
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

AQESF: An adaptive QoS-enhanced scheduling framework for online batch

of task scheduling

Huikang Huang a, Weiwei Lin a,b,∗, Minxian Xu c, Keqin Li d

aDepartment of Computer Science and Engineering, South China University of Technology, GuangZhou, 510000, China
b Pengcheng Laboratory, Shenzhen, 518066, China
c Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
dDepartment of Computer Science, State University of New York, New Paltz, NY, 12561, USA

a r t i c l e i n f o

Keywords:
Cloud computing
Online task scheduling
Deep reinforcement learning
Quality of service

 a b s t r a c t

For dynamic cloud environments and diverse user requirements, cloud service providers must adopt efficient
scheduling methods to fulfill the quality of service (QoS). However, existing scheduling approaches are still in-
adequate in dealing with the online batch task scheduling problem in complex cloud environments. Specifically,
existing methods do not consider the scheduling order optimization of batch tasks while taking into account
long-term cumulative performance and robustness. This paper proposes an Adaptive QoS-Enhanced Schedul-
ing Framework (AQESF) based on the multi-action Proximal Policy Optimization to address this challenge. The
AQESF integrates the Deep Reinforcement Learning (DRL) Queue and the Multi-FIFO-Manner modules for joint
optimization to cover the task order and task placement solution space. Furthermore, placement decisions are
constrained to be solved in a more optimized space based on well-designed greedy algorithms. Extensive exper-
imental evaluations on the Alibaba trace demonstrate that AQESF exhibits superior cumulative performance of
average response time and success rate. Furthermore, AQESF exhibits strong robustness and low scheduling la-
tency compared with the common DRL task scheduling paradigm. Finally, we analyze the potential applications
of AQESF in VM placement and computation offloading.

1. Introduction

1.1. Background

With the high reliance of various enterprises on the convenient
and fast cloud computing service paradigm, cloud computing has been
treated similarly to public utilities (water, electricity, etc.). Users can
subscribe to cloud services tailored to their specific requirements [1].
Cloud service providers (CSPs), drawing upon the hardware resources in
cloud data centers, employ virtualization technology to consolidate and
integrate heterogeneous hardware devices into virtual resource pools
[2] to provide users with safe and reliable remote computing and stor-
age services. Furthermore, to deliver QoS to users and enhance resource
utilization, CSPs need to manage data center resources by leveraging
scheduling techniques.

For CSPs, deploying a stable and reliable scheduling method is a pre-
requisite for realizing operational benefits. Furthermore, proposing ad-
vanced scheduling methods to improve revenue is compelling but chal-

∗ Corresponding author.
 E-mail addresses: huikanghuang0321@gmail.com (H. Huang), linww@scut.edu.cn (W. Lin), mx.xu@siat.ac.cn (M. Xu), lik@newpaltz.edu (K. Li).

lenging. Overall, the design of scheduling methods needs to consider
two essential points:

• Stability. In dynamic cloud environments, not only do workload re-
quests change, but accidents are inevitable within the data center,
such as server downtime. The scheduling method needs to be robust
enough to handle these unforeseen events.

• Superiority. The task scheduling problem behaves as an optimiza-
tion problem with non-deterministic polynomial time complexity,
i.e., NP-hard. Therefore, sub-optimal scheduling decisions should be
as close as possible to the optimal solutions. Simultaneously, it is
crucial to take into account long-term benefits.

In general, the data center receives batch tasks from users and then
schedules all tasks simultaneously by Broker [3,4], such type of problem
is abstracted as the generalized Batch-of-Tasks (BoT) scheduling prob-
lem in this paper. Further, we consider the BoT online scheduling prob-
lem (No main cache queue, all tasks need to be scheduled at current time).

https://doi.org/10.1016/j.future.2025.108174
Received 6 August 2025; Received in revised form 21 September 2025; Accepted 27 September 2025

Future Generation Computer Systems 176 (2026) 108174

Available online 1 October 2025
0167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs

t

$t+1$

$\delta / \theta (\rho -2)$

$task_{j}=<task^{id},task^{arrT},task^{len},task^{mem},task^{ect}>$

$task^{id}$

$task^{arrT}$

$task^{len}$

$task^{mem}$

$task^{ect}$

$VM_{i}=<VM^{id}, VM^{proc}, VM^{mem}, VM^{idleT}>$

VM^{id}

VM^{proc}

VM^{mem}

VM^{idleT}

\begin {equation}x_{i,j}=\begin {cases} 1, & task_{j}\ is\ placed\ in\ VM_{i}\\ 0, & {otherwise}, \end {cases} \label {Xeqn1-1}\end {equation}

$x_{i,j}$

$task_{j}$

VM_{i}

VM_{i}

$task_{j}$

VM_{i}

$task_{j}^{startT}$

$task_{j}$

\begin {equation}task_{j}^{startT}=max(0, VM_{i}^{idleT})+task_{j}^{arrT}. \label {Xeqn2-2}\end {equation}

\begin {equation}ART=\frac {1}{n}\sum ^{n}_{j}RT(task_{j}). \label {Xeqn3-3}\end {equation}

$task^{ect}$

$task^{ect}$

\begin {equation}SR=\frac {1}{n}\sum _{j}^{n}task_{j}^{sr}. \label {Xeqn4-4}\end {equation}

\begin {align}\label {ART} & min(ART)=min\frac {1}{n}\sum _{B=bs_1,{\ldots },bs_t}\sum _{i}^{m}\sum _{j}^Bx_{i,j}RT(task_j)\\ \label {SR} &max(SR)=max\frac {1}{n}\sum _{B=bs_1,{\ldots },bs_t}\sum _{i}^{m}\sum _{j}^Bx_{i,j}task_{j}^{sr}\end {align}

\begin {align}& RT(task_j)=task_{j}^{startT}-task_j^{arrT}+\frac {task_j^{len}}{VM_i^{proc}}, \label {Xeqn7-7}\\ &task_j^{sr}=\begin {cases} 1, \quad RT(task_j)\le task_k^{ect}\\ 0, \quad otherwise, \end {cases} \label {Xeqn8-8}\\ & x_{i,j}=\begin {cases} 1\ or\ 0, \quad task_j^{mem} \le VM_i^{mem}\\ 0, \quad otherwise, \end {cases} \label {Xeqn9-9}\\ & bs_1 < bs_2 <,{\ldots },<bs_t, \label {Xeqn10-10}\\ &x\sum _i^m x_{i,j}=1,\forall j\in n, \label {Xeqn11-11}\\ & x_{i,j} \in \{0,1\}, \forall i\in m, j \in n, \label {Xeqn12-12}\end {align}

$task^{ect}$

b_i

\begin {equation}max(SR)=max\frac {1}{n}\sum _{i}^{m}\sum _{j}^{bs}x_{i,j}task_{j}^{sr} \label {Xeqn13-13}\end {equation}

\begin {align}&\sum _j^{bs} x_{i,j}task_j^{len}\le VM_i^{proc},\forall i\in m, \label {Xeqn14-14}\\ &\sum _i^m x_{i,j}=1,\forall j\in n, \label {Xeqn15-15}\\ &x_{i,j} \in \{0,1\}, \forall i\in m, j \in n, \label {Xeqn16-16}\end {align}

a_t

$bs!$

m^{bs}

$m^{bs} \times bs!$

$\{task_{1}, task_{2},{\ldots }, task_{bs}\}$

$task_{1}\leftarrow task_{2}\leftarrow \ldots \leftarrow task_{bs}$

$\hat {task_{1}}\leftarrow \hat {task_{2}}\leftarrow \ldots \leftarrow \hat {task_{bs}}$

$type$

$m^{bs} \times bs!$

$type \times bs!$

$ART=(1+2)/2=1.5$

t_1

$task_{1} \rightarrow VM_{1}$

$task_{2} \rightarrow VM_{1}$

t_1

t_2

$ART=(1+2+1.5+1.5)/4=1.5$

$task_{3} \rightarrow VM_{2}$

$task_{4} \rightarrow VM_{1}$

t_1

$task_{1} \rightarrow VM_{1}$

$task_{2} \rightarrow VM_{3}$

t_2

$task_{3} \rightarrow VM_{1}$

$task_{4} \rightarrow VM_{1}$

$ART=1.1875$

$M=<S, A, P, R>$

$S=\{s_{t}\}_{1}^T$

s_t

t

a_t

$a_t \in A$

$p(s_{t+1}|s_{t}, a_{t})$

$p\in P$

r_t

$r_{t} \in R$

s_{t+1}

\begin {equation}s_{1},a_{1}\rightarrow r_{1},s_{2},a_{2}\rightarrow \ldots \rightarrow r_{t},s_{t+1}. \label {Xeqn17-17}\end {equation}

P

S

S^{Task}

S^{VM}

t

s_{t}^{Task}

$Task^{len}$

$Task^{mem}$

s_{t}^{VM}

VM^{idleT}

s_{t}

t

\begin {equation}\begin {split} s_{t}&=[s_{t}^{VM},s_{t}^{Task}] \\&=[VM_{1}^{idleT},{\ldots },VM_{m}^{idleT},task_{1}^{res},{\ldots },task_{bs}^{res}], \end {split} \label {Xeqn18-18}\end {equation}

$res \in \{len,mem\}$

A

$[0,1]$

a_t^{type}

a_t

\begin {equation}a_t=[a_t^{Task},a_t^{type}]=[a_t^{task_1},a_t^{task_2},{\ldots },a_t^{task_{bs}},a_t^{type}], \label {Xeqn19-19}\end {equation}

$a_{t}^{task_{i}}$

a_t^{type}

$[0,1]$

s_{t}

a_{t}

0

a_{t}

$P(s_{t+1}|s_{t}, a_{t})$

$P:S \times A \rightarrow S$

a_{t}

\begin {equation}\label {eq_rw} r_{t}=\frac {1}{bs}\sum _{bs}task_{j}^{sr}.\end {equation}

L

L_i

i

$O(\kappa)$

$\kappa =\sum _{i}^{L-1} (L_i*L_{i+1})$

$O(bs)$

bs

$O(\kappa +bs)$

$\pi _{\theta _{A}}$

$\pi _{\theta _{A}^{old}}$

\begin {equation}\rho _{t}(\theta _{A})=\frac {\pi _{\theta _{A}}(a_{t}|s_{t})}{\pi _{\theta _{A}^{old}}(a_{t}|s_{t})}. \label {Xeqn21-21}\end {equation}

\begin {equation}\label {eq_loss_clip} L^{clip}(\theta _{A})=E[min(\rho _{t}(\theta _{A})\hat {A_{t}},clip(\rho _{t}(\theta _{A}),1-\epsilon ,1+\epsilon))\hat {A_{t}}],\end {equation}

$\epsilon $

$\hat {A_{t}}$

$\pi _{\theta _{A}^{old}}$

\begin {equation}\hat {A_{t}}=r_{t}+\gamma V_{\theta _{C}^{old}}(s_{t+1})-V_{\theta _{C}^{old}}(s_{t}), \label {Xeqn23-23}\end {equation}

$\gamma $

$\theta _{C}^{old}$

$\theta _{A}$

\begin {equation}\label {eq_update_a} \theta _{A}=\theta _{A}^{old}-\alpha _{A}\nabla _{\theta _{A}}L^{clip}(\theta _{A}),\end {equation}

$\alpha _{A}$

\begin {equation}\label {eq_loss_mse} L^{C}(\theta _{C})=(V_{\theta _{C}}(s_{t})-V_{tar}(s_{t}))^2,\end {equation}

