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A B S T R A C T

By leveraging the cloud computing paradigm, the cloud-assisted Internet of Things (IoT) is able to offer the
massive storage and highly available computation services for end-users. When the data collected from IoT
devices is endlessly gathering to the cloud center, the data security become new challenges. Encrypting data
is an effective measure to guarantee data confidentiality. However, traditional encryption techniques make
the data searching and access control inoperative. Current attribute-based keyword search (ABKS) techniques
provide a feasibility to achieve data searching and access control over encrypted data simultaneously. However,
existing ABKS schemes leak sensitive information via clear access policy and may be unsuitable for certain
IoT applications, where the access policies in data might contain private information of data owners such as
the security number or the residential area of a resident in smart grids. In this work, we design an efficient
and policy-hiding attribute-based keyword search and data sharing scheme (PH-ABKS-DS) in cloud-assisted
IoT. To the best of our knowledge, this construction is the first PH-ABKS-DS with practical efficiency that
is constructed on prime order group. We provide detailed correctness and security analyses for PH-ABKS-DS.
Extensive experiments demonstrate that our proposed PH-ABKS-DS is correct and practical.
1. Introduction

Nowadays, Internet of Things (IoT) has become the crucial infras-
tructure to build smart society and economy. By connecting hundreds
of millions of real-world physical objects, including sensors, smart
phones, actuators, and any objects that can be connected, IoT achieves
information communication and transmission anytime and anywhere. It
is the broad connectivity, the ubiquitous accessibility, and the dynamic
information processing that IoT is leading to a smart, inclusive and
sustainable economy and society.

Currently, IoT is not just an academic pursuit and kinds of IoT
applications have been widely deployed in real world such as agri-
culture irrigation, smart health, industrial control, intelligent trans-
portation [1]. However, with the operations of IoT systems, how to
store and deal with the high-volume data collected from the resource-
constrained IoT devices every day is an inevitable problem. These data
as the valuable wealth to achieve social intellectualization needs to
be periodically stored and analyzed over a more powerful platform.
In the cloud computing era, a nature solution is in the IoT system
to introduce the cloud paradigm with the inexhaustible storage and
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computation capacities. As a result, the cloud-assisted IoT has become
a widely adopted and popular IoT architecture [2–5].

While the cloud-assisted IoT is able to offer massive storage and
highly-available computation services for end-users, the adoption of
cloud computing architecture leads to the data centralization to the
cloud center, which incurs new challenges for data security [6]. The
security issue of the outsourced data is always a disgusting headache,
since once data is uploaded to the cloud platform, the data owners
will no more possess the physical control on their private data. It is
for this reason that the data owner may be reluctant to store their
data to the cloud server in spite of the enormous advantages of the
cloud computing model. Encrypting data before storing them to cloud
is an effective way to keep data security against malicious attackers and
cloud servers [7]. However, traditional block-cipher techniques make
the data searching and data access control on ciphertext ineffective.
In many potential applications, data searching is an indispensable
function to allow data users to quickly locate targets from large-scale
cloud data, and an access control measure can prevent the outsourced
data from being unauthorized accessed. To enable fine-grained search
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permission control over encrypted cloud data, inspired by attribute-
based encryption (ABE) primitive [8] and searchable encryption (SE)
primitive [9], researchers proposed the attribute-based keyword search
(ABKS) techniques [10–15]. By associating an access policy with an en-
crypted searchable index, ABKS schemes can guarantee that the search
results can be correctly returned to a data user if and only if the data
user’s attribute set satisfies the access policy and the submitted search
query matches the secure index. However, almost all existing ABKS
schemes expose the attribute values in the access policy associated with
the encrypted index keyword. Those solutions may be unsuitable for
the IoT applications, where the access policies might contain private
information that data owners and data users are reluctant to disclose.
For example, in smart grids, there is an access policy ((‘‘SSN:223-35-
678’’ AND ‘‘Status: Normal’’) OR (‘‘Name: Alice’’ AND ‘‘Affiliation: Grid
Company’’ AND ‘‘City: San Francisco’’ AND ‘‘Position: Senior Manager’’))
hat is used to encrypt a customer’s readings from smart meters. The
ccess policy indicates that the encrypted readings can only be accessed
y the customer with social security number (SSN) 223-35-6678 and
ormal registration status or by a senior manager named Alice of grid

company in San Francisco. However, with the clear attribute values in
the access policy, the cloud can at least infer two information: (1)
Alice is a senior manager of the grid company in San Francisco and
(2) the data owner with SSN 223-35-6678 may live in San Francisco.
Another example is that if a user’s encrypted s-health records contain
a clear access policy (‘‘Department: Cardiologist’’ AND ‘‘Affiliation: City
Hospital)’’, the cloud server can infer that the user is suffering a heart
illness [16]. These sensitive information in access policies certainly
leak the users’ privacy. Therefore, developing an efficient, expres-
sive, and access policy-hiding attribute-based keyword search and data
sharing (PH-ABKS-DS) scheme in Cloud-assisted IoT applications is of
paramount importance.

In [17], Lai et al. proposed an expressive and policy-hiding attrib-
ute-based encryption scheme by only exposing the attribute names
while hiding the attribute values (referred to as partially hidden access
structure). Zhang et al. [16] improved their scheme for more efficient
decryption test and practical large universe construction. Very recently,
based on Lai et al.’s approach, several expressive and access policy-
hiding attribute-based encryption schemes have been proposed for
different application scenarios [18–21]. In these schemes, for the access
policy mentioned above, the partially hidden versions can be written
as ((‘‘SSN:***’’ AND ‘‘Status: ***’’) OR (‘‘Name: ***’’ AND ‘‘Affiliation:
**’’ AND ‘‘City: ***’’ AND ‘‘Position: ***’’)). Thus, the sensitive at-

tribute values are hidden. Theoretically, their constructions can be used
to develop a policy-hiding ABKS scheme. However, such a scheme
is inappropriate for a real search system due to being constructed
over the composite order group, which will lead to an impractical
search efficiency, especially in the large-scale data set. In this paper,
we are enlightened from the idea in those two schemes and leverage
an expressive and efficient attribute-based scheme proposed in [22]
to construct an efficient and policy-hiding attribute-based keyword
search and data sharing scheme (PH-ABKS-DS) for cloud-assisted IoT
systems. To the best of our knowledge, this construction is the first PH-
ABKS-DS with practical efficiency that is constructed on prime order
group. We provide detailed security analysis for our scheme. Extensive
experiments also demonstrate that our proposed scheme is correct and
practical.

2. Related work

2.1. Searchable encryption

Searchable encryption is an attractive cryptology primitive that
allows a server to perform the encrypted keyword based data searching
over ciphertext without leaking to the server underlying contents about
the encrypted search query and the ciphertext. Depending on the
encryption settings constructing SE schemes, searchable encryption is
2

classified to two categories: searchable symmetric encryption (SSE) and
public key encryption with keyword search (PEKS). The first practical
SSE was proposed in 2000 by Song et al. [23] that requires a linear scan
of all data for searching. To improve the search efficiency, Curtomla
et al. [24] designed a sub-linear SEE scheme by using an encrypted
inverted index structure. In that paper, the authors first employ leak-
age functions to evaluate the security of a SSE scheme, which have
become a formal security definition in the follow-up study. However,
that scheme is a static SSE without taking secure data addition and
deletion into consideration. To make SSE schemes more practical in real
application, SSE schemes had been further developed to the dynamic
environment, allowing for secure data addition and deletion with low
communication and computation cost [25–28]. Aiming at the security
for the dynamic SSE, Zhang et al. developed file injection attacks
and proposed that a dynamic SSE scheme needs to achieve forward
privacy [29–31], which guarantees that updating a data does not
leak more information than what a predefined leakage function leaks.
In addition, to prevent the server from conducting dishonest search,
verifiable searchable encryption construction [32] is also hot research
topic. Those schemes allow the data user to verify the completeness and
correctness of the query results [33].

Compared with SSE, while the public key based searchable encryp-
tion schemes [34–39] have more expensive search complexity, they can
obtain stronger security and implement powerful functionalities, such
as conjunctive, subset, and range queries.

Recently, with the wide deployment of IoT applications, researchers
start to investigate frameworks, schemes, and systems of searchable
encryption in the cloud-assisted IoT application environments [3,4,40–
42]. Though these works do not take the data access control into
consideration, they significantly promote the further development of
searchable encryption in the emerging application fields.

