy
with TBN and further propose several theorems in the relation-
ship between memory occupancy and prefetching dynamics. In
this framework, 7" represents TBN nodes of a VABlock, except
for the leaf nodes. Functions p, b, and c are defined to identify the
parent, sibling, and children nodes, respectively. Furthermore,
U is employed to quantify the capacity of each node, specifically
measuring the proportion of UVM blocks that are currently
loaded into the GPU’s physical memory. The maximum capacity
threshold is maintained at the default setting of 50%.

Theorem 1: Yt € T,0 < U(t) < 50%, or U(t) = 100%.

Proof: Consider the prefetching strategy, which indicates
once U(t) > 50%, all memory blocks associated with ¢ are
migrated to GPU devices, resulting in u(t) = 100%. [ |

Theorem 2: vt € T, if a prefetching occurs at ¢, then either
U(b(t)), or U(c(t)) updates.

Proof: Inthe architecture of the UVM system as disclosed by
NVIDIA [41], the updating U strategy is inherently recursive,
originating from the leaf nodes during page faults. V¢ € T, the
update to U (t) is triggered by one of two primary events. The
first is an update to U(c(t)), which subsequently propels a
recursive update upward through the node’s ancestry. The second
trigger occurs when U (b(t)) is updated, and the U(p(t)) > 0,
a predetermined prefetching threshold. This condition initiates
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prefetching activities, leading the UVM system to migrate all
memory blocks associated with the child leaf nodes of p(t) to
the GPU’s physical memory. |

Theorem 3: ¥t € T, if a prefetching occurs at ¢ for the update
of U(b(t)), then U(b(t)) = 100%, and U (t) > 0.

Proof: ¥t € T, aprefetching occurring at ¢ for the update of
U(b(t)) implies that u(p(t)) > J, the prefetching threshold.

Let f(t) = U(p(t)) — 6 = LOIID _ 5 For f(2) > 0, it
is necessary that U(t) > 0, when 6 > 50%; or U(t) > 5_570%,
when § < 50%. Now, & = 50%, then U () > 0.

Suppose, that 3t', U(b(t')) # 100%. According to Theo-
rem 1, this implies U(b(t')) < §. Consequently, U(p(t')) =
UeE)+Ut) <. This is a contradiction because V¢ €
T,U(p(t")) > 4. |

Demonstrating the effectiveness of the subtree-based method
in preventing interference among warps: This proof'is structured
into two parts. Firstly, we prove the necessity for the nodes
formed by the warp memory blocks to be organized as a bi-
nary full subtree. Secondly, we address the specific conditions
necessary for arranging the root nodes of the warptrees within
a VABIlock to remain independent.

Proof of the Necessity for N,, to be a Binary Full Subtree:
Vn € N,, n is not interfered by prefetching from other warps.
This isolation implies Vn' that can affect prefetching, then n' €
N,,. According to Theorem 2, this results ¥n € Ny, b(n) €
Ny, and ¢(n) € N, thereby implying CI(N,,) = Ny. Ny, C
T, then N,, is an induced subtree of 7'. |

Proof of Arrangement: N,, is a binary full tree. root(N,,) is
not interfered with other warps. This implies Ab(root(N,,)),
or according to Theorem 3, b(root(N,))=0. (i) If
Pb(root(Ny,)), then N, is T'. (i4) If b(root(N,,)) = 0, then the
binary full trees formed by p(root(N,,)) of any two adjacent
warptrees do not overlap, according to Theorem 2. |

In the subtree-based arrangement, the memory intervals be-
tween warptrees are designated as padding. Our proof demon-
strates that memory migration induced by prefetching is con-
fined exclusively to the warptree. As aresult, the padding areas
outside of these subtrees do not undergo migration to the GPU,
thereby, not occupying significant GPU physical memory space.
Additionally, because prefetching activities are limited to the
subtree, any updates to the memory utilization U triggered by
page faults are confined to this area as well. This localization
restricts the recursive updating of U to the path from the leaf
to the root node of the subtree, without involving any of the
padding nodes. Thus, it also introduces minimal computational
overhead during the prefetching process.