$V_{tar}(s_{t})$

\begin {equation}V_{tar}(s_{t})=r_{t}+\gamma V_{\theta _{C}^{old}}(s_{t+1}). \label {Xeqn26-26}\end {equation}

$\alpha _{C}$

$\theta _{C}$

\begin {equation}\label {eq_update_c} \theta _{C}=\theta _{C}^{old}-\alpha _{C}\nabla _{\theta _{C}}L^{C}(\theta _{A}).\end {equation}

$task^{ect}=1.8s$

$task^{ect}>\{VM^{proc}\}_{fast} / \{task^{len}\}_{\max }$

\begin {equation}\label {eq28} F=\omega *\sum _{bs}\frac {task_{j}^{len}}{RT(task_{j})*VM_{i}^{proc}}+(1-\omega)* \sum _{bs}task_{j}^{sr}.\end {equation}

$\omega \in (0\sim 1)$

\begin {equation}\label {eq29} r_{j}= \begin {cases} \frac {task_{j}^{len}}{RT(task_{j})*VM_{i}^{proc}},& RT(task_{j}) > task^{ect} \\ 0,& RT(task_{j}) > task^{ect}. \end {cases}\end {equation}

$\omega $

$>$

$>$

$\sim $

$\sim $

$task\approx 3000$

$1s$

$O(bs^2)$

bs

$O(\kappa \times bs)$

$>$

$>$

$>$

$>$

$>$

t_i

https://orcid.org/0000-0001-6876-1795
https://orcid.org/0000-0001-5224-4048
mailto:huikanghuang0321@gmail.com
mailto:linww@scut.edu.cn
mailto:mx.xu@siat.ac.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.future.2025.108174
https://doi.org/10.1016/j.future.2025.108174

H. Huang et al.

Fig. 1. Two modeling paradigms and solving manners.

There are generally two scenarios modeling and solution methods, as
shown in Fig. 1:

• Scenario 1. The data center will take the tasks that arrive simulta-
neously, randomly put them into a FIFO queue, and then schedule
them sequentially according to the order of the tasks in the queue.
This is to model the BoT as a FIFO task queue, only considering the
information of the first task in the queue that currently needs to be
scheduled, which is equivalent to scheduling one task online. Algo-
rithms that handle this scenario are MCT, E-PVM [5], and also Deep
Reinforcement Learning (DRL) [6–8].

• Scenario 2. Modeling simultaneous arriving tasks as a Combina-
torial Optimization Problem (COP), and tasks within the BoT are
scheduled one by one, e.g., Min-Min. More directly, the entire BoT
is mapped for scheduling in a default order, e.g., Genetic Algorithms
(GA) and Ant Colony Systems [9–11] or DRL to solve COP [12]. This
modeling approach considers the information of the whole BoT, dif-
ferent from Scenario 1 (only one task).

1.2. Challenges and contributions

For the online BoT scheduling problem, the main challenge that
exists is how to consider scheduling decisions to optimize the long-
term benefits with good robustness. However, the above two modeling
paradigms and solving methods are difficult to meet the requirements
of long-term benefit and decision-making stability simultaneously.

Specifically, for optimizing the solution space coverage problem,
the modeling paradigm of Scenario 1 inevitably fails to cover the cur-
rent BoT’s own solution space, ignoring potential optimizations brought
about by task scheduling order. For Scenario 2, both types of algorithms
can obtain BoT information for decision-making. Algorithm type 1 can
optimize the scheduling order of tasks, while type 2 adopts the default
order. Nevertheless, neither of the two algorithm types can take into ac-
count the impact between the decision at 𝑡 and 𝑡 + 1, i.e., optimization
for sequential decision-making problems.

Regarding algorithm design, heuristics are highly explainable and
controllable, and their suboptimal scheduling results are within accept-
able margins. However, heuristic algorithms focus on optimizing task
scheduling at the current time or current batch, focusing on immedi-
ate gains and neglecting to optimize continuous incoming task requests
in the long run. DRL is a promising approach for solving the long-term
benefits. However, the stability of the environment is a key prerequi-
site for the effective training and decision-making capability of DRL. In
the case of drifting data distribution, DRL-based scheduling models may
fail due to insufficient generalization. In addition, when using DRL to
solve the online BoT scheduling problem, the optimal solution cannot
be obtained if the problem modeling does not cover the optimal solu-
tion space. Unfortunately, current research on online BoT scheduling
optimization based on DRL cannot effectively meet these requirements.
Specifically, it fails to simultaneously consider algorithmic robustness
and coverage of the solution space (scheduling order and placement)
while optimizing long-term rewards.

In this paper, we focus on the basic scheduling entity BoT, i.e.,
scheduling multiple BoTs to optimize the average response time (ART)

and success rate (SR). This problem is formulated as a continuous deci-
sion problem embedded with COPs. We propose a novel Adaptive QoS-
Enhanced Scheduling Framework (AQESF) based on multi-action Proxi-
mal Policy Optimization (PPO) to optimize the cumulative performance.
Briefly, several significant contributions of this paper can be summa-
rized as:
1. We formally define the online BoT scheduling problem based on ART
and SR optimization under resource constraints and prove that the
problem is NP-hard in a static situation. Considering cumulative re-
ward optimization in the dynamic cloud environment, we model the
problem as a Markov decision process (MDP) and define the corre-
sponding state, action and reward function.

2. We propose AQESF, which integrates DRL-Queue and Multi-FIFO-
Manner (Multi-FM) modules to cover the solution search space for
task ordering and placement of the online BoT scheduling problem,
further approximating the optimal solution while considering long-
term rewards.

3. We design heuristic algorithms Minimum Completion Time (MCT)
and Opportunity Load Balancing (OLB) within Multi-FM, and adap-
tively select one of them according to DRL to implement schedul-
ing decisions in white-box scenarios, thereby limiting the decision-
making to a controllable and more optimal space.

4. By conducting extensive experiments on the Alibaba trace, we
compare with well-designed algorithms in different types (tradi-
tional heuristics, meta-heuristics, DRL-based algorithms). Our find-
ings demonstrate that AQESF can improve the heuristic algorithm to
achieve QoS-enhanced. Moreover, AQESF provides more robustness
and lower scheduling delay than the widely used DRL scheduling
paradigm.

The rest of this paper is organized as follows. Section 2 presents re-
lated work. Section 3 gives the problem definition and analyzes the com-
plexity of the problem. We focus on our AQESF in Section 4. Section 5
validates our method through extensive experiments. Section 6 gives
potential applications of our method in two application scenarios. We
summarize the work of this paper in the final section.

2. Related work

Generalized BoT scheduling research covers a variety of application
scenarios. It can be reduced to bin packing, job shop scheduling or se-
quential decision problems in most cases. Existing studies mainly use ap-
proximation algorithms for problem-solving, such as traditional heuris-
tics (greedy strategies, rule-based methods), meta-heuristics (iterative
search to obtain the optimal decision), and DRL methods.

2.1. Heuristics methods

In recent years, there have been emerging relevant research findings
for traditional heuristic methods. It is widely known that well-designed
heuristics provide acceptable scheduling performance, stability, inter-
pretability, and low scheduling delay. For example, Gupta et al. [13]
designed an enhanced Min-Min algorithm to optimize the completion
time of job flow and achieve load balancing. Wang et al. [14] designed
Sensible, an adaptive algorithm based on a rule-based policy that con-
stantly updates the priority of each host through ongoing measurements
of task RT. To address the Bi-objective optimization problem of schedul-
ing parallel jobs online to maximize user satisfaction and SaaS revenue,
Zheng et al. [15] proposed a greedy policy with 𝛿∕𝜃(𝜌 − 2) competitive
ratio to decide the purchase of instances and scheduling jobs. Construct-
ing VM scheduling as an online task scheduling problem, Lin et al. [16]
proposed PEAS, a scheduling method based on optimal server energy ef-
ficiency, which aims to select the PM with the most resource-satisfying
and energy-efficient PM for VM placement.

For COPs composed of a batch of workloads and system states, us-
ing meta-heuristic algorithms enables the search for solutions based on

Future Generation Computer Systems 176 (2026) 108174

2

H. Huang et al.

the designed fitness function. Although meta-heuristic methods perform
better in multi-objective optimization, they are generally only suitable
for latency-tolerant workloads due to the long solving time. Kumar et
al. [17] proposed a PSO-BOOST scheduling algorithm that gives a non-
dominated optimal solution set between cost and execution time based
on Pareto optimality theory. Sun et al. [18] proposed a flexible and
lightweight genetic algorithm (FGA) based on a polysomy-strengthening
elitist genetic algorithm to minimize the weighted sum of time and
energy consumption in dynamic task scheduling problems. Zhang et
al. [9] proposed an improved multi-objective optimization method, In-
MaOEA, which can simultaneously take into account task completion
time, scheduling cost, and task completion rate. Mousavi et al. [19]
proposed a directed non-dominated sorting genetic algorithm called D-
NSGA-II by introducing a recombination operator in NSGA-II. The algo-
rithm can control the selection pressure of the intelligence and use the
new operator to balance the exploratory and exploitative capabilities
of the algorithm. Considering the optimization of energy consumption
and makespan of MapReduce tasks, Demirbaga et al. [20] construct the
scheduling problem as a COP and propose the Ant Colony Optimisation
to solve it.

2.2. DRL-based methods

In recent years, DRL has been proposed for task scheduling to learn
the optimal decision through agent-environment interaction to optimize
cumulative rewards. Tong et al. [6] proposed a DDQN-TS task schedul-
ing scheme with a Bi-objective weighted reward function designed to
optimize the task completion rate and ART. Considering that different
types of jobs have different processing speeds on different types of vir-
tual machines (VMs) (I/O-intensive and computation-intensive), Huang
et al. [21] relied on predefined expert knowledge to optimize the ART
and the SR of latency-sensitive jobs using Dueling-DQN based on a gen-
erative adversarial imitation learning framework. Similarly, Tang et al.
[22] considered the task scheduling problem for heterogeneous VMs in
multi-cloud environments and proposed cost and makespan aware DQN
scheduling algorithms to train task scheduling by weighting cost and
makespan. Cui et al. [23] designed a multi-agent parallel Q-learning al-
gorithm to minimize the makespan and average waiting time of jobs.
Cheng et al. [24] considered VM rental cost and QoS (ART and SR) in
hybrid cloud environments. They used DQN to optimize the two ob-
jectives for weighted rewards. The experimental results show that the
proposed method has a significant advantage in terms of cost, but still
does not perform as well as some traditional heuristics in terms of ART.
Staffolani et al. [7] considered the workload allocation for distributed
queues. They proposed an RLQ scheduling framework based on the Dou-
ble DQN and the contextual bandit. They demonstrated that the RLQ has
fast convergence properties and better performance through extensive
experiments. Yang et al. [4] modeled the cost and benefit of batched
tasks as a single-objective optimization problem and proposed a DRL +
greedy scheduling method to maximize the data center gain. However,
the greedy algorithm makes it difficult to deal with problems that do
not have an optimal substructure in the time-series dimension.

2.3. Summary

The two major classes of algorithms (Heuristics and DRL-based meth-
ods) are commonly used to deal with task scheduling problems, but
all the existing studies have limitations. For example, heuristic meth-
ods cannot consider the optimization of cumulative performance, which
fails to obtain cumulatively optimal solutions for problems that do
not have optimal substructures in the time-series dimension. For on-
line BoT scheduling problems, if modeled as the scheduling paradigm
in Scenario 1, using DRL to solve the problem results in insufficient
state-action space coverage (i.e., without considering the task order).
If modeled as Scenario 2, the optimization of long-term rewards can-
not be considered. Additionally, relying on DRL for global optimiza-

Fig. 2. Prototype of BoT scheduling in cloud data center.

tion search can lead to insufficient robustness. Therefore, the aforemen-
tioned scheduling methods still have some shortcomings.