2.2. Attribute-based encryption and attribute-based keyword search

Attribute-based encryption is developed from the identity-based
encryption and enables flexible and fine-grained decryption control on
ciphertext. The first attribute-based encryption scheme was proposed
by Sahai et al. in [8]. In this scheme, if and only if two attribute sets in a
private key and a ciphertext are within a certain distance of each other
as judged by some metric, the private key is able to decrypt ciphertext.
Thus, the decryption control is achieved. To enhance the expressivity of
access policy, the access structure is introduced into the ABE scheme.
Current ABE schemes are generally divided two categories: ciphertext-
policy ABE (CP-ABE) [22,43–45] and key-policy ABE (KP-ABE) [46–
48]. In CP-ABE, an access policy is associated with the ciphertext and
a set of attributes is embedded into a private key. The position of the
access policy and the attribute set is just the opposite in KP-ABE. In
both CP-ABE and KP-ABE, a decryption can be conducted if and only if
the attribute set has to satisfy the access policy. Due to the flexibility
and fine-grainedness of data access control, ABE is very suitable to be
applied in the cloud computing data outsourcing systems for secure
data sharing, and several related works were present in [49,50]. In
these schemes above, the attributes in access policy are often disclosed
to the public, which may reveal privacy information. To prevent the
sensitive information from being leaked from the access policy, in [17],
Lai et al. proposed an expressive and policy-hiding attribute-based en-
cryption scheme by only exposing the attribute names while hiding the
attribute values (referred to as partially hidden access structure). Zhang
et al. [16] improved their scheme for more efficient decryption test
and practical large universe construction. Very recently, based on Lai
et al.’s approach, several expressive and access policy-hiding attribute-
based encryption schemes have been proposed for different application
scenarios [18–21]. Due to being constructed over the composite order
group, these schemes need to pay for a relatively heavy computation
cost. Though policy-hiding attribute-based encryption schemes based

on the prime order group were proposed in [51–53], they only supports
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Table 1
Function comparison between our scheme and related works.
Schemes Data sharing Keyword search Policy hiding Expressiveness Group order Large universe

[16,18–21]
√

×
√

LSSS Composite
√

[17]
√

×
√

LSSS Composite ×
[51–53]

√

×
√

AND-gates Prime ×
[10–15]

√ √

× Access Tree Prime
√

PH-ABKS-DS
√ √ √

LSSS Prime
√

Fig. 1. The system model of PH-ABKS-DS in cloud-assisted IoT.
AND-gates based access policy, which limits the expressivity and the
flexibility.

Inspired by searchable encryption primitive and attribute-based
encryption primitive, researchers proposed the attribute-based keyword
search (ABKS) techniques [10–15]. ABKS can achieve data searching
and fine-grained access control over encrypted data simultaneously.
However, all existing ABKS schemes expose the attributes in the access
policy associated with the secure searchable index, which usually con-
tain user’s sensitive information or even directly reflect the contents
of the data. Theoretically, the constructions in [16–21] can be used
to develop an expressive and policy-hiding attribute-based keyword
search scheme. However, Such schemes are based on the composite
order bilinear group and will incur an impractical search complexity.
This motivates us to explore a PH-ABKS-DS scheme based on the prime
order bilinear group with more practical search complexity. We provide
a function comparison between our proposed PH-ABKS-DS construction
in Section 5 and some related works, as shown in Table 1.

3. Preliminaries

In this section, we briefly review several key instruments used to
construct our PH-ABKS-DS scheme.

3.1. Bilinear pairing map

Let G1 and G2 be two cyclic multiplicative groups of prime order 𝑞
and 𝑔 be a generator of group G1. Given a map 𝑒 ∶ G1 ×G1 → G2, if 𝑒
is efficiently computable and satisfies the following two properties (1)
∀𝑎, 𝑏 ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝑍𝑝, 𝑒(𝑎𝑥, 𝑏𝑦) = 𝑒(𝑎, 𝑏)𝑥𝑦 and (2) 𝑒(𝑔, 𝑔) ≠ 1, then we
say 𝑒 is a bilinear pairing map over groups G1 and G2.

3.2. Access structure

Let {𝑃1, 𝑃2,… , 𝑃𝑛} be a set of parties. A collection A ⊆ 2{𝑃1 ,𝑃2 ,…,𝑃𝑛}

is monotone if ∀𝐵,𝐶: if 𝐵 ∈ A and 𝐵 ⊆ 𝐶 then 𝐶 ∈ A. An access
structure is a collection A of non-empty subsets of {𝑃1, 𝑃2,… , 𝑃𝑛},
i.e., A ⊆ 2{𝑃1 ,𝑃2 ,…,𝑃𝑛} ⧵ {∅}. The sets in A are called the authorized sets,
and the sets not in A are called the unauthorized sets.

In ABE, a set of attributes play the role of the parties and an access
policy organized by a collection of sets of attributes is equivalent to the
access structure.
3

3.3. Linear secret sharing scheme

A secret sharing scheme (LSSS) 𝜋 over a set of parties  is called
linear if (1) the shares for each party form a vector over Z𝑝 and (2)
there exists a matrix A with 𝑙 rows and 𝑛 columns called the share
generation for 𝜋. For all 𝑖 = 1,… , 𝑙, the 𝑖th row of A is labeled by a party
𝜌(𝑖), where 𝜌 is a function from {1,… , 𝑙} to  . We generate a random
vector 𝑣 = (𝑠, 𝑟2,… , 𝑟𝑛), where 𝑠 denotes the secret to be shared and
𝑠, 𝑟2,… , 𝑟𝑛 ∈ Z𝑝, and compute A𝑣 that is the vector of 𝑙 shares of the
secret 𝑠 according to 𝜋. The share (𝐴𝑣)𝑖 belongs to party 𝜌(𝑖).

In ABE, An LSSS 𝜋 has been widely used to express an access
structure A. Suppose that 𝑆 ∈ A is any authorized set and we define the
subset 𝐼 = {𝑖 ∶ 𝜌(𝑖) ∈ 𝑆} ⊆ {1, 2,… , 𝑙} to be a minimum authorized set
satisfying (𝐴, 𝜌) (In ABE, 𝑆 denotes a set of attributes corresponding to
the rows of LSSS matrix). For any 𝐼 , we can find constants {𝑤𝑖 ∈ Z𝑝}𝑖∈𝐼
such that ∑

𝑖∈𝐼 𝑤𝑖𝜆𝑖 = 𝑠 holds, for any valid shares {𝜆𝑖} of a secret 𝑠
according to 𝜋. For any 𝐼 ′ ⊂ 𝐼 , no such constants {𝑤𝑖} exist (i.e., any
subset of 𝐼 does not satisfy (𝐴, 𝜌)). Given (𝐴, 𝜌), we first find out all
minimum authorized sets 𝐼1, 𝐼2,…, and further write notation 𝛷(𝐴,𝜌) to
denote the set {𝐼1, 𝐼2,…}.

4. Problem formulations

In this section, we describe the system model and present the formal
security definition for our proposed PH-ABKS-DS.

4.1. System model

The system model of our proposed PH-ABKS-DS scheme in cloud-
assisted IoT involves five types of entities, i.e., a number of IoT brokers,
IoT gateways, data owners (individual users or organizations), cloud
server, and data users, as shown in Fig. 1. IoT brokers collect data from
IoT applications and via IoT gateways send them to the data owner. To
guarantee the confidentiality and searchability of the outsourced data,
the data owner encrypts data using traditional symmetric encryption, as
well as builds encrypted and attribute-based searchable index using our
proposed scheme. In particular, according to the access permission of a
data file and the search permission of an index keyword, the different
access policy is associated with a symmetric key encrypting the data
file, and the index keyword, respectively. In our system, the attribute
information in the access policy is partially hidden, which means
that the non-sensitive attribute names are exposed and the sensitive
attribute values are hidden. When a data user wants to request data
from the cloud server, he uses his private key to encrypt the interested



Journal of Systems Architecture 128 (2022) 102533H. Yin et al.
Fig. 2. The overview of PH-ABKS-DS.
keyword and submits the encrypted keyword (query trapdoor) to the
cloud server. Upon receiving the query trapdoor, the cloud server
conducts the attribute-based keyword search over encrypted index. On
one hand, for each search result (ciphertext) returned from the cloud
server, if and only if the data user has the access permission to the
underlying data, he can recover the corresponding symmetric key to
decrypt the ciphertext. On the other hand, obviously, if the data user
has not the search permission of the index keyword, nothing will be
returned. That is, if a data user wishes obtain some data files containing
a certain keyword, then his attribute set has to satisfy the access policies
in the keyword and the data files simultaneously.

4.2. Security definition

Formally, the security requirements of a PH-ABKS-DS scheme is
that the cloud server is prohibited from inferring any useful informa-
tion from the secure index, query trapdoor, and encrypted data files.
Obviously, the confidentiality of data files can be guaranteed by the
well-known symmetric encryption. Therefore, we focus on the security
of index keywords and query keywords. In order to provide a formal
security proof, we give the security definition based on the following
adaptively chosen-keyword search attack game between a polynomial
time adversary  and a challenger .

Adaptively Chosen-Keyword Search Attack Game (ACKSA):
Setup.  runs an algorithm Setup to set up a system public pa-

rameter P and a master key MK.  sends P to  and keeps MK
secret.

Phase 1. In this phase,  requests query trapdoors 𝑇1
,… , 𝑇𝑛

of keywords 1,… ,𝑛 by adaptively querying oracles 𝐊𝐞𝐧𝐆𝐞𝐧 and
𝐓𝐫𝐚𝐩𝐆𝐞𝐧, where 𝑖(1 ≤ 𝑖 ≤ 𝑛) corresponds to a set 𝑆𝑖 of attributes.

