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1 Introduction

The rapid advancements in artificial intelligence (AI) and the growing complexity of deep learn-
ing models have led to an unprecedented demand for high-performance computing resources.
AT accelerators, including Graphics Processing Units (GPUs) [41], Tensor Processing Units
(TPUs) [52], and other custom Al chips, have emerged as critical components in datacenters de-
signed to handle the intensive computational requirements of deep learning workloads.

Al accelerators are specifically engineered to provide significant performance improvements for
deep learning tasks through massive parallelism and specialized hardware features. Despite their
capabilities, managing and scheduling resources within datacenters equipped with Al accelerators
remains a significant challenge. As demonstrated by data released by companies including Alibaba
[115], SenseTime [42], and Microsoft [47], the utilization of production GPU clusters is typically
below 50%, which suggests that there is still considerable room for improvement. The heterogene-
ity of these accelerators and the dynamic nature of deep learning workloads necessitate advanced
resource management strategies to optimize performance, cost, and resource utilization.

Currently, resource sharing in Al accelerator-based datacenters is a new area of interest. Tech-
niques such as static partitioning, dynamic resource allocation, virtualization, and multi-tenancy
have been developed to address these challenges. Static partitioning involves dividing resources
into fixed segments for different tasks. Dynamic resource allocation adjusts resources in real-time
based on demand. Virtualization abstracts physical resources to create flexible and isolated envi-
ronments for multiple workloads, while multi-tenancy allows multiple users or applications to
share the same physical resources. Effective resource sharing strategies can significantly enhance
the efficiency and flexibility of Al accelerator utilization, ensuring that resources are dynamically
allocated to match the computational demands of deep learning applications. This not only max-
imizes resource utilization but also helps in maintaining quality of service (QoS) and reducing
operational costs.

This survey aims to provide a comprehensive review of state-of-the-art technologies for re-
source sharing in datacenters equipped with Al accelerators. To the best of our knowledge, it is
the first to specifically focus on accelerator sharing technologies in both research and production
environments for datacenters that handle multiple types of workloads. Our main contributions are
as follows:

— We provide an overview of recent works in the field, revisit the architectures of mainstream
Al accelerators, and summarize the key concepts and fundamentals for accelerator resource
sharing.

— We navigate the readers through the latest studies in the field by the different aims of system
optimization including efficiency, fairness, interference, and security. This taxonomy reveals
where the majority of interest is and where more effort should be made.

— We analyze the limitations of existing technologies, explore emerging trends, and propose
future research directions to address the evolving needs of deep learning applications in
Al-accelerated environments.
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Fig. 1. A statistic view of the studies surveyed in this article.

1.1 Overview of the Field

This survey covers the studies from 2016 to 2024 in relevance to accelerator sharing technology.
We first present the statistics from different aspects in Figure 1. Our first observation is that most of
recent studies consider efficiency improvement as their primary objective, indicating that the main
role of sharing technology is to enhance the performance of Al accelerators. Therefore, our survey
will concentrate on efficiency, categorizing different types of efficiency to explore the distinctions
between various optimization methods. We also find that a dominating percentage of research
in the field is conducted on GPUs, while other types of Al accelerator only account for <15%
combined. Most of the studies experimented on real clusters and over 40% of them have source
code publicly available (Figure 1(d)).

1.2 Existing Surveys

We compare our work with related surveys to provide a better understanding of our contributions
to the community.

— Many previous surveys limit their attention to GPU sharing [40, 53]. In contrast, our work
encompasses GPUs, TPUs, Neural Processing Units (NPUs), and other custom AI chips,
and we survey sharing technologies across several levels.

— Zhao et al. [141] surveyed commercial GPU architectures to support GPU multitasking. How-
ever, we include both software and hardware sharing approaches.

— Yu et al. [130] summarized the challenges and optimization opportunities for multi-tenant
DL inference on a single GPU. But our survey considers both training and inference
workloads.

— Liang et al. [66] surveyed GPU sharing technologies that apply various approaches and
network bandwidth-sharing technologies operating at different granularity levels. However,
this survey does not cover as much ground as our work does, as it primarily focuses on
GPUs and largely overlooks other accelerators such as NPUs.
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Table 1. A Comparison of Related Surveys

Survey Year | Including NPU or TPU | Including Training and Inference Workloads | Focus on Card-level Sharing | Comparison of Effects

[40] 2017 7

[53] 2018 v

[79] 2020 v 4

[141] 2021 v/

[130] 2022 v/

[128] 2024 v v

[66] 2024 v/

ours - v v v v

— There are surveys of GPU workload scheduling at the datacenter level [79, 128], while our
primary focus is accelerator sharing at the node or device level.

The comparison of all related surveys is shown in Table 1. This survey focuses on recent advance-
ments of sharing technologies in Al accelerators, with a particular emphasis on the optimization
of resources and key performance indicators such as efficiency, fairness, interference, and security.
Furthermore, we identify current trends, elucidate technological constraints, and propose avenues
for future research in the domain of deep learning in Al-accelerated environments.

1.3 Article Organization

The structure of this article is organized as follows: Section 2 introduces the architecture of Al
accelerators, performance measures of Al workloads and key concepts of sharing technology. The
main body of this article is presented in Figure 2. Section 3 discusses various works that optimize
the efficiency of the accelerators, which are categorized by training, inference, and mixed work-
loads. Section 4 examines research focused on fairness, interference, and security for Al accelera-
tors. Section 5 highlights existing challenges, in addition to those addressed in the aforementioned
sections. Section 6 concludes this survey article.

2 Background

As depicted in Figure 2, this section lays the ground for understanding Al accelerator shar-
ing by focusing on three critical aspects. It begins with a detailed comparison of mainstream
AT accelerators—GPUs, TPUs, NPUs, and edge-specific accelerators—highlighting their architec-
tures and capabilities. Next, it defines key performance metrics relevant to Al workloads, such
as throughput, latency, and utilization, providing a foundation for evaluating resource efficiency.
Finally, it introduces essential concepts and principles of accelerator sharing, supported by clear
visualizations of sharing mechanisms and resource allocation strategies, setting the stage for a
deeper exploration of optimization approaches in subsequent sections.

2.1 Brief View of Al Accelerators

This section establishes the foundational knowledge required to understand Al accelerators and
their significance in modern computing. It introduces the key concepts related to Al accelerator
technologies. Table 2 provides a comparative analysis of mainstream accelerators, complementing
the discussion in this section.

2.1.1  Graphics Processing Unit. GPUs, initially designed for rendering graphics, are now widely
used for deep learning and other general-purpose computing tasks. They feature a large number
of parallel processing units, making them well-suited for large-scale matrix operations and sup-
porting various machine learning frameworks and algorithms. Notable products include NVIDIA’s
A100, V100, and Tesla series, as well as AMD’s Radeon Instinct series.

As shown in Figure 3(a), the structure of a modern GPU features multiple Graphics Process-
ing Clusters (GPCs), each containing several Streaming Multiprocessors (SMs). The SMs are
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Table 2. Comparison of Mainstream Accelerators

Dimension GPU TPU NPU Edge-specific
Accelerators

Ecosystem Mature CUDA TensorFlow-focused =~ Growing ecosystem,  Vendor-specific,

Maturity ecosystem, large ecosystem limited tool support  fragmented

community

Framework PyTorch, TensorFlow,  TensorFlow, Limited  Limited Vendor-specific only

Compatibility JAX JAX PyTorch/TensorFlow

Precision FP32, FP16, INT8, FP8  BF16, INT8 FP16, INTS, INT4 Primarily INT8, INT4

Support

Memory HBM3, 4.8 TB/s HBM2, 1,200 GB/s HBM2e, 392 GB/s Limited on-chip

Architecture memory

Key Metrics 500-4,000 TOPS/s 275-420 TOPS/s (v4), 512 TOPS/s (910B), 200 TOPS/s (Intel

(Performance) (H200), 350-700W 175-250W 160-400W Agilex 9), 10-120 W

BF16: Brain Floating Point, 16-bit format optimized for deep learning.

responsible for executing parallel computational tasks. Each SM has its own ALUs and L1 cache,
enabling the performance of mathematical operations and rapid data access. The L2 cache is shared
across the GPU, facilitating enhanced data access efficiency. The Memory Controller oversees com-
munication with external DRAM, guaranteeing efficient data transfer, while the PCle interface
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Fig. 3. Architecture of part Al accelerators.

connects the GPU to other components of the computer, allowing for data exchange between the
CPU and GPU.
Defined by Nvidia [4], GPU utilization refers to the percentage of time that certain activities
occur during the past sample period. This can be expressed as:
UGPU — Tactlve, (1)
Trotal
where:

— Ugpy is GPU utilization.

— Tyetive 1s active time during which the GPU is performing computations within a given time
slice.

— Tyorar 1s total length of the slice.

2.1.2  Neural Processing Unit. NPUs have significantly advanced, offering increased compu-
tational power and energy efficiency for Al tasks. They are being integrated into System-on-
Chip (SoC) designs for seamless Al processing and are widely deployed in edge devices such as
smartphones and IoT gadgets for real-time, on-device Al computations. Leading implementations
include Google’s Edge TPU [2], Apple’s Neural Engine [1], Huawei’s Ascend [3], and Intel’s Movid-
ius Myriad X, all supporting a range of Al models with enhanced software and ecosystem support.
The future of NPUs focuses on greater scalability, broader Al model compatibility, and improved
developer tools.

The architecture of an NPU, similar to Figure 3(c), comprises a host for controlling operations, an
instruction memory for storing execution commands, and a vector unit with SMID units and vector
registers for parallel processing. The use of SRAM buffers facilitates rapid data storage, while the
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systolic array of processing elements (PEs) enables the efficient execution of matrix operations.
Input and output FIFO buffers facilitate a seamless dataflow to and from the systolic array, thereby
enabling high-throughput processing, which is well-suited to the demands of large-scale neural
network tasks.

The utilization for NPUs can be defined as the ratio of used PE to the total available PE over a
given time slice. The formula is:

Unru = ——, (2)

where:

— Unpy is NPU utilization.
— PE5.q is number of PEs actively used during a time slice.
— PE;osq1 is total number of PEs available in the NPU.