3. Problem formulation

3.1. System model

To better understand the problem studied in this paper, we show the
problem prototype in Fig. 2. Specifically, the generalized BoT scheduling
procedure can be divided into the following stages:

1. Tasks Submission. Multiple users initiate tasks with resource re-
quirements (e.g., task length, task type, memory usage, etc.) to the
cloud data center. In this study, we do not consider the main cache
queue, i.e., all tasks received at the current time need to be scheduled
to the VM cache queue through the Broker and cannot be postponed
to the next time, i.e., online scheduling.

2. Tasks Scheduling. Based on the information collected by the
resource monitor, the Broker orchestrates the online scheduling
of tasks to VMs within the designated resource pool using pre-
established scheduling algorithms. Typically, two categories of al-
gorithms are employed, as shown in Fig. 1. The FIFO-manner algo-
rithm schedules tasks sequentially without using information from
other tasks in the current batch (e.g., MCT, round-robin, etc.). And
the COP-manner algorithm schedules a BoT concurrently (e.g., Min-
Min, GA, etc.).

3. Tasks Processing. When sufficient resources are available, tasks can
be executed immediately. Otherwise, tasks will wait for execution
on the VM cache queue, similar to many existing works [6,7]. In this
paper, we do not consider task backfilling and rescheduling. We only
consider FIFO queues in VM cache queue to ensure absolute fairness.

3.2. Problem definition

The problem studied in this paper is formally defined in this subsec-
tion. First, we describe the frequently used symbols in Table 1. Then, a
detailed modeling description is provided for this problem.

The CSP can receive user task requests and monitor resource usage in
the data center, which is the problem’s input. For each task request, rep-
resented by a tuple: 𝑡𝑎𝑠𝑘𝑗 =< 𝑡𝑎𝑠𝑘𝑖𝑑 , 𝑡𝑎𝑠𝑘𝑎𝑟𝑟𝑇 , 𝑡𝑎𝑠𝑘𝑙𝑒𝑛, 𝑡𝑎𝑠𝑘𝑚𝑒𝑚, 𝑡𝑎𝑠𝑘𝑒𝑐𝑡 >.
Where 𝑡𝑎𝑠𝑘𝑖𝑑 is the unique number of the task, 𝑡𝑎𝑠𝑘𝑎𝑟𝑟𝑇 is the ar-
rival time, 𝑡𝑎𝑠𝑘𝑙𝑒𝑛 is the length of the million instructions that need
to be processed, 𝑡𝑎𝑠𝑘𝑚𝑒𝑚 is the memory requirement, and 𝑡𝑎𝑠𝑘𝑒𝑐𝑡
is the expected completion time. For data center resources, VMs
serve as compute nodes for task execution, represented by: 𝑉𝑀𝑖 =<
𝑉𝑀 𝑖𝑑 , 𝑉 𝑀𝑝𝑟𝑜𝑐 , 𝑉 𝑀𝑚𝑒𝑚, 𝑉 𝑀 𝑖𝑑𝑙𝑒𝑇 >. Where 𝑉𝑀 𝑖𝑑 is the identification of
VM, 𝑉𝑀𝑝𝑟𝑜𝑐 denotes the processing speed of VM, and 𝑉𝑀𝑚𝑒𝑚 is the
memory capacity. 𝑉𝑀 𝑖𝑑𝑙𝑒𝑇 denotes the time required for the VM re-
source release to transition to the idle state.

Future Generation Computer Systems 176 (2026) 108174

3

H. Huang et al.

Table 1
List of symbols.
 Name Description
𝑛 The number of tasks
𝑚 The number of VMs
 bs The batch size of tasks
𝑡𝑎𝑠𝑘𝑖𝑑 The id of task
𝑡𝑎𝑠𝑘𝑎𝑟𝑟𝑇 The arrival timestamp of task
𝑡𝑎𝑠𝑘𝑙𝑒𝑛 The million instruction length of task
𝑡𝑎𝑠𝑘𝑚𝑒𝑚 The memory of task request
𝑡𝑎𝑠𝑘𝑒𝑐𝑡 The expected completion time of task
𝑡𝑎𝑠𝑘𝑠𝑡𝑎𝑟𝑡𝑇 The start timestamp of task
𝑡𝑎𝑠𝑘𝑒𝑛𝑑𝑇 The finish timestamp of task
𝑡𝑎𝑠𝑘𝑠𝑟 The successful symbol of task
𝑉𝑀 𝑖𝑑 The id of VM
𝑉𝑀𝑝𝑟𝑜𝑐 The processing speed of VM
𝑉𝑀𝑚𝑒𝑚 The memory of VM
𝑉𝑀 𝑖𝑑𝑙𝑒𝑇 Time required for VM to release resources into idle
𝑠𝑡 The system state at timestamp t
𝑎𝑡 The action selected by DRL agent at timestamp t
𝑟𝑡 Total rewards at timestamp t
 RT The response time of task
 SR The success rate of total tasks

Similar to the existing works [21,23], we assume that each task re-
quest is independent and cannot be further partitioned for processing.
Each task can be executed by only one VM, and each VM can only pro-
cess one task request at a time, which is the same as the Space-Shared
mode in the well-known simulation framework Cloudsim [25]:

𝑥𝑖,𝑗 =

{

1, 𝑡𝑎𝑠𝑘𝑗 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝑉𝑀𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(1)

where 𝑥𝑖,𝑗 means that 𝑡𝑎𝑠𝑘𝑗 is placed on 𝑉𝑀𝑖 or waiting for execution
in 𝑉𝑀𝑖’s cache queue. Tasks will wait for execution in the FIFO queue.
Then, after 𝑡𝑎𝑠𝑘𝑗 is scheduled to 𝑉𝑀𝑖, the start time 𝑡𝑎𝑠𝑘𝑠𝑡𝑎𝑟𝑡𝑇𝑗 of 𝑡𝑎𝑠𝑘𝑗
is expressed as:
𝑡𝑎𝑠𝑘𝑠𝑡𝑎𝑟𝑡𝑇𝑗 = 𝑚𝑎𝑥(0, 𝑉 𝑀 𝑖𝑑𝑙𝑒𝑇

𝑖) + 𝑡𝑎𝑠𝑘𝑎𝑟𝑟𝑇𝑗 . (2)

The QoS metrics under consideration in the task scheduling problem
include ART and SR. ART signifies the mean value of all task response
times within the observation window, directly reflecting user satisfac-
tion. It is expressed as follows:

𝐴𝑅𝑇 = 1
𝑛

𝑛
∑

𝑗
𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗). (3)

Moreover, SR is intricately linked to the Service Level Agreement (SLA),
signifying whether the RT of a task can be accomplished within a pre-
defined 𝑡𝑎𝑠𝑘𝑒𝑐𝑡 during the observation window. 𝑡𝑎𝑠𝑘𝑒𝑐𝑡 is specified in
the User-CSP agreement, and the violation will penalize the data cen-
ter. Therefore, we designate SR as the optimization objective at the data
center side, which is expressed by:

𝑆𝑅 = 1
𝑛

𝑛
∑

𝑗
𝑡𝑎𝑠𝑘𝑠𝑟𝑗 . (4)

We address the task scheduling problem under resource constraints,
which can be formulated as an Integer Programming problem. It is im-
perative to highlight that, within the time-series dimension, scheduling
decisions have a subsequent impact on the system state once tasks are
heavy at the current time, i.e., the current BoT could not be completed
when the next BoT arrives. Therefore, the problem is also a sequential
decision problem, which can be expressed as follows:

𝑚𝑖𝑛(𝐴𝑅𝑇) = 𝑚𝑖𝑛1
𝑛

∑

𝐵=𝑏𝑠1 ,…,𝑏𝑠𝑡

𝑚
∑

𝑖

𝐵
∑

𝑗
𝑥𝑖,𝑗𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗) (5)

𝑚𝑎𝑥(𝑆𝑅) = 𝑚𝑎𝑥 1
𝑛

∑

𝐵=𝑏𝑠1 ,…,𝑏𝑠𝑡

𝑚
∑

𝑖

𝐵
∑

𝑗
𝑥𝑖,𝑗 𝑡𝑎𝑠𝑘

𝑠𝑟
𝑗 (6)

 s.t.

𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗) = 𝑡𝑎𝑠𝑘𝑠𝑡𝑎𝑟𝑡𝑇𝑗 − 𝑡𝑎𝑠𝑘𝑎𝑟𝑟𝑇𝑗 +
𝑡𝑎𝑠𝑘𝑙𝑒𝑛𝑗

𝑉𝑀𝑝𝑟𝑜𝑐
𝑖

, (7)

𝑡𝑎𝑠𝑘𝑠𝑟𝑗 =

{

1, 𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗) ≤ 𝑡𝑎𝑠𝑘𝑒𝑐𝑡𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(8)

𝑥𝑖,𝑗 =

{

1 𝑜𝑟 0, 𝑡𝑎𝑠𝑘𝑚𝑒𝑚𝑗 ≤ 𝑉𝑀𝑚𝑒𝑚
𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(9)

𝑏𝑠1 < 𝑏𝑠2 <,…, < 𝑏𝑠𝑡, (10)

𝑥
𝑚
∑

𝑖
𝑥𝑖,𝑗 = 1,∀𝑗 ∈ 𝑛, (11)

𝑥𝑖,𝑗 ∈ {0, 1},∀𝑖 ∈ 𝑚, 𝑗 ∈ 𝑛, (12)

Eqs. (5) and (6) are the optimization objectives of the problem. Eq. (7)
gives the calculation of the task RT. Constraint Eq. (8) implies that the
RT of a task needs to be completed within a pre-defined 𝑡𝑎𝑠𝑘𝑒𝑐𝑡 to be
valuable. Constraint Eq. (9) means that tasks can only be assigned to
VMs with sufficient resources. Constraint Eq. (10) indicates that differ-
ent batches of tasks are to be scheduled in temporal order. Eqs. (11)
and (12) represent that all tasks need to be scheduled and executed.

3.3. Problem analysis

Intuitively, the optimal scheduling decision for the current BoT can
be obtained by enumeration, but it takes exponential time. The follow-
ing illustrates that the BoT scheduling problem, explicitly focusing on
SR optimization, is NP-hard.