VI. MEMORY MANAGEMENT SYSTEM
A. Overview

To enhance the management of dynamic memory allocation
within the UVM system, the proposed AlignMalloc integrates
the warp-aware rearrangement strategy into a host-device
co-managed memory system. Fig. 8 illustrates the architecture
of this system, which is divided into three main components: the
host side, the device side, and the UVM space. The UVM space
serves not only for dynamic allocation but also acts as a conduit
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for communication between the host and device. The memory
management system is designed to optimize the handling of
memory requests at two distinct levels of granularity: a fine-
grained level within warps in GPU devices and a coarse-grained
level managed by the host, each specifically designed to support
the unique needs of warp-aware rearrangement.

At the fine level, the Warp Scheduler consolidates thread allo-
cation requests within a warp into a unified one via a reduction
process. This request is subsequently handled by the host, while
the warp awaits the return of the allocated address. During
this interim, the Warp Scheduler registers memory allocation
metadata for each thread, effectively overlapping the registration
overhead. Once the allocated addresses are received from the
host, the Warp Scheduler launches intra-warp rearrangement,
transposing the memory layout within the warp memory chunks.
Additionally, the Warp Scheduler registers each thread’s offset
into the Address Translator, facilitating subsequent memory
access. Finally, the Warp Scheduler distributes the allocation
addresses to each thread.

At the coarse level, rather than allocating a new address
segment for warp allocation, the host identifies suitable free
memory blocks within a pre-allocated super UVM address
chunk and returns the starting address to the device. To fulfill the
warp memory requests in the inter-warp rearrangement phase,
which are organized into VABlocks of 2 MB each, the memory
management system segments the continuous UVM address
space into discrete units of the same size. To adeptly manage
these segments, an OR tree-based management system is in-
troduced. Once a suitable address is found, the host rearranges
the inter-warp memory based on the layout of memory among

warps.

B. OR Tree-Based Management

OR Tree-based management system is structured as a binary
full tree, where each node represents the occupancy status of
a UVM segment with a single bit, as depicted in Fig. 9. The
OR tree-based structure streamlines operations and maintains a
time complexity of O(log n), facilitating the rapid identification
of free memory blocks without consuming extensive memory
resources.
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In the OR tree-based structure, the leaf nodes correspond to the
states of UVM segments, where ‘1’ denotes idle and ‘0’ indicates
occupied. Each non-leaf node in the tree represents the logical
OR of the state of its two child nodes, indicates whether there
is a free memory segment available within the memory range
covered by its child leaf nodes. Updates to the nodes are carried
out recursively upward, applying the logical O R operation until
the root node is reached. The root has a global view, and in
the top-down manner, the scope progressively narrows until a
free segment is reached. This method ensures that each level of
the tree reflects the overall availability of free memory across
various scopes quickly.

To minimize memory fragmentation, OR tree-based man-
agement prioritizes locating a free segment with the minimum
sequence number via the OR tree, ensuring the continuity of
memory space. Specifically, the search for a free segment begins
at the root node of the OR tree. The system consistently selects
the leftmost non-zero child node at each level, descending down
to the leaf node. The segment corresponding to this leaf node
is identified as the free segment with the current minimum
sequence number. Once the segment is allocated, the node states
are updated recursively, starting from the leaf node and progress-
ing upward to the root node. Both search and update operations
maintain a computational efficiency with a time complexity of
O(log n).

When the requirement extends to locate k£ consecutive free
segments, the procedure first identifies the segment with the
minimum sequence number to check if it can satisfy the need for
k consecutive segments. If the initial segment does not suffice,
the search proceeds from the last consecutive free segment to
find its successor. This involves starting from the leaf node of
the last free segment, traversing up the tree until a node is found
that is the left child of its parent node and whose right sibling
node indicates availability. The search then continues for the next
free segment with the smallest sequence number starting from
that sibling node. Fig. 9 depicts the search route for identifying
the successor nodes. This method with the successor search
continues until k£ consecutive free segments are located, with a
worst-case time complexity of O(k log n).

C. Discussion

We provide a comprehensive comparison between
AlignMalloc and existing approaches, focusing on both
the memory management architecture and the underlying data
structures.
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Co-Management vs. GPU-Based Management: AlignMal-
loc’s host-device co-management overcomes the scalability
limitations of previous GPU-based memory management sys-
tems, by offloading the branching demands of management
tasks to the host. In this framework, the GPU collects mem-
ory requests from threads within a warp and forwards them
to the host, leveraging the CPU’s serial processing capabili-
ties. This offloading alleviates the computational burden on the
GPU, allowing it to focus on parallel processing. Additionally,
co-management addresses memory shortages by dynamically
swapping inactive pages to the host when memory exceeds
physical capacity. Finally, the use of dynamic data structures
on the host side enhances scalability and robustness for large-
scale memory allocations by replacing static pre-definition. In
contrast, pre-defining memory slabs and management structures
for large allocations in GPU-based systems presents signifi-
cant challenges, increasing the likelihood of underestimating
available resources. Consequently, this often leads to allocation
failures.

