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Abstract—With the escalating demand for cloud computing ser-
vices, data centers (DCs) encounter formidable challenges extend-
ing beyond capital investment needs to accommodate increasing
computational demands and routine infrastructure maintenance.
These challenges include substantial electricity costs due to high
energy consumption and the environmental issues caused by high
carbon emissions. To reduce costs and mitigate environmental
impacts, modern DCs not only use energy-efficient technologies to
improve the efficiency of common IT and cooling systems, but also
actively optimize the direct, indirect and environmental costs of
the power supply side, posing significant challenges for DCs power
management. Therefore, this paper presents a comprehensive sur-
vey of cost-aware optimization from the power supply perspective.
First, it reviews the structures and key metrics of the power supply
system, modeling methods and supporting techniques for main
power and IT system components, establishing a foundation for
optimization. Second, traditional (brown) and green energy sources
are categorized to survey and compare existing critical works,
analyzing the application of power management methods to tackle
cost-related challenges. Finally, future research trends in the power
supply perspective for DCs are discussed. This survey aims to
provide recommendations for power supply side cost optimization
to further advance the sustainable development of DCs.

Index Terms—Data center, power management, green energy,
power system, cost optimization.

I. INTRODUCTION

the world, and driven by the rapid development of
computationally intensive technologies such as artificial in-
telligence, distributed computing, and blockchain, there is an
inevitable need to increase the computing power of data centers
(DCs). As high energy-consuming structures, DCs typically

W ITH the prevalence of cloud computing services around
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Fig. 1. Amortized monthly cost and energy consumption ratio of the DC.

consume 10 to 100 times more electricity per floor compared
to other standard buildings [1]. This necessitates substantial
initial capital investment to deploy the necessary infrastructure
to support increased computing power [2]. Additionally, the
high energy consumption of DCs results in an annual electricity
usage exceeding 200 TWh, accounting for more than 1% of
global electricity consumption [3]. It is estimated that by 2030,
the electricity usage of DCs will rise to 8% of the global total [4].
The high energy consumption of DCs not only places significant
pressure on power grids but also has severe negative environ-
mental impacts. The primary reason is that current electricity
generation is still predominantly driven by fossil fuels. Carbon
emissions generated by DCs alone exceed 0.3% of the total
global carbon emissions and have been on the rise in recent
years [4]. Therefore, meeting the demands of cloud computing
services while addressing the associated high costs, high energy
consumption, and high carbon emissions poses a significant
challenge for DC operators. They must balance the total cost
of ownership (TCO) and environmental costs.

The TCO of DCs is composed of capital expenditure
(CAPEX) and operating expenses (OPEX). The CAPEX for
DCs includes the cost of computing equipment and supporting
infrastructure, as well as the associated depreciation expenses.
The investment in infrastructure accounts for a high percentage
of CAPEX, which varies depending on the size and class of the
DC [5]. In a typical DC’s monthly cost amortization [2], the
expenditure on supporting infrastructure can exceed the OPEX
of the DC, as illustrated on the left side of Fig. 1. Moreover,
DC:s frequently experience resource underutilization [6], as sub-
stantial capital investments in infrastructure are often made to
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accommodate peak demand. In light of the high infrastructure
costs and the underutilization of resources, DCs frequently
mitigate amortized infrastructure costs by deploying additional
servers within existing facilities. Regarding OPEX, one of the
primary contributors is high energy consumption, which results
in significant electricity bills. In a typical DC, 56% of the energy
consumption is generated by the IT system, 30% by the cooling
system, and 8% by the power system, and the rest is generated
by the network, lighting, and other equipment [7], as shown
on the right side of the Fig. 1. The electricity bill consists
not only of basic or volume-based charges linked to electricity
usage, but also peak demand charges [8], incurred when the
DC’s peak power consumption exceeds pre-agreed contractual
limits. Thus, in order to reduce TCO, it is critical to optimize
infrastructure utilization during operations, implement energy
efficiency measures, and adopt strategies for managing peak
demand. Additionally, DCs can further lower electricity costs
by engaging in demand response (DR) or regulation services
(RS) within electricity markets [9].

The environmental cost of DC operations is primarily deter-
mined by the carbon emissions resulting from energy consump-
tion, as well as the mix of green and brown energy sources used.
Achieving true Green IT, as defined by Greenpeace [10] (Green
IT = Energy Efficiency + Renewable Energy), requires not
only the adoption of advanced energy-efficient technologies but
also the integration of renewable energy sources to power DCs.
As the world’s largest carbon emissions trading market [11],
China has implemented a carbon emission quota trading sys-
tem to incentivize DCs to utilize cleaner energy and develop
more advanced energy-saving technologies. For instance, major
Chinese companies such as Alibaba [12] and Tencent [13]
have committed, in their carbon neutrality reports, to achieving
carbon neutrality across their operations and supply chains by
2030. Similarly, in the United States, companies like Google [14]
and Facebook [15] have made similar pledges, committing to
carbon-free energy operations and net-zero carbon emissions
by 2030. Thus, to reduce the environmental cost of sustainable
development, the integration of green energy in DCs has become
an undeniable matter of fact. However, the inherent instability
and intermittency of green energy sources pose significant chal-
lenges for DC power management technologies and strategies.

However, current research on optimizing power management
in DCs predominantly focuses on IT and cooling systems, due
to their high energy consumption. There are relatively few
review studies on the power supply side of DCs and all of them
have their own focus. For example, Malla et al. [16] focus on
secure power over-subscription, discussing how to improve the
utilization of power infrastructure from both the operator and
tenant perspectives. Kong et al. [17] survey power management
in green energy-aware DCs, covering workload scheduling,
virtual machine (VM) management, and capacity planning. Cao
et al. [18] review optimization research from the perspective
of carbon neutrality, combining carbon market regulation and
carbon reduction technologies. Compared to these studies, our
focus is to provide a more comprehensive and systematic in-
vestigation of cost awareness (TCO and environmental costs)
from a power supply perspective, emphasizing the application

of power management techniques and approaches to DC cost
optimization. We review the relevant elements of problem mod-
eling in terms of cost-aware power management optimization
problems and discuss how to solve problems with different cost
awareness. Fig. 2 shows the overview of this survey, and the main
contributions are as follows. (1) We specifically analyze DCs
with different power supply structures, profile the power models
of different power supply hierarchies and the corresponding
power management techniques. Additionally, we summarize key
evaluation metrics of the power supply side to provide a founda-
tion for power management optimization. (2) We systematically
review the optimization studies of cost-aware DCs, offering
a comprehensive analysis and comparison of critical research
across three key aspects: direct and indirect costs of traditional
energy-based DCs, and the environmental costs associated with
green energy DCs. (3) Finally, from the perspective of the power
supply side, we analyze and identify the research trends in DC
power management optimization.

The paper is organized as follows: Section II presents the
power supply structure of DC power systems, key metrics on
the power supply side, and the power models and management
technologies critical to both IT and power systems. These ele-
ments are essential for problem modeling. Section III addresses
the optimization of power management in traditional energy
systems, while Section IV explores the optimization of power
management for green energy. Finally, from the perspective of
the power supply side, we highlight the future research trends in
power management optimization. It should be emphasized that
this paper does not consider HPC and edge scenarios, as these
are beyond our research scope.

II. POWER MANAGEMENT OPTIMIZATION: PROBLEM
MODELING ELEMENTS

A. Data Center Power Supply System Structure

The power supply of a traditional DC is brought from the
utility power from the power supply company, but it cannot guar-
antee an uninterrupted power supply. To ensure high availability
of the power system, DCs typically source utility power from
two different routes. In addition, the DC will be equipped with
a Diesel Generator (DG) as backup power in case both utility
power roads are unavailable and can be switched to DG via an
Automatic Transfer Switching (ATS). However, since it takes
about 20-30 seconds to start the DG [19], depends on Energy
Storage Devices (ESDs), i.e., a short power supply from the
Uninterruptible Power Supply (UPS) in the DC is required to
seamlessly connect the power load from utility power to DG.
Fig. 3 shows the power supply structure of DCs, which can
be roughly classified into centralized power supply structure,
distributed power supply structure, and green energy power
supply structure.

1) Centralized Power Supply Structure: At present, DCs still
widely use centralized power supply structure, as shown in
Fig. 3(a). The capacity of the UPS is large, and the power
transmission process requires double conversion, which gen-
erates high power loss. When providing power to IT systems,
further power loss is generated by conversion nodes such as
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TABLE I
OVERVIEW OF TIER CLASSIFICATION REQUIREMENT [21]

Items Tier I Tier II Tier III Tier IV
(ngtllrlgcytiggplggm) Single Point ~ Single Point  Single Point  Dual
Backup Generator Optional N N+1 2N

Backup system
(UPS) N N+1 N+1 2N
Maintens outage for outage for concurrently fault
amtenance maintenance  maintenance  maintainable tolerant
Availability 0.999947 0.9999512 0.9999791 0.9999976

Power Distribution Units (PDU) or Cabinets Power Distribution
Units (CDU). In addition, considering the possibility of a single
point of failure, according to the DC tier standards classified by
UPTIME [20], Tier IV DCs need to be equipped with 2 N UPS to
ensure that the two sets of power supply systems are physically
isolated, to maximize the availability of the power system in the
DC. More specifically, the DC Tier is divided into four levels
for evaluating the power availability of DC facilities, as shown
in Table I.