Theorem 1. In resource-constrained scenarios, online scheduling for the
current BoT to optimize SR is an NP-hard problem.
Proof. To prove Theorem 1, we reduce this task scheduling problem
to the Multiple Knapsack Problem (MKP), which has been proven to be
NP-hard [26]. In this reduction, tasks and VMs are considered items and
multiple knapsacks. Scheduling is performed for the BoT at the current
time, so Eqs. (6) and (10) take only one time slot 𝑏𝑖, i.e., only one BoT is
considered for SR. Alternatively, in the simpler case, we set knapsacks
to be empty, i.e., Eqs. (7) and (8) can be further simplified and merged.
Then, the problem can be reduced to:

𝑚𝑎𝑥(𝑆𝑅) = 𝑚𝑎𝑥 1
𝑛

𝑚
∑

𝑖

𝑏𝑠
∑

𝑗
𝑥𝑖,𝑗 𝑡𝑎𝑠𝑘

𝑠𝑟
𝑗 (13)

s.t.
𝑏𝑠
∑

𝑗
𝑥𝑖,𝑗 𝑡𝑎𝑠𝑘

𝑙𝑒𝑛
𝑗 ≤ 𝑉𝑀𝑝𝑟𝑜𝑐

𝑖 ,∀𝑖 ∈ 𝑚, (14)

𝑚
∑

𝑖
𝑥𝑖,𝑗 = 1,∀𝑗 ∈ 𝑛, (15)

𝑥𝑖,𝑗 ∈ {0, 1},∀𝑖 ∈ 𝑚, 𝑗 ∈ 𝑛, (16)

The static scheduling of the current BoT can be viewed as a complex
unfolding of the MKP. Consequently, the problem studied in this paper
is also NP-hard. ∎

However, we study the problem of online scheduling for BoT in dy-
namic scenarios. The objectives ART and SR are both cumulative per-
formances, i.e., evaluation metrics computed after the completion of
scheduling of all tasks within the observation window. The problem can
be represented as a typical MDP in the time-series dimension. This im-
plies the sequential decision problem incorporating the COP, where the
COP is proved to be NP-hard in Theorem 1. Therefore, the modeling
paradigm of the problem is described in Fig. 3, the action 𝑎𝑡 needs to
maximize the immediate reward of the current COP as well as optimize
the cumulative reward on the time-series dimension.

Future Generation Computer Systems 176 (2026) 108174

4

H. Huang et al.

Fig. 3. Sequential Decision Problem incorporating Combinatorial Optimization
Problem.

Fig. 4. Adaptive QoS-Enhanced Scheduling Framework.

4. Task scheduling by adaptive QoS-enhanced scheduling
framework

4.1. Adaptive QoS-enhanced scheduling framework

For the problem prototype illustrated in Fig. 3, an intuitive ap-
proach is to optimize the cumulative rewards using DRL techniques,
i.e., scheduling each BoT to optimize immediate reward at each time.
However, outputting a BoT scheduling decisions based on DRL requires
consideration of task scheduling order (with 𝑏𝑠! search space) as well
as task placement locations (with 𝑚𝑏𝑠 search space). Although DRL can
learn both of them simultaneously, the search space for solutions is very
large (i.e., 𝑚𝑏𝑠 × 𝑏𝑠!), resulting in slow convergence or even failure to
converge. In addition, once the environment changes or the data dis-
tribution drifts, the model becomes more fragile and uncontrollable be-
cause task placement decisions are made in a black-box environment,
leading to a serious decline in scheduling performance.

Therefore, to compress the search space and provide a certain
scheduling stability, we propose a new method for online BoT schedul-
ing and give an Adaptive QoS-Enhanced Scheduling Framework as
shown in Fig. 4. AQESF has two co-optimization modules, named DRL-
Queue and Multi-FIFO-Manner. AQESF implements the joint optimiza-
tion of these two modules based on a multi-action DRL, optimizing both
the cumulative reward as well as the scheduling robustness.

DRL-Queue. When the system receives multiple tasks
{𝑡𝑎𝑠𝑘1, 𝑡𝑎𝑠𝑘2,…, 𝑡𝑎𝑠𝑘𝑏𝑠} simultaneously (i.e., BoT), the sys-
tem generally gets a random FIFO queue for task scheduling:
𝑡𝑎𝑠𝑘1 ← 𝑡𝑎𝑠𝑘2 ← … ← 𝑡𝑎𝑠𝑘𝑏𝑠. DRL-Queue is a scheduling order decision
maker based on multi-action DRL for outputting an optimized FIFO
queue for task scheduling: ̂𝑡𝑎𝑠𝑘1 ← ̂𝑡𝑎𝑠𝑘2 ← … ← ̂𝑡𝑎𝑠𝑘𝑏𝑠. Therefore,
based on the DRL-queue, we can obtain any task scheduling order in a
BoT.

Multi-FM. Then, based on the FIFO-manner scheduling algorithm,
the tasks are assigned to VMs one by one for processing or waiting in
the VM cache queue. Considering that only one greedy algorithm can-
not be adapted to dynamic cloud environments (illustrated by the Ex-
ample 1 shown in Fig. 5), we design a DRL-driven scheduling algorithm
selection module Multi-FM. It adaptively selects FIFO-manner schedul-
ing algorithms from 𝑡𝑦𝑝𝑒 preset algorithms.

Fig. 5. The greedy algorithm cannot obtain a cumulative optimal solution for
the problem without optimal substructures.

Obviously, DRL can be used to train two modules simultaneously
to achieve joint optimization of long-term rewards, reducing the search
space from (𝑚𝑏𝑠 × 𝑏𝑠!) to (𝑡𝑦𝑝𝑒 × 𝑏𝑠!). Although it may not cover the op-
timal search space, scheduling decisions can be restricted to a subopti-
mal search space, with FIFO-manner algorithms providing performance
guarantees. Meanwhile, this means that scheduling decisions are made
in a white-box environment, where scheduling decisions can be captured
and interpreted. Ultimately, AQESF is able to achieve both superiority
and stability.

Example 1. Suppose we can schedule tasks arriving at the same time
in any order based on DRL-Queue, but only one type of greedy algo-
rithm can be used, as illustrated in Fig. 5. When the MCT algorithm is
selected for scheduling, we are able to get 𝐴𝑅𝑇 = (1 + 2)∕2 = 1.5 at 𝑡1 by
(𝑡𝑎𝑠𝑘1 → 𝑉𝑀1, 𝑡𝑎𝑠𝑘2 → 𝑉𝑀1), which is the optimal decision at 𝑡1. At 𝑡2,
we can get 𝐴𝑅𝑇 = (1 + 2 + 1.5 + 1.5)∕4 = 1.5 still by MCT (𝑡𝑎𝑠𝑘3 → 𝑉𝑀2,
𝑡𝑎𝑠𝑘4 → 𝑉𝑀1). However, using the ORACLE scheduling policy, after
scheduling at 𝑡1 (𝑡𝑎𝑠𝑘1 → 𝑉𝑀1, 𝑡𝑎𝑠𝑘2 → 𝑉𝑀3) and 𝑡2 (𝑡𝑎𝑠𝑘3 → 𝑉𝑀1,
𝑡𝑎𝑠𝑘4 → 𝑉𝑀1), we can get 𝐴𝑅𝑇 = 1.1875, reducing the cumulative ART
by about 26% compared to the MCT algorithm alone. This example
shows that a single greedy algorithm cannot obtain optimal cumulative
rewards on scheduling problems that do not have optimal substructures
in the time-series dimension because of resource constraints and dy-
namic requests. Furthermore, it illustrates that the deterministic search
strategy of a single greedy algorithm limits the scope of solutions.

4.2. Scheduling problem as MDP and algorithm design

4.2.1. MDP for decision-making
This paper addresses the online scheduling problem for BoT, which

is inherently a sequential decision problem. MDP is a general method
for modeling, which can be represented by a tuple: 𝑀 =< 𝑆,𝐴, 𝑃 ,𝑅 >.
Where 𝑆 = {𝑠𝑡}𝑇1 denotes a set of states following the system, and 𝑠𝑡 rep-
resents the state at the current time. At each time 𝑡, the system chooses
an action 𝑎𝑡, 𝑎𝑡 ∈ 𝐴, and applies it to the environment. The system state
will update according to the state transfer function 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), 𝑝 ∈ 𝑃 ,
then receives a reward 𝑟𝑡, 𝑟𝑡 ∈ 𝑅 and moves to the next time state 𝑠𝑡+1.
After traversing all tasks, the complete trajectories are obtained as fol-
lows:

𝑠1, 𝑎1 → 𝑟1, 𝑠2, 𝑎2 → … → 𝑟𝑡, 𝑠𝑡+1. (17)

However, the MDP state transfer probability 𝑃 is unknown, and the
whole system has a continuous state and action space. Therefore, we
use the model-free PPO [27] for the problem solution. The correspond-
ing state space, action space, state transfer probability, and reward func-
tion are defined below.

4.2.2. Description of DRL
State space. Regarding the design of the state space 𝑆, there are two

components: the messages carried by tasks 𝑆𝑇 𝑎𝑠𝑘 and the resource usage
of the data center 𝑆𝑉𝑀 . Specifically, at the current time 𝑡, the BoT with
the task state 𝑠𝑇 𝑎𝑠𝑘𝑡 includes 𝑇 𝑎𝑠𝑘𝑙𝑒𝑛 and 𝑇 𝑎𝑠𝑘𝑚𝑒𝑚. The resource state

Future Generation Computer Systems 176 (2026) 108174

5

H. Huang et al.

𝑠𝑉𝑀
𝑡 is the time 𝑉𝑀 𝑖𝑑𝑙𝑒𝑇 needed for VM resources to be released. Then
the state 𝑠𝑡 at time 𝑡 can be expressed as:
𝑠𝑡 = [𝑠𝑉𝑀

𝑡 , 𝑠𝑇 𝑎𝑠𝑘𝑡]

= [𝑉𝑀 𝑖𝑑𝑙𝑒𝑇
1 ,…, 𝑉 𝑀 𝑖𝑑𝑙𝑒𝑇

𝑚 , 𝑡𝑎𝑠𝑘𝑟𝑒𝑠1 ,…, 𝑡𝑎𝑠𝑘𝑟𝑒𝑠𝑏𝑠],
(18)

where 𝑟𝑒𝑠 ∈ {𝑙𝑒𝑛, 𝑚𝑒𝑚}, denoting the two resources of tasks.
Action space. For the action space 𝐴, we use a continuous variable as

the task score for the DRL-Queue module, ranging from [0, 1]. The score
will determine the order of this BoT in the FIFO queue simultaneously.
In addition, we integrate Multi-FM for joint optimization, using contin-
uous type variables 𝑎𝑡𝑦𝑝𝑒𝑡 to determine the choice of the FIFO-manner
scheduling algorithm. The action 𝑎𝑡 is shown below:
𝑎𝑡 = [𝑎𝑇 𝑎𝑠𝑘𝑡 , 𝑎𝑡𝑦𝑝𝑒𝑡] = [𝑎𝑡𝑎𝑠𝑘1𝑡 , 𝑎𝑡𝑎𝑠𝑘2𝑡 ,…, 𝑎𝑡𝑎𝑠𝑘𝑏𝑠𝑡 , 𝑎𝑡𝑦𝑝𝑒𝑡], (19)

where 𝑎𝑡𝑎𝑠𝑘𝑖𝑡 is the score of the current BoT. 𝑎𝑡𝑦𝑝𝑒𝑡 is the value to represent
the selection of scheduling algorithms, divided equally between [0, 1]
according to the number of candidate scheduling algorithms.

For the variable-length bs problem, we use large enough 𝑠𝑡 and 𝑎𝑡 to
cover the state and action space of the largest bs of BoTs. For small bs,
the state will fill with 0, and the masking action [28] will be adopted
to deal with the redundant 𝑎𝑡, which is widely used in natural language
processing to handle different lengths of sentences.

State-transition probability. Since the agent cannot obtain the
state transition probability 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) of the whole system, we based
on the model-free PPO to learn the transfer probability 𝑃 ∶ 𝑆 × 𝐴 → 𝑆,
as well as the maximum cumulative reward action 𝑎𝑡 through the con-
tinuous interaction between the DRL agent and environment.