• 𝐊𝐞𝐧𝐆𝐞𝐧(𝑆𝑖):  runs an algorithm 𝙺𝚎𝚢𝙶𝚎𝚗 to generate the private
key 𝑖(1 ≤ 𝑖 ≤ 𝑛).

• 𝐓𝐫𝐚𝐩𝐆𝐞𝐧(𝑖, 𝑖):  runs an algorithm 𝚃𝚛𝚊𝚙𝙶𝚎𝚗 to generate the
query trapdoor 𝑖

(1 ≤ 𝑖 ≤ 𝑛) and sends it to .

Challenge.  picks up a challenging LSSS policy ∗ and two
keywords 𝑤0 and 𝑤1, which are sent to . The restriction is that if
𝑆𝑖(1 ≤ 𝑖 ≤ 𝑛) satisfies ∗, then 𝑤0, 𝑤1 ∉ {1,… ,𝑛}.  randomly
chooses a bit 𝑏 ∈ {0, 1} and encrypts 𝑤𝑏 with ∗ as 𝑤𝑏

, which is
given to .

Phase 2. repeats Phase 1. There is a restriction that if an attribute
set 𝑆𝑥 corresponding to a requested trapdoor 𝑥

satisfies ∗, then
𝑤0, 𝑤1 ≠ 𝑥.

Guess.  receives the ciphertext 𝑤𝑏
and requests the search output

between 𝑤𝑏
and 𝑄𝑖

(1 ≤ 𝑖 ≤ 𝑛) by adaptively querying oracle
𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐒𝐞𝐚𝐫𝐜𝐡.

• 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐒𝐞𝐚𝐫𝐜𝐡(𝑤𝑏
, 𝑄𝑖

):  runs an algorithm
𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑, which outputs 1 if and only if 𝑆𝑖 satisfies (𝐴, 𝜌)
and 𝑤 is equal to 𝑄 ; otherwise outputs 0.
4

𝑏 𝑖
 outputs a guess 𝑏′ of 𝑏.
We define the advantage that  wins ACKSA game to be 𝐴𝑑𝑣 =

Pr[𝑏 = 𝑏′] − 1
2 .

5. Construction of PH-ABKS-DS scheme

Our PH-ABKS-DS scheme is composed of 𝚂𝚎𝚝𝚞𝚙, 𝙺𝚎𝚢𝙶𝚎𝚗, 𝙲𝚒𝚙𝚑𝚎𝚛𝙶𝚎𝚗,
𝚃𝚛𝚊𝚙𝙶𝚎𝚗, 𝙿𝚛𝚒𝚟𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑, and 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 six polynomial time algo-
rithms. As shown in Fig. 2, we describe an overview of the PH-ABKS-DS
scheme, whose work flow involves the following steps.

(1) The data owner first initializes the run environment to generate
a system public parameter 𝐏 and a master key 𝐌𝐊.

(2) The data owner generates ciphertexts for outsourced index key-
words and data files. A data file 𝑓 is encrypted under an assigned
symmetric key 𝑘. To achieve secure and fine-grained authoriza-
tion search as well as data sharing, each index keyword 𝑤 and
symmetric key 𝑘 are encrypted under a policy-hiding access
structure, respectively, according to 𝑤’s search permission and
𝑓 ’s access permission.

(3) When a data user 𝑢 with attribute set  joins in the system, the
data owner for him generates a private key , where  is planted
into .

(4) When the data user 𝑢 wishes to search data files containing
keyword 𝑄, 𝑢 encrypts 𝑄 to generate 𝑄’s trapdoor 𝑄 using his
private key .

(5) The cloud server performs private authorization search between
secure index and 𝑄. If there exists an encrypted index keyword
that is equal to 𝑄 and 𝑢 has the search permission to the index
keyword, the cloud server will return a set  of ciphertexts
containing 𝑄.

(6) For each ciphertext in , if 𝑢 has the access permission to
its plaintext, 𝑢 can recover the symmetric key generating the
ciphertext to obtain the goal data; otherwise, the ciphertext is
discarded.

Next, we describe the implementation of each algorithm to construct
our proposed PH-ABKS-DS scheme.

5.1. Run environment initialization

The 𝚂𝚎𝚝𝚞𝚙 algorithm takes a security parameter 𝜅 as input and
outputs the system public parameter 𝐏 and the master key 𝐌𝐊. 𝐏 is
opened and 𝐌𝐊 is kept secret by the data owner. The detail of this
algorithm is present in Algorithm 1.
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Algorithm 1 𝚂𝚎𝚝𝚞𝚙

Input:
Security parameter 𝜅.

Output:
System public parameter P, master key MK.

1: Choose two multiplicative cycle groups G1 and G2 of prime order
𝑞 and define a bilinear map 𝑒 ∶ G1 ×G1 → G2. Let 𝑔 be a generator
of G1 and 𝜒 be the maximum number of system attributes.

2: Construct two Cryptographic hash functions:
𝐻1 ∶ {0, 1}∗ → G1 and 𝐻2 ∶ {0, 1}∗ → Z∗

𝑞 .
3: Choose two random exponents from Z∗

𝑞 : 𝛼 and 𝛽.
4: Calculate 𝑔𝛼 , 𝑒(𝑔, 𝑔)𝛼 , and 𝑔𝛽 .
5: P = (G1,G2, 𝑒, 𝑔, 𝑞, 𝜒,𝐻1,𝐻2, 𝑒(𝑔, 𝑔)𝛼 , 𝑔𝛼 , 𝑔𝛽 ).
6: MK = 𝛼.
7: return P,MK.

Algorithm 2 KeyGen
Input:

System Public parameter P, master key MK, and a data user 𝑢’s
attribute set .

Output:
𝑢’s private keys .

1: Parse  as (𝛱𝑆 , 𝑆), where 𝛱𝑆 ⊆ {1, 2, ..., 𝜒} and 𝑆 = {𝑠𝑖}𝑖∈𝛱𝑆
.

2: Choose a random exponent 𝑡 from Z∗
𝑞 .

3: Compute 𝐾1 = 𝑔𝛼 , 𝐾2 = 𝑔𝛽𝑡, and 𝐾2 = 𝑔𝑡.
4: for each attribute 𝑠 ∈ 𝑆 do
5: Compute 𝐾𝑠 = 𝐻1(𝑠)𝑡.
6: end for
7: return

 = (𝐾1 = 𝑔𝛼 , 𝐾2 = 𝑔𝛽𝑡, 𝐾3 = 𝑔𝑡,∀𝑠 ∈ 𝑆 ∶ 𝐾𝑠 = 𝐻1(𝑠)𝑡).

5.2. Key generation

The 𝙺𝚎𝚗𝙶𝚎𝚗 algorithm takes 𝐏, 𝐌𝐊, and a data user 𝑢’s attribute
et  as input, outputs the private key for the data user. The detail
f this algorithm is present in Algorithm 2. Actually, in the PH-ABKS
cheme, the data owner runs algorithm 𝙺𝚎𝚗𝙶𝚎𝚗 to grants the keyword
ased search permission and data access right to the data user. With
he private key , the data user can generate the legal query trap-
oor in terms of his interested query keyword and then decrypt the
ymmetric key used to encrypt query results. We assume that, in our
H-ABKS-DS system, there exist secure communication channels to
ransfer information between the data owner and the data user.

.3. Index keyword and data encryption

𝙲𝚒𝚙𝚑𝚎𝚛𝙶𝚎𝚗 algorithm is the ciphertext generation algorithm in
H-ABKS-DS scheme, which consists of three sub-algorithms. The de-
ail of this algorithm is present in Algorithm 3. Given a collection

= {𝑓1,… , 𝑓𝑛} of files and a collection of index keywords 𝑊 =
{𝑤1,… , 𝑤𝑚} extracted from 𝐹 , by repeatedly running Algorithm 3,

and 𝑊 are encrypted as 𝐹 = {(̂1, 𝑓1),… , (̂𝑛, 𝑓𝑛)} and 𝑊 =
{𝑤1

,… ,𝑤𝑚
}, respectively, where 𝑖 is the symmetric key seed used

o encrypt data 𝑓𝑖. Each ̂𝑖 and 𝑤𝑗
are associated with a special

access policy specifying the decryption permission of 𝑓𝑖 and the search
ermission of 𝑤𝑖. Different from the original ABE scheme in [22] and
xisting ABKS schemes, in our PH-ABKS-DS, the attribute values in
he access policy are hidden for preventing the sensitive information
eakage from the access policy. Nevertheless, our scheme can carry out
orrect private search and decryption in a policy-hiding manner. We do
5
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this by introducing for the attribute value corresponding to the 𝑖th row
of 𝐴 a random ℎ𝜌(𝑖) and binding it with the corresponding inner product
𝜆𝑖 = 𝑣 ⋅ 𝐴𝑖 in ciphertext components 𝐶 and 𝐷 (See line 5 in Algorithm
3.1 and line 17 in Algorithm 3.3). When search or decryption, the
random ℎ𝜌(𝑖) can be canceled out but obtain the required value 𝜆𝑖.
After encryption, the ciphertexts 𝑊 and 𝐹 are stored at cloud server,
respectively, and each 𝑤𝑖

points to the encrypted files containing the
keyword 𝑤𝑖.
Algorithm 3 CipherGen
Input:

System public parameter P, a symmetric key seed , a data file 𝑓 ,
and an index keyword 𝑤.