2.1.3 Tensor Processing Unit. TPU was developed by Google to accelerate machine learning
workloads, particularly for deep learning applications. Introduced in 2016, TPUs [51, 52, 87] are
designed to handle the demanding computational requirements of training and inference for large
neural networks. They are optimized for Google’s TensorFlow framework, enabling faster and
more efficient execution of machine learning models.

Figure 3(b) depicts the architectural design of the TPU system, which has been optimized for
high-performance deep learning operations. The system comprises a PCle interface and a host in-
terface for communication with the host system, as well as DDR3 interfaces for access to external
memory. A first-in, first-out (FIFO) queue buffers data for the matrix multiply unit, which per-
forms the core matrix computations. The data is organized by the systolic data setup, stored in a
unified buffer, and processed through accumulators. The results then proceed through the activa-
tion and normalization/pooling stages, where non-linear functions and dimensionality reduction
are applied, thus optimizing the TPU for fast and efficient deep learning tasks.

The utilization of TPU is often measured in terms of the matrix processing units; below are the

formulas:
MX Uus ed

; ®3)
MXUtotal

Urpu =

where:

— Urpy is MXU utilization.
— MXUyseq is the number of active MXU cycles (or operations) during a time slice.
— MXUyi o4 is the total available MXU cycles (or operations) during the same time slice.

2.1.4 Other Al Accelerators. Field Programmable Gate Arrays (FPGAs) [76, 81, 101, 102, 135,
144] are reconfigurable hardware accelerators that offer high flexibility and parallel processing ca-
pabilities. While FPGAs are less common for large-scale Al training due to their programming
complexity and the dominance of GPUs, they have shown increasing relevance in Al inference
tasks, particularly in edge and embedded systems. Their ability to achieve low latency and power
efficiency makes them well-suited for real-time inference scenarios. Application Specific Inte-
grated Circuits (ASICs) [15, 17-19, 36, 39, 70, 89, 95, 140], designed for specialized tasks, deliver
superior efficiency and performance through hardware-level optimization. While ASICs lack the
programmability needed for diverse training workloads, their deterministic architecture and en-
ergy efficiency make them highly effective for inference. DSPs excel in digital signal processing
with low latency and high throughput. Although DSPs are not widely utilized for Al training
due to their limited support for large-scale matrix operations, they are employed in lightweight
Al inference tasks, especially in applications requiring real-time processing and constrained com-
putational resources. Hybrid accelerators combine multiple accelerator types to handle diverse
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workloads. However, they are not the primary choice for Al training, where specialized GPUs and
TPUs prevail.

While GPUs and TPUs remain the predominant accelerators for Al training due to their pro-
grammability and computational throughput, accelerators such as FPGAs, ASICs, and DSPs demon-
strate significant potential for inference, particularly in scenarios prioritizing energy efficiency,
low latency, and real-time performance. Hybrid accelerators further broaden the design space for
Al inference but remain underexplored for large-scale training.

2.2 Performance Measures for Al Workloads

In the realm of Al accelerators, workloads are primarily categorized into training and inference
tasks. These two types of workloads exhibit distinct characteristics and demands, influencing how
Al accelerators are designed and optimized. This section explores the specific objectives of training
and inference workloads and highlights the key performance metrics for each. It is important to
note that we will focus exclusively on metrics that can be optimized through scheduling technolo-
gies. To ensure comprehensive coverage of the literature, the metrics in this study are expressed
in a more generalized form.

2.2.1 Training. Deep learning training tasks involve using large datasets to adjust the model
parameters to minimize prediction errors. This process, known as training, requires substantial
computational resources and time, because it involves both forward propagation and backprop-
agation. The model learns by iteratively updating its weights through multiple epochs until it
converges to an optimal set of parameters.

These tasks are characterized by high computational intensity, extensive memory and stor-
age requirements, and long duration. Key performance metrics for training workloads are shown
below.

Training Time. Training time, the duration required to complete the entire deep learning model
training process, is critically important for several reasons. The training time is defined in Equa-
tion (4). Additionally, optimizing training time reduces computational and labor costs, especially
in cloud environments where resource usage is billed by time, thus saving significant expenses.

NXEXF
= o ©
PxBxn

where:

— T is the total training time.

— N is the number of samples in the dataset.

— E is the total number of epochs (training iterations).

— F is the computational cost per sample for forward and backward propagation, typically
proportional to the model’s complexity.

— P is the hardware performance, measured in floating-point operations per second
(FLOPS). If sharing technologies involve sharing hardware resources (such as accelerators
or processors), then this can impact hardware performance.

— B is the batch size, which is the number of samples processed together in one iteration.
Sharing data across nodes or devices could allow for larger batch sizes, which can improve
computational efficiency.

— 1 is the overall efficiency factor, accounting for I/O performance, memory bandwidth, par-
allel computation efficiency, and other overheads. By sharing data buffers and optimizing
memory access patterns, sharing technologies can improve I/O performance and memory
bandwidth utilization.
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As data scales and model complexity increases, optimizing training time becomes essential for
efficiently handling large datasets and developing complex models. Techniques such as efficient
scheduling algorithms [43, 83, 112], distributed training [49, 64, 97], and resources sharing [69, 133,
143] can significantly reduce training times by improving resource utilization, preventing resource
idleness, and ensuring proper task distribution and coordination among nodes.

System Throughput. System throughput, as defined in Equation (5), the rate at which a system
processes training tasks or data samples, is crucial for deep learning training, as it accelerates
model training, optimizes resource utilization, reduces costs, and effectively handles large-scale
data and complex models. Efficient scheduling technologies, such as dynamic resource allocation
[34, 105, 119] and parallelism [45, 80, 85, 86, 100] significantly enhance throughput. This leads
to faster development cycles, lower operational costs, and better scalability, ultimately advancing
deep learning capabilities and applications.

5)
where:

— Ty, is the system throughput.

— R; is the number of tasks completed in the ith interval.

— T is the total time taken to complete those tasks. Sharing resources for reducing synchro-
nization overhead and communication delays can lead to faster task completion.

2.2.2  Inference. Deep learning inference tasks involve using a pre-trained model to make pre-
dictions on new, unseen data. The computational demands for inference are significantly lower
than those for training, as inference only requires forward propagation through an already-
optimized model. Inference tasks are designed for real-time or near-real-time prediction and are
often deployed on edge devices or servers. The focus during inference is on reducing latency and
enhancing efficiency, making it crucial to optimize for low power consumption and quick response
times. Techniques such as model compression and hardware acceleration are commonly employed
to ensure that the inference can run effectively in resource-constrained environments.

The primary characteristics of inference workloads include latency sensitivity, moderate com-
putational resource requirements, and high concurrency. Key performance metrics for optimizing
inference workloads are summarized below.

Latency. Latency, as defined in Equation (6), refers to the time taken from the moment an input
is received by the system until the corresponding output is produced in the context of inference
tasks. It is a critical performance metric for real-time and near-real-time applications. Low latency
ensures quick, responsive interactions, timely and accurate decisions, higher customer satisfac-
tion, and efficient resource utilization. Optimizing for low latency is essential for delivering high-
performance, reliable Al solutions across various domains, enhancing both operational efficiency
and market competitiveness. Low-latency systems can also handle a higher number of concurrent
users or requests, making them more scalable. This is crucial for applications with high user traffic
or those deployed in cloud environments where resources must be efficiently managed.

L=I+C+0, (6)
where:

— L is the total latency.

— I is the input processing time, which includes data preprocessing and transfer to the accelera-
tor. Techniques such as shared memory buffers and optimized data pipelines can significantly
lower input processing time.
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— C is the computation time on the accelerator, which includes the forward pass through the
neural network. Sharing accelerator resources can more effectively lead to better utilization
of computational power, reducing the time required for the forward pass through the neural
network.

— O is the output processing time, which includes data post-processing and transfer back from
the GPU.

Methods to optimize latency include using model compression technologies [8, 127], optimizing
communication [71], and leveraging hardware accelerators [124, 136]. These strategies collectively
help in achieving the low latency necessary for superior Al performance.

System Throughput. System throughput in the context of inference tasks refers to the number
of inference requests or data samples the system can process in a given period. It measures the
system’s capacity to handle concurrent tasks and is crucial for evaluating the efficiency and scal-
ability of Al applications. High throughput is essential for applications with a lot of users, such
as online services, real-time analytics, and large-scale IoT deployments. While both training and
inference benefit from high throughput, the optimization technologies and performance metrics
differ.

The main approaches to improve system throughput of inference task include resources sharing
[37, 46, 134], requests preemption [23] and Profiling [22].

Power Consumption. Power consumption, as defined in Equation (7), refers to the amount of
electrical energy used by a system to perform Al workloads, including both training and infer-
ence tasks. Power consumption is a critical consideration for Al systems, especially in large-scale
data centers, battery-powered edge devices, and energy-constrained environments. Efficient power
usage leads to extended battery life, reduced operational costs, improved thermal management,
and a smaller environmental footprint. By leveraging specialized hardware [25], edge computing
[59, 122], dynamic power management [78], and software optimization [30, 113], it is possible to
significantly reduce the power consumption of tasks, ensuring efficient and sustainable Al deploy-

ments across various environments.
E; X Ry
P, = > (7)
n

where:

— P, is the power consumption.

— E; is the energy consumption per task. Balancing the load and reducing idle times can both
lower the energy consumption per task.

— R; is the rate of tasks (number of tasks or batches per second). Sharing technologies that
enable better parallel processing can increase the rate of tasks by allowing more tasks to be
processed simultaneously.

— 1 is the overall efficiency factor, accounting for hardware and software efficiencies. Ideally,
the efficiency is 1, but in practice it is usually less than 1 due to various losses.

2.3 Key Concepts and Fundamentals

This section examines the fundamental rationale behind Al accelerator sharing, focusing on two
key paradigms: profiling and prediction techniques that analyze workload patterns to optimize re-
source allocation, and resource sharing techniques that implement strategies such as fine-grained
partitioning and virtualization for dynamic workload management.