Immediate reward. For the design of the reward function, some
correlation between ART and SR can be found. Specifically, when opti-
mizing SR for the current batch of BoT, it ensures that ART will not be
too bad. However, optimizing ART does not necessarily lead to signifi-
cant improvements in SR. Therefore, the reward is defined as SR within
AQESF, which optimizes the NP-hard problem proven by Theorem 1:

𝑟𝑡 =
1
𝑏𝑠

∑

𝑏𝑠
𝑡𝑎𝑠𝑘𝑠𝑟𝑗 . (20)

It is also possible to use a reward function weighted by ART and SR
[21]. But adding parameters reduces the usability of the algorithm. It is
worth noting that DRL is only used to improve the performance of the
scheduling algorithm, and the task placement decisions are still deter-
mined by the scheduling algorithm. Therefore, we discuss the adopted
scheduling algorithm for optimizing ART in the next subsection.

4.2.3. Scheduling algorithm
Algorithms 1 and 2 are the pseudo-codes of AQESF and Multi-FM

with candidate scheduling algorithms, respectively. For the optimiza-
tion objectives (Eqs. (5) and (6)), we design Multi-FM embedding two
FIFO-manner algorithms, MCT and OLB, as described in Algorithm 2.
The heuristic idea is to improve the utilization of high-performance com-
puting resources, which is intuitively seen in two cases:

1. When there are fewer tasks in recent BoT, the MCT algorithm is used
to greedily select the VM with the shortest RT for scheduling, which
can improve the ART of tasks.

2. When there are more tasks in the recent BoT, and the demand
for heterogeneous resources is high, we design the OLB algorithm
to achieve load balancing and improve the utilization of high-
performance VMs.

Both scheduling algorithms can improve ART. MCT is designed to im-
prove the use of high-performance computing resources, while OLB en-
hances the use of high-performance computing resources on the premise
of improving VM utilization. Therefore, the reward is designed to op-
timize only SR (Eq. (20)). Nonetheless, manually selecting the FIFO-
manner scheduling algorithm based on system states proves challeng-
ing, involving numerous factors such as current system state, future task

Algorithm 1: AQESF training algorithm.
1 Input: Initialize Actor 𝜋𝜃𝐴 with parameter 𝜃𝐴, 𝜃𝑜𝑙𝑑𝐴 = 𝜃𝐴.

Initialize Critic 𝜋𝜃𝐶 with parameter 𝜃𝐶 , 𝜃𝑜𝑙𝑑𝐶 = 𝜃𝐶 . Initialize
learning rate 𝛼𝐴 and 𝛼𝐶 , 𝑛𝑠𝑡𝑒𝑝𝑠, discount factor 𝛾, clip
coefficient 𝜖, replay buffer 𝛽.

2 Output: Optimized parameters 𝜃𝐴 and 𝜃𝐶 .
3 for epoch=1,2,…,N do
4 for t=1,2,…,T do
5 Obtain action 𝑎𝑡 by 𝜋𝜃𝐴 to get the scores of tasks based

on the state 𝑠𝑡 = [𝑠𝑉𝑀
𝑡 , 𝑠𝑇 𝑎𝑠𝑘𝑡];

6 Update queue {𝑡𝑎𝑠𝑘1 ← 𝑡𝑎𝑠𝑘2 ← … ← 𝑡𝑎𝑠𝑘𝑏𝑠} to
{ ̂𝑡𝑎𝑠𝑘1 ← ̂𝑡𝑎𝑠𝑘2 ← … ← ̂𝑡𝑎𝑠𝑘𝑏𝑠} according to 𝑎𝑇 𝑎𝑠𝑘𝑡 ;

7 Choose Scheduling algorithm according to 𝑎𝑡𝑦𝑝𝑒𝑡 ;
8 Apply Algorithm 2 to get 𝑟𝑡;
9 Obtain 𝑠𝑡+1 and 𝑆𝑡𝑜𝑟𝑒(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝛽;
10 if 𝑙𝑒𝑛(𝛽) > 𝑛𝑠𝑡𝑒𝑝 then
11 for 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑝𝑜𝑐ℎ = 1 𝑡𝑜 𝐾 do
12 Sample mini-batch trajectories from 𝛽 and

Compute loss function(22)(25);
13 Update 𝜃𝐴 and 𝜃𝐶 via (24) and (27) with

Adam Optimizer, respectively;
14 end
15 Clear 𝛽;
16 Soft update 𝜃𝑜𝑙𝑑𝐴 = 𝜃𝐴 and 𝜃𝑜𝑙𝑑𝐶 = 𝜃𝐶 ;
17 end
18 end
19 end

Algorithm 2: Multi-FIFO-manner module with MCT and OLB
algorithms.

1 Input: 𝑎𝑡𝑦𝑝𝑒𝑡 ,{ ̂𝑡𝑎𝑠𝑘1 ← ̂𝑡𝑎𝑠𝑘2 ← … ← ̂𝑡𝑎𝑠𝑘𝑏𝑠}, 𝑠𝑉𝑀
𝑡 , 𝑠𝑇 𝑎𝑠𝑘𝑡 .

2 Output: 𝑟𝑡 and Update 𝑠𝑉𝑀
𝑡+1 .

3 Reset 𝑟𝑡 = 0;
4 if 𝑎𝑡𝑦𝑝𝑒𝑡 ≥ 0.5 then // OLB
5 for 𝑗 = 1 𝑡𝑜 𝑏𝑠 do
6 Select {𝑉𝑀}𝑚𝑖𝑛_𝑖𝑑𝑙𝑒𝑇 with the minimum idle time

which meet 𝑡𝑎𝑠𝑘𝑚𝑒𝑚𝑗 ;
7 Select the 𝑉𝑀𝑝𝑟𝑜𝑐

𝑓𝑎𝑠𝑡 with the fastest process speed from
{𝑉𝑀}𝑚𝑖𝑛_𝑖𝑑𝑙𝑒𝑇 ;

8 Scheduling 𝑡𝑎𝑠𝑘𝑗 to 𝑉𝑀𝑝𝑟𝑜𝑐
𝑓𝑎𝑠𝑡 and obtain 𝑡𝑎𝑠𝑘𝑠𝑟𝑗 ;

9 𝑟𝑡+ = 𝑡𝑎𝑠𝑘𝑠𝑟𝑗 ;
10 end
11 end
12 else // MCT
13 for 𝑗 = 1 𝑡𝑜 𝑏𝑠 do
14 Select {𝑉𝑀} subset which meet 𝑡𝑎𝑠𝑘𝑚𝑒𝑚𝑗 ;
15 Select the 𝑉𝑀𝑝𝑟𝑜𝑐

𝑚𝑐𝑡 with the minimum completion time
from {𝑉𝑀};

16 Scheduling 𝑡𝑎𝑠𝑘𝑗 to 𝑉𝑀𝑝𝑟𝑜𝑐
𝑚𝑐𝑡 and obtain 𝑡𝑎𝑠𝑘𝑠𝑟𝑗 ;

17 𝑟𝑡+ = 𝑡𝑎𝑠𝑘𝑠𝑟𝑗 ;
18 end
19 end

requests, and task ordering. Therefore, we designed Multi-FM, which
uses DRL to autonomously determine the algorithm (Algorithm 1, lines
7–8), and combines it with the task ordering output by DRL-Queue
(Algorithm 1, line 6) to ultimately achieve collaborative optimization.

Time complexity. The time complexity of scheduling BoT consists
of two parts. For the DRL-Queue, we set 𝐿 as the number of layers
of the network and 𝐿𝑖 as the number of neurons in the 𝑖th layer. The

Future Generation Computer Systems 176 (2026) 108174

6

H. Huang et al.

time complexity of DRL-Queue is 𝑂(𝜅), 𝜅 =
∑𝐿−1

𝑖 (𝐿𝑖 ∗ 𝐿𝑖+1). For the
Mutil-FM, the time complexity of the adopted scheduling algorithm is
𝑂(𝑏𝑠), and 𝑏𝑠 denotes the number of tasks in a batch. Hence, for each
BoT, the total time complexity is 𝑂(𝜅 + 𝑏𝑠).

4.2.4. Model-training
For the AQESF training, we used the PPO-Clip model. Different from

the general DRL model, the PPO-Clip model proposes the objective of a
truncated probability ratio to estimate the performance of the Actor in
the Actor-Critic network. Where the truncation probability ratio is used
for the importance sampling weights of the new Actor network 𝜋𝜃𝐴 and
the old Actor network 𝜋𝜃𝑜𝑙𝑑𝐴

:

𝜌𝑡(𝜃𝐴) =
𝜋𝜃𝐴 (𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑𝐴

(𝑎𝑡|𝑠𝑡)
. (21)

For a more stable and reliable model training process, PPO-Clip uses
clip loss:
𝐿𝑐𝑙𝑖𝑝(𝜃𝐴) = 𝐸[𝑚𝑖𝑛(𝜌𝑡(𝜃𝐴)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝜌𝑡(𝜃𝐴), 1 − 𝜖, 1 + 𝜖))𝐴̂𝑡], (22)

where 𝜖 is the clip range. Similar to the Policy Gradient algorithm [29],
𝐴̂𝑡 denotes the estimated advantage function by 𝜋𝜃𝑜𝑙𝑑𝐴

, denoted as:

𝐴̂𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃𝑜𝑙𝑑𝐶
(𝑠𝑡+1) − 𝑉𝜃𝑜𝑙𝑑𝐶

(𝑠𝑡), (23)

where 𝛾 denotes the discount factor and 𝜃𝑜𝑙𝑑𝐶 is a parameter of the old
Critic network. Then, the model can perform gradient updates by sam-
pling mini-batch data from the experience pool. The Actor network pa-
rameters 𝜃𝐴 can be updated as:
𝜃𝐴 = 𝜃𝑜𝑙𝑑𝐴 − 𝛼𝐴∇𝜃𝐴𝐿

𝑐𝑙𝑖𝑝(𝜃𝐴), (24)

𝛼𝐴 is the learning rate of the Actor-network. The loss function of the
Critic network is the mean square error:
𝐿𝐶 (𝜃𝐶) = (𝑉𝜃𝐶 (𝑠𝑡) − 𝑉𝑡𝑎𝑟(𝑠𝑡))2, (25)

where 𝑉𝑡𝑎𝑟(𝑠𝑡) denotes the time difference error calculated from:
𝑉𝑡𝑎𝑟(𝑠𝑡) = 𝑟𝑡 + 𝛾𝑉𝜃𝑜𝑙𝑑𝐶

(𝑠𝑡+1). (26)

Using 𝛼𝐶 to denote the learning rate of the Critic network, the pa-
rameter update of the Critic network 𝜃𝐶 can be expressed as:
𝜃𝐶 = 𝜃𝑜𝑙𝑑𝐶 − 𝛼𝐶∇𝜃𝐶𝐿

𝐶 (𝜃𝐴). (27)

5. Experimental evaluation

In this section, we verify the performance of the algorithms proposed
in this paper by simulation. First, we introduce the experiment settings
and the comparison algorithms. Then, to demonstrate the superiority of
AQESF, we compared it to other algorithms in different aspects.

5.1. Experimental setup

Based on the problem modeling described in the previous sections,
we use the deep learning framework PyTorch to achieve DRL-Queue and
Multi-FM modules based on the multi-action PPO. The Actor and Critic
networks of PPO comprise two multi-layer perception neural networks
with 256 hidden neurons in each layer, ReLU as the activation function,
and gradient updating using the Adam optimizer [30]. In order to obtain
good training results, the system states are scaled to the same magnitude
to eliminate the differences in data. More network parameters can be
found in Table 2.