OR Tree Vs. vEB Tree: While both the OR tree and VEB tree
exhibit the same time complexity, the OR tree outperforms the
vEB tree in terms of both operational efficiency and memory
utilization in practical memory management tasks. The OR tree
begins the search at the root node and continuously selects the
leftmost non-zero child node at each level, descending toward
the leaf nodes. Similarly, updates occur recursively from the
leaf to the root. As a balanced binary tree, both the search
and update operations involve traversing a logarithmic number
of levels, with a time complexity of O(log n). In contrast,
the VEB tree’s practical performance in Gallatin is hindered
by the limited atomic capacity of GPUs, reducing its search
complexity to O(log n) rather than the theoretical O(log log
n). Specifically, Gallatin eliminates the maximum and minimum
values of tree nodes, necessitating more complex insertions
for summaries, where the complexity can be expressed as the
following recurrence: T'(n) = 27 (y/n) + O(1). According to
the Master’s Theorem, T'(n) = O(log n).

In terms of memory operations, the OR tree only requires
bitwise OR operations on each node, whereas the VEB tree in-
volves comparing the elements within the clusters and managing
extreme values. This additional complexity in Gallatin leads to
higher read/write frequencies and greater operational overhead.
Moreover, the OR tree is highly efficient to construct, requiring
only the allocation of a boolean array with all elements setto ‘1°,
which takes O(1) time. In contrast, constructing the vEB tree
requires O(n) time, with the overhead typically around 20 ms.
Additionally, the OR tree is more memory-efficient, requiring
only a boolean array of size n, while the VEB tree requires
more complex memory structures, including extreme values and
summary arrays.

VII. EXPERIMENTS
A. Experimental Setup

The Setting of Comprehensive Evaluation: We provide a
comprehensive evaluation of AlignMalloc, highlighting its per-
formance in dynamic memory allocation and memory access
through both synthetic benchmarks and real-world applications.
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The evaluation compares AlignMalloc against SOTA alloca-
tors [12], [14], [16], focusing on efficiency, stability, and scala-
bility in diverse scenarios.

AlignMalloc’s allocation performance is first analyzed under
singular allocation conditions, where it demonstrates strong
capabilities in handling varying allocation sizes. These exper-
iments are extended to scenarios involving oversubscription,
where memory demands exceed available resources, to evaluate
its stability under high pressure, as discussed in Section VII-B.
To verify the stability of AlignMalloc’s memory management
under substantial memory demands, we employ random allo-
cation tests in Section VII-E. Furthermore, by increasing the
number of threads, we examine the advantages of our memory
management system under extensive parallel threading condi-
tions in Section VII-D.

Secondly, AlignMalloc’s UVM access performance is evalu-
ated against SOTA UVM policies. This is rigorously tested by
enabling randomized memory access across substantial threads
concurrently in Section VII-E, showcasing the effectiveness
of AlignMalloc’s warp-aware arrangement within the UVM.
Detailed experimental comparisons and performance analysis
under oversubscription further affirm our method’s effectiveness
in Sections VII-F and VII-G.

To assess its practical applicability, AlignMalloc is tested
on the dynamic graph random walk algorithm, a widely used
benchmark in graph clustering tasks involving large-scale
datasets [25]. This application, commonly used for GPU dy-
namic allocator evaluation [16], provides a direct compar-
ison with SyncMalloc and highlights AlignMalloc’s supe-
rior performance in real-world dynamic allocation scenarios
(Section VII-H). Furthermore, eight representative UVM mem-
ory access patterns [38] are analyzed to evaluate the effectiveness
of AlignMalloc’s warp-aware design in optimizing memory
access for diverse real-world use cases, further validating the
effectiveness of our warp-aware arrangement in UVM access in
Section VII-I.