2.3.1 Profiling and Predicting Techniques. Profiling and predicting [83, 114, 121, 133] involves
collecting detailed performance data through experiments or simulations before the actual
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Fig. 4. Related Concepts of accelerator sharing. Note that these also apply to TPU, NPU and other Al acceler-
ator architectures. (d) shows that four containers are shared among one node and an isolation environment.
Due to oversubscription of resources, these containers can be allocated more than a quarter of the total
resources available on the node.

execution of tasks. This data includes metrics such as execution time, resource utilization, and
behavior patterns of the tasks. Based on this profiling data, predictive models are developed to
estimate the performance of tasks under various conditions. These models can use historical data,
statistical methods, or machine learning technologies to provide accurate predictions. The pri-
mary goal is to assist the scheduler in making informed decisions about resource allocation and
task scheduling, ensuring efficient and optimized execution.

2.3.2  Resource Sharing Techniques.

Spatial sharing. Spatial sharing, as shown in Figure 4(a), refers to the simultaneous utilization
of different hardware resources by multiple tasks within the same system. For instance, different
processor cores or distinct sections of an accelerator can be allocated to different tasks at the same
time. This method leverages the parallel execution capabilities of modern hardware to increase
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throughput and resource utilization. By distributing tasks across available resources, spatial shar-
ing aims to minimize idle times and maximize the effective use of computational power. However,
it requires sophisticated resource allocation strategies to prevent conflicts and ensure fair distribu-
tion among tasks.

Nvidia offers two distinct spatial sharing methods: Multi-Process Service (MPS) [6] and Multi-
Instance GPU (MIG) [5]. MPS enables the concurrent execution of multiple CUDA applications
on a single GPU by establishing a shared environment that optimizes resource utilization and
minimizes latency through parallel execution. However, it necessitates sophisticated scheduling
to effectively manage resource contention. MIG partitions a single GPU into multiple isolated in-
stances, each with dedicated resources such as memory and compute cores. This enables efficient
and secure multi-tenant usage and flexible resource allocation, which are ideal for environments
requiring strict resource isolation. The following section will present a discussion of works em-
ploying spatial sharing technologies, with the exception of MIG and MPS.

Dynamic fine-grained allocation: Dynamic fine-grained allocation [26, 44, 103, 132] is a
method that dynamically allocates hardware resources at a very granular level to different tasks
based on their immediate needs and workload characteristics, as shown in Figure 4(c). This ap-
proach involves continuously monitoring the resource demands of tasks and adjusting allocations
in real-time to ensure optimal utilization. For instance, specific parts of a processing unit, such as
individual cores or even cache lines, or segments of memory down to the level of cache blocks or
individual memory pages, can be allocated to different tasks as their requirements change. This
allows for efficient resource use without significant overhead. The primary advantage of this
method is its flexibility and responsiveness to changing workloads, which can lead to improved
performance and reduced resource wastage. However, it requires sophisticated monitoring and
allocation mechanisms to function effectively.

Resources oversubscription and isolation: Resources oversubscription and isolation [92, 107,
126], as shown in Figure 4(d), is a strategy where more virtual resources are allocated to tasks than
the actual physical resources available, based on the observation that not all tasks will use their
peak resources simultaneously. This approach can significantly increase resource utilization and
overall system throughput. However, to ensure that performance does not degrade during peak
demand, isolation mechanisms are implemented. These mechanisms guarantee that critical tasks
have access to necessary resources when needed, preventing interference from other tasks.

Temporal sharing. Temporal sharing [68, 69], as shown in Figure 4(b), involves the sequential
sharing of the same hardware resource by multiple tasks over different time periods. In this ap-
proach, tasks are assigned specific time slices during which they can use the resource exclusively.
Once a task’s time slice is over, the resource is allocated to another task. This time-multiplexing
strategy allows for dynamic adaptation to changing task demands and can enhance overall re-
source utilization. However, it can also introduce overhead due to context switching, where the
state of a task is saved and restored repeatedly, potentially affecting execution efficiency.
Preemption and migration: Figure 4(e) illustrates the concepts of preemption and migration
in GPU task scheduling, two pivotal strategies used to address resource contention and improve
overall system performance. These techniques are particularly important in handling dynamic
and mixed workloads, such as combining real-time inference tasks with long-running training
jobs. By reallocating or redistributing tasks, they ensure that high-priority or latency-sensitive
tasks are given timely access to computational resources while maintaining overall system
efficiency and balance.

Preemption [38, 124] allows AI accelerators to interrupt lower-priority tasks to allocate
resources to higher-priority tasks, such as real-time inference, improving responsiveness and
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resource efficiency. However, it introduces context switching overhead and requires sophisticated
scheduling.

Migration [104] involves moving tasks between computational units within AI accelerators to
balance load, optimize energy efficiency, and manage thermal conditions. While it enhances re-
source utilization and performance, it also introduces latency and complexity in data management.
Virtualization: Virtualization [54, 56, 58, 74], as shown in Figure 4(f), involves creating virtual
instances of hardware resources that can be allocated to tasks as needed. This method abstracts
the physical hardware, allowing multiple tasks to run on the same physical resource as if they each
had their own dedicated hardware. Virtualization enables efficient resource sharing, isolation, and
flexibility in resource allocation. It also simplifies the management of resources by providing a
consistent interface regardless of the underlying hardware. Virtualization can improve security
and fault isolation, as tasks running in separate virtual environments are less likely to interfere
with each other. However, virtualization introduces some overhead due to the need for a hypervisor
or virtual machine manager to coordinate and manage the virtual instances.

Spatio-temporal sharing. Spatio-temporal sharing [22, 37, 46] combines the principles of both
spatial and temporal sharing to optimize resource utilization in two dimensions. Tasks are allo-
cated to different resources concurrently (spatial sharing) while also being scheduled to share the
same resources at different times (temporal sharing). This hybrid approach aims to fully exploit
the capabilities of modern multi-core and multi-accelerator systems, achieving high levels of ef-
ficiency and performance. While it offers significant benefits in terms of flexibility and resource
optimization, it also demands more complex and sophisticated scheduling algorithms to manage
the dual dimensions of sharing effectively.

3 Efficiency-oriented Al Accelerator Sharing

As highlighted in Figure 2, this section focuses on efficiency as a central goal in resource sharing
for AI accelerators, emphasizing key metrics, such as time, latency, throughput, and cost. Effi-
ciency is a crucial objective in scheduling optimization, particularly for Al accelerators, where
different aspects, including time, cost, and system throughput, must be considered. Due to the dis-
tinct characteristics of training and inference workloads, the section categorizes these workloads
to discuss their efficiency strategies. Training optimization focuses on reducing time while maxi-
mizing throughput, whereas inference prioritizes low latency and high throughput. Additionally,
mixed-use scenarios where training and inference coexist are examined, with an analysis of the
associated tradeoffs and synergies.

3.1 Efficiency of Training

The efficiency of Al accelerator sharing technology has significant implications for training work-
loads. As outlined in Section 2.2.1, we categorize these works focusing on training workloads by
time and throughput. Training time is a critical metric in machine learning, as it directly impacts
the speed at which models can be developed and deployed. Faster training times mean quicker it-
erations and faster turnaround from model conception to implementation. Throughput measures
the number of tasks or operations completed in a given period. Higher throughput indicates a
system’s capability to process more data or train more models simultaneously. At the conclusion
of this section, we will present insights gleaned from these works. A summary of these works is
provided in Table 3.

3.1.1  Execution Time. The concept of time efficiency is defined in Section 2.2.1. One of the
most effective methods for enhancing time efficiency is to share computing and memory resources.
With regard to the GPU computing resources, Synergy [83] emphasizes scheduling and sharing
various types of computational resources (such as GPUs, FPGAs, and TPUs) in a multi-tenant

ACM Comput. Surv., Vol. 57, No. 9, Article 221. Publication date: April 2025.



221:14 J. Huang et al.

Table 3. Summary of Studies on Efficiency-oriented Sharing under DL Training Workloads

Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code
2024 Parcae[29] * Profiling and Predicting Bet}re}x;rso);sgl:r;\ul;olbou:t?ess; G R 32 V100 v
TGS[117] £ Dynamic Fine-grained Allocation Throughput 15X T G R 2 A100 v
Layer-Puzzle[34] L3 Profiling and Predicting PE Utilization 1.95x T N S SCALE-Sim -
2023 NPU Utilization 1.64x T;
V10[124] Ak Fine-grained Preemption Throughput 1.57X T; N S -
Latency 1.56X |
Flexer[82] * Out-of-Order Scheduling JCT22x | N R 8 NPU -
DM-NPU[21] 4%  Dynamic Fine-grained Allocation Thmugt‘iﬁ‘z‘;tligfz”;éﬁmip}s N s B -
MAGMA[55] * & Dynamic Fine-grained Allocation Throughput 1.4%-1.6X T A R 6 Accelerator v
Muri[143] * Dynamic Fine-grained Allocation JCT 3.6X |; Makespan 1.6X T G R 64 V100 v
Synergy[83] * Profiling and Predicting JCT34x | G R 32V100 4
DISC[69] * Time Slicing JCT 1.15X |; Accuracy 1.58X T G R 15 GPU -
2022 NeiDty[28] 3 Dynamic Fine-grained Allocation JCT 10% | G N Gem5-GPU -
Miso[62] . Prediction and Dynamic JCT 16%-49% | G R 8 A100 -
Partitioning
Arria 10
Arax[91] * Dynamic Migration JCT 20% | G&F R RX550X -
RTX 2080Ti
Zico[67] £33 Dynamic Fine-grained Allocation Throughput 1.6-8.3X T G V100;2080Ti -
2021 OM[33] N Profiling and Predicting 125%-150% Memory G s GPGPU-Sim -
Oversubscription
Layerweaver([88] ak Dynamic Fine-grained Allocation N,;:i xsﬁ;‘ﬁ:?ﬁ‘;&g’ N S MAESTRO[90] -
TVT[54] £ Tensor Virtualization Reduce DRAM writes 2X N S - -
2020 Salus[132] * Dynamic Fine-grained Allocation JCT 3'1.(»( b G R 2P100 v
GPU Utilization 2.38% T
CPPE[133] Predict and Oversubscription JCT 1.56%-1.64X | G S Gem5-GPU -
SIGMA[95] L) Dynamic Fine-grained Allocation Utilization 3%-5.7X T A R ;IHC;‘::Q -
Jo1s MASK[9] *¥  Low-overhead Virtual Memory T[}J‘;‘;:%:S;‘ i f ; G s Mosaic :
Gandiva[118] ad Dynamic Migration GPU Utilization 26% T R 180 P100&P40 -