Output:
’s ciphertext ̂, 𝑓 ’s ciphertext 𝑓 , and 𝑤’s ciphertext 𝑤.

Algorithm 3.1 𝙸𝚗𝚍𝚎𝚡𝚆𝚘𝚛𝚍𝙴𝚗𝚌

1: Define an LSSS policy L𝑤 = (𝐴, 𝜌,), where 𝐴 is an 𝑙×𝑛 matrix and
a group of random values  = (ℎ𝜌(1), ..., ℎ𝜌(𝑙)) ∈ Z𝑙

𝑞 .
2: Choose a random value 𝑠𝑤 ∈ Z∗

𝑞 and generate a random vector
𝑣𝑤 = (𝑠𝑤, 𝑥2, ..., 𝑥𝑛).

3: Choose a group of random values 𝛾1, ..., 𝛾𝑙 from Z∗
𝑞 .

4: for 𝑖=0 to 𝑙 do
5: Compute:

(1) 𝜆𝑖 = 𝑣𝑤 ⋅ 𝐴𝑖, where 𝐴𝑖 denotes the 𝑖th row of 𝐴.
(2) 𝐶𝛥𝑤 ,𝑖 = 𝑔𝛽𝜆𝑖𝐻1(𝜌(𝑖))

−𝛾𝑖ℎ𝜌(𝑖) .
(3) 𝐷𝛥𝑤 ,𝑖 = 𝑔𝛾𝑖ℎ𝜌(𝑖)𝐻2(𝑤).

6: end for
7: Compute 𝐶𝛥𝑤 = 𝑒(𝑔, 𝑔)𝛼𝑠𝑤𝐻2(𝑤), 𝐶 ′

𝛥𝑤
= 𝑔𝑠𝑤𝐻2(𝑤).

8: Denote the ciphertext of index keyword 𝑤 as

𝑤 = ((𝐴, 𝜌), 𝐶𝛥𝑤 , 𝐶𝛥′𝑤 , {𝐶𝛥𝑤 ,𝑖, 𝐷𝛥𝑤 ,𝑖}1≤𝑖≤𝑙).

Algorithm 3.2 𝙳𝚊𝚝𝚊𝙴𝚗𝚌

9: Let 𝚂𝙺𝙴 = (𝙶𝚎𝚗, 𝙴𝚗𝚌, 𝙳𝚎𝚌) be a symmetric encryption.
10: Choose a random seed  from G2.
11: Generate a symmetric key 𝑠𝑘 by running 𝚂𝙺𝙴.𝙶𝚎𝚗().
12: Encrypt 𝑓 as 𝑓 by running 𝚂𝙺𝙴.𝙴𝚗𝚌(𝑠𝑘, 𝑓 ).

Algorithm 3.3 𝙺𝚎𝚢𝙴𝚗𝚌

13: Define an LSSS policy L𝑓 = (𝐴′, 𝜌′,′), where 𝐴′ is an 𝑙 × 𝑛 matrix
and ′ = (ℎ′𝜌(1), ..., ℎ

′
𝜌(𝑙)) ∈ {1, 2, ..., 𝜒}.

14: Choose two random vectors 𝑣𝑓 = (𝑠𝑓 , 𝑥2, ..., 𝑥𝑛) and 𝑣′𝑓 =
(𝑠′𝑓 , 𝑥

′
2, ..., 𝑥

′
𝑛).

15: Choose two groups of random values 𝑟1, ..., 𝑟𝑙 and 𝑟′1, ..., 𝑟
′
𝑙 from Z∗

𝑞 .
16: for 𝑖=0 to 𝑙 do
17: Compute:

(1) 𝜆𝑖 = 𝑣𝑓 ⋅ 𝐴′
𝑖 and 𝜆′𝑖 = 𝑣′𝑓 ⋅ 𝐴′

𝑖 , where 𝐴′
𝑖 denotes the 𝑖th row of

matrix 𝐴′.
(2) 𝐶𝛥𝑓 ,𝑖 = 𝑔𝛽𝜆𝑖𝐻1(𝜌(𝑖))

−𝑟𝑖ℎ′𝜌(𝑖) , 𝐷𝛥𝑓 ,𝑖 = 𝑔𝑟𝑖ℎ
′
𝜌(𝑖) and

𝐶𝛬𝑓 ,𝑖 = 𝑔𝛽𝜆
′
𝑖𝐻1(𝜌(𝑖))

−𝑟′𝑖ℎ
′
𝜌(𝑖) , 𝐷𝛬𝑓 ,𝑖 = 𝑔𝑟

′
𝑖ℎ

′
𝜌(𝑖) .

18: end for
19: Compute 𝐶𝛥𝑓 = 𝑒(𝑔, 𝑔)𝛼𝑠𝑓 , 𝐶 ′

𝛥𝑓
= 𝑔𝑠𝑓 and

𝐶𝛬𝑓
= 𝑒(𝑔, 𝑔)𝛼𝑠

′
𝑓 , 𝐶 ′

𝛬𝑓
= 𝑔𝑠

′
𝑓 .

0: Denote the ciphertext of random seed  as

̂ = ((𝐴′, 𝜌′), 𝐶𝛥𝑓 , 𝐶𝛥′𝑓
, {𝐶𝛥𝑓 ,𝑖, 𝐷𝛥𝑓 ,𝑖}1≤𝑖≤𝑙 ,

𝐶𝛬𝑓
, 𝐶𝛬′

𝑓
, {𝐶𝛬𝑓 ,𝑖, 𝐷𝛬𝑓 ,𝑖}1≤𝑖≤𝑙).

21: return ̂, 𝑓 , 𝑤.

5.4. Trapdoor generation

Using his private key , a data user 𝑢 runs 𝚃𝚛𝚊𝚙𝙶𝚎𝚗 algorithm
o encrypt a query keyword 𝑄 to generate the query trapdoor. The
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detail of this algorithm is present in Algorithm 4. In the algorithm, the
random value 𝜉 randomizes query trapdoor, which can guarantee that
he identical query keywords have complete random query trapdoors.
he feature is known as the trapdoor unlinkability and can prevent the
dversary from inferring query information from the search histories.
Algorithm 4 TrapGen
Input:

System Public parameter P, the data user 𝑢’s private key , and a
query keyword 𝑄.

Output:
Query trapdoor 𝑄.

1: Parse  as  = (𝐾1 = 𝑔𝛼 , 𝐾2 = 𝑔𝛽𝑡, 𝐾3 = 𝑔𝑡,∀𝑠 ∈ 𝑆 ∶ 𝐾𝑠 = 𝐻1(𝑠)𝑡).
2: Choose a random exponent 𝜉 from Z∗

𝑞 .
3: Compute 𝑇1 = 𝑔𝛼𝑔𝛽𝑡𝜉 and 𝑇2 = 𝑔𝑡𝜉𝐻2(𝑄).
4: for each 𝐾𝑠 in  do
5: Compute 𝑇𝑠 = 𝐻1(𝑠)𝑡𝜉 .
6: end for.
7: return  = (𝑇1 = 𝑔𝛼𝑔𝛽𝑡𝜉 , 𝑇2 = 𝑔𝑡𝜉𝐻2(𝑄),∀𝑠 ∈ 𝑆 ∶ 𝑇𝑠 = 𝐻1(𝑠)𝑡𝜉 ).

5.5. Private search

In our PH-ABKS-DS scheme, the 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm is con-
ducted by the cloud server and achieves the private match between
the encrypted index keyword and the query trapdoor. If and only if
the following two conditions hold simultaneously: (1) the underlying
index keyword 𝑤 in ciphertext 𝑤 is identical to the query keyword 𝑄 in
ciphertext  and (2) the attribute set embedded in  satisfies the LSSS
matrix associated with 𝑤, the algorithm outputs a set of encrypted data
files that contain the keyword 𝑄. Otherwise, the algorithm outputs an
empty set. Different from traditional ABKS schemes, due to the hidden
attribute values in access policy, the algorithm has to first calculate all
minimum sets 𝛷(𝐴,𝜌) satisfying the access policy. Then, if there exists
a set 𝐼 ∈ 𝛷(𝐴,𝜌) that makes the following equation to be true, this
implicitly indicates the two conditions above hold simultaneously,

𝐶𝛥𝑤 = 𝑒(𝐶 ′
𝛥𝑤

, 𝑇1)
/

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑤 ,𝑖, 𝑇2)𝑒(𝐷𝛥𝑤 ,𝑖, 𝑇𝜌(𝑖))
)𝜔𝑖

,

where 𝐶𝛥𝑤 , 𝐶
′
𝛥𝑤

, 𝐶𝛥𝑤 ,𝑖, 𝐷𝛥𝑤 ,𝑖 and 𝑇1, 𝑇2, 𝑇𝜌(𝑖) are the ciphertext compo-
ents in 𝑤 and  , respectively; 𝑖 ∈ 𝐼 and 𝜌(𝑖) corresponds to the
ttribute in the 𝑖th row of 𝐴 as well as 𝜌(𝑖) is equal to an attribute

𝑠 ∈ 𝑆, 𝑆 is the attribute set embedded in that private key encrypting
𝑄; ∑𝑖∈𝐼 𝜔𝑖𝐴𝑖 = (1, 0,… , 0). We will give the correctness proof of the
lgorithm in the next section.
Algorithm 5 PrivateSearch
Input:

A ciphertext 𝑤 of index keyword 𝑤 and a query trapdoor  of
query keyword 𝑄.