Baseline: For the comparison of memory allocation per-
formance, several well-regarded allocators were utilized as
baselines, including SyncMalloc [12], Gallatin [16], ScatterAl-
loc [33], and Ouroboros [14]. Traditional dynamic allocators
such as XMalloc [32], Halloc [28], and FDGAlloc [34] have been
reviewed in the dynamic allocation survey [1], which are not
considered SOTA according to their findings. Additionally, some
allocators, like Reg-eff [42], are incompatible with Nvidia’s
latest architectures. Consequently, these dynamic allocators are
not included in our baselines.

In terms of evaluating UVM access performance, several
established UVM prefetching policies were incorporated into the
comparison, including SyncMalloc [12], ThrottlingFetch [39],
DynamicACT [36], and Early-Adaptor [37]. ThrottlingFetch
and DynamicACT involved hardware modifications, making
them infeasible in actual GPU environments. Therefore, they
were reimplemented at the application level for analysis. Specif-
ically, ThrottlingFetch’s GPU SM throttling was simulated on
the host side by adjusting the maximum GPU power limit to
control parallelism. Similarly, DynamicACT’s access counter
threshold adjustments were modeled by dynamically tuning
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page placement thresholds in the host-side UVM kernel, based
on page occupancy.

System specification: The evaluations were performed using
an NVIDIA RTX 4090 GPU with 24 GB of DRAM, coupled
with a high-performance CPU, the 14900K F', featuring 24
cores. The hardware was operated within Ubuntu 20.04, using
CUDA version 12.04. To obtain reliable and accurate perfor-
mance results, each experimental setting was run 11 times.
The initial run was discarded to mitigate the impacts of GPU
warm-up, and the average time from the subsequent ten runs
was then computed as the final results. Additionally, to evaluate
the access efficiency of AlignMalloc, detailed memory tracking
was conducted using NVIDIA Nsight Systems.

B. Singular Allocation Tests

We assess the performance of singular allocations where
each thread’s allocation size varies randomly between 2™ and
27+1 bytes. Fig. 10(a) illustrates the allocation performance
across 16 K threads, with the byte size denoted by 2™ on the
X-axis. From the results, our method, AlignMalloc, excels in
handling large memory allocations, significantly outperforming
other methods in this area.

AlignMalloc can support allocations up to 4 MB per thread,
which totals 64 GB, 2.5 times the GPU’s physical memory.
This is achieved through the host’s co-management of dynamic
memory and integration with the UVM system. In comparison,
Ouroboros and Gallatin exhibit certain practical constraints.
Ouroboros, which relies on pre-allocated memory slabs for
different sizes, faces allocation failures under high memory
demand as pre-allocated resources are exhausted. Although
Gallatin theoretically supports up to 4 terabytes of memory
using a 3-level VEB tree, practical limitations arise from the
rapid depletion of data structures such as memoryTable and ex-
ternal fragmentation during large allocations. Gallatin mitigates
internal fragmentation by splitting 16 MB segments into smaller
blocks of various sizes to fit into memory requests. However, this
approach leads to scattered available spaces, complicating the
allocation of larger contiguous segments. In contrast, AlignMal-
loc addresses this by employing a host-side data structure with
a dynamic linked-list approach instead of static pre-allocation
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and using a fixed 2 MB memory block per node to reduce the
external fragmentation. Furthermore, AlignMalloc, integrated
with UVM page placements, ensures efficient memory usage
by evicting inactive pages to the host when memory exceeds
physical capacity.

Within the allocation range of 2 KB to 4 MB, our method sur-
passes SyncMalloc, achieving a maximum speedup of 2.7x. As
the allocation size increases, our method’s advantage becomes
more pronounced. This enhanced performance primarily stems
from the efficiency of our OR tree-based management, which
enables the quick location of free memory blocks with a time
complexity of O(log n). Consequently, our method maintains a
stable performance trend as allocated memory increases, prov-
ing particularly effective for large-scale memory demands in
GPU.

When the allocation size is reduced to 2 KB or less, Align-
Malloc’s performance gradually matches or even slightly lags
behind that of SyncMalloc. This is because SyncMalloc’s se-
quential search approach that implements a first-fit strategy
to locate available memory pages with a bitmap. Within this
allocation range, the number of pages involved is relatively
limited, enabling SyncMalloc to identify suitable pages more
quickly than our approach, which requires O (log n) lookups for
each operation.