Obj.(Objectives): % (Throughput) #(Utilization) #(Latency) ¢(Job Completion Time) ¥(Fairness) Dev.(Device
Type): G(GPU) N(NPU) F(FPGA) A(ASIC) Exp.T(Experiment Type): R(Real Cluster) S(Simulation)
Exp.S(Experiment Scales): the scale of physical cluster. -: not clearly specified.

cluster environment. It utilizes a new near-optimal online algorithm to perform multi-resource,
workload-aware assignments. DISC [69] only focuses on GPU time sharing to optimize hyperpa-
rameter tuning processes. It leverages dynamic priority scheduling and real-time load monitoring
to improve resource utilization. Unlike the time-share mechanism, Salus [132] introduces fine-
grained GPU sharing mechanisms that support concurrent execution of multiple deep learning
tasks on the same GPU. It emphasizes fine-grained resource allocation, concurrent execution, and
resource isolation. Muri [143] considers optimizing overall training efficiency by interleaving mul-
tiple types of computational resources (CPU, GPU, memory, storage). It emphasizes multi-resource
interleaving, resource partitioning, and dynamic resource scheduling. Gandiva’s [118] Key method-
ologies encompass time-slicing GPUs across multiple jobs for the purpose of low-latency feedback,
dynamic migration to improve locality and efficiency, and adaptive resource allocation through
packing and grow-shrink mechanisms. This approach enhances early feedback, increases clus-
ter utilization by 26%, and accelerates hyper-parameter searches, achieving up to a 10x speedup
in certain tasks. Miso [62] leverages performance prediction to dynamically allocate NVIDIA
Multi-Instance GPU (MIG) resources, optimizing workload placement and ensuring fairness in
multi-tenant GPU clusters. Arax [91] is a runtime framework that decouples applications from het-
erogeneous accelerators, enabling dynamic task mapping, efficient accelerator sharing, and elastic
resource allocation, while providing a simple API for transparent and adaptable accelerator utiliza-
tion. All these methods use sharing of computing power to improve time efficiency.

From the perspective of GPU memory resources, several perspectives can be optimized, and
a multitude of potential avenues exist for optimization, encompassing Translation Lookaside
Buffer (TLB) sharing, inter-GPU and inter-host memory sharing, and memory oversubscrip-
tion. NeiDty [28] reduces translation latency and improves GPU performance by sharing address
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translation results between different TLBs. CPPE [133] presents a coordinated page prefetch and
eviction mechanism for managing memory oversubscription in GPUs.

Flexer [82] introduces an out-of-order scheduling mechanism in NPU that allows tasks to
execute out of their submission order. This strategy dynamically adjusts the execution order
of tasks based on their dependencies and resource requirements. MAGMA [55] proposes an
optimization framework that uses intelligent algorithms to map multiple deep neural network
(DNN) tasks onto multiple accelerator cores. DM-NPU [21] presents Dataflow Mirroring technical,
which involves replicating dataflows to allow shared data paths among multiple tasks and enables
fine-grained spatial multitasking on systolic-array NPUs by optimizing dataflow control. TVT
[54] focuses on CNN Accelerators and it proposes Tensor Virtualization abstracts tensor data into
virtual tensors, optimizing data storage.

3.1.2  System throughput. Higher system throughput ensures that the Al accelerator remains
fully occupied, thereby increasing its utilization, reflecting the overall efficiency and processing
capacity of the system.

Prediction and profiling are critical approaches to increase training throughput. Parcae [29]
employs an availability predictor to forecast future instance preemptions. By predicting which
instances are likely to be preempted in advance, the system can proactively adjust and minimize the
impact of preemption. Similarly, OM [33] leverages the output of a transformer model to accurately
perform prefetching and pre-eviction by monitoring and predicting memory usage. TGS [117]
overcomes the limitations of native Kubernetes by intercepting each Docker’s kernel commits. TGS
maintains high GPU utilization through continuous monitoring and adaptive kernel rate control.

An effective methodology for memory sharing will serve to decrease the latency associated
with memory access. MASK [9] redesigns the GPU memory hierarchy, including cache, TLBs, and
page table, and monitors the demand of each application to allocate appropriate memory capacity
and enable fast recovery of idle memory. Meanwhile, it improves the cache coherency protocol to
ensure fast synchronization when multiple applications access the same data, reducing conflicts
caused by inconsistent data. Unlike MASK [9] involves modifications to the GPU memory hard-
ware architecture, SMM [125] focuses primarily on the software level. It allows multiple thread
blocks to share the same shared memory region simultaneously. Meanwhile, it interleaves mem-
ory data into different memory banks so thread blocks accessing memory concurrently can oper-
ate on different memory banks. Zico [67] proposes a shared memory pool and uses an on-demand
memory allocation mechanism to optimize memory management.

In the context of NPUs or other accelerator, researchers often share resources at the layer level
to increase utilization. Layerweaver [88] dynamically adjusts the execution order of layers by an-
alyzing the different computational requirements and dependencies of each neural network layer.
Layer-Puzzle [34] leverages layer heterogeneity and fine-grained task division to allocate different
computing tasks to the most suitable NPU cores. The most advanced approach, V10 [124], em-
ploys preemptive multi-tasking, enabling time-sharing of an NPU core by preempting workloads
at the task level. V10 uses preemption to balance the utilization between the Systolic Array and
the Vector Unit, addressing operator imbalances and enhancing overall efficiency. SIGMA [95], an
ASIC chip, employs flexible interconnects and distributed dataflow to enable efficient sharing of
compute and memory resources, optimizing sparse and irregular GEMM operations for diverse
deep learning workloads.

3.2 Efficiency of Inference

Training involves iterative, computationally intensive tasks where reducing training time and
maximizing throughput are crucial, achieved through optimized resource utilization and parallel
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Table 4. Summary of Studies on Efficiency-oriented Sharing under DL Inference Workloads

Year Name Obj. Approaches Claimed Effect Dev. ExpT Exp.S Code
Llumnix[104] L] Preemption and Migration laté:scty;';jl; G R 16 Nvdia A10 v
2024 VvFPGA_layer[81] * Virtualization Throughput 2.31-3.96X T F R Alveo U250 -
ParvaGPU[60] o Dynamic Fln?-gramed GPU Usage 1.2.5'7flw1th No SLO G R 8 A100 }
Allocation Violations
Gost[134] ok Profiling and Predicting Minimize the End-to-end Latency G R 12080 -
. . . Throughput 3.15X T;
~ 7Y . -
2023 FaST-GShare[37] * 4 Spatio-temporal Sharing GPU Utilization 1.34% T G R 4V100
L - Latency Violation Rate 43% |;
SPLIT[75] » Profiling and Predicting Jitter 69.3% | G R Jetson Nano v
KRISP[24] * Profiling and Predicting Throughput 2X T; Energy 33% | G R AIV%)FISISO -
. Dynamic Fine-grained . . _ Xilinx U200; ~
H3M[135] & Allocation Energy-delay-product 3.6-7.5X | F U280
Gpulet[22] * Spatio-temporal Sharing Throughput 61.7% | G 42080Ti v
2022 . Preemption Latency 12.3X |; AMD MI50
REEF[38] * Preemption Throughput 7.7%1 G GPU v
. . . Latency 53% |;
5 - aliza -
DGSF[32] ad Virtualization GPU Utilization 16% 1 G R 8 V100
PREMA[23] Tax Profiling and Predicting SLA Lszttifg;t;":x“f xT N - v
2020 Optimus[76] * Spatio-temporal Sharing Throughput 1.98-7x T Intel HARP -
’ Dynamic Fine-grained GPU Utilization 1.6-9X T;
7Y -
GSLICE[26] s Allocation Throughput 2-13x T ¢ 1V100
. . GPU Memory Utilization - .
P, -
2019 ETC[63] 34 Preemption 60%-270% | G S Mosaic
Temporal and Spatial - R
2018 TSM[46] * Multiplexing GPU Utilization 5x T G R 1V100
. Dynamic Fine-grained Virtual GPU 5X in Linux; R R
gSeale[123] * Allocation 4x in Windows ¢ R
. L 99%-ile Latancy 195X [; e
o6 Baymax[14] ad Profiling and Predicting Utilization 91.3% 1 G R Nvidia K40 -
. . i Throughput 2.9XT;
EIE[39] * Weight Share Energy 19%7 to [17] A S - -
Cambricon- Dynamic Fine-grained
X[140] & Allocation Latency 1.9-4.3X | A S - -
Obj.(Objectives): *(Throughput) #(Utilization) #(Latency) §(SLA: Service Level Agreements) Dev.(Device

Type): G(GPU) N(NPU) F(FPGA) A(ASIC) Exp.T(Experiment Type): R(Real Cluster) S(Simulation)
Exp.S(Experiment Scales): the scale of physical cluster. -: not clearly specified. ~Service Level Agreement: It is a
commitment between a service provider and a client that defines specific performance metrics, such as response time,
throughput, and availability, which the service must meet.

processing. In contrast, inference focuses on real-time or near-real-time predictions, where low
latency and high throughput are paramount. Latency is the time taken for an inference request
to be processed from input to output. Low latency is crucial for real-time applications such as au-
tonomous driving, online recommendations, and interactive Al systems, where delays can impact
user experience and system effectiveness. High throughput is important for applications that need
to handle a large volume of requests simultaneously, such as cloud-based Al services and large-
scale deployment scenarios. These works are classified according to their impact on the efficiency
of inference workloads, with a focus on latency and throughput, as outlined in Section 2.2.2. The
exclusion of energy is justified by the fact that it is not the most prevalent factor in the sharing of
technologies. Table 4 provides a detailed overview of these works.