It is worth noting that the AC 2 N UPS power modules used
in fault-tolerant DCs require a high upfront investment and are
less power efficient due to the double conversion. Therefore, new
DCs are considering using direct utility power combined with
high-voltage direct current (HVDC) for power supply. HVDC
eliminates the power loss caused by double conversion [22],
which enhances the power supply efficiency. For more infor-
mation on the power efficiency performance of different power
supply structures, refer to [23].

2) Distributed Power Supply Structure: The biggest advan-
tage of a distributed power supply structure is its ability to
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effectively avoid single points of failure in the power transmis-
sion process. Earlier, Google proposed an extremely distributed
power supply structure [24]. They deployed the UPS on servers,
eliminating the double conversion process of centralized UPS
and thereby reducing power loss during transmission. However,
some of the power distribution modules need to be customized
and are not friendly to general DCs. Therefore, Facebook in
2011, launched the Open Compute Project (OCP) [25], to pro-
mote collaboration in the design and technical improvement of
DC standards. This initiative has further advanced the develop-
ment of distributed power supply structures. Currently, there are
two representative types of distributed power supply structures:
® Rack-level UPS power supply structure (the left side of
Fig. 3(b)). The rack-level UPS power supply structure of
Facebook [25] moves UPS to a special battery cabinet close
to the server rack, allowing the stored power to be closer

to the IT systems, which helps reduce power loss.

o Server-level UPS power supply structure (the right side of
Fig. 3(b)). Compared to the rack-level UPS, Microsoft’s
LES structure [26] moves UPS further backward to the
380 V DC bus of the Power Supply Unit (PSU) inside the
server. Google’s early proposed extreme UPS [24], which
is directly connected to the output of the PSU.

Although the battery capacity and power-sharing domain
of distributed UPS are smaller compared to centralized UPS,
their flexible deployment characteristics allow for more efficient
interaction with IT systems, offering greater optimization poten-
tial.

3) Green Energy Power Supply Structure: DCs will not only
purchase green energy from power supply companies, but some
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Fig. 4.

DCs will also deploy on-site green energy generation equipment
for themselves. We classify the integration of green energy into
the power system and its operation modes into the following two
types:

o (entralized green energy power supply structure [27] (as
shown in Fig. 3(c)). Available in both off-site and on-site
green energy, the difference is that the off-site green energy
is similar to the utility power, which is procured from the
power supply companies. While the on-site green energy
is similar to the green energy generator located within the
DC.

e Distributed green energy power supply structure [28] (as
shown in Fig. 3(d)). In this structure, DCs integrate on-site
green energy, which is stabilized and rectified before being
directly connected to the racks or PDUs. However, building
such a distributed green energy power supply system is
more costly than a centralized green energy power supply
system [28].

Currently, constructing a DC solely powered by green energy

remains impractical due to the intermittency of green energy
sources.

B. Power Models and Management Techniques

To further illustrate the relationship between IT systems and
power systems in DCs, we draw a concise architecture as shown
in Fig. 4. In this section, we analyze common power models and
power management techniques from the chip level (red box),
server level (green box), and room level (blue box).

® Chip Level: In atypical server, the main components are the

CPU, memory, disk, and NIC [29]. The CPU and memory
contribute significantly to energy consumption and are
equipped with power control technologies to dynamically
adjust power usage. Thus, at the chip level, the focus is
primarily on the power models of the CPU and memory.

e Server Level: Power modeling of servers has been an

ongoing exploration in academia and industry. Due to the
interaction of internal components, different workloads,
and human interference, it is difficult to model accurately
in complex states.

® Room Level: With a Data Center Infrastructure Manage-

ment system, such as NetEco [30], operators can monitor
critical power equipment, load levels, and more. The white

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY.

Data center power consumption components and power management techniques.

paper [31] identifies UPS, PDU, and cables as the pri-
mary sources of power loss at the room level, with losses
categorized into three types: (i) load-independent losses,
(ii) losses linearly related to load, and (iii) losses propor-
tional to the square of the current.

As our focus is on the power supply side for providing stable
power to IT equipment, cooling systems and other modules are
not considered. The following subsections introduce the power
model and power management technologies.

1) Power Models:

® CPU power model: In general, CPU is the main en-

ergy consuming component of a server, especially deal-
ing with computationally intensive workloads. A general
CPU power model was proposed by Shin et al. [32], who
modeled the CPU power as:

Pcpu:Pd+Ps+P0» (D
where P;, Ps and Py denote dynamic power, static power
and fixed power, respectively. Fixed power P, related to
CPU type. Static power Ps is the amount related to the
chip temperature. Dynamic power P, can be expressed as:

Py = fclockcintv27 (2)

where foock, Cint, V denote clock frequency, physical
capacitance, and the CPU voltage, respectively. It is worth
noting that P; will be limited by dynamic voltage fre-
quency scaling (DVES) [33].
® Memory power model: Memory is the second largest
energy-consuming module of servers [34]. An intuitive
idea for modeling memory power is using the frequency
of memory accesses. Patricia et al. [35] express the power
model of memory as a relationship between the memory
operating temperature 7},,.,, and the memory access fre-
quency fmem(k) when the server uses different DVFS
modes k:
Pmem(k) = ale,em + a2T2

mem

+ a3fmem (k>7 (3)

where a; are obtained from the model fitting.

o Server power model: Inspired by the DVFS technique, the
server power model is considered to have a cubic function
with CPU frequency, Mootaz et al. [36] used a function
model based on frequency f to estimate server power
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Picrver:
Pserver =co+c1 f37 (4)

where c is a constant that does not vary with the server load
level and c; is a constant related to the CPU capacitance
and voltage. The values of ¢y and ¢; vary depending on
the server. Alternatively, in a more common server power
model, Fan et al. [37] considered that CPU utilization has
a strong correlation with server power, they constructed
Pserver as alinear model with CPU utilization:

Pserver — I4dle + (Pmax - Pidle) ucpua (5)

where P;g. is the idle power of the server, P, is the
power of the server at full load, and u,,,,, denotes the CPU
utilization. This linear model implies that Pgc;pe, Varies
linearly with t.y,,. Considering that this server power
model is overly simplified, they subsequently propose a
nonlinear model that fits v by minimizing the squared error
of the model on the training data:

Pserver = Pigre + (Pmax - Pidle) (2ucpu - uzpu) . (6)

PSU power model: Although many server power mod-
els [38] have been proposed subsequently, they do not
mention the PSU. As the power supply module for servers,
the loss of the PSU is considered to be related to the size of
the load. 8OPLUS [39] shows the power supply conversion
efficiency of different classes of PSUs at different load
levels. Intel models the loss rate 7,su_joss and the load
level 1psu_ioaa of PSUs as a quadratic relationship [40]:

2
Tlpsu_loss = Q0 + ay Tlpsu_load + a2npsu7load7 (7)

where a; is selected according to the different types of
PSUs. In Tier IV DCs, servers are equipped with dual PSUs
to meet fault tolerance requirements. It means that the PSU
is often at a lower load level when the wider high-efficiency
range of the PSU is more important than the high efficiency
at full load.

UPS power model: In traditional DCs, PDUs for voltage
conversion and diverting are deployed between the UPS
and the rack, facilitating management and maintenance.
Pelley et al. [7] modeled the relationship between UPS
losses and PDU loads Pppy as:

Rtps_loss = Fups_idle T Tups * (Z deu) (@)

M

where P, ;qic denotes the idle power of the UPS, 7,
is needed to be fitted as a parameter, and M denotes the
number of PDUs powered by the UPS. In [41], the authors
point out that the idle loss of the UPS accounts for more
than 40% of the total loss of the UPS.

PDU power model: The PDU can take the three-phase
power from the UPS and output it as multiple sets of
single-phase power suitable for the server. The is some
energy loss during the conversion process. Pelley et al. [7]
suggest that the power model between the PDU and the

server can be modeled as:

2
deu_loss = deu_idle + Tpdu * (Z PST"U) ’ )
N

where P4, _iqie denotes the idle power consumption of
the PDU, and 7,4, is a parameter need to be fitted. Intel
models the PDU loss as a quadratic function between load
level 1pqu_1oad and 1oss rate 7,4y, _1oss [401:

Npdu_toss = 0.0026 — 0.00547pqu_toad+0-03431 0., 100a-
(10)
Meanwhile, PDUs are capable of supplying power directly
to the rack, or they can be further divided by a remote power
panel (RPP). The power enters the rack and is supplied to
the server by the CDU.
Cable power model: The loss at the room level cannot
be ignored because of cable loss. In a power system,
all devices need to be connected through cables. Ahmed
et al. [21] pointed out that the cable losses between PSU
and server do not need to be considered due to the short
distance. The remaining part of the cable loss is calculated
from the UPS current and cable resistance as shown in the
following equation:

Loss Loss
pross _ [ Prack + Ppsy + Pppi
Cable Vnorm « PF

where Prgc is the power consisting of all servers in the
rack, PE2ss and P55 is the power loss of PSU and PDU,
respectively, V},o,m 1 the nominal voltage, PF is the power
factor, and Rcqpie 1s the resistance of the cable, usually
provided by the manufacturer.