AlignMalloc shows limitations in small allocation, partic-
ularly those below 512 B, where systems such as SyncMal-
loc, ScatterAlloc, and Ouroboros perform better. Despite their
performance advantages, all lack the flexibility required for
dynamic memory allocation in general-purpose applications. Es-
sentially, these methods operate by estimating and pre-allocating
fixed-size blocks of memory resources at initialization, which
is not different from using the static pre-allocation function,
cudaMalloc. Once the need for larger and more complex allo-
cations arises, these pre-allocation decisions become increas-
ingly difficult, leading to substantial overhead and memory
fragmentation due to potential misestimation. This inherent
limitation is highlighted by ScatterAlloc, which experiences
fragmentation with memory requests above 256 B due to scatter-
ing allocations across predefined memory regions. Ouroboros,
on the other hand, is also constrained by a maximum alloca-
tion limit of 0.5 GB due to the exhaustion of memory man-
agement resources. Similarly, SyncMalloc uses its slab-based
method primarily to enhance efficiency for small allocations,
but discontinues it once the allocation size surpasses 512 B
due to inadequacy in accommodating more variable memory
demands.

C. Random Allocation Tests

To simulate a more realistic scenario featuring multiple and
randomly-sized memory operations, we implement stringent
modifications to the random allocation benchmark originally
proposed by Zhang et al. [12]. In this enhanced benchmark,
16 K threads execute a series of random allocations and deallo-
cations multiple times. Diverging from the original benchmark
where each thread consistently allocates the same block size,
our modification assigns each thread a random allocation size
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Fig. 11. Performance for Scaling Allocation Tests.

ranging from 1 KB to 256 KB. Additionally, to better mimic
environments with high memory occupancy rates, we increase
the maximum number of memory blocks that can be allocated
by the system from 256 to 200 K.

Due to their limitations in handling such intensive and var-
ied memory management tasks, both Ouroboros and Gallatin
quickly exhaust their memory management resources—after
about 5 and 10 iterations, respectively. Consequently, Fig. 10(b)
presents a comparative performance solely between our method
and SyncMalloc.

In the random allocation benchmark, our method significantly
outperforms SyncMalloc. Moreover, as the number of iterations
increases, the superiority of AlignMalloc becomes increasingly
evident, with achieving improvements of up to 300x . This re-
markable efficiency of AlignMalloc is largely attributable to the
stability and effectiveness of the OR-tree memory management,
which excels in rapidly identifying free memory blocks. This
capability ensures that the average overhead for each iteration
remains stable at about 7 ms.

D. Scaling Allocation Tests

In scaling experiments, we evaluate the performance of Align-
Malloc across a spectrum of parallelism, expanding the number
of threads from 128 to 256 K, while maintaining a consistent
thread allocation size of 1 K and 8 K bytes.

The results, depicted in Fig. 11, confirm that AlignMalloc
consistently maintains robust performance as computing task
scales up, showing no significant degradation even at higher
scales. Remarkably, in large-scale parallel tasks involving 32 K
to 256 K threads, AlignMalloc outperforms all other SOTA
methods. For smaller-scale tasks, specifically when thread num-
bers range from 1 K to 4 K, Ouroboros shows superior perfor-
mance due to its statically pre-allocated memory blocks, which
enables rapid responses to allocation requests. However, as the
thread number increases, Ouroboros encounters difficulties in
adapting its pre-allocated blocks to meet the increasing requests
and subsequently faces depletion of these resources, which
leads to frequent rescheduling within its hierarchical structure.
At a thread allocation size of 8 KB, these challenges within
the memory management structures have even led to program
crashes, as shown in Fig. 11(b).

At lower scales of tasks, the performance of AlignMalloc and
SyncMalloc is comparably effective, with AlignMalloc occa-
sionally underperforming SyncMalloc initially. This is attributed
to the finer granularity of AlignMalloc’s warp-level memory
management, which, despite enhancing intra-warp memory
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management performance with SM’s underlying registers, in-
curs greater overhead on the host due to managing the increased
number of warps. However, as the thread scale increases, the
efficiency of AlignMalloc’s OR Tree-based system, which opti-
mizes the locating free memory to logarithmic time complexity,
gradually surpasses SyncMalloc.

E. Random Access Tests

In the random access tests, 1 K threads concurrently access
the dynamically allocated memory, with each thread making a
total of 100 random accesses. The memory access range for each
thread varies from 0.5 KB to 2 MB, comparing AlignMalloc’s
performance against several SOTA UVM policies, as shown in
Fig. 12.