3.2.1 Latency. Latency is the time delay between the input being provided to the system and
the output (or result) being received.

Monitoring techniques are among the most common methods for improving efficiency in in-
ference workloads. Gost [134] employs a monitoring system to track both spatial and temporal
utilization of GPU resources, thereby enabling adaptive resource allocation for network function
virtualization. In addition, the monitoring system in SPLIT [75] focuses on tracking the perfor-
mance and resource usage of individual chunks, ensuring that QoS requirements are met. It uses a
different strategy by splitting DNN models into equally sized chunks and scheduling these chunks
for inference. H3M [135] introduces a coordinated FPGA framework that integrates heterogeneous
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sub-accelerators, layer-wise scheduling, and dynamic mapping strategies, leveraging real-time
workload monitoring to optimize multi-DNN execution, achieving up to 7.5X Energy-Delay Prod-
uct (EDP) reduction compared to state-of-the-art accelerators.

Different from monitoring, PREMA [23] introduces a predictive scheduling algorithm for NPUs
that supports preemption, which makes it suitable for environments where tasks have varying
execution times and need to be managed dynamically to optimize performance. In contrast, Bay-
max [14] optimizes non-preemptive accelerators by focusing on QoS. This involves predicting the
duration and resource requirements of tasks to avoid conflicts due to the non-preemptive nature.
In addition, it addresses queueing delays for computational resources by implementing a runtime
system that orchestrates the execution of computing tasks from different applications. DGSF [32]
introduces a disaggregated GPU resource-sharing framework for serverless functions, enabling
efficient and low-latency inference by dynamically allocating and consolidating GPU resources
across multiple functions using a virtualized GPU pool. Cambricon-X [140] leverages a PE-based
architecture with efficient indexing and asynchronous processing to optimize computation and
memory handling for sparse neural networks.

3.2.2 System throughput. KRISP [24] and GSLICE [26] both employ spatial partitioning to di-
vide GPU resources among multiple tasks. However, there are key differences between them. KRISP
[24] uses predictive models to forecast the resource needs of each kernel and dynamically ad-
justs the resources allocated to each kernel based on real-time requirements. This approach allows
KRISP to operate at the kernel level, focusing on the specific needs of individual kernels within
DNN models. GSLICE [26], however, employs both static and dynamic partitioning of GPU re-
sources. This ensures that tasks do not interfere with each other by managing the allocation of
GPU partitions at the task level. However, KRISP’s fine-grained, kernel-level resource allocation
contrasts with GSLICE’s task-level management, highlighting their different approaches to achiev-
ing similar goals. vVFPGA_layer [81] proposes a full-stack solution for enabling multi-tenancy on
FPGAs, featuring an intra-FPGA virtualization layer, memory segmentation, and a network-on-
chip architecture, achieving up to 3.96x throughput improvement in isolated settings while ensur-
ing secure resource sharing and high-quality service.

Gpulet [22] and FaST-GShare [37] both utilize spatio-temporal sharing technologies to optimize
GPU usage, but they cater to different environments. While the former is geared towards multi-
GPU servers with a focus on heterogeneous models, the latter is designed for the flexibility and
scalability requirements of serverless computing environments. Optimus [76] introduces a hyper-
visor for shared-memory FPGA platforms, enabling secure and efficient resource sharing through
spatial and temporal multiplexing, with key techniques such as page table slicing for DMA isola-
tion, a multiplexer tree for interconnect management, and a preemption interface for workload
flexibility. Furthermore, TSM [46] integrates both spatial and temporal aspects into scheduling. It
introduces dynamic query batching, which groups multiple execution kernels from disjoint DNN
graphs into larger super-kernels. This approach allows for the scalable execution of hundreds of
models on a single GPU by leveraging CUDA streams and inter-model batching, thereby optimiz-
ing both latency and throughput.

Besides spatial and temporal sharing, gScale [123] introduces two innovative mechanisms: the
Private Shadow Graphics Translation Table (GTT) and Ladder Mapping with Fence Memory
Space Pool. These mechanisms allow the GPU to access physical memory directly, effectively by-
passing global graphics memory constraints. ETC [63] presents three key technologies: eviction,
throttling, and compression. Eviction involves proactively removing less-critical data from GPU
memory to free up space for more urgent data. Throttling controls the rate at which data is pro-
cessed to prevent memory overload. Compression reduces the size of data stored in GPU memory,
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Table 5. Summary of Studies on Efficiency-oriented Sharing under DL Mix Workloads

Year Name Obj. Approaches Claimed Effect Dev. ExpT Exp.S Code
FGD[116] Ak Dynamic Fm?—gramcd Unallocated Resources by Fragmentation 49% | G S 6.2k GPU v
Allocation
Dynamic Fine-grained ~
HRP[99] * Alocation Throughput 1.87% T G R 1A100
2023 AuRORA[58] *v Virtualization SLA Satisfaction 2.02X T; Throughput 1.33x T G R - v
IGS-TLB[44] * Dynamic Fine-grained L1 TLBs Hit Rate 18% T G s Gem5-GPU -
Allocation
o TyuRtal] Dynamic Fine-grained o inlats : .
Sparse-DySta[31] * Allocation Latency Violation Rate 10% | G R RTX 2080 4
AVEC[56] ax Accelerator Virtualization Latency 7X | G R 3 GPU -
RealArch[114] L Profiling and Predicting Latency 2.16-8.54X | N R - v
. . . . 3 Xilinx
FPGAPooling[144] . Dynamic FPGA allocation Avg JCT 7% |; Tail JCT 4% | F R&S <eTvX690t
. . Intel NUC
2022 gOver[126] * Dynamic Oversubscription Cost 20% | G R Kit -
. Dynamic Fine-grained T 200 _2g0 . o s s
DeepBoot[20] + Allocation JCT 32%-38% | G R&S 8 Nvidia P40 v
MIG-serving[106] * Dynamic Fine-grained Save 40% GPU G R&S 24 A100
2021 Allocation
Gemini[12] * Profiling and Predicting Performance Overhead Less than 5% G R 1V100 v
- . Preemption Latency 87.3% |; AMD
CPSpatial[48] * & Preemption Throughput 1.43x 1 G R Radeon VI 4
Dynamic Fine-grained
Y
KubeShare[129] ax Alocation Throughput 2x T G R 32 v100 v
o ' Dynamic Fine-grained GPU Memory Utilization 42% T; 64 V100
2020 AntMan[119] 4 Allocation Computation Utilization 347%] G R GPU v
AvA[131] a Virtualization Virtualize 9 Accelerj\t};};: and 11 Framework G R 4GPU v
Dynamic Fine-grained 100 Nvidia
PERSEUS([61] * Allocation Cost 12% | G S TensorRT v
Dynamic Fine-grained P100, P4,
OAS[7] L Allocation Improve Memory Share TitanV v
2018 FELIPE[142] * Virtualization Throughput 19.7%-21.5% T G R 2GPU -
~ Dynamic Fine-grained o ~
G-NET[139] K Allocation Throughput 70.8% T; Latency 44.3% | G R TITAN X
Dynamic Fine-grained B o B
2017 Maestro[90] Alocation Throughput 12.9%-20.2% T G s GPGPU-Sim
2016 vDNN[98] [ Memory virtualization Reduce GPU Memory Usage 89%-95% | G R Titan X 4
. Row-Stationary (RS) . . . ~ ~
Eyeriss[18] * Dataflow Energy Consumption per Operation 1.4—2.5X | A S

Obj.(Objectives): *(Throughput) #(Utilization) #(Latency) 4¢(Job Completion Time) ¥*(Cost)

¥ (Fairness)%(Interference) Dev.(Device Type): G(GPU) N(NPU) F(FPGA) A(ASIC) Exp.T(Experiment
Type): R(Real Cluster) S(Simulation) Exp.S(Experiment Scales): the scale of physical cluster. -: not clearly
specified.

maximizing the available space and improving overall efficiency. REEF [38] takes two steps to im-
prove throughput, which are reset-based preemption and dynamic kernel padding. The preemption
mechanism allows tasks to be interrupted and resumed with minimal delay, facilitating concurrent
execution. The dynamic kernel padding enhances the ability to handle multiple concurrent DNN
tasks on a single GPU. EIE [39] presents a specialized inference engine that has been optimized for
the operation of compressed deep neural networks. This engine leverages the concept of weight
sparsity and on-chip processing.

3.3 Efficiency of Mixed Workloads

Sharing Al accelerators for mixed workloads presents several challenges due to the differing char-
acteristics and requirements of training and inference tasks. The key difficulties lie in balancing
the conflicting demands for resources between training and inference tasks, dynamically managing
workload variations, maintaining low latency for inference, optimizing overall efficiency, and han-
dling the added infrastructure complexities and overheads. This section categorizes approaches for
both training and inference workloads based on three factors: time, cost, and throughput. Table 5
provides a comprehensive overview of the detailed information presented.

3.3.1 Execution Time. Since training and inference tasks have different resource requirements
and execution times, the scheduling system must adapt in real-time to these changes to main-
tain high time efficiency. Sparse-DySta [31] effectively recognizes and exploits sparsity in DNN
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workloads to minimize unnecessary computations, thereby accelerating task execution. Con-
versely, IGS-TLB [44] concentrates on hardware-level optimizations, specifically, TLBs sharing.
Although it does not directly address scheduling algorithms, it enhances time efficiency by reduc-
ing memory operation latency. DeepBoot [20] designs adaptive task scaling (ATS) algorithm to
utilize idle GPUs in the inference cluster for the training DLTs and implements auto-fast elastic
(AFE) to reduce the restart overhead by inference GPU reclaiming.