Output:
A collection ̂ of encrypted data files containing keyword 𝑄.

1: Calculate set 𝛷𝐴,𝜌 from (𝐴, 𝜌).
2: Check if there exists a set 𝐼 ∈ 𝛷𝐴,𝜌 that satisfies {𝜌(𝑖)|𝑖 ∈ 𝐼} and

𝐶𝛥𝑤 = 𝑒(𝐶 ′
𝛥𝑤

, 𝑇1)
/

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑤 ,𝑖, 𝑇2)𝑒(𝐷𝛥𝑤 ,𝑖, 𝐾𝜌(𝑖))
)𝜔𝑖

,

where ∑

𝑖∈𝐼 𝜔𝑖𝐴𝑖 = (1, 0, ..., 0).
3: if such an 𝐼 exists then
4: return ̂ = {(̂𝑗 , 𝑓𝑗 ), ..., (̂𝑘, 𝑓𝑘)}, where each 𝑓 contains the

keyword 𝑄.
5: else
6: return ̂ = ∅.
7: end if
6

5.6. Data decryption

The data user runs 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm to decrypt the search
esult set ̂ returned by the cloud servers. The detail of this algorithm
s present in Algorithm 6. For each encrypted data file (̂, 𝑓 ) in ̂, if

and only if the data user owns the access permission to data file 𝑓 , his
private key  can recover from ̂ the symmetric seed , by which 𝑓
can be recovered from 𝑓 . Otherwise, 𝑓 will be discarded. Essentially,
we use the decryption algorithm in [22] except for hiding the attribute
values in the access policy. Here, we first need to perform a test to find
out a set 𝐼 ∈ 𝛷𝐴,𝜌 (Line 6) and then use such an 𝐼 to decrypt ̂ (Lines
8 and 9). After obtaining the symmetric seed , the data user generates
the actual symmetric by running 𝑠𝑘 = 𝚂𝙺𝙴.𝙶𝚎𝚗() that can be used to
decrypt the encrypted data file.

Algorithm 6 Decryption
Input:

a collection ̂ of encrypted data files and the data user’s private
key .

Output:
a collection  of data files.

1: if ̂ = ∅ then
2: return  = ∅.
3: else
4: for each (̂, 𝑓 ) in ̂ do
5: Calculate set 𝛷𝐴,𝜌 from (𝐴, 𝜌).
6: Check if there exists a set 𝐼 ∈ 𝛷𝐴,𝜌 that satisfies {𝜌(𝑖)|𝑖 ∈ 𝐼}

and

𝐶𝛬𝑓
=

𝑒(𝐶𝛬′
𝑓
, 𝐾1𝐾2)

∏

𝑖∈𝐼

(

𝑒(𝐶𝛬𝑓 ,𝑖, 𝐾3)𝑒(𝐷𝛬𝑓 ,𝑖, 𝐾𝜌(𝑖))
)𝜔𝑖

,

where ∑

𝑖∈𝐼 𝜔𝑖𝐴𝑖 = (1, 0, ..., 0).
7: if such an 𝐼 exists then
8: Use 𝐼 to compute

𝑒(𝐶𝛥′𝑓
, 𝐾1𝐾2)

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑓 ,𝑖, 𝐾3)𝑒(𝐷𝛥𝑓 ,𝑖, 𝐾𝜌(𝑖))
)𝜔𝑖

= 𝑒(𝑔, 𝑔)𝛼𝑠𝑓 .

9: Compute

𝐶𝛥𝑓 ∕𝑒(𝑔, 𝑔)
𝛼𝑠𝑓 = 𝑒(𝑔, 𝑔)𝛼𝑠𝑓 ∕𝑒(𝑔, 𝑔)𝛼𝑠𝑓 = .

10: Run 𝚂𝙺𝙴.𝙶𝚎𝚗() to generate the symmetric key 𝑠𝑘.
11: Decrypt 𝑓 as 𝑓 by running 𝚂𝙺𝙴.𝙳𝚎𝚌(𝑠𝑘, 𝑓 ).
12:  =  ∪ {𝑓}.
13: end if
14: end for
15: return  = {𝑓𝑖, ..., 𝑓𝑘}.
16: end if

6. Correctness and security analysis of PH-ABKS-DS

6.1. Correctness of private search

Given an encrypted index keyword 𝑤 and a query trapdoor 𝑄,
according to Algorithm 5, we first calculate all minimum authorized
sets 𝛷(𝐴,𝜌), if 𝑄 is equal to 𝑤 and there exists a set 𝐼 ∈ 𝛷(𝐴,𝜌) that
satisfies

𝐶𝛥𝑤 = 𝑒(𝐶 ′
𝛥𝑤

, 𝑇1)
/

∏

(

𝑒(𝐶𝛥𝑤 ,𝑖, 𝑇2)𝑒(𝐷𝛥𝑤 ,𝑖, 𝑇𝜌(𝑖))
)𝜔𝑖

,

𝑖∈𝐼
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Table 2
The ciphertext about index keyword and query keyword that  can see.
𝑤 𝑄 Intermediate results

𝑒(𝑔, 𝑔)𝛼𝑠𝑤𝐻2 (𝑤)

𝑔𝑡𝜉𝐻2 (𝑄)
𝑒(𝑔, 𝑔)𝑠𝑤𝛼𝐻2 (𝑤)𝑒(𝑔, 𝑔)𝑠𝑤𝐻2 (𝑤)𝛽𝑡𝜉

𝑔𝑠𝑤𝐻2 (𝑤) 𝑒(𝑔, 𝑔)𝐻2 (𝑄)𝛽𝑡𝜉𝑠𝑤

𝑔𝛾𝑖ℎ𝜌(𝑖)𝐻2 (𝑤) 𝑒(𝑔, 𝑔)𝑠𝑤𝛼𝐻2 (𝑤)

where ∑

𝑖∈𝐼 𝜔𝑖𝐴𝑖 = (1, 0,… , 0). The private search is correct, because

𝑒(𝐶 ′
𝛥𝑤

, 𝑇1) = (𝑔𝑠𝑤𝐻2(𝑤), 𝑔𝛼𝑔𝛽𝑡𝜉)

= 𝑒(𝑔𝑠𝑤𝐻2(𝑤), 𝑔𝛼)𝑒(𝑔𝑠𝑤𝐻2(𝑤), 𝑔𝛽𝑡𝜉 )

= 𝑒(𝑔, 𝑔)𝑠𝑤𝛼𝐻2(𝑤)𝑒(𝑔, 𝑔)𝑠𝑤𝐻2(𝑤)𝛽𝑡𝜉

and
∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑤 ,𝑖, 𝑇2)𝑒(𝐷𝛥𝑤 ,𝑖, 𝑇𝜌(𝑖))
)𝜔𝑖

=
∏

𝑖∈𝐼

(

𝑒(𝑔𝛽𝜆𝑖𝐻1(𝜌(𝑖))
−𝛾𝑖ℎ𝜌(𝑖) , 𝑔𝑡𝜉𝐻2(𝑄))⋅

𝑒(𝑔𝛾𝑖ℎ𝜌(𝑖)𝐻2(𝑤),𝐻1(𝜌(𝑖))𝑡𝜉 )
)𝜔𝑖

=
∏

𝑖∈𝐼

(

𝑒(𝑔𝛽𝜆𝑖 , 𝑔𝑡𝜉𝐻2(𝑄))𝑒(𝐻1(𝜌(𝑖))
−𝛾𝑖ℎ𝜌(𝑖) , 𝑔𝑡𝜉𝐻2(𝑄))⋅

𝑒(𝑔𝛾𝑖ℎ𝜌(𝑖)𝐻2(𝑤),𝐻1(𝜌(𝑖))𝑡𝜉 )
)𝜔𝑖

=
∏

𝑖∈𝐼

(

𝑒(𝑔𝛽𝜆𝑖 , 𝑔𝑡𝜉𝐻2(𝑄))⋅

𝑒(𝐻1(𝜌(𝑖)), 𝑔)
−𝛾𝑖ℎ𝜌(𝑖)𝑡𝜉𝐻2(𝑄)+𝛾𝑖ℎ𝜌(𝑖)𝑡𝜉𝐻2(𝑤)

)𝜔𝑖

𝑤=𝑄
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐

∏

𝑖∈𝐼

(

𝑒(𝑔, 𝑔)𝜆𝑖𝐻2(𝑄)𝛽𝑡𝜉
)𝜔𝑖

= 𝑒(𝑔, 𝑔)𝐻2(𝑄)𝛽𝑡𝜉
∑

𝑖∈𝐼 𝜆𝑖𝜔𝑖 = 𝑒(𝑔, 𝑔)𝐻2(𝑄)𝛽𝑡𝜉
∑

𝑖∈𝐼 𝑣𝑤𝐴𝑖𝜔𝑖

= 𝑒(𝑔, 𝑔)𝐻2(𝑄)𝛽𝑡𝜉
∑

𝑖∈𝐼 𝜆𝑖𝜔𝑖

= 𝑒(𝑔, 𝑔)𝐻2(𝑄)𝛽𝑡𝜉(𝑠𝑤 ,𝑥2 ,…,𝑥𝑛)(1,0,…,0)

= 𝑒(𝑔, 𝑔)𝐻2(𝑄)𝛽𝑡𝜉𝑠𝑤 .