Without loss of generality, the dataset we use is similar to the setup
of the study [6] with Alibaba trace for evaluation. Specifically, we scaled
the tasks MI to less than 1000 MI based on the machine utilization. We
generate arrival times for each BoT that follow a Poisson distribution.
The memory requirements of tasks are sampled integers from a random
distribution. We provide four types of VM instances, three each, to re-
flect different computational resources. Table 3 shows other parameters

Table 2
Parameters of the PPO-Clip model.

 Parameter Values
 Training steps 𝑁 5000 ∗ 𝑛
 Discount factor 𝛾 0.99
 Learning rate 𝛼𝐴 = 𝛼𝐶 3e−4
 Mini-batch size 64
 Clip coefficient 𝜖 0.2
 Replay Buffer Capacity 𝐶 2048
 Update epochs 𝐾 5

Table 3
Parameters for simulation cloud environment.
 Parameter Values
 Total number of VMs 12
 Length of tasks Convert utilization to tasks MI
 Memory of tasks Random Integer (0∼1000) MB
 Expected completion time 1.8s
 Memory of VMs {256,512,768,1024} MB
 Frequency of VMs {250,500,750,1000} MIPS

of the simulation environment. In addition, we set all the 𝑡𝑎𝑠𝑘𝑒𝑐𝑡 = 1.8𝑠 to
make sure that SLA is satisfied, i.e. 𝑡𝑎𝑠𝑘𝑒𝑐𝑡 > {𝑉𝑀𝑝𝑟𝑜𝑐}𝑓𝑎𝑠𝑡∕{𝑡𝑎𝑠𝑘𝑙𝑒𝑛}max.

We compare AQESF with existing algorithms for validation. The
FIFO-manner and COP-manner algorithms are included:

• MCT: Select the VM with the shortest response time for the current
task to schedule.

• OLB: Select the VM subset with the minimum idle time, then select
the fastest process speed VM from those.

• Min-Min: Calculate the RT of each task in all available VMs, then
select the task with the smallest RT from the BoT and assign it to the
corresponding VM, and iterate through the BoT.

• FGA [18]: The FGA employs the Strengthen Elitist GA to deal with
Bi-objectives COP. For better performance, we are consistent with
FGA that uses Bi-objective weighting to design the fitness function
F, i.e., Eq. (28). We limit the population size to 50 and the num-
ber of iterations to 200 to reduce the solving time. We adopt the
experimental results with the best parameter 𝜔 ∈ (0 ∼ 1):

𝐹 = 𝜔 ∗
∑

𝑏𝑠

𝑡𝑎𝑠𝑘𝑙𝑒𝑛𝑗

𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗) ∗ 𝑉𝑀𝑝𝑟𝑜𝑐
𝑖

+ (1 − 𝜔) ∗
∑

𝑏𝑠
𝑡𝑎𝑠𝑘𝑠𝑟𝑗 . (28)

• CMA-DQN [22]: We use the reward function proposed in Ref. [21]
to obtain better performance of ART and SR, as shown below:

𝑟𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑡𝑎𝑠𝑘𝑙𝑒𝑛𝑗
𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗)∗𝑉𝑀𝑝𝑟𝑜𝑐

𝑖
, 𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗) > 𝑡𝑎𝑠𝑘𝑒𝑐𝑡

0, 𝑅𝑇 (𝑡𝑎𝑠𝑘𝑗) > 𝑡𝑎𝑠𝑘𝑒𝑐𝑡.
(29)

• RLQ [7]: Based on Double DQN, the contextual bandit historical in-
formation is fully utilized as prior knowledge for model training. The
reward function is also Eq. (29).

We answer the following questions about stability and superiority of
AQESF through our experiments: Q1. How much is the performance im-
provement of our approach compared to different types of algorithms?
Q2. How does our scheduling model perform in terms of cumulative
performance? Q3. How does AQESF perform robustly compared to the
widely adopted DRL scheduling algorithm? Q4. How much do DRL-
Queue and Mutil-FM modules enhance the scheduling model?

5.2. EXP1: scheduling performance comparisons

To answer Q1, we compare different algorithms on ART and SR with
different distribution datasets and different average batch sizes (AvgBs)
of tasks. The datasets are divided according to different ranges of tasks

Future Generation Computer Systems 176 (2026) 108174

7

H. Huang et al.

Table 4
Performance comparison for 500 tasks in different datasets (Small, Medium and Large).

 Small
 Metrics AvgBs MCT OLB Min-Min FGA CMA-DQN RLQ AQESF

ART

 6 0.391 0.394 0.389 0.474 0.403 0.411 0.387
 8 0.452 0.44 0.44 0.507 0.456 0.472 0.445
 10 0.629 0.587 0.629 0.665 0.608 0.629 0.574
 12 0.912 0.875 0.925 0.961 0.907 0.912 0.862

SR

 6 0.998 0.998 0.998 0.998 0.998 0.998 0.998
 8 0.998 0.998 0.998 0.998 0.998 0.998 0.998
 10 0.998 0.996 0.994 0.996 0.988 0.988 0.998
 12 0.856 0.88 0.86 0.902 0.866 0.876 0.9

 Medium
 Metrics AvgBs MCT OLB Min-Min FGA CMA-DQN RLQ AQESF

ART

 6 0.325 0.326 0.321 0.395 0.353 0.359 0.32
 8 0.602 0.57 0.586 0.614 0.598 0.607 0.551
 10 0.679 0.63 0.662 0.708 0.656 0.695 0.587
 12 0.908 0.84 0.883 0.883 0.91 0.92 0.823

SR

 6 0.998 0.986 0.998 0.998 0.998 0.998 0.998
 8 0.922 0.96 0.914 0.958 0.946 0.93 0.984
 10 0.918 0.936 0.928 0.936 0.936 0.924 0.972
 12 0.852 0.89 0.862 0.896 0.878 0.872 0.936

 Large
 Metrics AvgBs MCT OLB Min-Min FGA CMA-DQN RLQ AQESF

ART

 6 0.482 0.474 0.487 0.56 0.502 0.5 0.47
 8 0.594 0.571 0.613 0.64 0.599 0.612 0.563
 10 0.793 0.775 0.807 0.855 0.811 0.825 0.764
 12 1.569 1.5 1.544 1.609 1.521 1.566 1.468

SR

 6 0.994 0.998 0.99 0.992 0.992 0.994 0.998
 8 0.996 0.996 0.994 0.99 0.99 0.992 0.998
 10 0.868 0.862 0.866 0.898 0.864 0.882 0.886
 12 0.613 0.635 0.635 0.665 0.635 0.651 0.679

Fig. 6. Three different distributions of task MI.

MI (Small, Medium and Large) and they have different CDF distribu-
tions, as shown in Fig. 6. The experimental results are shown in Table 4.

For the comparison of traditional heuristics (MCT, OLB and Min-
Min), the clear trend is that as task MI or AvgBs increase, OLB is pro-
gressively superior to others in most cases. A crucial reason is that OLB
optimizes VM utilization and improves the use of high-performance
VMs. This is crucial in terms of considering long-term benefits. Among
the algorithms only optimized for ART, the Min-Min is based on COP-
manner and MCT is FIFO-manner, they do not show a clear pattern
across datasets and AvgBs. This suggests that the short task prioritiza-
tion brought about by Min-Min is not effective in improving ART and
that the task ordering needs to be adaptive. In addition, compared to the
methods that also use COP-manner for scheduling, FGA is optimized for
bi-objective and shows significant improvement in SR compared to Min-
Min. However, compared to Min-Min, which is optimized for ART only,
FGA still performs poorly in ART, even with the best parameter 𝜔 chosen
in the fitness function.

When comparing algorithms incorporating DRL techniques, it is clear
that the Bi-objectives optimization maintains: AQESF > CMA-DQN >
RLQ. The critical reason is that AQESF is based on the COP-manner,
utilizing a batch of task information to assist in scheduling decisions.

Fig. 7. Number of calls for MCT and OLB.

In contrast, both the CMA-DQN and the RLQ operate in a FIFO-manner,
neglecting the performance impact caused by task ordering.

The AQESF leverages Multi-FM to confine the search space to a more
optimal domain, coupling with DRL-Queue for cumulative performance
enhancement, which ultimately leads to the SOTA performance for op-
timization with Bi-objectives. However, we still find that AQESF is still
sub-optimal in some results, such as the case (Small, AvgBs=8, ART),
where ART is weak, which occurs at SR = 0.998, it is difficult to im-
prove ART because the reward has converged to almost optimal and the
reward function is designed for SR only. For the case of weak SR (Small,
AvgBs=12, SR; Large, AvgBs=10, SR), this is a problem caused by the
lack of search space due to task placement with only two algorithms to
execute.

In addition, we are very interested in the number of calls for the two
algorithms in the Multi-FM, so we show it in Fig. 7. We can find that
the OLB increases gradually as the AvgBs increase. Except for AvgBs =
6, this is also due to the fact that the reward is almost optimal and the
reward function is designed for SR only, resulting in Multi-FM not being
able to learn further.

Future Generation Computer Systems 176 (2026) 108174

8

H. Huang et al.

Fig. 8. Cumulative performance of different scheduling algorithms with
AvgBs=10, 5000 tasks.

5.3. EXP2: scalability evaluation

Concerning Q2, we investigate the cumulative performance of the
scheduling model over more prolonged traces, as shown in Fig. 8. For
the cumulative ART and SR, it can be found that with the growing
task sequences and different task request fluctuations, our method al-
ways shows optimal performance in terms of ART. Moreover, the per-
formance in SR is better than that of CMA-DQN and the RLQ in most
cases. Compared with other scheduling algorithms not supported by the
DRL technique, AQESF has 3.7%∼16.6% latency reduction in ART and
0.1%∼2.7% improvement in SR. In addition, starting from 𝑡𝑎𝑠𝑘 ≈ 3000,
the task size becomes larger, and although the traditional heuristic al-
gorithm (MCT, OLB and Min-Min) optimized for ART still maintains
a better ART, there is a serious decline in SR. In contrast, the al-
gorithm (FGA, CMA-DQN and RLQ) optimized for SR still maintains
high SR.

For the cumulative latency of different algorithms for task schedul-
ing decisions, the FGA algorithm exhibits high scheduling latency and
cannot be applied to latency-sensitive online scheduling decisions. The
other algorithms are all able to process 5000 task decisions in less than
1𝑠. The scheduling latency of AQESF is similar to COP-manner tradi-
tional heuristic algorithms with time complexity 𝑂(𝑏𝑠2). It is better than
the CMA-DQN and the RLQ since AQESF can make decisions for a BoT
by inferring the DRL model only once. Whereas the CMA-DQN and the
RLQ need to go through the DRL model 𝑏𝑠 times to generate inferred
decisions, i.e., the time complexity of both the CMA-DQN and the RLQ
is 𝑂(𝜅 × 𝑏𝑠). The rest of the traditional heuristic algorithms have shorter
scheduling latency, which is predictable. Table 5 shows more detailed
inference latency of different algorithms, and our proposed AQESF and
Min-Min are on the same order of magnitude.

Table 5
Average inference latency per task (ms).
 MCT OLB Min-Min FGA CMA-DQN RLQ AQESF
 0.009 0.008 0.037 9.273 0.132 0.121 0.041

Fig. 9. Robustness performance of DRL integrating algorithms in VMs break-
down with AvgBs=10 (Medium).

Fig. 10. Robustness performance of DRL integrating algorithms in Random
benchmark with different AvgBs (Medium).

5.4. EXP3: scheduling robustness comparison

In this subsection, the Q3 will be answered. Considering the data
center environment, unpredictable accidents, such as server downtime
leading to unavailability of nodes or drift in the distribution of work-
load, are possible. In this set of experiments, we compare the robustness
performance of algorithms with DRL integration.