RealArch [114] includes estimation models that predict the execution time and resource require-
ments for different DNN tasks; and then its real-time scheduling algorithm, which prioritizes tasks
based on their deadlines and resource needs, dynamically maps tasks to the available cores, balanc-
ing the load and reducing contention. OaSM [7] presents an overlap-and-save method that reduces
redundant calculations by dividing the input data into overlapping segments, processing each seg-
ment separately, and then combining the results. The approach leverages the fast shared memory
available on GPUs to store intermediate data. AVEC [56] framework virtualizes GPU resources by
intercepting API calls from applications and redirecting them to remote GPU accelerators. This
allows lightweight devices to offload computationally intensive tasks to more powerful GPUs lo-
cated either in the cloud or at the edge. The use of containers ensures that applications can be
easily migrated and managed across different nodes in the network.

In addition to GPU-related work, the sharing of certain accelerators (e.g., FPGA, ASIC) has also
been demonstrated to accelerate Al workloads. FPGAPooling [144] introduces a centralized FPGA
resource pooling framework that dynamically allocates and shares FPGA accelerators among mul-
tiple tenants, addressing the inefficiency of static allocation in cloud environments. FPGAPooling
improves the average and tail job completion time by up to 7 and 4 times, respectively.

3.3.2 Cost. The objective of cost-effective scheduling of mixed deep learning workloads is to
achieve a balance between performance and cost. A number of recent studies use dynamic scaling
and resource allocation technologies that adjust to real-time demand, with the aim of enhanc-
ing cost efficiency. GOver [126] introduces an economy-oriented approach to GPU virtualization,
which leverages dynamic and adaptive oversubscription. AntMan [119] automatically scales GPU
resources up or down based on real-time workload demands. Concurrently, it incorporates cost-
awareness in scaling decisions, thereby reducing unnecessary expenditures on GPU resources
during low-demand periods. FGD [116] presents Fragmentation Gradient Descent as a method
for the management and reduction of memory fragmentation in GPU-sharing workloads. Eyeriss
[18] leverages a row-stationary dataflow to optimize energy efficiency in convolutional neural net-
works by minimizing data movement and maximizing local data reuse on a spatial architecture.

The majority of these alternative approaches concentrate on enhancing the efficacy of GPU
virtualization, minimizing overheads, and optimizing resource allocation to reduce costs. AvA
[131] implements technologies to reduce the overhead associated with GPU virtualization and
Uses hardware-assisted virtualization and optimized software stacks to achieve lower latency and
higher throughput. Unlike that, vDNN [98] virtualizes deep neural networks to achieve scalable
and memory-efficient neural network design.

Beside these works, numerous research studies implement adaptive scheduling strategies that
optimize resource utilization and cost based on workload characteristics. MIG-serving [106] em-
ploys a dynamic reconfiguration of GPU instances based on current workload, avoiding over-
provisioning and reducing costs. PERSEUS [61] analyzes the tradeoffs between performance and
cost in multi-tenant environments and implements scheduling strategies that consider the specific
needs and costs of different tenants.

3.3.3  System throughput. A number of studies concentrate on the administration of GPU re-
sources in multi-tenant settings. AURORA [58] employs virtualization technologies to abstract
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physical accelerator resources into Virtual Accelerator Instances (VAIs), which can be allo-
cated to different tenants as needed. Concurrently, it continuously monitors the usage of each vir-
tual accelerator instance and adjusts resources according to load changes. Gemini [12] detects and
characterizes the burstiness of GPU workloads by analyzing their execution patterns. This helps in
understanding how workloads can be interleaved without causing significant performance degra-
dation. The system ensures that high-priority or bursty workloads receive sufficient resources
while allowing low-priority or less bursty workloads to utilize the remaining capacity. KubeShare
[129] includes a GPU device plugin for Kubernetes, which abstracts the physical GPUs into logical
GPU slices. The mechanism allows GPUs to be divided into smaller, shareable units (slices) that
can be allocated to different containers based on their requisite specifications.

A significant body of literature emphasizes the importance of dynamically adjusting resource
allocation to meet the needs of different tasks. HRP [99] divides GPU resources into multiple hier-
archical levels, each representing different granularity of resource partitions. Furthermore, a rein-
forcement learning model is employed to facilitate dynamic adjustments in resource allocation at
each hierarchical level. The reinforcement learning model continuously optimizes resource alloca-
tion strategies by observing task performance and feedback. Similarly, G-NET [139] ensures that
the GPU is kept busy by dynamically scheduling GPU kernels from different network functions.
The dynamic partitioning of GPU resources in Maestro [90] entails the continuous monitoring of
task performance and resource usage, adapting resource allocations in real-time based on current
demands, and using a feedback loop to refine and optimize allocations.

Similarly, fine-grained resource sharing [48, 142] is a common strategy for improving system
throughput. In contrast to CPSpatial [48], which focuses on dividing the GPU into partitions and
using preemption to manage task priorities, FELIPE [142] focuses on creating vGPUs and fine-
grained scheduling of these virtual resources.

3.4 Discussion

In summary, optimizing resource-sharing efficiency in Al accelerators involves a variety of method-
ological approaches, each achieving varying levels of success. Figure 5 highlights optimization
improvements across key metrics, ranging from 1.2X to 15X. For job completion time (JCT)
and latency optimization, solutions such as REEF and AIFM deliver significant gains of 12.3X
and 7X, respectively, particularly in inference workloads. In terms of utilization and throughput,
methods such as TGLS and GSLICE demonstrate remarkable improvements of up to 15X and 13Xx.
The subsequent discourse will meticulously examine the most salient points delineated in this
section.

Dynamic fine-grained allocation and profiling & predicting are most common approaches for ef-
ficient sharing. As illustrated in Figure 5, the majority of existing research adopts these two ap-
proaches to optimize the accelerator. These methodologies result in enhanced operational efficacy
by guaranteeing that tasks are not postponed due to inadequate resources. The reduction of la-
tency is achieved by ensuring that high-priority tasks are allocated the requisite computational
resources without delay. Furthermore, they contribute to the enhanced efficiency of Al systems by
ensuring that resources are neither underutilized nor overcommitted, thereby maintaining an opti-
mal balance that enhances system throughput and responsiveness. This results in a more seamless
and dependable operation of Al services, particularly in environments with dynamic and varied
workloads, which aligns more closely with production environments characterized by large and
complex workloads.

Inference workloads achieve superior optimization compared to training. The optimization of in-
ference workloads generally surpasses that of training workloads, as shown in Figure 5, where
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Fig. 5. Summary of efficiency optimization of metrics. The optimization results for some works are a range
interval, and we have chosen the maximum of the range to show here.

inference consistently achieves higher gains across key metrics. This can be attributed to infer-
ence’s more predictable and lightweight computational patterns, which allow for more effective re-
source scheduling and management. In contrast, training workloads, often characterized by higher
complexity and variability, show relatively modest improvements, particularly in systems employ-
ing fine-grained resource allocation and dynamic optimization strategies.
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NPUs and TPUs have become increasingly popular as Al accelerators for efficient shared environ-
ments. Since 2023, the evolution of chips dedicated to deep learning has accelerated significantly,
leading to a surge in research focused on optimizing the performance of NPUs [34, 82, 124] and
TPUs. These processors have a simpler architecture compared to GPUs, and their openness to a
wider range of internal hardware interfaces enables more nuanced resource sharing. This, in turn,
enhances the efficiency of data sharing. As NPU computational capabilities continue to expand, it
is expected that even more researchers will delve into this field, further advancing the technology.

It is very common to consider system throughput as the main objective. This focus on system
throughput aims to maximize the number of tasks processed within a given timeframe, which is
crucial for improving the overall efficiency and performance of Al systems. By prioritizing through-
put, researchers can ensure that Al accelerators such as GPUs and TPUs are used to their fullest
potential, handling multiple tasks simultaneously and reducing idle times. This approach not only
enhances the productivity of Al systems but also makes them more scalable and responsive to vary-
ing workload demands. As a result, achieving high system throughput is a key goal in optimizing
resource allocation and utilization in shared Al accelerator environments.

Optimizing efficiency requires simultaneous consideration of user experience. Optimizing effi-
ciency in GPU accelerator scheduling requires a careful balance between maximizing resource
utilization and maintaining a positive user experience. While achieving high throughput and low
latency is critical for efficiency, it is equally important to ensure that user-centric metrics, such as
responsiveness and fairness, are not compromised. Modern scheduling algorithms must account
for diverse workloads with varying priorities, from real-time inference tasks to large-scale training
jobs. For example, PREMA[23] achieves a 1.4X increase in throughput alongside a 4.8X improve-
ment in SLA satisfaction, illustrating that it is possible to enhance system performance without
compromising service quality. This underscores the need to consider both efficiency and user ex-
perience in scheduling strategies, particularly when addressing challenges such as worst-case la-
tency or percentile guarantees (e.g., P95 or P99 latency), which are critical for maintaining user
satisfaction.

Shared accelerator clusters, not individual devices, are now an efficient way to train LLMs. Shared
accelerator clusters have become a preferred method for training LLMs [50]. By leveraging mul-
tiple devices in a distributed setup, they reduce training time and optimize resource utilization.
Techniques such as tensor and pipeline parallelism divide computations across devices, overcom-
ing memory bottlenecks and enabling the training of larger models. Compared to single devices,
shared clusters provide greater scalability and efficiency, making them indispensable for modern
AT workflows.

4 Rising Concerns in Al Accelerator Sharing

As shown in Figure 2, this section delves beyond the realm of efficiency, encompassing critical
concerns such as fairness, interference, and security in the context of Al accelerator resource shar-
ing. It explores the impact of computing and memory bandwidth interference on performance,
methodically examines approaches to ensure equitable resource allocation, and underscores the
significance of robust security measures. A synopsis of advancements in the pertinent literature
is enumerated in Table 6.