ESDs lifetime degradation model: Battery life is indicated
by State-of-Health (SoH), and replacement is required
when SoH reaches SoH j.,q. Manufacturers typically set
S0H jeqq to 80% of the rated capacity Cr. The SoH de-
creases gradually with increased battery cycles and depth-
of-discharge (DoD) [42]:

100 — SOHdead " CR
CyczesDoninal C'eff

2
> * Regpre, (11)

SoH = SoH — , (12)
where Cyclespop finai 1 the number of DoD, which is
determined by the battery type and the DoD final of each
discharge. Specifically, during the battery discharge, the
State-of-charge (SoC) of the battery minus DoD, and after
the end of discharge, DoD final is expressed as (100 -
SoC)%. A higher DoD final results in fewer cycles, so
shallow discharging/charging is generally recommended.
Additionally, C. s represents the effective capacity of the
battery, calculated as follows:

Cr 1SoH
Ceff_CR*( ) * 100

where H denotes the rated discharge time and 1g;scharge 15
the discharge current. k is Peukert’s exponent, which takes
different values for different battery types. In addition, a
higher discharge current will lead to a reduction in battery
capacity, called Peukert’s law [43].

13)
Idischarge * H
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2) Power Management Techniques:

® Chip power controlling techniques: For CPU power con-
trolling, the common method is to use DVFS [33] to
directly limit the CPU clock frequency, or limit the cores
used. For memory power, Intel’s RAPL [44] integrates a set
of memory power management schemes that can enforce
memory power limitations. Recent work has analyzed that
memory can be a bottleneck for improving resource uti-
lization in DCs [45], implying that performance matching
between chips is important.

o Workload Scheduling: Workload scheduling techniques in-
clude workload migration, placement, delay, and schedul-
ing using virtualization technologies. Workload scheduling
is a common computing resource optimization method at
the server level. For power systems, workload scheduling
enables the power supply devices to reach high energy
efficiency ranges [46]. Moreover, it prevents peak stacking
when workloads with the same power behavior are placed
together [47].

o Server sleep/shutdown: Shutting down or sleeping servers
to reduce server idle energy consumption. Several
works [48], [49] have pointed out that low load levels oridle
servers still generate a lot of idle power P, ;. In addition,
the statistics provided by 8OPLUS have shown that PSUs
have greater power loss at low load levels.

® Power supply device shutdown: When power equipment
operates at a low load level or is idle for extended periods,
shutting down power modules can reduce idle energy con-
sumption, provided the power-sharing domain allows for
it. Fawaz et al. [50], [51] showed that the use of workload
scheduling to consolidate servers and further turn off UPS
can reduce more energy consumption.

o [ncreasing the power-sharing domain: The expansion of
the power-sharing domain is beneficial to increase the
power over-subscription level. From a security perspective,
DC sets the power-sharing domain at the rack level or
PDU level, using circuit breakers to isolate different power
hierarchies [52]. However, this limits the scope of power
sharing and results in power fragments that cannot be fully
utilized. Existing works demonstrate the potential of power
over-subscription in different power-sharing domains (rack
level [53], PDU level [54], room level [55], [56], and
medium voltage distribution level [57]).

e ESDs supplement: ESDs in DCs, in addition to being used
to provide a brief power transition in case of a utility
power failure, can also be used to provide short periods of
peak shaving [58], or to enhance server performance [59]
when peak demand is encountered and the power budget
is insufficient.

C. Relevant Metrics

It is worthwhile to explore the metrics related to the use of
power resources in DCs because evaluating whether a DC is
green or efficient requires specific metrics for reference. This
subsection summarizes the metrics related to the evaluation of
DC power resource usage.
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1y

2)

3)

4)

5)

6)

Power Usage Effectiveness (PUE): PUE [60] is the most
widely used metric to evaluate the energy efficiency of
DCs. A higher PUE means that the energy consumption
of IT system is a lower percentage of the overall DC. PUE
is defined as:

Etota,l
Err

However, it should be noted that people currently advocate
energy saving and blindly pursue low PUE, which is
not desirable. It is only used as an auxiliary evaluation
criterion and is not comprehensive. Such as PUE does not
consider the energy efficiency of IT system.

Data Center Infrastructure Efficiency (DCIE): DCIE [60]
is defined as the reciprocal of PUE and is used to represent
the energy consumption of IT system as a percentage of
total DC energy consumption, as shown below:

PUE =

(14)

x 100%. (15)

. 1
DCiE = PUE

Power Overs-ubscription Level (POL): At different power
supply hierarchy in a DC, such as rack, PDU, or UPS,
each hierarchy has a corresponding power capacity de-
termined by upstream power supply equipment and asso-
ciated circuit breakers. Nowadays, DCs often use power
over-subscription to deploy more servers to increase the
DC throughput and thus increase profit. The metric POL
for measuring power over-subscription is shown in the
following equation [61]:

Pmax - ]Dlimit

POL =
Plimit

. (16)
where Py, .« represents the theoretical maximum power of
the current power supply node, and P;,,,;; represents the
power limit of the node.

Effective Power Utilization (EPU): Compared to PUE,
which is used to measure the energy consumption per-
centage of IT systems in DC, EPU can reflect the energy
efficiency used to generate throughput. It can be used to
evaluate the effectiveness of power control strategies and
is defined as [62]:

Z Pthroughput
)
> P supply

where Y Piproughput indicates the power directly used
to generate workload throughput and ) | Py, indicates
the current total power supply. As the EPU approaches
1, it means that more power is directly used to generate
workload throughput.

Green Energy Coefficient (GEC): The GEC used to quan-
tify the percentage of renewable energy consumed by DCs,
was introduced by Green Grid in 2012. GEC is defined
as [60]:

EPU = (17)

E
GEC = =9t (18)
Etotal

Carbon Usage Effectiveness (CUE): The CUE is proposed
by Green Grid, and is the first widely adopted metric
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related to DC carbon emissions to reflect the total carbon
footprint. CUE is shown below [60]:

Etotal
CUE = % —/=
P Err

= 0% PUF, (19)
where [ is the carbon emission factor of the grid, rep-
resenting the emissions required to generate 1 kWh of
electricity. When calculating the CUE, the electricity gen-
erated by green energy should be subtracted from the total
consumption. CUE should be as small as possible.

7) Carbon Free Energy Score (CFE): Since green energy
acquired by DC operators through power purchase agree-
ments (PPAs) or renewable energy certificates (RECs)
is not counted in the calculation of CUE, it leads to an
unfair assessment of carbon emissions. Therefore, Google
proposed the CFE that integrates off-site green energy to
score green DCs [63]:

CFEcontracted + CFEgrid

Eiotal
where CFE .ontracteq 18 the CFE provided by the green
energy provider through a PPA or REC, CF' E 4 is the
CFE from the grid, and F';; is the total power consumed
by the DC. The CFE combines the CFE from the contract
with the CEF from the grid and provides a more compre-
hensive evaluation criteria.

8) Grid Usage Effectiveness (GUE): GUE is the Grid Usage
Efficiency [64] determined by the On-site Energy Match-
ing metric (OEM), On-site Energy Fraction (OEF). GUE
shows the power grid dependence of the DC relative to the
IT load. which is defined as:

GUE — (OElvM - OEF) *Etotal
Err '

OEM and OEF represent on-site renewable energy and
power demand at specific time steps, with values ranging
from O to 1. When both are 1, the DC’s energy demand is
fully met by on-site generation.

CFEScore = ., (20)

2

III. POWER MANAGEMENT OPTIMIZATION OF TRADITIONAL
ENERGY DATA CENTER

This section focuses on the study of the power supply side
in terms of both direct and indirect costs in the context of
traditional energy sources. For direct costs, we focus on overhead
optimization with the involvement of power supply equipment.
For indirect costs, we focus on utilization optimization of power
capacity.

A. Direct Cost-Aware Optimization

Background: During the entire lifecycle of a DC, from the
power supply perspective, the direct cost mainly includes the
power transmission loss and the electricity bill of the DC. A
white paper [65] identified seven critical factors causing DC
outages, as shown in Fig. 5. Excluding unforeseeable factors,
the battery life of UPS systems heavily depends on the number
of charge-discharge cycles and the DoD [66]. Therefore, in
the following sections, in addition to discussing the energy

UPS Battery Failure 65%
UPS Capacity Exceeded
Accidental EPO/Human Error 51%
UPS Equipment Failure 49%
Water Incursion 35%
Heat Related/Crac Failure 33%
PDU/Circuit Breaker Failure 33%

0% 10% 20% 30% 40% 50% 60% 70%

Fig. 5. Key elements lead to DC downtime.

TABLE II
THE POWER EFFICIENCY OF 80PLUS CITIFICATION FOR PSUS

Loading 10% 20% 50%  100%
Bronze - 81% 85% 81%
Silver - 85% 89%  85%
Gold - 88% 92%  88%
Platinum - 90% 94% 91%
Titanium  90% 94% 96% 91%

efficiency optimization of the power system, we will focus on the
study of electricity bill optimization with power supply devices
consolidation (i.e., ESDs).

1) Energy Saving Optimization in Power System: To reduce
the power losses in power supply systems, Ref. [31] has summa-
rized several energy-saving strategies for power supply devices:

1) Upgrading power supply devices to improve conversion

efficiency.

2) Matching power supply devices with workload to ensure

high-efficiency operation.

3) Reducing the use of power supply devices to remove idle

power.