First, we compare the performance of algorithms in processing 500
tasks when the number of VM breakdowns is 1,2,3, respectively. From
the experimental results in Fig. 9, it can be found that all scheduling
models undergo different degrees of degradation in both ART and SR as
the number of VMs breakdown increases. The Bi-objectives performance
always maintains: AQESF > CMA-DQN > RLQ. Compared to CMA-DQN,
AQESF maintains a 5.8% to 8.5% time overhead reduction in ART and
0.2% to 0.9% improvement in SR.

Moreover, these three algorithms are integrated with the DRL tech-
nique, which is trained by Alibaba trace, and then these scheduling mod-
els are applied to the Random benchmark. We conducted ten separate
experiments to test the performance in the face of data distribution drift
over a short period of time (200 tasks in 20s), as shown in Fig. 10. It can
be observed that the average performance of the CMA-DQN and the RLQ
models is always weaker than that of AQESF under different AvgBs, and
the standard deviation is also relatively poor. In the worst case of CMA-
DQN, AQESF has a 17.3% reduction in ART and a 3.5% increase in SR.
Predictably, if both task scheduling order and placement decisions are
learned and inferred using DRL, it may lead to poor model robustness,
which is not friendly for real-world scenarios.

5.5. EXP4: ablation study

Next, for Q4, we conducted ablation experiments to demonstrate the
enhancement in scheduling performance through the joint optimization
of DRL-Queue and Multi-FM in AQESF. For model training and compar-
ison, we remove the DRL-Queue (MCT+OLB), the OLB (DRL+MCT),
and the MCT (DRL+OLB), respectively. The MCT+OLB indicates that
the Multi-FM will decide which scheduling algorithm to use for each task
placement. Table 6 shows that our method remains optimal on both ART
and SR. This suggests that AQESF is able to find better solutions while

Future Generation Computer Systems 176 (2026) 108174

9

H. Huang et al.

Table 6
Comparative results of ablation studies (Medium).

Metrics Algorithm
 AvgBs
 6 8 10 12

ART

 AQESF 0.32 0.551 0.587 0.823
 DRL+MCT 0.327 0.575 0.63 0.872
 DRL+OLB 0.33 0.555 0.587 0.824
 MCT+OLB 0.327 0.568 0.624 0.842

SR

 AQESF 0.998 0.984 0.972 0.936
 DRL+MCT 0.998 0.956 0.95 0.896
 DRL+OLB 0.986 0.978 0.968 0.932
 MCT+OLB 0.998 0.97 0.936 0.9

Fig. 11. Convergence curves for comparison models in ablation experiments
(Medium, AvgBs=8).

covering a wider optimization space. In addition, DRL-Queue does im-
prove the performance of the greedy algorithm (Compared to the MCT
and OLB results in Table 4), but the DRL+single greedy algorithm really
does not handle dynamic user requests efficiently (As shown in Exam-
ple 1).

From the model convergence curve in Fig. 11, it is found that our
model gradually converges to the optimum, which implies that AQESF
can organically combine the DRL-Queue and the Multi-FM to realize the
approximation of optimal solutions. Overall, the performance of ART
and SR maintains: AQESF > DRL+OLB > MCT+OLB > DRL+MCT.

6. Potential applications

Potential applications of AQESF will be discussed in this section.
Specifically, the problem addressed by AQESF is an online scheduling
problem for a batch of workloads. We elaborate on potential applica-
tions of AQESF to the following scenarios: VM placement [8] and com-
putation offloading [31].

VM Placement. In VM consolidation, VM placement is regarded as
a bin packing problem. Moreover, the requests within VMs persistently
arrive and execute, leading to fluctuations in vCPU utilization of VMs,
as depicted in Fig. 12(a). This means that the placement decision for
that batch of VMs at time 𝑡𝑖 has a lasting impact on subsequent system
changes. The problem is modeled similarly as described in Fig. 3.

Researchers often model the current batch of VMs to be placed, to-
gether with the servers, as COP, and use traditional heuristics [16] or
meta-heuristics to solve it [32], and do not consider the cumulative per-
formance. Alternatively, the batch of VMs is placed one by one in the
default order using DRL [8], which cannot fully utilize the information
of the current batch of VMs. None of the existing work can take into
account both sequential decision-making and COP solving.

Computation Offloading. In computation offloading, as shown in
Fig. 12(b). The compute nodes have different capabilities and resource
constraints, and the user offloads the BoT within the job to these nodes
for processing. The maximum response time of the BoT is the job comple-
tion time (JCT), which can be reduced to a NP-hard partitioning problem
[31].

Many studies typically formulate this offloading problem as COP
with the primary goal of minimizing JCT. However, they do not con-

Fig. 12. Potential Applications of AQESF.

sider the impact of task placement on subsequent system states. The
AQESF can be applied to optimize the cumulative rewards by further
enhancing the existing state-of-the-art FIFO-manner approaches.

7. Conclusion and future work

In this study, our focus lies in addressing the generalized online
BoT scheduling problem while optimizing cumulative performance. We
model this problem as a sequential decision problem incorporating COP.
Further, we formulate the online BoT scheduling problem as an MDP
and AQESF to solve it. Experiments demonstrate that AQESF achieves
SOTA results in both ART and SR compared to traditional heuristics,
meta-heuristics, and DRL-based methods. Moreover, our method ex-
hibits stronger robustness and lower scheduling latency compared to
the widely used DRL task scheduling paradigm.

In future work, we discuss potential scenarios of AQESF. The schedul-
ing framework fits well with the widely studied problems of VM place-
ment and computation offloading. This means we can use the AQESF
framework to further enhance the performance of the FIFO-manner al-
gorithms that have performed well within these problems. Additionally,
we can explore the impact of weighted reward functions on the opti-
mization objective within this framework, as well as conduct simulta-
neous exploration of both scheduling order and placement using DRL to
discover optimal solutions.

CRediT authorship contribution statement

Huikang Huang: Writing – review & editing, Writing – original
draft, Validation, Methodology, Formal analysis, Data curation, Con-
ceptualization; Weiwei Lin: Writing – review & editing, Supervision,
Funding acquisition; Minxian Xu: Writing – review & editing; Keqin
Li: Writing – review & editing.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work is supported by Guangzhou Development Zone Science
and Technology Project (2023GH02), Guangdong Provincial Natural
Science Foundation Project (2025A1515010113), Shandong Provincial
Natural Science Foundation Project (ZR2024LZH012) and the Major Key
Project of PCL, China under Grant PCL2025AS11.

Future Generation Computer Systems 176 (2026) 108174

10

http://dx.doi.org/10.13039/501100012669
http://dx.doi.org/10.13039/501100012669

H. Huang et al.

References

[1] C. Wu, R. Buyya, K. Ramamohanarao, Cloud pricing models: taxonomy, survey, and
interdisciplinary challenges, ACM Comput. Surv. 52 (6) (2019). https://doi.org/10.
1145/3342103

[2] A. Alashaikh, E. Alanazi, A. Al-Fuqaha, A survey on the use of preferences for virtual
machine placement in cloud data centers, ACM Comput. Surv. 54 (5) (2021). https:
//doi.org/10.1145/3450517

[3] H. Yuan, J. Bi, M. Zhou, Q. Liu, A.C. Ammari, Biobjective task scheduling for dis-
tributed green data centers, IEEE Trans. Autom. Sci. Eng. 18 (2) (2021) 731–742.
https://doi.org/10.1109/TASE.2019.2958979

[4] Y. Yang, H. Shen, Deep reinforcement learning enhanced greedy optimization for on-
line scheduling of batched tasks in cloud HPC systems, IEEE Trans. Parallel Distrib.
Syst. 33 (11) (2022) 3003–3014. https://doi.org/10.1109/TPDS.2021.3138459

[5] Y. Amir, B. Awerbuch, A. Barak, R.S. Borgstrom, A. Keren, An opportunity cost ap-
proach for job assignment in a scalable computing cluster, IEEE Trans. Parallel Dis-
trib. Syst. 11 (7) (2000) 760–768. https://doi.org/10.1109/71.877834

[6] Z. Tong, F. Ye, B. Liu, J. Cai, J. Mei, DDQN-TS: A novel bi-objective intelli-
gent scheduling algorithm in the cloud environment, Neurocomputing 455 (2021)
419–430. https://doi.org/10.1016/j.neucom.2021.05.070

[7] A. Staffolani, V.-A. Darvariu, P. Bellavista, M. Musolesi, RLQ: workload allocation
with reinforcement learning in distributed queues, IEEE Trans. Parallel Distrib. Syst.
34 (3) (2023) 856–868. https://doi.org/10.1109/TPDS.2022.3231981

[8] J. Zeng, D. Ding, K. Kang, H. Xie, Q. Yin, Adaptive DRL-based virtual machine con-
solidation in energy-efficient cloud data center, IEEE Trans. Parallel Distrib. Syst.
33 (11) (2022) 2991–3002. https://doi.org/10.1109/TPDS.2022.3147851

[9] Z. Zhang, M. Zhao, H. Wang, Z. Cui, W. Zhang, An efficient interval many-objective
evolutionary algorithm for cloud task scheduling problem under uncertainty, Inf.
Sci. 583 (2022) 56–72. https://doi.org/10.1016/j.ins.2021.11.027

[10] F. Shi, A genetic algorithm-based virtual machine scheduling algorithm for energy-
efficient resource management in cloud computing, Concurr. Comput. 36 (22)
(2024) e8207. https://doi.org/10.1002/cpe.8207

[11] S. Bhetiwal, S.K. Misra, Survey on task scheduling with ant colony optimization, in:
2023 Third International Conference on Secure Cyber Computing and Communi-
cation (ICSCCC), 2023, pp. 690–696. https://doi.org/10.1109/ICSCCC58608.2023.
10176927

[12] R. Mohamed, M. Avgeris, A. Leivadeas, I. Lambadaris, Optimizing resource frag-
mentation in virtual network function placement using deep reinforcement learning,
IEEE Trans. Mach. Learn. Commun. Netw. 2 (2024) 1475–1491. https://doi.org/10.
1109/TMLCN.2024.3469131

[13] G. Gupta, N. Mangla, An enhanced MIN-MIN algorithm for workflow scheduling in
cloud computing, in: 2022 4th International Conference on Advances in Computing,
Communication Control and Networking (ICAC3N), 2022, pp. 2084–2091. https:
//doi.org/10.1109/ICAC3N56670.2022.10074016

[14] L. Wang, E. Gelenbe, Adaptive dispatching of tasks in the cloud, IEEE Trans. Cloud
Comput. 6 (1) (2018) 33–45. https://doi.org/10.1109/TCC.2015.2474406

[15] B. Zheng, L. Pan, S. Liu, Market-oriented online bi-objective service scheduling for
pleasingly parallel jobs with variable resources in cloud environments, J. Syst. Softw.
176 (2021) 110934. https://doi.org/10.1016/j.jss.2021.110934

[16] W. Lin, W. Wu, L. He, An on-line virtual machine consolidation strategy for dual
improvement in performance and energy conservation of server clusters in cloud
data centers, IEEE Trans. Serv. Comput. 15 (2) (2022) 766–777. https://doi.org/10.
1109/TSC.2019.2961082

[17] M. Kumar, S.C. Sharma, PSO-based novel resource scheduling technique to improve
QoS parameters in cloud computing, Neural Comput. Appl. 32 (2020) 12103–12126.