4.1 Fairness

The concept of fairness in computational resource allocation refers to the equitable distribu-
tion of resources among tasks and users, preventing monopolization. It involves balancing task
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Table 6. Summary of Studies on Non-efficiency-oriented Sharing under DL Workloads
Year Name Obj. Approaches Claimed Effect Dev.  Exp.T Exp.S Code
Orion[103] - Dynamic Fine-grained Allocation Throughput 7.3x T; Cost 1.49X | G R 1V100 4
2024 Guardian[92] A Resources [solation Overhead Only 4%-12% G R Quadro ’}?000;3080
DOTPBA[84] A Dynamic OTP Buffer Allocation Excution time 13.2%-17.5% | G S MGPUSim -
Gniter[120] > Profiling and Predicting Guarantee the SLOs by Cost 25% | G R 10 V100 7
2023 Libra[72] <k Dynamic Fine-grained Allocation Backward Time 6%-20% |, G R&S 8 V100 v
N A . Utilization 29%-31%1; . . .
IADeep[16] ol Co-optimizing Task Assignments JCT49% |; Makespan 67%] G R 20 RTX 3090 4
ctmGPU[68] £3-d Interleave PCle Channel Accesses JCT 31.8%-38.3% | when GPU G R 8 P40 -
Memory 1.33-2X
Primal-Dual Algorithm; .
7S g % -
Astraea[111] (234 Sharing Rewards Fairness 20% T G S
2022 - . . Latency 50% |;
VELTAIR[73] #%  Dynamic Fine-grained Allocation Throughpat 457717 1 G R v
GDCJ[10] - Track the Contention Help Designer Know How APPs Are G s GPGPU-Sim -
Affected
MoCA[57] %94 Dynamic Fine-grained Allocation  S-A 18% T Throughput 1.7 7; G s FireSim -
Fairness 1.2X T
o . . 75%JCT 12.4% [;
y 9 -
2021 MAPA[96] *” Dynamic Fine-grained Allocation Worst Execution Time 35% | G R&S 1V100 v
ParSecureML[137] A Parallel Processing Makespan 33.8X | G R 3 V100 v
Themis[77] v Finish-time Fairness Fairness 2.25X | G R 64 K80 GPU -
2020 Fingerprint[108] A Extracting FPGA Fingerprint Identify Cloud FPGA Instances F R f1.2xlarge;f1.4xlarge v
Gandiva_fair[11] A Job Migration and Trading Fair-share ‘ge“tg‘z“"ge“”“s G R V100:P100:K80
1AVS[121] - Profiling and Predicting Accuracy 15%-40% G R 1 Nvidia P100
2019 GAugur[65] ol Profiling and Predicting GPU Utilization 20%-60% T G R 1 RTX 1060
) Adaptive Virtualized under the o . Intel HD Graphics
2QoS[74] - QoS Target GPU Utilization 25.85% | under QoS G R 5500
VMCG[107] £34 Separate V-channel GPU Allocation Fairness 60%-80% T G R 1GTX 750Ti
. Wide Parametrizable Secret .
2018 FREFI[101] A Sharing Core Throughput 6.4 Gbit/s F R -
Leaky Wires[35] A Leaky ere.s Cf)vert Bandwidth 6 kbps F R Virtex -
Communication
Graviton[110] A Static Analysis Validation Latency 17%-33% | G R GTX 780; GTX Titan
2017 Prophet[13] ol Profiling and Predicting Utilization 49'97?;7}"7/“&'110“0“ Error G R Nvidia K40
2016 Mystic[109] - Profiling and Predicting Throughput 27.5% T; G R 34 Nvidia K40m -

GPU Utilization 16.3% T
Obj.(Objectives): *(Throughput) #(Utilization) #(Latency) #(Job Completion Time) %(Cost) ¥(Fairness)
%*(Interference) A(Security) Dev.(Device Type): G(GPU) N(NPU) F(FPGA) Exp.T(Experiment Type): R(Real
Cluster) S(Simulation) Exp.S(Experiment Scales): the scale of physical cluster. -: not clearly specified.

priorities in multi-tenancy environments, ensuring a tradeoff between latency and throughput,
and dynamically adapting to changing workloads and resource availability.

Themis [77] design allocates GPUs to winning bids by trading off fairness for efficiency in the
short term, but ensuring finish-time fairness in the long term, rather than prioritizing one over
the other. Astraea [111] employs incentives to encourage fair resource sharing among tenants. By
offering rewards or benefits for efficient resource sharing, it encourages tenants to cooperate and
share GPU resources. VMCG’s [107] approach is to ensure fairness by allocating dedicated GPU
channels to virtual machines. Each VM is allocated its own channel, preventing interference and
ensuring that resources are distributed fairly. Gandiva_fair [11] is a scheduling framework for
heterogeneous GPU clusters that balances efficiency and fairness. It employs dynamic profiling,
job migration, and GPU trading mechanisms to optimize resource allocation across multiple GPU
models, improving cluster utilization and performance while ensuring fair resource distribution
among users.

4.2 Interference

In the context of accelerator sharing, interference refers to the negative impact on task per-
formance due to competition for shared resources such as memory bandwidth, compute units,
and cache. This can lead to increased latency, reduced throughput, and unpredictable task
execution. Addressing interference involves strategies such as resource isolation, fair scheduling,
dynamic resource management, and performance isolation to ensure efficient and predictable
task performance.
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4.2.1  Computing. In a GPU, compute units include Streaming Multiprocessors (SMs) with
CUDA cores, Tensor Cores, Ray Tracing Cores (RT Cores), Texture Units, Shader Units, Raster
Operations Pipelines (ROPs), Special Function Units (SFUs), and Load/Store Units (LD/ST
Units), all working together for efficient parallel computation and graphics rendering. Most in-
terference in GPUs typically occurs in the Streaming Multiprocessors (SMs), which house the
CUDA cores. This is where the bulk of parallel computation happens, leading to contention for
compute resources.

We can categorize existing approaches in two groups. First, several works focus on predicting
and mitigating interference through real-time monitoring and forecasting, ensuring efficient
and predictable resource allocation. Prophet [13] focuses on predicting QoS metrics to improve
resource utilization and ensure performance compliance in non-preemptive accelerator environ-
ments. IAVS [121] aims to predict and manage performance interference for interference-aware
scheduling in virtualized GPU environments. GAugur [65] quantifies performance interference
among colocated gaming workloads to optimize resource utilization in cloud gaming scenarios.
Each approach targets different environments and types of interference, using tailored prediction
technologies to enhance performance and resource management. IGniter [120] ensures pre-
dictable DNN inference performance in the cloud by employing interference-aware GPU resource
provisioning, dynamically allocating resources based on predicted interference levels. IADeep
[16] employs a middleware approach that intelligently multiplexes deep learning workloads, using
interference models to predict and mitigate contention. Mystic [109] employs a collaborative
filtering framework to predict the interference caused by incoming applications based on their
similarity to currently running applications. This prediction enables the scheduler to minimize
interference and optimize system throughput.

Second, many works manage interference by focusing specifically on fine-grained GPU sharing
and thread allocation technologies. Orion [103] provides fine-grained GPU sharing with interfer-
ence awareness, dynamically adjusting GPU usage for ML applications by monitoring interference
levels and reallocating resources. Libra [72] introduces contention-aware GPU thread allocation
for data parallel training, optimizing thread distribution in high-speed network environments by
assigning threads based on contention metrics. GQoS [74] provides a QoS-oriented GPU virtu-
alization framework with adaptive capacity sharing, which allows for the dynamic adjustment of
resource allocation according to real-time workload demands to maintain QoS for multiple tenants.
MAPA [96] introduces a multi-accelerator pattern allocation policy that optimizes GPU resource
sharing and reduces contention in multi-tenant GPU servers by identifying and leveraging work-
load patterns. VELTAIR [73] enhances multi-tenant deep learning services through adaptive com-
pilation and scheduling, optimizing performance by dynamically adjusting compilation strategies
and scheduling decisions based on current system states.

4.2.2  Memory and Bandwidth. Memory interference occurs when multiple tasks compete for
memory resources, resulting in increased latency, reduced throughput, and unpredictable perfor-
mance. Mitigation strategies may include resource partitioning, priority scheduling, dynamic re-
source management, performance isolation, and effective caching, with the objective of ensuring
efficient and consistent task execution.

GDC [10] is concerned with the real-time tracking and management of cache contention, allow-
ing for more efficient use of last-level cache resources by identifying and mitigating cache-related
performance issues. MoCA [57] introduces memory-centric, adaptive execution strategies that
dynamically adjust memory allocation based on the specific demands of multi-tenant DNN work-
loads. G10 [138] integrates GPU memory and storage with smart tensor migrations, creating a
unified architecture that enables efficient data movement and reduces memory access contention.
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CtmGPU [68] develops advanced scheduling technologies for tensor movements across multiple
GPUs, optimizing the timing and coordination of data transfers to prevent bottlenecks.

4.3 Security

Security in resource sharing involves protecting sensitive data through encryption and access con-
trol, ensuring resource isolation to prevent interference between tasks, implementing fair schedul-
ing to avoid resource contention, maintaining network security with protocols and intrusion detec-
tion, and preventing side-channel attacks. It ensures that multiple tasks or tenants can share GPU
resources efficiently without compromising data privacy, task performance, or system integrity.

Guardian [92] is designed to maintain isolation and enforce security policies in multi-tenant
GPU environments. To address the bandwidth issue of additional security metadata, DOTPBA
[84] uses a dynamic batching scheme to transfer only a single set of metadata for each batched
group of data responses. The proposed design constantly tracks the communication pattern of each
GPU, periodically adjusts the allocated buffer size, and dynamically forms batches of data transfers.
ParSecureML [137] employs methods such as data parallelism, where large datasets are divided
and processed concurrently across multiple GPU cores, and model parallelism, which splits the
machine learning model itself for parallel execution. Additionally, it incorporates cryptographic
protocols such as homomorphic encryption and secure multiparty computation to ensure data
privacy and security during processing. Graviton [110] addresses the need for secure execution
on heterogeneous systems, introducing a co-designed hardware-software framework that ensures
kernel isolation and encryption efficiency with minimal performance impact. These combined
methods optimize computational performance while maintaining robust data protection.