Thus, we have

𝑒(𝐶 ′
𝛥𝑤

, 𝑇1)
/

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑤 ,𝑖, 𝑇2)𝑒(𝐷𝛥𝑤 ,𝑖, 𝑇𝜌(𝑖))
)

𝜔𝑖

= 𝑒(𝑔, 𝑔)𝑠𝑤𝛼𝐻2(𝑤)𝑒(𝑔, 𝑔)𝑠𝑤𝐻2(𝑤)𝛽𝑡𝜉
/

𝑒(𝑔, 𝑔)𝐻2(𝑄)𝛽𝑡𝜉𝑠𝑤

𝑤=𝑄
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ 𝑒(𝑔, 𝑔)𝑠𝑤𝛼𝐻2(𝑤) = 𝐶𝛥𝑤 .

By derivation above, we can observe that, actually, the private search
processes implicitly contains the following two tests: (1) whether there
exists a set 𝐼 ∈ 𝛷(𝐴,𝜌) embedded in 𝑄 satisfies the access policy in 𝑤
and (2) whether the query keyword 𝑄 is equal to the index keyword
𝑤. As long as one of those two conditions does not hold, the above
equation will return to be false. Not that, in a successful search (𝑤 = 𝑄),
the algorithm does not need to determine which concrete set 𝐼 in 𝛷(𝐴,𝜌)
that makes the equation to be true.

6.2. Correctness of decrypting symmetric key

Different from 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm, in a successful decryption,
the 𝙳𝚎𝚌𝚛𝚢𝚝𝚙𝚒𝚘𝚗 algorithm must find out the exact set 𝐼 from 𝛷(𝐴,𝜌), by
using it to further conduct the decryption of the symmetric key. To do
that, we introduce the redundant ciphertext components 𝐶𝛬𝑓

, 𝐶𝛬′
𝑓
, and

{𝐶𝛬𝑓 ,𝑖, 𝐷𝛬𝑓 ,𝑖}1≤𝑖≤𝑙 in the ciphertext ̂, which will help the algorithm
find out the correct set 𝐼 ∈ 𝛷(𝐴,𝜌) by verifying

𝐶𝛬𝑓

?
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ 𝑒(𝐶𝛬′

𝑓
, 𝐾1𝐾2)

/

∏

(

𝑒(𝐶𝛬𝑓 ,𝑖, 𝐾3)𝑒(𝐷𝛬𝑓 ,𝑖, 𝐾𝜌(𝑖))
)𝜔𝑖

.

7

𝑖∈𝐼
𝑖

Further, the algorithm uses the set 𝐼 to decrypt ̂ by computing

𝑒(𝐶𝛥′𝑓
, 𝐾1𝐾2)

/

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑓 ,𝑖, 𝐾3)𝑒(𝐷𝛥𝑓 ,𝑖, 𝐾𝜌(𝑖))
)𝜔𝑖

=
𝑒(𝑔𝑠𝑓 , 𝑔𝛼𝑔𝛽𝑡)

∏

𝑖∈𝐼

(

𝑒(𝑔𝛽𝜆𝑖𝐻1(𝜌(𝑖))
−𝑟𝑖ℎ′𝜌(𝑖) , 𝑔𝑡)𝑒(𝑔𝑟𝑖ℎ

′
𝜌(𝑖) ,𝐻1(𝜌(𝑖))𝑡)

)𝜔𝑖

=
𝑒(𝑔𝑠𝑓 , 𝑔𝛼)𝑒(𝑔𝑠𝑓 , 𝑔𝛽𝑡)
∏

𝑖∈𝐼 𝑒(𝑔𝛽𝜆𝑖 , 𝑔𝑡)𝜔𝑖
=

𝑒(𝑔𝑠𝑓 , 𝑔𝛼)𝑒(𝑔𝑠𝑓 , 𝑔𝛽𝑡)
𝑒(𝑔, 𝑔)𝛽𝑡

∑

𝑖∈𝐼 𝜆𝑖𝜔𝑖

=
𝑒(𝑔𝑠𝑓 , 𝑔𝛼)𝑒(𝑔𝑠𝑓 , 𝑔𝛽𝑡)
𝑒(𝑔, 𝑔)𝛽𝑡

∑

𝑖∈𝐼 𝑣𝑓𝐴𝑖𝜔𝑖

= 𝑒(𝑔, 𝑔)𝛼𝑠𝑓 ,

where ∑

𝑖∈𝐼 𝜔𝑖𝐴𝑖 = (1, 0,… , 0). Finally, the algorithm recovers the
symmetric key  encrypting file 𝑓 by computing

𝐶𝛥𝑓 ∕𝑒(𝑔, 𝑔)
𝛼𝑠𝑓 = 𝑒(𝑔, 𝑔)𝛼𝑠𝑓 ∕𝑒(𝑔, 𝑔)𝛼𝑠𝑓 = .

Substantially, we utilize the Waters ABE scheme [22] to construct
n expressive and policy-hiding ABE to secure the symmetric key. For
chieving the hidden access policy, we introduce a group of redundant
iphertext components, and a random exponent ℎ𝜌(𝑖) multiplying by the
andom value 𝑟𝑖. The subtle but non-trivial adaptation cannot affect the
orrectness of the original scheme.

.3. Security analysis

Obviously, in PH-ABKS-DS scheme, the security of the data files
nd the symmetric keys can be guaranteed by the semantically se-
ure symmetric encryption and the underlying attribute-based encryp-
ion scheme in [22], respectively. Therefore, we focus on the security
nalysis of the private search algorithm.

By directly observing the ciphertexts 𝑤, 𝑄, and the intermediate
esults the 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm produces, as shown in Table 2,
n adversary  cannot obtain any useful information about the index

keyword 𝑤 and the query keyword 𝑄, since  has to solve the Discrete
ogarithm problem and Integer Factorization problem. The main reason
s that in our scheme the plaintext binding with random value(s) is
ncrypted as the power of a group element in G1 or G2. As a result, no
ecryption algorithm can recover the plaintext from the corresponding
iphertext due to DL and IF hardness problems. We can also say that
ach element in Table 2 is indistinguishable from a truly random
lement in G1 or G2 when using the random 𝑠, 𝛾, 𝜉 for an encryption
very time.

On the other hand, the proposed 𝐴𝐶𝐾𝑆𝐴 game tells us that the
dversary  is allowed to query all oracles to attack our private
earch scheme. Therefore, given the challenge index keyword 𝑤𝑏, 
an guess the correct value of 𝑏 with probability 1 by querying oracle
𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐒𝐞𝐚𝐫𝐜𝐡(𝑤𝑏

, 𝑄𝑖
) = 1, where 𝑄𝑖 is a certain trapdoor keyword that

as been queried. This may be the sole way for the adversary  to
break through our scheme. However, we will prove that  can output
the guess 𝑏′ such that 𝑏 = 𝑏′ with probability at most 1∕2 under the
𝐴𝐶𝐾𝑆𝐴 game.

Theorem 1. Our proposed PH-ABKS-DS scheme is semantically secure
against the adaptively chosen-keyword search attack. A probabilistic poly-
nomial time adversary  cannot win the ACKSA game with a non-negligible
advantage such that he cannot break through our scheme to obtain any
useful keyword information.

Proof. Setup. The challenger  runs 𝚂𝚎𝚝𝚞𝚙 algorithm to send the
public system parameter (G1,G2, 𝑒, 𝑔, 𝑞, 𝜒,𝐻1, 𝐻2, 𝑒(𝑔, 𝑔)𝛼 , 𝑔𝛼 , 𝑔𝛽 ) to 
and keep 𝛼 secret. In our proof, 𝐻1 is modeled as the random oracle
and 𝐻2 is a one-way hash function.  builds a global table T as the
imulation of random oracle 𝐻1.
Phase 1. When requesting the 𝑖th query trapdoor of keyword 𝑄𝑖(1 ≤
≤ 𝑛) for the attribute set 𝑆𝑖,  queries 𝐊𝐞𝐧𝐆𝐞𝐧 and 𝐓𝐫𝐚𝐩𝐆𝐞𝐧 as follows.
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 chooses a random 𝑡 ∈ Z∗
𝑞 and computes 𝑔𝛽𝑡 and 𝑔𝑡. For each attribute

𝑠 ∈ 𝑆,  computes 𝑔𝑟(𝑠)𝑡. If for the first time 𝑠 is queried,  chooses
a newly random value 𝑟(𝑠) and pushes (𝑠, 𝑟(𝑠)) into T; otherwise 𝑟(𝑠) is
fetched from T by retrieving 𝑠.  returns  = (𝑔𝛼 , 𝑔𝛽𝑡, 𝑔𝑡,∀𝑠 ∈ 𝑆𝑖 ∶ 𝐾𝑠 =
𝑔𝑟(𝑠)𝑡) as the response to oracle 𝐊𝐞𝐧𝐆𝐞𝐧. Next,  chooses a random 𝜉
and returns 𝑄𝑖

= (𝑇1 = 𝑔𝛼𝑔𝛽𝑡𝜉 , 𝑇2 = 𝑔𝑡𝜉𝐻2(𝑄𝑖),∀𝑠 ∈ 𝑆𝑖 ∶ 𝑇𝑠 = 𝑔𝑟(𝑠)𝑡𝜉 ) to 
as the response to oracle 𝐓𝐫𝐚𝐩𝐆𝐞𝐧.