The results indicate that while AlignMalloc does not exhibit
a significant advantage in small-scale memory accesses, it pro-
gressively outperforms all other UVM policies as the memory
access scale increases, achieving performance improvements of
up to 6.6x. Specifically, for small memory accesses ranging
from 0.5 KB to 4 KB, AlignMalloc performs slightly less
effectively compared to SyncMalloc and ThrottlingFetch but
outperforms DynamicACT and Early-Adaptor. This limitation
arises because the memory access scale does not reach the UVM
scheduling threshold required to activate AlignMalloc’s warp-
aware rearrangement, resulting in a memory access pattern sim-
ilar to SyncMalloc. Furthermore, AlignMalloc incurs additional
overhead from address translation during access. Similarly,
DynamicACT experiences performance degradation at minor
memory accesses due to its dynamic access counter threshold,
which leads to the prefetching of irrelevant memory blocks
when memory usage is low. Early-Adaptor shows the poorest
performance due to significant overhead from monitoring page
fault history and analyzing the page fault rate for each VABlock
across multiple threads. In contrast, ThrottlingFetch performs
best in this memory range by enhancing transfer performance
through memory block compression. Although AlignMalloc
does not outperform ThrottlingFetch in small memory accesses,
the performance difference is minimal, with a gap of no more
than 0.5 ms.

As the memory access scale increases, particularly beyond
16 KB, the benefits of AlignMalloc’s memory rearrangement
become evident. The system maintains stable overall time costs
and achieves up to 2.3x better performance than the second-
best prefetching policy, DynamicACT. This improvement is
primarily driven by AlignMalloc’s ability to reduce irrelevant
prefetching memory blocks precisely. In contrast, DynamicACT
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dynamically adjusts page placement frequency under high mem-
ory usage, but fails to address the root cause of low prefetching
hit rates, limiting its improvements. Similarly, Early-Adaptor’s
method of monitoring page fault rates fails to improve the
prefetching hit rate effectively. ThrottlingFetch reduces thrash-
ing by throttling the SM, but this only delays prefetching tasks.
Additionally, the reduction in concurrency causes a significant
decline in overall performance.

F. Analysis for AlignMalloc’s Large-Scale Access

To comprehensively evaluate the performance details for
large-scale access, we expand the memory access range to
16 MB. The performance metrics collected by Nsight Systems
include actual/batched page faults, memory transferred, and
the utilization of prefetching pages. Additionally, we assess
the overhead associated with padding in the inter-warp rear-
rangement and the effectiveness of pattern order optimization
in the intra-warp rearrangement for AlignMalloc. For ease of
evaluation, the number of threads is set at 128.

Fig. 13(a) shows a significant reduction in the number of
page faults with AlignMalloc compared to SyncMalloc. As
the memory access scale increases, the reduction becomes in-
creasingly pronounced, reaching up to 2/3 that of SyncMalloc,
which indicates that AlignMalloc can enhance the prefetching
efficiency for large-scale accesses. Furthermore, the number
of page faults with AlignMalloc stabilizes once the memory
scale exceeds 2 MB. This stability is attributed to the optimal
alignment granularity achieved by both intra and inter-warp
rearrangement, which effectively syncs with UVM scheduling
and maintains the independence of access among warps. Conse-
quently, AlignMalloc shows promising robustness in large-scale
memory operations.

Memory pattern order optimization shows a potential reduc-
tion in actual page faults from 10% to 30%. However, this
optimization had a minimal impact on batched page faults. The
size of batched faults typically depends on the hardware and
the build environment, but is additionally adjusted dynamically
according to runtime logic. Despite the reduction in actual page
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faults, the modest decrease does not significantly influence the
overall number of batched page faults.

Fig. 13(b) demonstrates that AlignMalloc significantly re-
duces the amount of UVM memory transfers by approximately
50% compared to SyncMalloc. Furthermore, it achieves nearly
100% actual utilization of prefetching pages, a substantial in-
crease from about the 40% efficiency in SyncMalloc. The results
show our AlignMalloc’s ability to effectively suppress irrelevant
page prefetching and enhance the hit rate of prefetching, thereby
boosting prefetching efficiency overall.

Additionally, Fig. 13(c) reveals that the overhead associated
with the padding of inter-warp rearrangement in AlignMalloc
is minimal and acceptable, occupying about 1 MB of GPU
physical memory space, which represents roughly 1% of the
memory utilized.