In fact, energy-saving research often focuses more on strategy
i. Examples include flywheel UPS [67] and supercapacitors
(SC) [68] with higher conversion efficiency. However, the power
management technologies related to strategies ii. and iii. are the
primary focus of this subsection.

For the energy consumption of internal power supply devices
in DCs, such as UPS, PDU, cables and PSU, most of the losses
are due to thermal dissipation caused by the square law of
current. Among these, PSU and UPS are the main components
that can be adjusted using power control knobs. The PSU di-
rectly powers the motherboard of server. Its power conversion
efficiency is related to the load level and PSU type [39], as shown
in Table II. In fault-tolerant DCs, servers are equipped with dual
PSUs that can switch the power mode (Active / Standby Mode
and Load Balance Mode) to improve efficiency according to the
load level [69]. With regard to UPS energy-saving optimization,
the traditional approach is to use the Eco mode [70]. In addition,
turning off / sleeping some UPS modules can reduce idle energy
consumption, which is common in the early stages of DC oper-
ations. The above description is based on the mode switching of
the power supply devices themselves for energy saving.

Regarding the improvement of power efficiency of power
supply devices through power management techniques, Zhang
et al. [46] based on the power efficiency curve of centralized
UPS, through workload scheduling to make the UPS in the high
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energy efficiency area, which can achieve more energy saving
under the same throughput. Similarly, Ye et al. [71] studied VM
consolidation relying on the centralized UPS power efficiency
curve. They formulated a hierarchical bin-packing problem for
VM scheduling and used the best-fit decreasing algorithm to
group VMs. Then, they designed a genetic algorithm (GA)
for optimal VM scheduling decisions based on the high power
efficiency area of UPS. Additionally, due to the flexibility of dis-
tributed UPS, energy savings can be achieved by consolidating
UPS during low-load periods. Al-Hazemi et al. [50] employed
a micro-ATS device to connect two adjacent rack-level UPS to
the same server, expanding the power-sharing domain. Their
approach consolidates UPS in addition to server consolidation,
reducing energy consumption and mitigating PUE degradation.
We know that PUE is expressed as follows:

Ptotal

PUE = —p .
> u=1 Prru

(22)
Among the non-IT equipment contains UPS, cooling systems,
and so on. When exploring the relationship between UPS energy
consumption and PUE, the PUE can be expressed as:

P u Py u
PUE = Z 1T, + ZuGU UPS,

Pm‘,her + PCoolz'ng
Tu  Dyer DI

> wer Prru

(23)
When IT devices are integrated for energy saving, >, ., Prr.u
becomes smaller. Keeping the other variables constant, and
using energy-saving methods for the UPS, then the value of the
second term is reduced, and the degradation of PUE is mitigated.
Furthermore, they improved the distributed UPS consolidation
scheme [51], where the consolidation of three UPSs can better
reduce UPS idle power compared to the consolidation of two
adjacent UPSs [50].

2) Electricity Bill Optimization With ESDs: The electricity
bills of a DC are divided into two parts: basic electricity expenses
and peak demand charges. Basic electricity expenses refer to
the total energy consumption over the operation period, charged
by the electricity company based on the electricity price. Peak
demand charges are incurred when the DC’s maximum power
exceeds the contractual budget. The total electricity bills can be
expressed as:

uelU

T = hetee(t) * ; (8) o Rpear » e s(t),

(24)

where Ae.(t) denotes the basic electricity price, which is
determined by the electricity market. A,.,; denotes the peak
demand price, which is specified in the contract between the DC
and the power supply company. s(t) is the power consumption
at time ¢. Optimization of the basic electricity expenses can be
performed by adjusting the time-varying relationship between
s(t) and Agjec(t), while the peak demand charge is optimized by
reducing the peak behavior of s(t).

Additionally, DCs can fully utilize ESDs to actively partici-
pate in RS for generating revenue. In order to obtain RS support
from the DC, the grid operator pays a fee A, at intervals to the
resource provided by the DC with a reserve power capacity of

C'. During RS, if there is a discrepancy between the resources
procured by the grid operator and the actual response b(t), a
penalty is applied based on the penalty coefficient A,,;s. Let
r(t) be the normalized frequency regulation signal, i.e., how
much frequency regulation the grid wishes to perform within the
reserved power capacity C'. The DC’s revenue from participating
in RS can be defined as:

T
R=2.C*T — Amin Y _ [b(t) — Cr(t)].

t=1

(25)

For the study of optimizing basic electricity expenses, Sun
et al. [72], based on the Lyapunov optimization framework,
constructed workloads and ESDs as virtual queues under elec-
tricity price and workload uncertainty. They proposed a dis-
tributed online algorithm for workload execution decisions, aim-
ing to minimize electricity expenses while respecting load delay
constraints. Lasemi et al. [73] focused on optimal workload
scheduling and energy management for GEO-DCs with ESDs,
considering time-varying electricity prices at different locations.
They incorporated QoS, dynamic electricity pricing, and battery
life management to optimize both battery lifespan and energy
costs. The authors modeled the problem as a mixed-integer linear
optimization and solved it using GAMS software.

Optimizing peak demand charges using ESDs, Nasiriani
et al. [74] modeled the uncertainty in DC power demand as
a Markov chain to assess the risks of overcharging or under-
charging batteries due to this stochasticity. They balanced cost
risks, including peak demand charges and battery degradation,
based on power infrastructure and workload characteristics,
using a Markov decision process (MDP) for online dynamic peak
shaving. Since ESDs alone may struggle to meet the demand
for peak shaving to optimize peak demand charges, Dabbagh
etal. [75] added additional workload delay control variables, i.e.,
delaying workloads during peak periods. They simultaneously
considered actual energy storage losses and battery constraints,
proposing an integrated peak-shaving strategy that combines
ESDs and workload management, making optimal decisions
with full knowledge of future demands and outperforming ex-
isting technologies with limited future information.

With respect to the involvement of RS, Chen et al. [76]
introduced EnergyQARE, which includes bidding strategies for
RS participation and runtime strategies. For bidding, they con-
structed a power model for DCs and used numerical methods to
optimize the strategy. Runtime strategies involve power manage-
ment and workload QoS feedback, enabling DCs to accurately
track frequency regulation signals and adjust power dynamically
to meet QoS constraints. Furthermore, in addition to using the
ESD of the DC to participate in RS, Wang et al. [77] combined
ESDs with DGs to enhance benefits. They proposed a hierarchi-
cal IDC UPS scheduling strategy using model predictive con-
trol (MPC), integrating UPS state and workload uncertainties.
Their approach ensures safe IDC operation with an MPC-driven
energy model, while coordinating DG and ESD outputs via
an upper-level power scheduling model and minimizing fre-
quency regulation errors with a lower-level strategy. Moreover,
ESDs can simultaneously optimize RS participation and peak
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Fig. 6. The evolution of power capacity and demand in a DC.

demand charges. For instance, Shi et al. [78] showed that using
ESDs for both RS participation and peak demand reduction
yields super-linear gains. They addressed battery degradation,
uncertainties in workloads, and frequency regulation signals,
formulating convex optimization problems and implementing
a threshold-based real-time control method, solved using CVX
software.

B. Indirect Cost-Aware Optimization

Background: To account for overloads and surges at each
power hierarchy, and considering the need to expand computing
capacity, DC power systems are designed with slack space at
each power level, and circuit breakers are used for protection.
However, conservative server configurations and diurnal pat-
terns lead to low power utilization over extended periods, indi-
rectly increasing the cost per unit of power supplied. Specifically,
there are two types of headroom between the power demand
and actual power budget in DCs, as illustrated in Fig. 6. The
first headroom H; is the gap between the power budget and
the estimated peak power, while the second headroom Hj is
the difference between the actual power and the estimated peak
power. Fan et al. [37] examined the total power consumption
characteristics of DCs and identified a significant gap between
the actual and theoretical peak power at the cluster level, indi-
cating potential capacity for deploying additional IT devices.

Therefore, appropriate capacity planning is essential during
the pre-design phase to meet the power demand of IT systems.
For operating DCs, power over-subscription can be an effective
strategy to reduce the unit power supply cost (i.e., indirect
cost) by deploying more servers than the power capacity limit.
While power over-subscription improves resource utilization, it
also creates vulnerabilities that malicious actors can exploit to
launch power attacks [79]. This subsection explores research
on optimizing power over-subscription and mitigating power
attacks through advanced power management technologies.

1) Power Over-Subscription: Power over-subscription en-
hances power capacity utilization, thereby optimizing indirect
costs. This subsection discusses the research on power over-
subscription from the perspectives of power adjustment, work-
load scheduling, ESDs supplement, and power attack defense.

: General
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i ‘ Available
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Fig. 7. Power Adjustments.

Power Adjustments: At power supply hierarchy with power
over-subscription, to handle sudden peak power and pre-
vent power resource competition, power control techniques
(RAPL [44], DVFS [33], Thunderbolt [80], or computing re-
source allocation) are employed to achieve power adjustments.
Additionally, power budget reduction can be further realized
by enhancing the power-sharing domain. A simple example
of power adjustments is shown in Fig. 7. For nodes executing
general workloads can be power capped, allowing more power
budget to be allocated to critical nodes at the same level or to
another cluster node within the power-sharing domain.