Challenge.  defines a challenging access policy ∗ = (𝐴, 𝜌,),
where 𝐴 is an 𝑙 × 𝑛 matrix and  is a group of random elements
(ℎ𝜌(1),… , ℎ𝜌(𝑙)) ∈ Z𝑙

𝑞 . Two keywords 𝑤0 and 𝑤1 are chosen with the
restriction that if 𝑆𝑖(1 ≤ 𝑖 ≤ 𝑛) satisfies ∗, then 𝑤0, 𝑤1 ∉ {1,… ,𝑛}.
∗, 𝑤0, and 𝑤1 are sent to the challenger , who chooses a random
bit 𝑏 ∈ {0, 1} and encrypts 𝑤𝑏 as follows. First,  chooses a random
vector𝑣𝑤𝑏

= (𝑠𝑤𝑏
, 𝑥2,… , 𝑥𝑛) and 𝑙 random values 𝛾1,… , 𝛾𝑙. Second, for

each attribute 𝜌(𝑖)(1 ≤ 𝑖 ≤ 𝑙), if 𝜌(𝑖) has been queried before,  fetches
the random value 𝑟(𝜌(𝑖)) from table T by retrieving 𝜌(𝑖); otherwise, a
newly random 𝑟(𝜌(𝑖)) is chosen and (𝜌(𝑖), 𝑟(𝜌(𝑖))) is pushed into 𝐓;  uses
𝑟(𝜌(𝑖)) to compute 𝐶𝛥𝑤𝑏 ,𝑖

= 𝑔𝛽𝜆𝑖𝑔−𝛾𝑖ℎ𝜌(𝑖)𝑟(𝜌(𝑖)) and 𝐷𝛥𝑤𝑏 ,𝑖
= 𝑔𝛾𝑖ℎ𝜌(𝑖)𝐻2(𝑤𝑏),

where 𝜆𝑖 = 𝑣𝑤𝑏
⋅𝐴𝑖 and 𝐴𝑖 denotes the 𝑖th row of 𝐴. Finally,  computes

𝐶𝛥𝑤𝑏
= 𝑒(𝑔, 𝑔)𝛼𝑠𝑤𝑏𝐻2(𝑤𝑏), 𝐶 ′

𝛥𝑤𝑏
= 𝑔𝑠𝑤𝑏𝐻2(𝑤𝑏).  sends the ciphertext

𝑤𝑏
= ((𝐴, 𝜌), 𝐶𝛥𝑤𝑏

, 𝐶𝛥′𝑤𝑏
, {𝐶𝛥𝑤𝑏 ,𝑖

, 𝐷𝛥𝑤𝑏 ,𝑖
}1≤𝑖≤𝑙)

to , who observes the output of 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐒𝐞𝐚𝐫𝐜𝐡(𝑤𝑏
, 𝑄𝑖

) to decide 𝑏’s
value, where 𝑄𝑖 is the trapdoor keyword that has been queried before.

Phase 2. repeats Phase 1. There is a restriction that if an attribute
set 𝑆𝑥 corresponding to a requested trapdoor 𝑥

satisfies ∗, then
𝑤0, 𝑤1 ≠ 𝑥.

Guess. Obviously, if  can find out keyword 𝑄 and let 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐒𝐞𝐚𝐫𝐜𝐡
(𝑤𝑏

, 𝑄) = 1, by 𝑄 can correctly output 𝑏, where 𝑄 a certain trapdoor
keyword that has been queried before. Without loss of generality, we
assume that 𝑏 = 1, and there exist two cases in the query as follows.

(1) 𝑄 = 𝑤1. We execute the following private search test:

𝑒(𝐶 ′
𝛥𝑤1

, 𝑇1)
/

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑤1 ,𝑖
, 𝑇2)𝑒(𝐷𝛥𝑤1 ,𝑖

, 𝑇𝜌(𝑖))
)𝜔𝑖

.

Because

𝑒(𝐶 ′
𝛥𝑤1

, 𝑇1) = 𝑒(𝑔, 𝑔)𝑠𝑤1 𝛼𝐻2(𝑤1)𝑒(𝑔, 𝑔)𝑠𝑤1𝐻2(𝑤1)𝛽𝑡𝜉

and
(

𝑒(𝐶𝛥𝑤1 ,𝑖
, 𝑇2)𝑒(𝐷𝛥𝑤1 ,𝑖

, 𝑇𝜌(𝑖))
)𝜔𝑖

=
(

𝑒(𝑔𝛽𝜆𝑖 , 𝑔𝑡𝜉𝐻2(𝑄)) ⋅ 𝑒(𝑔𝛾𝑖ℎ𝜌(𝑖)𝑟(𝜌(𝑖)) , 𝑔𝑡𝜉 )−𝐻2(𝑄)+𝐻2(𝑤1)
)𝜔𝑖

=
(

𝑒(𝑔, 𝑔)𝜆𝑖𝐻2(𝑄)𝛽𝑡𝜉
)𝜔𝑖

(𝑄 = 𝑤1),

we have

𝑒(𝐶 ′
𝛥𝑤1

, 𝑇1)
/

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑤1 ,𝑖
, 𝑇2)𝑒(𝐷𝛥𝑤1 ,𝑖

, 𝑇𝜌(𝑖))
)𝜔𝑖

=
𝑒(𝑔, 𝑔)𝑠𝑤1 𝛼𝐻2(𝑤1)𝑒(𝑔, 𝑔)𝑠𝑤1𝐻2(𝑤1)𝛽𝑡𝜉

∏

𝑖∈𝐼

(

𝑒(𝑔, 𝑔)𝜆𝑖𝐻2(𝑄)𝛽𝑡𝜉
)𝜔𝑖

.

n this case, the ACKSA game has the restriction that the attribute
et 𝑆𝑄 in 𝑄 cannot satisfy challenging access policy ∗ associated
ith 𝑤1

. Thus, the 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm cannot find constants
𝑤𝑖 ∈ Z𝑝}𝑖∈𝐼 to recover the secret 𝑠𝑤1

. As a result, we have

𝑒(𝑔, 𝑔)𝑠𝑤1 𝛼𝐻2(𝑤1)𝑒(𝑔, 𝑔)𝑠𝑤1𝐻2(𝑤1)𝛽𝑡𝜉

∏

𝑖∈𝐼

(

𝑒(𝑔, 𝑔)𝜆𝑖𝐻2(𝑄)𝛽𝑡𝜉
)𝜔𝑖

≠ 𝑒(𝑔, 𝑔)𝛼𝑠𝑤1𝐻2(𝑤1),

o that 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐒𝐞𝐚𝐫𝐜𝐡(𝑤1
, 𝑄) = 0.

(2) 𝑄 ≠ 𝑤1. In this case, the oracle 𝐏𝐫𝐢𝐯𝐚𝐭𝐞𝐒𝐞𝐚𝐫𝐜𝐡(𝑤1
, 𝑄) certainly

outputs 0 whether the attribute set 𝑆 satisfies the challenging access
8

𝑄

Fig. 3. The time cost of key generation and trapdoor generation.

policy ∗ or not, because
(

𝑒(𝐶𝛥𝑤1 ,𝑖
, 𝑇2)𝑒(𝐷𝛥𝑤1 ,𝑖

, 𝑇𝜌(𝑖))
)𝜔𝑖

=
(

𝑒(𝑔𝛽𝜆𝑖 , 𝑔𝑡𝜉𝐻2(𝑄)) ⋅ 𝑒(𝑔𝛾𝑖ℎ𝜌(𝑖)𝑟(𝜌(𝑖)) , 𝑔𝑡𝜉 )−𝐻2(𝑄)+𝐻2(𝑤1)
)𝜔𝑖

≠
(

𝑒(𝑔, 𝑔)𝜆𝑖𝐻2(𝑄)𝛽𝑡𝜉
)𝜔𝑖

(𝑄 ≠ 𝑤1),

we have,

𝑒(𝐶 ′
𝛥𝑤1

, 𝑇1)
/

∏

𝑖∈𝐼

(

𝑒(𝐶𝛥𝑤1 ,𝑖
, 𝑇2)𝑒(𝐷𝛥𝑤1 ,𝑖

, 𝑇𝜌(𝑖))
)𝜔𝑖

≠ 𝑒(𝑔, 𝑔)𝑠𝑤1 𝛼𝐻2(𝑤1)𝑒(𝑔, 𝑔)𝑠𝑤1𝐻2(𝑤1)𝛽𝑡𝜉

∏

𝑖∈𝐼

(

𝑒(𝑔, 𝑔)𝜆𝑖𝐻2(𝑄)𝛽𝑡𝜉
)𝜔𝑖

(𝑄 ≠ 𝑤1)

≠ 𝑒(𝑔, 𝑔)𝛼𝑠𝑤1𝐻2(𝑤1).