Fig. 13(d) illustrates the address translation overhead intro-
duced by AlignMalloc as threads access large memory ranges,
with 100, 150, and 200 access iterations. The results demon-
strate that the overhead remains minimal and relatively stable
as the memory range increases. Specifically, for every 100
accesses, the address translation overhead for 0.1K threads stays
at around 0.2 ms, much smaller than the GPU’s page fault time.
Additionally, as indicated in Fig. 13(a), AlignMalloc reduces
the number of page faults significantly as the memory range
accessed increases, while the translation overhead remains stable
and negligible. Thus, AlignMalloc’s performance advantages
overshadow the translation overhead.

G. Memory Access Under Oversubscription

To assess performance under oversubscription, we expand
the memory access range to 120 MB per thread. Each thread
performs 420 random accesses within this extensive interval, a
setup specifically designed to assess both the overhead and the
volume of memory transferred in UVM.

AlignMalloc significantly enhances performance, achieving
a 5.5x improvement compared to SyncMalloc, depicted in
Fig. 14(a). Furthermore, the memory imported from the host
is reduced by 4.5x in AlignMalloc in Fig. 14(b). When ac-
cess times reach 100, SyncMalloc rapidly depletes GPU mem-
ory resources, which subsequently triggers eviction and in-
curs substantial overhead. In contrast, by benefiting from ac-
curate prefetching, AlignMalloc postpones eviction until the
very end of the access sequence. Consequently, AlignMalloc
effectively delays the depletion of GPU resources, thereby di-
minishing the frequency of GPU-host memory thrashing under
oversubscription.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 7, JULY 2025

SyncMalloc Overall M OurMethod Overall

- SyncMalloc Allocation  — OurMethod Allocation

SyncMalloe Overall W OurMethod Overall
- SyncMalloc Allocation  — OurMethod Allocation

4(1(;5 £ 480 400 2

500 600

Py N
00 g g 36

:Uo;

Overall Time (

g
100 3
<

12 408

16 32 64 128 256 512 1 2 4
Graph Scale
(a) Performance on NVIDIA 4090 Platform

128 256 512

8 16 32 64
Graph Scale
(b) Performance on NVIDIA A800 Platform

Fig. 15.  Performance in Graph Clustering across Different Platforms.

H. A Graph Clustering Case

In a graph clustering scenario using varied dataset scales [25],
AlignMalloc and SyncMalloc are evaluated based on overall
overhead and UVM access time. The experiment is also con-
ducted on the NVIDIA A800 platform to demonstrate Align-
Malloc’s adaptability, with results depicted in Fig. 15. At smaller
graph scales, AlignMalloc performs comparably to SyncMalloc,
showing a slight advantage since these scales do not fully
exploit AlignMalloc’s memory rearrangement benefits. How-
ever, as graph sizes increase, AlignMalloc begins to outperform
SyncMalloc significantly, achieving up to a 2.6 X improvement
in UVM access performance and a 1.6x increase in overall
performance. AlignMalloc’s performance advantage is consis-
tent across different platforms. However, at smaller scales, this
advantage is less pronounced on the A800, potentially due to its
superior memory bandwidth compensating for UVM limitations
in memory access.

1. Access Performance in Real-World Cases

To validate the memory access performance of AlignMalloc
within UVM, we conduct experiments using a diverse set of
applications. These include six basic applications: General Ma-
trix Multiply (GEM), stencil (STN), k-means (KMN), Breadth-
First Search (BFS), Sparse Matrix-Vector Multiplication (SPV),
and B+ tree (B+T), each representing different UVM memory
access patterns such as Streaming, Thrashing, Part Repetitive,
Most Repetitive, Repetitive-Thrashing, and Region Moving, as
identified in [38]. Additionally, we incorporate two Al models,
AlexNet [43] and Graph Convolutional Network (GCN) [44].
AlexNet primarily involves sequential and regular memory ac-
cesses with convolutional layers, while GCN exhibits sparse
and random memory accesses, particularly during the compu-
tation of adjacency. This distinction in access patterns allows
for a comprehensive evaluation across a wide range of mem-
ory access patterns and scenarios. We test AlignMalloc across
various memory demands—1 GB, 4 GB, 20 GB, 32 GB, and
64 GB—with the 32 GB and 64 GB configurations exceeding
the GPU’s memory capacity by 33% and 167%, respectively.
Throughout these tests, we consistently utilize 16 K concurrent
threads.