In power-constrained scenarios, competition for power re-
sources among servers requires precise power allocation. Wu
et al. [53] introduced Precise Power Capping, using a Fine-
Grained Differential approach to accurately assess performance
degradation due to power capping. Therefore, historical peak
power and the degradation model are used to guide power
allocation to meet QoS of applications. Similarly, Patel et al. [81]
analyzed power patterns in Large Language Model (LLM) train-
ing and inference scenarios, finding that LLM inference clusters
have low average and peak power utilization. They proposed
POLCA, a power over-subscription framework for LLM in-
ference clouds, which uses a priority-based power reclamation
strategy. POLCA also analyzes historical power data to set upper
threshold values for different priority loads. For heterogeneous
workloads, both Pelican [82] and CuttleSys [83] implement
power-constrained control by core allocation. Baidu’s Pelican
power scheduling system is based on a greedy policy that
prioritizes power reduction for execution of latency-tolerant
workloads and high dynamic power servers. While CuttleSys,
gathers profiling samples and power capping settings, using
stochastic gradient descent to estimate power consumption and
performance across various core configurations and cache allo-
cations. Then it uses dynamic dimension search to quickly find
the optimal configuration that can achieve a trade-off between
performance and power consumption.

In cross-layer power resource optimization, several systems
and strategies have been developed to improve power allocation
and efficiency. Facebook’s Dynamo [55] manages the power
budget of its distributed system through collaboration between
the agent, Leaf controller, and Upper-Level controller. The Leaf
controllers use a three-band algorithm, a greedy policy based
on high-bucket prioritization, to determine the capping power
and servers, thus minimizing the impact on critical server per-
formance. Also employing a greedy strategy, Piga et al. [84]
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proposed a power over-allocation technique for heterogeneous
servers and large-scale clusters, DVFS boosting, which utilizes
performance counters and machine learning to predict which
servers can provide higher performance per watt. However,
IBM’s CapMaestro [56] introduced a global priority-aware
power allocation policy, a workload-balancing-based policy that
routes power based on server priority and uses a proportional-
integral feedback controller to ensure that PSUs do not exceed
their allocated power budget. The above studies all consider
workload priority to perform power capping. Azimi et al. [85]
addressed actuation latency in cross-layer power management
by proposing a decentralized power capping scheme that allows
servers to quickly respond to workload throughput and priority,
making local power capping decisions through cluster-to-cluster
information exchange.

By altering the power-sharing domain to optimize power
over-subscription, Pelley et al. [54] addressed power waste in
2 N fault-tolerant DCs, where PDU utilization is only 50%,
by optimizing power over-subscription through a shuffled PDU
topology. This topology alters the connections between PDUs
and cabinets, reducing backup power capacity from X/2 to
X/N, thereby lowering the need for backup resources. Zhang
et al. [86] adopted a 4 N/3 connection method between UPS
and PDU, increasing server deployment by 33% compared to
the N+1 redundancy design. At a higher system level, Google’s
medium voltage power plane (MVPP) [57] enhances power
over-subscription by enabling power sharing at a medium volt-
age distribution level, achieving an over-subscription rate of over
25%. Unlike RAPL [44], which is limited to Intel platforms,
MVPP’s power capping method is not platform-restricted.

Workload Scheduling: Workload scheduling involves placing,
migrating, or delaying workloads to achieve load balancing,
which directly affects power budget usage across different levels
of the power supply system. In power over-subscribed DCs,
balancing workloads is crucial to minimize risks. As shown
in Fig. 8, optimizing workload scheduling with varying power
patterns frees locked power budgets, allowing power surpluses
to deploy additional servers or enhance server performance.

Considering that different workloads have different priorities,
Microsoft proposed a criticality- and utilization-aware VM pre-
diction method to guide over-subscription in public clouds [87],
where RAPL reduces power for non-critical VMs when the
power budget is exceeded, and lifts power capping when suffi-
cient resources are available. They also introduced Flex [86] for
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Zero Reserved Power DCs, which uses the Flex-Offline work-
load placement algorithm based on integer linear programming
to ensure workloads meet power reduction requirements by
shutting down redundant software. To ensure availability and
security, Flex’s Power telemetry pipeline leverages redundant
and diverse monitoring and transmission methods to ensure high
availability and low latency, serving as a guarantee for risk
response. Meanwhile, Pang et al. [88] studied the scheduling
of high-priority latency-sensitive (LS) services and low-priority
best-effort (BE) applications. They proposed Sturgeon, which
evaluates the expected throughput of BE applications and LS
services when co-located, and optimizes performance by colo-
cating LS services with preferred BE applications.

To avoid peak power from workload stacking, Wang et al. [89]
designed the Ampere power management system, which ef-
ficiently allocates power budgets between row-level cabinets,
enabling the deployment of more servers without performance
interference. Using statistical analysis, they identified servers
unable to accept incoming jobs, scheduling tasks within the
same cabinet or placing them in a queue to maintain row-level
power consumption within budget. When considering workloads
with long-running characteristics, such as service instances
or VMs, Hsu et al. [47] proposed SmoothOperator, a peak-
aware placement framework that uses the K-means algorithm
to classify service instances with similar power characteris-
tics, reducing peak stacking by allocating similar workloads to
different nodes. For VM scheduling, Sheng et al. [90] intro-
duced C2MARL, a chance-constrained multi-agent reinforce-
ment learning approach for power over-subscription in VM
scheduling. C2MARL uses probabilistic constraints from safe
RL to optimize VM placement, mitigating power risks from
colocating VMs.

ESDs supplement: In production DC environments, ESDs
are rarely used to handle emergencies caused by utility power
interruptions [91]. This makes ESDs ideal candidates for peak
shaving, particularly in DCs with high levels of power over-
subscription. However, using ESDs to reduce peak power re-
quires careful control strategies, as frequent deep discharges
and recharges can shorten battery lifespan and decrease the
availability of the power supply system. As shown in Fig. 9,
ESDs can be employed for short-term peak shaving when a
node’s peak power exceeds its pre-allocated power budget.
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Earlier, ESDs were mostly centralized UPS. Govindan
et al. [58] regarded centralized UPS as power buffers, marking
the first study to use ESDs for peak shaving. Li et al. [92]
proposed WattValet, a solution to reduce peak power using
centralized heterogeneous UPS. WattValet considers the dif-
ferent power efficiencies of heterogeneous UPS, optimizing
for increased use of high-efficiency UPS. For a given power
demand, it uses a greedy strategy to search for a battery discharge
power sequence that minimizes performance impact. Due to the
inflexibility of centralized UPS, subsequent research has mainly
focused on distributed UPS.

Google was the first to design a peak shaving solution based
on server-level distributed UPS [5], focusing on how different
battery characteristics affect peak shaving capabilities. In further
explorations of distributed UPS, Alanazi et al. [93] compared
server-level and rack-level distributed UPS, designing a manage-
ment framework that includes VM placement and UPS power
distribution strategies. The placement strategy reduces active
servers and minimizes unused power for peak shaving, while
the power distribution strategy optimizes UPS charging and
discharging to minimize wasted power. Simulations showed
that rack-level UPS, with larger power-sharing domains, re-
duces resource fragmentation compared to server-level UPS.
Compared to the server or rack-level UPS mentioned above,
Ref. [2] showed that placing ESDs at multiple levels of the
power supply hierarchy offers better economic benefits. Thus,
Wang et al. [59] proposed vPower, a software system that vir-
tualizes power resources across different UPS levels and uses
heuristic methods to optimize UPS selection, minimizing server
performance degradation. To address power safety concerns
in over-subscribed DCs, Malla et al. [94] found that battery
charging could trip circuit breakers. They proposed a variable
battery charger mechanism that reduces charging power by up
to 80%, along with a priority-aware algorithm that allocates
power based on server application priority. Additionally, they
integrated Dynamo with lightweight agents and distributed con-
trollers for real-time monitoring and adjustment of charging
currents, preventing circuit breaker overloads.

Power Attack Defense: Power over-subscription can effec-
tively improve the utilization of power resources, but it also pro-
vides opportunities for malicious power attacks. Xu et al. [79]
systematically studied the three mainstream cloud service busi-
ness models: PaaS, IaaS, and SaaS. They launched power at-
tacks through carefully designed workloads and demonstrated
its feasibility. It can be seen that for the power over-subscription
scenario, it is crucial not only to implement peak shaving mech-
anisms but also to consider effective strategies for preventing
malicious attacks.

Li et al. [95] proposed Power Attack Defense (PAD) to
mitigate malicious power attacks in distributed energy stor-
age scenarios. PAD addresses visible peaks through software
scheduling, while using ESDs at server and rack levels to handle
hidden peaks. Rack-level ESDs create virtual ESDs for power
sharing, concealing the attacked server’s status, and server-level
ESDs manage hidden and sudden peaks. To further improve
defense capabilities, they proposed Integrated PAD (IPAD) [96]
to improve the power attack defense capability. IPAD
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Fig. 10. Power matching optimization for green energy powered data centers.

integrates the Speculative Performance Scaling (SPS) strategy
to reduce hidden power peaks in real time, based on monitored
server-level ESD conditions. This minimizes the negative impact
on server performance. The SPS mechanism triggers power
capping, making the attacker believe their attack has been
detected, which helps mitigate the risk of power overload.
Hou et al. [97] addressed traffic flood attacks in power over-
subscription scenarios with Anti-DOPE, a request-aware power
management framework. It includes power-driven forwarding
(PDF) and request-driven power management (RPM). PDF first
identifies suspicious requests and directs them to isolated servers
based on offline analysis. RPM then monitors power resource
pressure and uses power capping to adjust the execution of these
requests, preventing power peaks.