[18] H. Sun, B. Zhang, X. Zhang, Y. Yu, K. Sha, W. Shi, FlexEdge: dynamic task schedul-
ing for a UAV-based on-demand mobile edge server, IEEE Internet Things J. 9 (17)
(2022) 15983–16005. https://doi.org/10.1109/JIOT.2022.3152447

[19] S. Mousavi, S.E. Mood, A. Souri, M.M. Javidi, Directed search: a new operator in
NSGA-II for task scheduling in IoT based on cloud-fog computing, IEEE Trans. Cloud
Comput. 11 (2) (2023) 2144–2157. https://doi.org/10.1109/TCC.2022.3188926

[20] U. Demirbaga, EcoCloud:Green computing through energy and carbon efficient task
scheduling in industrial IoT-enabled cloud environments, IEEE Internet Things J.
(2025) 1. https://doi.org/10.1109/JIOT.2025.3537111

[21] Y. Huang, L. Cheng, L. Xue, C. Liu, Y. Li, J. Li, T. Ward, Deep adversarial imitation
reinforcement learning for QoS-aware cloud job scheduling, IEEE Syst. J. 16 (3)
(2022) 4232–4242. https://doi.org/10.1109/JSYST.2021.3122126

[22] X. Tang, F. Liu, B. Wang, M. Zhang, J. Jiang, Q. Tang, Q. Wu, C.L.P. Chen, Cost and
makespan-aware task scheduling with deep reinforcement learning in multicloud
environments, IEEE Trans. Comput. Social Syst. (2025) 1–14. https://doi.org/10.
1109/TCSS.2025.3553856

[23] D. Cui, Z. Peng, J. Xiong, B. Xu, W. Lin, A reinforcement learning-Based mixed job
scheduler scheme for grid or IaaS cloud, IEEE Trans. Cloud Comput. 8 (4) (2020)
1030–1039. https://doi.org/10.1109/TCC.2017.2773078

[24] L. Cheng, A. Kalapgar, A. Jain, Y. Wang, Y. Qin, Y. Li, C. Liu, Cost-aware real-time
job scheduling for hybrid cloud using deep reinforcement learning, Neural Comput.
Appl. 34 (21) (2022) 18579–18593.

[25] R. Buyya, R. Ranjan, R.N. Calheiros, Modeling and simulation of scalable cloud
computing environments and the CloudSim toolkit: challenges and opportunities,
in: 2009 International Conference on High Performance Computing & Simulation,
2009, pp. 1–11. https://doi.org/10.1109/HPCSIM.2009.5192685

[26] S. Martello, P. Toth, Solution of the zero-one multiple knapsack problem, Eur. J.
Oper. Res. 4 (4) (1980) 276–283. Combinational Optimization. https://doi.org/10.
1016/0377-2217(80)90112-5

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal Policy Opti-
mization Algorithms, 2017, arXiv:1707.06347

[28] S. Huang, S. Ontañón, A closer look at invalid action masking in policy gradient
algorithms, The International FLAIRS Conference Proceedings 35 (2022). https://
doi.org/10.32473/flairs.v35i.130584

[29] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K.
Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in: M.F. Bal-
can, K.Q. Weinberger (Eds.), Proceedings of The 33rd International Conference on
Machine Learning, 48 PMLR, New York, New York, USA, 2016, pp. 1928–1937.

[30] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, 2017,
arXiv:1412.6980

[31] K. Li, Heuristic computation offloading algorithms for mobile users in fog com-
puting, ACM Trans. Embed. Comput. Syst. 20 (2) (2021). https://doi.org/10.1145/
3426852

[32] H. Zhao, J. Wang, F. Liu, Q. Wang, W. Zhang, Q. Zheng, Power-aware and
performance-guaranteed virtual machine placement in the cloud, IEEE Trans. Par-
allel Distrib. Syst. 29 (6) (2018) 1385–1400. https://doi.org/10.1109/TPDS.2018.
2794369

Huikang Huang received the M.S. degree in Computer Sci-
ence and Theory from the South China Agricultural Univer-
sity, Guangzhou, China, in 2021. Now, he is a Ph.D. can-
didate in the School of Computer Science and Engineering,
South China University of Technology. His research interests
mainly focus on cloud computing and reinforcement learn-
ing.

Weiwei Lin (Senior Member, IEEE) received the B.S. and
M.S. degrees from Nanchang University in 2001 and 2004, re-
spectively, and the Ph.D. in Computer Application from South
China University of Technology in 2007. Currently, he is a
professor in the School of Computer Science and Engineer-
ing at South China University of Technology. His research
interests include distributed systems, cloud computing, and
AI application technologies. He has published more than 200
papers in refereed journals and conference proceedings. He
has been a reviewer for many international journals, includ-
ing ICML, IEEE TPDS, TSC, TCC, TC, TCYB, etc. He is a dis-
tinguished member of CCF and a senior member of the IEEE.

Minxian Xu is currently an associate professor at Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sci-
ences. He received the BSc degree in 2012 and the MSc
degree in 2015, both in software engineering from the Uni-
versity of Electronic Science and Technology of China. He ob-
tained his PhD degree from the University of Melbourne in
2019. His research interests include resource scheduling and
optimization in cloud computing. He has coauthored 50+
peer-reviewed papers published in prominent international
journals and conferences, such as ACM Computing Surveys,
IEEE Transactions on Sustainable Computing, IEEE Transac-
tions on Automation Science and Engineering, Journal of Par-
allel and Distributed Computing, Journal of Systems and Soft-

ware and International Conference on Service-Oriented Computing. His Ph.D. The thesis
was awarded the 2019 IEEE TCSC Outstanding Ph.D. Dissertation Award. He is a member
of IEEE and CCF. More information can be found at: minxianxu.info.

Keqin Li is a SUNY Distinguished Professor of computer sci-
ence with the State University of New York. He is also a
Distinguished Professor at Hunan University, China. His cur-
rent research interests include cloud computing, fog comput-
ing and mobile edge computing, energy-efficient computing
and communication, embedded systems and cyber-physical
systems, heterogeneous computing systems, big data com-
puting, high-performance computing, CPU-GPU hybrid and
cooperative computing, computer architectures and systems,
computer networking, machine learning, intelligent and soft
computing. He has published over 740 journal articles, book
chapters, and refereed conference papers, and has received
several best paper awards. He has served on the editorial

boards of the IEEE TPDS, TC, TCC, TSC, and TSUSC. He is an IEEE Fellow.

Future Generation Computer Systems 176 (2026) 108174

11

https://doi.org/10.1145/3342103
https://doi.org/10.1145/3342103
https://doi.org/10.1145/3342103
https://doi.org/10.1145/3342103
https://doi.org/10.1145/3450517
https://doi.org/10.1145/3450517
https://doi.org/10.1145/3450517
https://doi.org/10.1145/3450517
https://doi.org/10.1109/TASE.2019.2958979
https://doi.org/10.1109/TASE.2019.2958979
https://doi.org/10.1109/TPDS.2021.3138459
https://doi.org/10.1109/TPDS.2021.3138459
https://doi.org/10.1109/71.877834
https://doi.org/10.1109/71.877834
https://doi.org/10.1016/j.neucom.2021.05.070
https://doi.org/10.1016/j.neucom.2021.05.070
https://doi.org/10.1109/TPDS.2022.3231981
https://doi.org/10.1109/TPDS.2022.3231981
https://doi.org/10.1109/TPDS.2022.3147851
https://doi.org/10.1109/TPDS.2022.3147851
https://doi.org/10.1016/j.ins.2021.11.027
https://doi.org/10.1016/j.ins.2021.11.027
https://doi.org/10.1002/cpe.8207
https://doi.org/10.1002/cpe.8207
https://doi.org/10.1109/ICSCCC58608.2023.10176927
https://doi.org/10.1109/ICSCCC58608.2023.10176927
https://doi.org/10.1109/ICSCCC58608.2023.10176927
https://doi.org/10.1109/ICSCCC58608.2023.10176927
https://doi.org/10.1109/TMLCN.2024.3469131
https://doi.org/10.1109/TMLCN.2024.3469131
https://doi.org/10.1109/TMLCN.2024.3469131
https://doi.org/10.1109/TMLCN.2024.3469131
https://doi.org/10.1109/ICAC3N56670.2022.10074016
https://doi.org/10.1109/ICAC3N56670.2022.10074016
https://doi.org/10.1109/ICAC3N56670.2022.10074016
https://doi.org/10.1109/ICAC3N56670.2022.10074016
https://doi.org/10.1109/TCC.2015.2474406
https://doi.org/10.1109/TCC.2015.2474406
https://doi.org/10.1016/j.jss.2021.110934
https://doi.org/10.1016/j.jss.2021.110934
https://doi.org/10.1109/TSC.2019.2961082
https://doi.org/10.1109/TSC.2019.2961082
https://doi.org/10.1109/TSC.2019.2961082
https://doi.org/10.1109/TSC.2019.2961082
http://refhub.elsevier.com/S0167-739X(25)00468-6/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00468-6/sbref0017
https://doi.org/10.1109/JIOT.2022.3152447
https://doi.org/10.1109/JIOT.2022.3152447
https://doi.org/10.1109/TCC.2022.3188926
https://doi.org/10.1109/TCC.2022.3188926
https://doi.org/10.1109/JIOT.2025.3537111
https://doi.org/10.1109/JIOT.2025.3537111
https://doi.org/10.1109/JSYST.2021.3122126
https://doi.org/10.1109/JSYST.2021.3122126
https://doi.org/10.1109/TCSS.2025.3553856
https://doi.org/10.1109/TCSS.2025.3553856
https://doi.org/10.1109/TCSS.2025.3553856
https://doi.org/10.1109/TCSS.2025.3553856
https://doi.org/10.1109/TCC.2017.2773078
https://doi.org/10.1109/TCC.2017.2773078
http://refhub.elsevier.com/S0167-739X(25)00468-6/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00468-6/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00468-6/sbref0024
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1016/0377-2217(80)90112-5
https://doi.org/10.1016/0377-2217(80)90112-5
https://doi.org/10.1016/0377-2217(80)90112-5
https://doi.org/10.1016/0377-2217(80)90112-5
http://arxiv.org/abs/1707.06347
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.32473/flairs.v35i.130584
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3426852
https://doi.org/10.1145/3426852
https://doi.org/10.1145/3426852
https://doi.org/10.1145/3426852
https://doi.org/10.1109/TPDS.2018.2794369
https://doi.org/10.1109/TPDS.2018.2794369
https://doi.org/10.1109/TPDS.2018.2794369
https://doi.org/10.1109/TPDS.2018.2794369

	AQESF: An adaptive QoS-enhanced scheduling framework for online batch of task scheduling
	1 Introduction
	1.1 Background
	1.2 Challenges and contributions

	2 Related work
	2.1 Heuristics methods
	2.2 DRL-based methods
	2.3 Summary

	3 Problem formulation
	3.1 System model
	3.2 Problem definition
	3.3 Problem analysis

	4 Task scheduling by adaptive QoS-enhanced scheduling framework
	4.1 Adaptive QoS-enhanced scheduling framework
	4.2 Scheduling problem as MDP and algorithm design
	4.2.1 MDP for decision-making
	4.2.2 Description of DRL
	4.2.3 Scheduling algorithm
	4.2.4 Model-training

	5 Experimental evaluation
	5.1 Experimental setup
	5.2 EXP1: scheduling performance comparisons
	5.3 EXP2: scalability evaluation
	5.4 EXP3: scheduling robustness comparison
	5.5 EXP4: ablation study

	6 Potential applications
	7 Conclusion and future work