Therefore, from the perspective of the adversary,  can output the
guess 𝑏′ such that 𝑏 = 𝑏′ with probability at most 1∕2 under the 𝐴𝐶𝐾𝑆𝐴
ame. □

. Experimental evaluation

In order to experimentally verify the correctness and evaluate the
erformance of the PH-ABKS-DS scheme, we implement this construc-
ion in Java language with the widely used Java pairing based cryptog-
aphy library JPBC [54]. In our experimentations, a prime order elliptic
urve 𝑦2 = 𝑥3 + 𝑥 with symmetric pairing operations is chosen. We
valuate the time cost of 𝙺𝚎𝚢𝙶𝚎𝚗, 𝙶𝚒𝚙𝚑𝚎𝚛𝙶𝚎𝚗, 𝚃𝚛𝚊𝚙𝙶𝚎𝚗, 𝙳𝚎𝚌𝚛𝚢𝚝𝚒𝚘𝚗 four
lgorithms in a Windows 7 system with 2.30 GHz Intel Core i5-6200
PU, 4 GB memory and the private search algorithm 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 in
Windows 7 with 3.60 GHz Inter Core i7-7700 CPU, 16 GB memory.

.1. Time cost evaluation for 𝙺𝚎𝚢𝙶𝚎𝚗 and 𝚃𝚛𝚊𝚙𝙶𝚎𝚗 algorithms

Fig. 3 shows the time cost of key generation and trapdoor generation
hen varying the number of attributes. We can observe that both of

hem linearly increase with the increasing number of attributes. With
he same number of attributes, the 𝙺𝚎𝚢𝙶𝚎𝚗 algorithm needs to spend
ore time than 𝚃𝚛𝚊𝚙𝙶𝚎𝚗 algorithm. This is because that the 𝙺𝚎𝚢𝙶𝚎𝚗

lgorithm involves the time-consuming hash operation 𝐻1. When the
umber of attributes is set to be 20, the time to encrypt a search query
s less than 1 s, which is very efficient.

.2. Time cost evaluation for 𝙲𝚒𝚙𝚑𝚎𝚛𝙶𝚎𝚗 algorithm

The 𝙲𝚒𝚙𝚑𝚎𝚛𝙶𝚎𝚗 algorithm consists of three sub-algorithms. In the
xperimentation, as the well-designed AES can be used to instantiate
he symmetric encryption 𝚂𝙺𝙴 for 𝙳𝚊𝚝𝚊𝙴𝚗𝚌, we focus on the perfor-
ance evaluations of 𝙸𝚗𝚍𝚎𝚡𝚆𝚘𝚛𝚍𝙴𝚗𝚌 and 𝙺𝚎𝚢𝙴𝚗𝚌. Fig. 4 shows the
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Fig. 4. The time cost of an index keyword encryption and a symmetric key encryption.

time cost of the index keyword encryption and the symmetric key
encryption. Both of them are linear to the number of attributes in the
access policy (i.e., the number of rows of the LSSS matrix). The 𝙺𝚎𝚢𝙴𝚗𝚌

algorithm needs to generate a group of redundant ciphertexts used to
find out the minimum authorized set for decryption, which results in
the more time cost due to requiring twice exponentiation operations as
many as the 𝙸𝚗𝚍𝚎𝚡𝚆𝚘𝚛𝚍𝙴𝚗𝚌 algorithm. For example, when setting the
number of attributes in the access policy to be 20, encrypting an index
keyword and a key needs to spend about 4.28 s and 6.76 s, respectively.
Though the index keyword encryption is a time-consuming process, it
is one-time operation.

7.3. Time cost evaluation for 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm

We run the 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm at the server side to evaluate
its time cost. Fig. 5 demonstrates the time cost of the private match
between the query trapdoor and the encrypted index keyword under
different size of 𝛷𝐴,𝜌 when varying the number of attributes in the
minimum authorized set 𝐼 . We can observe that the larger the sizes
of 𝐼 and 𝛷𝐴,𝜌 are, the more time would be spent on the private match.
Moreover, in the experimentations, we find out that the size of 𝛷𝐴,𝜌 has
the larger influence on the time cost of the 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm.
This is because that it needs to linearly check from 𝛷𝐴,𝜌 whether there
exist an 𝐼 ∈ 𝛷𝐴,𝜌 satisfying the current private match, which results in a
number of relatively time-consuming pairing operations. Obviously, the
average check complexity is ((1 + |𝛷𝐴,𝜌|)∕2). This is a tradeoff in our
scheme between the search efficiency and the access policy hiding. For
all this, our private match is still efficient as the proposed PH-ABKS-DS
is constructed on the prime order group.

Fig. 6 shows the time cost of the privacy match for different schemes
when varying the number of attributes in the minimum authorized set
𝐼 and fixing the number of attributes of the data user to be 20. The
experimental results demonstrate that except Miao et al.’s scheme [15]
(we only implement their single keyword scheme, namely ABKS-HD),
the execution time of the privacy match in PH-ABKS-DS, [10], and [14]
grows almost linearly with the number of attributes in the minimum
authorized set. We can see that our proposed PH-ABKS-DS has an
obvious performance advantage. Moreover, PH-ABKS-DS is the only
ABKS scheme with hidden access policy in these ABKS schemes above.

7.4. Time cost evaluation for 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm

Similar to the 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm, the time cost of the
𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm is affected by the sizes of 𝐼 and 𝛷 , where 𝐼
9

𝐴,𝜌
Fig. 5. The time cost of the private match.

Fig. 6. The time cost of the private match for different schemes.

denotes the minimum authorized set satisfying the current decryption
and 𝛷𝐴,𝜌 denotes the set of all the minimum authorized set, and 𝐼 ∈
𝛷𝐴,𝜌. Moreover, the size of 𝛷𝐴,𝜌 has a larger influence on the time cost
of the decryption. Fig. 7 shows the practical experimentation results
when varying the sizes of 𝐼 and 𝛷𝐴,𝜌, respectively. Compared with the
𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm, the decryption process produces more time
overhead, which is caused by two underlying reasons. One reason is
that the 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm is evaluated at the client machine with
slightly weaker computation ability. The other one is that there is an
indispensable decryption process to recover the original symmetric key,
while the 𝙿𝚛𝚒𝚟𝚊𝚝𝚎𝚂𝚎𝚊𝚛𝚌𝚑 algorithm has not the explicit decryption. On
the other hand, compared to the existing expressive and policy-hiding
ABE schemes, which are designed based on the composite order group,
our proposed scheme bears most efficient decryption efficiency.

To provide performance comparisons of 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm be-
tween our proposed PH-ABKS-DS scheme and other state-of-the-art
related works, we implement the access policy-hiding ABE construc-
tions in [16,17], and [53]. The experimental results show that, as
shown in Fig. 8, the execution time of 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm in our
scheme is much less than that of schemes [16,17]. For example, when
setting the number of attributes in set 𝐼 to be 10, the time cost is
about 1.6 s, 16.5 s, and 32.2 s in PH-ABKS-DS, [16], and [17], respec-
tively. This also confirms that the policy-hiding ABE scheme based on
composite order group is not suitable to construct the attribute-based
keyword search scheme. Compared with the construction in [53], PH-
ABKS-DS needs a little more execution time on decryption. However,
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Fig. 7. Execution time of 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm.

Fig. 8. Execution time of 𝙳𝚎𝚌𝚛𝚢𝚙𝚝𝚒𝚘𝚗 algorithm for different schemes.

he scheme [53] only supports AND-gates policy, and PH-ABKS-DS and
hose two schemes in [16,17] are based on LSSS access policy and have
ore flexible expressivity in practice.

. Conclusion

In this paper, we investigate the efficient and policy-hiding attri-
ute-based keyword search and data sharing scheme in cloud-assisted
oT. Since the existing expressive and policy-hiding ABE schemes were
onstructed on the composite order group, they are not suitable to
e used to design the attribute-based keyword search system due to
he high computation overhead. By studying, we find out that the
olicy-hiding ABE scheme can also be constructed based on the prime
rder group. Based on this conclusion, we instantiate a policy-hiding
BE over prime order group by utilizing the Waters ABE scheme,
nd further develop it as our proposed PH-ABKS-DS scheme in cloud-
ssisted IoT. The PH-ABKS-DS scheme can achieve the fine-grained and
ecure keyword search and data sharing with a practical and ideal
fficiency. However, like all existing ABKS schemes, the proposed PH-
BKS-DS only considers the static data set and does not provide a
echanism to securely and dynamically update data. In our future
ork, we will explore the dynamical ABKS scheme with the secure and
10

fficient data addition and deletion.
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