Actually, participating in the electricity market is an effective
approach to deal with power attacks. Specifically, Hou et al. [98]
consider that users are cost-conscious and propose a flexible
power capacity management framework CFP. CFP uses power
bidding to increase the cost for power attackers and adopts
an incentive mechanism to compensate users who save power
capacity, further raising the cost for attackers.

IV. POWER MANAGEMENT OPTIMIZATION OF GREEN ENERGY
DATA CENTER

Background: Powering data centers (DCs) with green energy
is a key strategy in achieving carbon neutrality and has become a
promising solution [99], [108]. However, the intermittent nature
of green energy can create mismatches between the power de-
mand of DCs and the availability of renewable energy. In contrast
to single data centers, geo-distributed data centers (GEO-DCs)
offer greater spatial flexibility, enabling workloads to be shifted
to DCs with lower electricity costs and abundant renewable
energy. This flexibility provides a more adaptable solution to
address power supply-demand mismatches, as illustrated in
Fig. 10. However, Sukprasert et al. [100] presented an analytical
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article arguing that there are certain limitations to carbon-aware
spatiotemporal workload shifting. Temporally, it is constrained
by fluctuations in carbon emission intensity, while spatially, it is
hindered by resource limitations. Even if achieving net-zero car-
bon emissions is the ultimate goal, most DC operators must also
consider factors such as electricity prices, service quality, and
the maintenance costs of ESDs. These considerations influence
both the TCO and the environmental impact of DC operations,
requiring a delicate balance between environmental costs and
profit optimization.

In the context of green energy supply, the problem can be
viewed as curve matching between the Power Generation-Time
curve g(t) and the Power Consumption-Time curve c(t) [101].
Theoretically, power management technologies could achieve
arbitrary transformations of the curves to make them perfectly
aligned. However, in practice, due to constraints such as effi-
ciency optimization, service quality, electricity costs, and main-
tenance costs, DC operators prefer the approach of matching the
Balanced Power Generation-Time bg(t) and Balanced Power
Consumption-Time curves be(t). Because the balance between
TCO and environmental cost is obviously more important than
only considering environmental cost. We define the function
p(t) = max[g(t) — c(t), 0] as the renewable energy wasted at
time ¢, and the function ¢(t) = —min[0, ¢(t) — ¢(t)] as the
brown energy wasted at time ¢, then the objective function of
the optimization problem can be expressed as:

T

C= [ walp®) +usala @6
where w,, (t) represents the generation cost of renewable energy,
and wg(t) represents the generation cost of brown energy, both
as functions of time ¢. This objective function equals 0 if g(t) =
c¢(t). However, when applying power management strategies
like power tracking for reshaping ¢(¢) and load following for
reshaping ¢(t), relevant constraints must be considered. We
define the power generation and consumption curve functions
to be able to be transformed to bg(t) and be(t) based on power
management techniques:

bg(t) = Mig(t)g(t),
be(t) = My (t)c(t).

27)
(28)

The cost transformation operators M, (¢) and M. (t) that
concern the operators can be seen as tools to reshape the power
generation and consumption curves to meet various operational
and environmental goals. These transformation operators can
take into account the following factors: the utilization of green
energy, the resource constraints of the ESD, or the electricity
price at different times, etc. If the mathematical expressions or
problem models for these operators can be found, the constraints
of the transformation become clear. The problem then turns into
solving the following optimization problem:

mezA[%®@@+w®MW

+ C (Mg (t), Myo(t)) dt, (29)

where C(Myy(t), My (t)) represents the cost incurred due to
the power reshaping transformations and the objective function
Clotal accounts for both environmental costs and TCO.

Power management strategies can be divided based on
whether they integrate ESDs, specifically into power tracking
design and load following design [102].

® Power tracking design: DCs actively control the power

demand of loads in order to reshape the power curve,
including power allocation techniques (power resource
routing, power limitation, computing resource allocation,
etc.) or load limitation techniques (workload scheduling,
latency, etc.) in order to change the power curve of loads.

e Load following design: Different from the power tracking

design, beyond requiring power allocation and load lim-
itation techniques, load following design also uses ESDs
within the DC to reshape the g(t) to bg(t).

In the following, we will categorize and discuss Single-DC
and GEO-DC, and further explore the research of the two
power management modes to give a clear and complementary
discussion.

A. Single-DC Power Matching Optimization

This section primarily discusses how the two strategies of
power tracking design and load following design achieve the
fitting of bg(t) and bc(t) from the perspective of power man-
agement technology. Specifically, three types of control knobs
(power adjustment, workload scheduling, and ESDs supple-
ment) are used as decision variables and discussed separately
according to their combinations.

1) Power Tracking Design: Research on the use of power
tracking design in a Single-DC has focused on either power
adjustment techniques or workload limiting techniques for the
purpose of reshaping the power curve. Studies related to both
techniques are discussed separately below. A summary of related
work about power tracking design in Single-DC can be viewed
in the Table III.

When considering research on power adjustment techniques,
the most direct application is power routing. DCs with dis-
tributed green energy sources, each of which has different
power production characteristics. When green energy supply
is insufficient, switching between sources can impact the QoS
of workloads, so it is crucial to align the supply and demand as
closely as possible. For example, Gao et al. [103] used LSTM to
predict the probability that renewable energy production would
meet a certain threshold, while estimating power demand based
on CPU utilization of each PM group. Then DQN solves the
power matching problem and outputs the mapping decision for
the allocation of renewable energy to PM groups. However, this
approach assumes accurate resource availability predictions. To
address potential instability in energy forecasts, they later pro-
posed a more robust renewable energy allocation system [104],
which introduced ECRA, a heuristic algorithm for adjusting
computational resources based on job deadlines. Similarly, Xing
et al. [105] introduced Carbon Responder, a performance-aware
power allocation framework for DR participants. By defining
SLOs for both online and batch workloads, Carbon Responder
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TABLE III
GREEN ENERGY OPTIMIZATION IN A SINGLE DATA CENTER (POWER TRACKING DESIGN)

Ref. Decision Variables Objectives Formulation / Problem Algorithm / Solution
[104] Power routing Cost, Carbon emission Markov decision process Deep reinforcement learning
[105]  Computing resource allocation Car(f)(());[’e%‘i)sss’ion Computing resource allocation problem Heuristic algorithms based on ddl
[106]  Computing resource allocation — QoS, Carbon emission — Computing resource allocation problem ;Iggiréggeff](%?;ggglesrggaee%x?g
[107] VM scheduling Brown energy Bin-packing problem Heuristic algorithms based on energy supply
[108] Job scheduling Er?;l;;goeg&sr;i&?(’)n Markov decision process Deep reinforcement learning
[100] Workload scheduling Carbon emission Stochastic optimization problem Heuristic algorithms of model prediction
TABLE IV
GREEN ENERGY OPTIMIZATION IN A SINGLE DATA CENTER (LOAD FOLLOWING DESIGN)
Ref. Decision Variables Objectives Formulation / Problem Algorithm / Solution
[109] ESDs supplement QoS, EDSs lifetime Heuristic based control framework CO“trl‘l’;ub}‘iggg'tl?t‘rgtgg;ed on
Workload scheduling Renewable energy utilization, Multi-variable nonlinear
[112] ESDs supplement EDSs ligetime scheduling problems Greedy strategy
Workload scheduling Renewable energy utilization, . Control algorithm based on
[113] ESDs supplement Cost Workload optimization control problem areedy policy
Workload scheduling ; : ; : Column-and-constraint
[114] ESDs supplement Cost Mixed integer linear programming generation algorithm
[111] Egﬁ‘:’i{]ég‘f;ggm EDSS(I’iSfte’lime Large-scale linear programming Matlab CPLEX Solver
Power limitation : . .
. . Quadratic curve of server performance Power allocation based on
162] Complﬁlsnl%Srzz%%r]ce%zg?cauon QoS and power allocation ratio Quadratic curve Solver
Power limitation Stochastic optimization problem with
(110] ESDs supplement Cost, QoS Chance- and Risk-Constrained IBM ILOG CPLEX
[99] Workload scheduling Carbon emission Stochastic optimization problem Carbon aware greedy algorithm

ESDs supplement

Workload scheduling
Computing resource allocation
ESDs supplement

[117] Carbon emission

Stochastic optimization problem Rule-based algorithm

uses machine learning to train models that predict performance
and power losses, then adjusts power allocation based on the
workloads that incur the least marginal performance loss.

In the research on adjusting ¢(¢) using workload limiting
techniques, Liu et al. [107] addressed large-scale job scheduling,
considering job dependencies, heterogeneity, and QoS. They
formulated the scheduling problem as MDP and proposed a
DRL-based approach to achieve energy-aware, online schedul-
ing. Google’s Carbon-Intelligent Computing Management Sys-
tem [108] employed a data-driven approach, gathering and an-
alyzing data on server power consumption, workload forecasts,
power contracts, and carbon intensity. The system constructs a
carbon-aware virtual capacity curve (VCC) to optimize resource
allocation, deferring execution for flexible workloads. Addi-
tionally, for VM scheduling problem, Chakraborty et al. [106]
proposed a framework for elastic power utilization. They lever-
aged energy information to drive VM overbooking, migration,
and consolidation, thereby matching the power consumption of
workloads with the supply of renewable energy. Specifically,
when the supply of green energy is insufficient, the framework
uses heuristics based on monitored renewable energy supply
information to overbook VMs, reducing the number of active
hosts and lowering energy consumption.