In addition to the GPU-related work mentioned above, some research has focused on edge accel-
erators, such as FPGAs, to address security challenges. Leaky Wires [35] explores vulnerabilities in
FPGA routing resources, revealing how crosstalk effects in long wires can be exploited for covert
communication and proposing mitigation strategies to secure the routing infrastructure. FREFI
[101] designs an optimized FPGA architecture for secure data storage, achieving significant im-
provements in throughput and resource efficiency compared to traditional methods. Furthermore,
Fingerprint [108] investigates security risks in cloud FPGA deployments by using Physical Un-
clonable Functions (PUFs) to identify unique FPGA instances, highlighting potential threats and
suggesting countermeasures to mitigate them. These studies highlight the unique challenges and
solutions for ensuring the security of edge accelerators in distributed computing environments.

4.4 Discussion

In conclusion, this section analyzes three critical aspects of Al accelerator sharing optimization:
fairness, interference, and security, with various approaches achieving different levels of improve-
ment. Fairness optimization approaches like Themis achieve up to 2.25X improvement, while inter-
ference mitigation solutions such as VELTAIR and IADEEP demonstrate significant gains of 1.71x
and 1.67X, respectively. Security-focused solutions such as ParSecureML and Guardian show mod-
erate but stable improvements of 1.33% and 1.12x.

The optimization techniques can be categorized by their primary objectives: fairness-oriented
solutions (Themis, VMCG, Astraea) focus on equitable resource allocation with improvements
ranging from 1.2X to 2.25X; interference-focused approaches (IAVS, Prophet, Mystic) address
resource contention with enhancements from 1.25X to 1.6X; and security-centered solutions
(ParSecureML, Guardian, DOTPBA) prioritize protected execution with improvements from 1.12x
to 1.33%.

Balancing competition and security is a challenge in Al accelerator resource sharing. Balancing
competition and security in Al accelerator resource sharing is a complex challenge that requires
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careful consideration of tradeoffs. Competition-oriented methods prioritize efficient resource uti-
lization among tasks or users, often leading to higher improvement ratios and enhanced system
performance. However, these approaches may not adequately address potential security vulner-
abilities. Security-focused solutions prioritize protecting the system from threats, such as unau-
thorized access or data breaches, but the additional overhead of implementing these protective
mechanisms often results in more modest performance gains. This inherent tradeoff highlights
the difficulty of designing systems that can effectively meet diverse optimization goals, requir-
ing innovative strategies to strike a balance between competitive resource allocation and robust
system security.

Fairness should be achieved through isolation. The concept of scheduling fairness can be inter-
preted from two distinct perspectives [27]. From the scheduler’s perspective, fairness implies an
even allocation of resources to each task, thereby maximizing the overall utilization of resources.
Conversely, from the users’ perspective, fairness entails that the resources requested by the users
will be honored, even if they are unable to fully utilize the majority of the requested resources
within a given time slot. This results in a situation where the scheduler must observe some tasks
experiencing difficulties in executing their instructions while simultaneously expending resources
on idle tasks to ensure the desired level of fairness to the users.

These two perspectives, which are contradictory, must be reconciled through competitive iso-
lation. When some tasks have more free resources, the scheduler allocates these resources to
other tasks that require them more urgently or have been waiting for an extended period, thus
achieving the scheduler’s fairness. Consequently, when the load of these free tasks suddenly in-
creases, the scheduler must employ robust resource isolation to reclaim the resources and main-
tain user-level fairness. The crux of this coordination lies in the efficacy of the resource isolation
policy. It is our contention that future research on these two factors—competitive isolation and
resource allocation—will prove mutually beneficial. By enhancing the mechanisms for dynamic
resource allocation and isolation, it is possible to achieve a balance that satisfies both the sched-
uler’s and users’ perspectives of fairness, thereby optimizing overall system performance and user
satisfaction.

Memory security will be the important issue for LLMs. Efficient memory usage is critical for LLMs
due to their size and computational demands. Memory sharing techniques significantly enhance
throughput and scalability by reducing redundancy and improving hardware utilization. Examples
include weight sharing, activation reuse, and memory pooling, which collectively lower costs and
increase efficiency.

However, shared memory poses privacy risks, such as data leakage, timing side-channel attacks,
and residual data exposure. Ensuring user isolation in memory sharing involves techniques such
as memory partitioning, encryption, data sanitization, and access controls.

Balancing memory efficiency and privacy is key to optimizing LLMs. Future efforts should focus
on dynamic memory management, hardware support for secure memory, and minimizing cross-
user interference to achieve scalable and secure LLM deployments.

Normal LLM inference request will be disrupted by a long-text request. With the rapid advance-
ment of LLMs, long-text inference requests have become increasingly common. These requests
demand higher computational and memory resources and take longer to complete. The growing
volume of long-text requests inevitably leads to resource contention with regular requests that
have strict latency requirements. This issue has drawn significant attention from researchers [94],
who are now employing efficient scheduling techniques to manage long-text requests and enhance
overall cluster efficiency.
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5 Open Challenges

This section will present a discussion of existing challenges that have not been considered in the
papers included in this survey, as well as potential future directions for research in this area.

5.1 SLA-aware Resource Sharing and Job Packing

The optimization of efficiency represents a fundamental objective in the context of sharing tech-
nologies. Most sharing algorithms are designed to optimize various aspects of efficiency. The initial
step is to define efficiency. Traditionally, these algorithms use system metrics, such as utilization,
to assess efficiency. However, we believe this approach is insufficient for measuring the efficiency
of an application. A more appropriate method would be to employ user-level metrics, such as la-
tency, to assess the effectiveness of the application from the user’s perspective. Due to privacy and
security concerns, the system scheduler is unable to obtain user-level metrics. This makes mapping
an application’s SLA (Service Level Agreement) or user metrics using system metrics a signifi-
cant challenge. UFO [93] addresses this by employing a scheduling frequency-based approach to
map application latency. This involves adjusting CPU allocation based on predicted scheduling
frequency. In the future, selecting an appropriate model with a limited set of system metrics to
gauge an application’s SLA on a GPU will likely gain considerable attention.

To address these challenges, future research should focus on leveraging machine learning
models to bridge the gap between system-level metrics and user-level performance indicators.
By training lightweight models on system data such as GPU utilization, memory bandwidth, and
scheduling frequencyj, it is possible to predict user-level metrics such as latency or SLA compliance.

5.2 Resource Sharing over Heterogeneous Accelerators

Modern data centers and edge Al systems deploy a diverse range of Al accelerators with vary-
ing computational capabilities. These accelerators can range from highly advanced to relatively
limited, with some featuring opaque internal mechanisms and others operating transparently. Re-
source allocation also differs widely, from fine-grained control to coarse-grained levels constrained
by virtualization techniques.

This heterogeneity necessitates a unified sharing framework to optimize resource use across
both data center and edge accelerators. Such a framework should integrate sharing technologies
tailored to the unique attributes of each device, enabling efficient utilization and boosting overall
system performance.

5.3 Coordination of Global Scheduler and Local Schedulers

AT accelerator sharing frequently relies on profiling and prediction methodologies. However, the
global scheduler’s tasks, which include calculating remaining resources, synchronizing informa-
tion, and selecting suitable nodes, can introduce significant overhead, particularly under substan-
tial workloads. It is important to note that certain processes involved in node selection are char-
acterized by high-complexity optimization. The present study posits that the offloading of certain
computations to the local scheduler—including the determination of resource sharing feasibility
and the calculation of the remaining resource capacity after sharing—can alleviate the global sched-
uler’s burden. This delegation enables the global scheduler to prioritize its core functions, thereby
enhancing the efficiency of the overall scheduling process.

To address the challenges outlined, a practical approach would be to implement a hierar-
chical scheduling system where the local scheduler handles computationally intensive tasks
such as resource sharing feasibility and residual capacity calculations. This design reduces the
global scheduler’s workload, allowing it to focus on high-level decision-making and system-wide
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synchronization. Additionally, leveraging lightweight machine learning models at the local level
can further optimize resource allocation and enhance scheduling efficiency.

5.4 Resource Contention and User Experience in LLM Workloads

The proliferation of LLMs has led to a surge in the availability of bot chat services for the general
public. The response latency is a key factor in the service experience. While sharing technology
can improve the overall system’s resource use efficiency, it can also, to some extent, affect the
user’s experience.

To address this issue, techniques such as fast competition, localization, and resource isolation
become exceptionally important. If the monitoring program identifies an impact on the user expe-
rience, then it is essential for the program to respond promptly to prevent the resource quota of the
reasoning service from being exceeded or to make predictions about these scenarios in advance.
These factors underscore the significance of detecting resource competition.

5.5 Accelerator Sharing Expands from Device-level to Cluster-level

As Al models, particularly large language models (LLMs), grow in size and complexity, individ-
ual devices increasingly fall short of meeting the computational and memory demands of these
tasks. This limitation has driven a shift toward cluster-level sharing, which introduces new chal-
lenges. Managing data synchronization across distributed accelerators becomes significantly more
complex, especially for tasks requiring precise coordination in parallel processing. Network bot-
tlenecks emerge as data transfers between nodes scale, diminishing the efficiency of both training
and inference. Furthermore, maintaining workload fairness and minimizing interference across
heterogeneous cluster hardware necessitate sophisticated scheduling algorithms. Resource frag-
mentation within clusters adds another layer of complexity, as underutilized accelerators often
coexist with overloaded ones, further complicating resource optimization.

These challenges necessitate the development of robust cluster-level resource management sys-
tems that can dynamically allocate, optimize, and monitor resources to maximize performance and
scalability.

6 Conclusions

This survey systematically investigates the latest resource-sharing technologies for Al accelerators.
We first provide a statistical analysis of current research from multiple perspectives. Then, we
introduce the key concepts and analyze the performance measures that are greatly impacted by Al
accelerator sharing. This also includes an exploration of the common principles and fundamental
techniques adopted in the literature. In particular, we categorize existing studies by their aim of
system optimization with primary focus on efficiency, including time efficiency, cost efficiency, and
system throughput efficiency. Additionally, we examine issues related to fairness, task interference,
and the security implications associated with resource sharing.

Furthermore, we highlight critical open challenges that have not been addressed in existing
efforts. These challenges encompass the need for better resource allocation strategies in shared
environments. This survey provides a comprehensive overview of the state-of-the-art, guiding
future research directions and emphasizing the necessity for further advancements in resource-
sharing technologies.
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