The experimental results in Fig. 16 demonstrate substantial
performance improvements in environments where memory is
oversubscribed, with speedups ranging from 1.5x to 3.0x. At
data scales below 20 GB, enhancements are observed across
all applications, with the exception of GEM and STN. Both
GEM and STN exhibit streaming access patterns typical of
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UVM memory usage. Specifically, GEM processes all virtual
pages once, so that even if prefetched data is not immediately
needed, it is ultimately utilized, thus eliminating any inefficien-
cies typically associated with irrelevant prefetching. Similarly,
in the case of STN, while AlignMalloc effectively prefetches
the necessary multidimensional grid points for each thread, the
gains are relatively modest. This is because most resources
prefetching by standard CUDA strategy are eventually used
in later iterations. Nevertheless, both applications benefit from
significant performance improvements under oversubscription
scenarios, mainly due to reduced memory thrashing. As GPU
memory resources near exhaustion, the LRU strategy leads to
the eviction of unreferenced prefetched resources back to the
host, causing program thrashing. In contrast, in AlignMalloc,
prefetched resources are accessed shortly after their retrieval,
substantially reducing thrashing and thereby enhancing the sys-
tem’s overall efficiency.

The B+T and SPV applications demonstrate the most signifi-
cant enhancements with our method. The B+T application em-
ploys a ‘region moving access pattern,” characterized by virtual
memory chunks that are segmented into substantial address re-
gions, with memory blocks within each region being referenced
at varying frequencies. Similarly, SPV operates under a ‘repet-
itive random sparsity pattern,” which introduces only selected
parts of memory to the device. Our approach capitalizes on the
SIMT architecture to accurately prefetch the memory needed by
parallel threads within a warp, resulting in notable performance
improvements in these scenarios. In the case of KMN, which
exhibits a ‘part repetitive access pattern’, the scenario involves
a temporal sequence where parts of virtual memory chunks are
intermittently accessed with a certain probability. This pattern
also aligns well with our prefetching strategy. However, due to
the computationally intensive nature of KMN, the actual benefits
observed are less pronounced compared to B+T and SPV.

Both AI models, AlexNet and GCN, exhibit perfor-
mance improvements with AlignMalloc, particularly under
oversubscription scenarios, achieving enhancements of up to
1.2 and 1.6 x, respectively. GCN displays strong performance in
memory accesses ranging from 1 GB to 20 GB. This is attributed
to the effective reduction of irrelevant graph feature fetching
during adjacency computation in graph convolution layers. Con-
versely, AlexNet benefits less from AlignMalloc because the
sequential memory accesses in convolution layers are already
efficient. Thus, improvements are mainly observed in the fully
connected layers. Despite these differences, both applications
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experience significant advantages under oversubscription sce-
narios, as AlignMalloc reduces memory thrashing by promptly
accessing prefetched resources.

VIII. CONCLUSION

This paper proposes AlignMalloc, a novel dynamic manage-
ment system that employs a warp-aware memory rearrangement
strategy for large-scale applications to align with the UVM
prefetching, marking the first comprehensive effort to address
both allocation and access performance in the GPU-based dy-
namic allocation applications. To uncover the underlying causes
of the access inefficiencies in UVM, we conduct comprehen-
sive experimental analysis, identifying the critical misalign-
ment between dynamic memory access and the static nature
of the prefetching setup, which leads to decreased hit rates
and increased prefetching pages. To address the fundamental
discrepancy, AlignMalloc introduces a warp-aware memory
rearrangement strategy at two granularity levels, coordinating
the prefetching scheduling and its scopes. To seamlessly inte-
grate this strategy into dynamic allocation management, an OR
tree-based architecture within a host-co-managed framework is
introduced, which allows for an operational time complexity
of O(log n) in memory allocation processes at the warp level,
without requiring excessive memory space. Our experimental
results demonstrate that AlignMalloc significantly outperforms
existing dynamic allocators in terms of both dynamic allocation
and memory access performance in large-scale scenarios.

AlignMalloc operates at the application level and integrates
seamlessly with the existing UVM system, minimizing interfer-
ence with other applications. While the current design performs
well across a wide range of workloads, its effectiveness for fine-
grained memory access is limited by hardware-level constraints
in the UVM prefetching mechanism. In future work, we plan
to further enhance AlignMalloc’s adaptability to small-scale
memory accesses through closer integration with the UVM
runtime.
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