2) Load Following Design: In load following design of a
Single-DC, the introduction of new control variables ESD gives
more optimization space for the power matching problem but

also introduces more constraints. A summary of related work
about load following design in Single-DC can be viewed in the
Table IV.

When decision variables are limited to the charging and
discharging of ESDs, the power matching problem presents
significant challenges. Liu et al. [109] introduced the HHEB
energy buffering technology, deploying multiple heterogeneous
ESDs (SC and UPS) at different levels (PDU-level, rack-level,
server-level) and using a triple exponential forecasting method
to predict peak situations at each level. For small peaks, peak
shaving is conducted using SC with high efficiency and rapid
charge/discharge capability. For large peaks, SC and UPS are
dynamically coordinated for power distribution. When single-
level ESDs cannot meet power demands, higher-level ESDs are
coordinated to assist in managing power imbalances.

Some studies explore joint optimization of power adjustments
and ESDs. For instance, Kwon [110] optimized server con-
figurations and electricity procurement in DCs by integrating
DR decisions. He proposed a two-stage stochastic program:
the first stage sets server on/off schedules and day-ahead elec-
tricity commitments based on historical data, while the second
stage optimizes real-time DVFS adjustments, solar power use,
and ESDs, then chance and risk constraints are introduced
for decision-making to ensure QoS. Naturally, due to the in-
evitable updates in DC equipment, heterogeneous conditions
often arise between IT systems and power infrastructure. For
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heterogeneous ESDs, Guetal. [111] proposed the GreenFlowing
power scheduling scheme to minimize total power costs. They
developed performance models for different ESD types and
solved charge/discharge and power allocation decisions using
large-scale linear programming. For heterogeneous servers, Cai
et al. [62] introduced GreenHetero, a dynamic power alloca-
tion framework optimized with rack-level UPS. They used a
Power-Performance relational database and quadratic functions
to quickly determine optimal power consumption ratios. Obvi-
ously, modeling is very important for heterogeneous server or
heterogeneous ESD scenarios.

Since the ability to use ESDs to smooth green energy is always
limited, joint optimization is often combined with load-limiting
techniques, primarily for delay-tolerant workloads. Some stud-
ies will be based on the greedy strategy. For instance, the Carbon
Explorer of Meta [99] focuses on carbon emissions, using a
carbon-aware greedy policy that delays workloads to perform
at times of low carbon intensity. Similarly, Yang et al. [112]
first judge the fluctuation of power request through two-stage
low-pass filters. For low-frequency fluctuations, ESDs are used
to provide short-time clipping. For high-frequency fluctuations,
due to the limited peak shaving capability of ESDs, workload
scheduling with maximum user satisfaction is used to deal
with them within the acceptable delay latency. Additionally,
some studies adopt two-stage frameworks for more compre-
hensive optimization. For example, the Smoother proposed by
Liu et al. [113] will first forecast the green energy and use
ESDs to actively smooth the green energy. Then, employing
a greedy strategy to select greener and lower-cost electricity
time slots for delay-tolerant workload execution. While Zhou
et al. [114] introduced a two-stage optimal operation model
based on Distribution Robust Optimization to minimize DC
costs. In the first stage, they formed fuzzy sets by combining
norm-1 and norm-inf to capture uncertain probability distribu-
tions of green energy, minimizing operational and carbon emis-
sion costs through delayed workload execution. In the second
stage, they solved a mixed-integer linear programming problem
involving the coordination of ESDs, DGs, and dynamic elec-
tricity prices using column-and-constraint generation methods
to optimize workload rescheduling costs.

Joint optimization of ESDs, power adjustments and load
limiting techniques has also been explored. Recent work [115],
[116], [117]highlights that the energy system and its information
are often hidden within power management systems, preventing
applications from directly interacting with the energy system
to optimize carbon efficiency. To tackle this issue, Prashant
Shenoy’s team proposed the Ecovisor software-defined control
system [117] and the Carbon Containers tool [115]. These
innovations virtualize energy systems and expose them directly
to containerized applications, enabling applications to optimize
green energy utilization based on the flexibility and fault tol-
erance of their own software. By providing carbon emission
rate settings to containerized applications, they empower ap-
plications to enforce carbon emission rate settings through vir-
tual battery charging/discharging, container scaling, migration,
pause, or resume actions, based on renewable energy availability
and carbon intensity variations.

B. GEO-DCs Power Matching Optimization

In GEO-DCs, the simultaneous consideration of utilizing
green energy across multiple DCs while minimizing total costs
increases the complexity of optimization. Compared to Single-
DC, where workloads can only be managed within one location,
distributing workloads across different DCs introduces a larger
optimization space in the spatial dimension. Therefore, spatial
optimization is essential, otherwise, the study would regress to
that of a Single-DC. While this expanded optimization space
offers potential benefits, it also imposes higher demands on
algorithm design. From a classification of algorithms, which
can be divided into three types:

o Traditional Heuristic Algorithms: These rely on intuitive
logic to make decisions on constructed optimization objec-
tives, offering fast solutions but often not achieving optimal
results.

o [ntelligent Optimization Algorithms: These simulate the
decision-making logic of intelligent agents, encompass-
ing swarm intelligence, evolutionary algorithms, and rein-
forcement learning.

® Numerical Optimization Algorithms: These include dedi-
cated optimization solvers and decomposition algorithms
for large-scale optimization problems, capable of achieving
precise optimal solutions or approximations.

Therefore, this subsection discusses the problem of matching

the bg(t) and bc(t) curves through algorithmic approaches.

1) Power Tracking Design: To address the power match-
ing problem, a heuristic approach places workloads in DCs
with higher green energy availability. For example, Sharma
et al. [118] employed the ARIMA forecasting algorithm to
predict solar energy availability. They devised a Renewable
Energy-Aware Worst-fit greedy strategy to identify the DC with
the most green energy at the current time and allocate workloads
to that DC. Furthermore, in addition to considering the availabil-
ity of green energy, workload priorities can also be considered to
make decisions. Kaur et al. [119] used the Boruta random forest
algorithm to select job features and classify priorities using a
locally sensitive hashing SVM. Then they formulated a multi-
objective optimization problem for job scheduling and VM
placement, using an augmented greedy heuristic for scheduling
decisions.

Some studies use intelligent algorithms for power tracking
decisions. For example, Ammari et al. [120] modeling the
multi-task scheduling problem among GEO-DCs as a nonlin-
early constrained problem. They proposed an improved Firefly
Algorithm to maximize renewable energy use while strictly
meeting task latency constraints. While the bi-objective opti-
mization problem was considered by Khalid et al. [121]. Their
solution optimizes both revenue (by offering more services) and
expenses (due to dynamic power consumption and electricity
prices), aiming for Pareto-optimal solutions that balance profit
maximization and cost minimization. Whereas in research based
on RL, CFWS [122] and DeepScale [123] were proposed to
solve the VM scheduling and container expansion problems in
virtualization technology. Specifically, CFWS incorporates the
adaptive threshold adjustment method to assess the probability
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TABLE V
GREEN ENERGY OPTIMIZATION IN GEOGRAPHICALLY DISTRIBUTED DATA CENTERS (POWER TRACKING DESIGN)

Ref. Decision Variables Objectives Formulation / Problem Algorithm / Solution
[118] Job scheduling Renewable energy utilization Job scheduling decision problem Comro{gfelgg;itgg]licb;sed on
[119] Workload scheduling Cost, QoS, Multi-objective optimization for Enhanced heuristic approach
VM scheduling Renewable energy utilization job scheduling and VM placement based on greedy strategy
[125] Task migration Carbon emission Mixed integer programming Benders decomposition algorithm
[126] Com u(t’lrrll( orzie(jscilé{]%eds}}ggation QoS Nonlinear programming problem fmincon
. . - Constrained multi-objective Evolutionary algorithm-based
[121]  Computing resource allocation Profit optimization probllem higher-level heuristic
[122] VM scheduling Renewable e&ez%y utilization, Bin-packing problem Deep reinforcement learning
[124] Workflow scheduling Ene]g%%‘sﬁn:rlllgrlg)t,ion, NP-hard problem Multi agent reinforcement learning
[120] Task scheduling Renewable energy utilization Constrained nonlinear problem Improved Firefly algorithm
[123] Container scaling Cost Location-aware container scaling problem Deep reinforcement learning

of host overload, preventing unnecessary VM migrations. It
utilizes DQN networks to learn VM consolidation strategies,
optimizing the dual objectives of energy cost and carbon foot-
print in GEO-DCs. DeepScale achieves automatic expansion
of containers by predicting workload patterns and dynami-
cally adjusting vCPUs according to demand. However, existing
single-agent RL algorithms are ineffective for handling the
decentralization and adaptive control challenges of GEO-DCs.
Therefore, Jayanetti et al. [124] addressed workflow scheduling
problems and proposed an enhanced multi-agent hierarchical
scheduling framework. At the top level, the Global Scheduler
is responsible for task submission to executing DCs, while
at the bottom level, the Local Scheduler manages server se-
lection. This framework improves training efficiency by shar-
ing experiences among local agents, addressing the curse of
dimensionality.

The following studies demonstrate the application of numer-
ical optimization methods to address complex decision-making
scenarios in GEO-DCs. Yang et al. [125] studied scenarios
where green energy sources in GEO-DCs complement each
other at specific times. They modeled GEO-DCs interconnected
by optical networks and formulated a large-scale mixed-integer
programming problem for task migration decisions in both tem-
poral and spatial dimensions. Using the Benders decomposition
algorithm, they optimized decisions for carbon reduction. Sim-
ilarly, for transactional workload scheduling, Cheng et al. [126]
used queuing theory to model transactional workload perfor-
mance and formulated a nonlinear programming problem that
integrates weather data, workload arrival rates, and service rates
to optimize placement and resource allocation. The finincon
function in Matlab was then used to find the optimal solution.
A summary of related work about power tracking design in
GEO-DCs can be viewed in the Table V.

2) Load Following Design: In GEO-DCs with load follow-
ing design, there are necessarily two or more decision variables.
This brings challenges to traditional heuristics to optimize the
power matching problem. Pahlevan et al. [127] explored DCs
participating in RS, leveraging power adjustments and ESDs
for profit. They proposed ECOGreen, a cost-effective online
strategy that divides decision-making into two stages: bidding
for RS and VM allocation. The strategy uses the forecasts of VM

workload to quickly analyze optimal power and reserve bidding
values, followed by a VM allocation method that minimizes
correlation and peak stacking. Similarly, Nadalizadeh et al. [128]
proposed GreenPacker, a renewable and fragmentation-aware
VM placement algorithm, considering the resource fragmenta-
tion that can result from VM placement decisions. GreenPacker
quantifies the suitability of a DC for a given VM request by
introducing a cost metric, which is based on the availability of
green energy, dynamic electricity price, PUE, and fragmentation
caused by the placement. Furthermore, Yang et al. [129] pre-
sented a two-stage heuristic power regulation algorithm tailored
for scenarios with fluctuating power demands across GEO-DCs.
This method enhances the responsiveness of GEO-DCs to power
demand. It includes workload scheduling and UPS group con-
trol algorithms. For workload scheduling, a low-pass filter is
employed to smooth power demand control objectives across
GEO-DC interconnections, addressing high-frequency power
fluctuations. Simultaneously, a battery control model is estab-
lished to make charging and discharging decisions while meet-
ing UPS soft constraints, effectively managing low-frequency
fluctuations.

For the study using intelligent optimization algorithms, Guo
et al. [130] investigated the use of GEO-DCs to participate in
energy trading in electricity markets. They proposed a two-stage
framework. In the first stage, a preemptive bidding model is for-
mulated as a Mixed Integer Non-Linear Programming problem,
where a Meta-heuristic Natural Aggregation Algorithm man-
ages computational requests and ESDs. In the second stage, they
developed an energy balance model based on electricity market
regulation signals, using a Mixed Integer Linear Programming
formulation to optimize the migration of computational requests
in response to market conditions. In the research involving
RL, a single agent is insufficient to effectively handle cases
involving two or more decision variables. To address this, Sarkar
et al. [131] explored the application of MARL in optimizing
multiple decision variables in GEO-DCs. They introduced the
DC-CFR MARL framework, creating three MDPs for cooling,
workload migration, and battery storage. The framework facil-
itates interaction among three agents, each managing an MDP,
with collaborative rewards synthesizing the impacts of their
decision actions.
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TABLE VI
GREEN ENERGY OPTIMIZATION IN GEOGRAPHICALLY DISTRIBUTED DATA CENTERS (LOAD FOLLOWING DESIGN)

Ref. Decision Variables Objectives Formulation / Problem Algorithm / Solution
[132] Wﬁg‘g‘idfu;ﬁfg‘éﬁ?g Ca_rboncg;réission, Lyapunov stochastic optimization ADMM
VM scheduli P . . . . R ble and F tati
[128] ESDs Sscupeplléri%:n Cost, QoS Multi dimensional online bin packing problem e?@?ﬁe grgxe]dy /&ﬁggrélﬁ{lh?nlon
Power routing
[133] Wogkload scllleduling Cost Mixed integer quadratic programming (MIQP) Branch-and-cut method
ESDs supplement
Workload scheduling - . . . . .
[129] ESDs supplement Cost, ESDs lifetime Constrained nonlinear programming problem Two-stage heuristic algorithm
[127] VM scheduling Cost Nonlinear integer programming problem Rule-based algorithm
ESDs supplement S ger prog g p > &
[130] Workload scheduling Cost MINLP, MILP Natural at(;“%{%ggti?n algorithm,

ESDs supplement

olver

Carbon emission

Workload migration
Energy consumption

131 ESDs supplement

Markov decision process

Multi agent reinforcement learning

Within the research using numerical optimization methods,
Zhangetal. [132] advanced the integration of ESDsin GEO-DCs
for spatio-temporal workload scheduling. They formulated a
stochastic optimization problem to minimize the total weighted
cost, including electricity charges, water consumption, and car-
bon emissions. Using Lyapunov techniques, they developed
the LYA-OACM online algorithm to balance cost and QoS for
delay-tolerant workloads. To reduce computational complexity
and communication overhead between DCs, they proposed the
ADMM-DACM algorithm, allowing each DC to make inde-
pendent control decisions. In contrast to existing works that
primarily consider the lifespan of ESDs, Ye etal. [133] leveraged
the nonlinear characteristics of UPS power losses to propose a
novel approach to optimizing the joint operation of GEO-DCs.
They integrated local electricity prices, renewable energy gen-
eration, conventional generators, ESDs, and UPS nonlinearities
into a Mixed Integer Quadratic Programming model, solving
day-ahead and intra-day scheduling tasks with branch-and-cut
methods. A summary of related work about load following
design in GEO-DCs can be viewed in the Table VI.

V. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

With the prevalence of cloud computing services, the demand
for computing power in DCs is rising. As a highly energy-
intensive building, it needs to be equipped with a reliable power
management system to ensure power supply safety and service
quality. Especially when green energy is integrated into the
power supply, advanced power management technologies are
needed to overcome the challenges brought by green energy.
Based on the observation of the existing works, we give the
open issues and future trends of DCs when it comes to power
management optimization from the perspective of the power
supply side.

A. Safety Evaluation of Power Over-Subscription

Through power over-subscription, data centers (DCs) can
deploy more servers to meet computing capacity demands, but
measuring the associated power supply risks is challenging.
Existing safety evaluation models rely on static overload prob-
abilities [61] and fail to account for the relationship between
the magnitude and duration of overloads [52]. In reality, even

short periods of over-peak can pose safety risks. Therefore, it is
essential to develop a more scientific and robust safety evaluation
model.

B. Availability Assessment of Distributed Power Supply
Structures

DCs can categorize their availability levels based on criteria
established by UPTIME [20] for centralized UPS architectures.
However, assessing the availability of DCs with distributed
UPS structures, such as rack-level and server-level UPS setups,
poses a significant question for discussion. A critical question
is whether it is possible to easily transpose the availability
assessment approach of centralized power structures to dis-
tributed power structures? Especially with distributed power
supply structures becoming a future trend, availability as a label
affects customer choice and the DC revenue indirectly.

C. Green Energy Management for AI Workload Integration

With the development of green energy and the gradual in-
crease of Al-enabled scenarios (especially those of LLM integra-
tion), DC operators, as the intermediary between power supply
companies and DC customers, will inevitably need to consider
the optimization of power resources between green energy and
Al workloads. Al training is a batch task that becomes more
power-hungry with accelerators, while Al inference is latency-
sensitive and its power consumption varies across different
inference modes [134]. Thus, effective power management is
crucial for optimizing power matching in Al scenarios.

D. Virtualized Energy System

Similar to Software-Defined Networking (SDN), DC power
systems can also be software-defined, i.e., virtualized energy
systems [116], [117]. Specifically, the energy accessed by DCs,
whether brown or green energy, can obtain relevant energy
information through monitoring systems (such as electricity
prices, carbon emission factors, power budgets, and capaci-
ties). Virtualizing energy systems through a software-defined
approach can provide greater power management flexibility. The
key challenge is how to leverage virtualized energy informa-
tion with different characteristics of applications (e.g., scalable
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containers, lightweight microservices, etc.) to exploit greater
optimization potential.

VI. CONCLUSION

To satisfy the demand for cloud computing services, DCs
have been developed and become representative buildings with
high cost, high energy consumption and high carbon emission.
Therefore, for sustainable development, modern DCs have to
pay attention to cost optimization (both TCO and environmental
costs) on the power supply side, except for optimizing IT or cool-
ing systems. To provide a full view of the problem, we systemat-
ically investigate the study of cost-aware DC power supply-side
resource optimization. We first present basic knowledge about
the power supply perspective, including the power supply system
structure and related metrics, as well as modeling approaches for
key components and power management techniques. Then, we
analyze and compare crucial works including direct, indirect,
and environmental costs, emphasizing the ways in which power
management techniques and methods are involved. Finally, as
part of the survey, we point out open challenges and future
research directions for power management in power supply-side
resource optimization. We hope this survey will provide useful
assistance to researchers and engineers, aiming to offer valuable
guidelines for building greener DCs.
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